National Library of Energy BETA

Sample records for technology choice component

  1. Vehicle Technologies Office Merit Review 2015: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ParaChoice:...

  2. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  3. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  4. Fairness hypothesis and managing the risks of societal technology choices

    SciTech Connect (OSTI)

    Cantor, R.; Rayner, S.

    1986-08-01

    Much of the literature on risk perception and management has asked how society should resolve the question, ''How safe is safe enough'' There has been political and technical disagreement over the types of answers that may be given, as well as over the social values attached to perceived probabilities and magnitudes of various outcomes. Despite controversy, there seems to have been a large measure of consensus that, ''How safe is safe enough'' is the right question to ask. This paper sets out to question that assumption. Various ingenious techniques of risk analysis have sought to discover the real risks inherent in various activities, but from a sociocultural viewpoint it can be seen that no single answer can be given to the problem of adequate safety in a complex society which contains a wide variety of perceptual biases about danger, expectations of the good life, and levels of demand for safety. The paper argues that, from a societal risk-management perspective, we should be addressing a different range of questions that views societal risk as a whole rather than as the sum of individual hazards. Resolving the question, ''How safe is safe enough'' is less important in making societal technology choices than ''How fair is safe enough.'' A recent empirical pilot study is reported which explored the fairness hypotheses in the context of nuclear power. The results indicate that the process of technology choice should recognize explicitly the preferred principles different parties hold with respect to obtaining consent from those affected by the risks, distributing the liabilities, and justifying trust in the relevant institutions. The paper closes with a discussion of future prospects for the fairness approach in areas such as noxious facility siting.

  5. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  6. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  7. Human choice and climate change. Volume 2: Resources and technology

    SciTech Connect (OSTI)

    Rayner, S.; Malone, E.L.

    1997-12-31

    Foreward: Preface; Introduction; The natural science of global climate change; Land and water use; Coastal zones and oceans; Energy and industry; Energy and social systems; Technological change; and Sponsoring organizations, International Advisory Board, and project participants.

  8. Integration of MEA Components-Status and Technology Gaps: A Stakeholde...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of MEA Components-Status and Technology Gaps: A Stakeholder's Perspective Integration of MEA Components-Status and Technology Gaps: A Stakeholder's Perspective ...

  9. The fairness hypothesis and managing the risks of societal technology choices

    SciTech Connect (OSTI)

    Cantor, R.; Rayner, S.

    1987-01-01

    Much of the literature on risk perception and management published over the last few years has asked how society should resolve the question, ''How safe is safe enough.'' This paper argues that, from a societal risk-management perspective, we should be addressing a different range of questions that views societal risk as a whole rather than as the sum of individual hazards. Resolving the question, ''How safe is safe enough.'' is less important in making societal technology choices than ''How fair is safe enough.'' A recent empirical pilot study is reported which explored the fairness hypothesis in the context of nuclear power. The results indicate that the process of technology choice should recognize explicitly the preferred principles different parties hold with respect to obtaining consent from those affected by the risks, distributing the liabilities, and justifying trust in the relevant institutions. The paper closes with a discussion of future prospects for the fairness approach to areas such as noxious facility siting.

  10. Role of liability preferences in societal technology choices: results of a pilot study

    SciTech Connect (OSTI)

    Cantor, R.; Rayner, S.; Braid, B.

    1985-01-01

    At the 1984 Annual Meeting of the Society for Risk Analysis, Steve Rayner presented a paper that challenged the conventional wisdom of risk management research. In that paper, he argued that resolving the question, ''How safe is safe enough.'' is less important in making societal technology choices than ''How fair is safe enough.'' Adopting the fairness question as the concern of risk management would imply that the process of technology choice explicitly recognize the preferred principles different parties hold with respect to obtaining consent from those affected by the risks, distributing the liabilities, and justifying trust in the relevant institutions. This paper discusses a recent empirical pilot study which explored the fairness hypothesis in the context of nuclear power. Individual interviews and focus groups were conducted to examine whether or not preferred principles for liability distributions were consistent with those suggested by the cultural characteristics of the constituency. The results suggest that for this type of societal technology choice, violation of these preferred principles may be a major source of the conflict between different constituencies. Additionally, the study contributes towards the development of a new approach in risk management that combines the cultural model of risk perceptions with the decision-theoretic approaches found in economics and psychology.

  11. The impact of energy prices on technology choice in the United States steel industry

    SciTech Connect (OSTI)

    Karlson, S.H. . Dept. of Economics); Boyd, G. )

    1991-01-01

    In the last thirty years US steel producers have replaced their aging open hearth steel furnaces with basic oxygen or large electric arc furnaces. This choice of technology leads to the opportunity to substitute electricity for fossil fuels as a heat source. We extend earlier research to investigate whether or not energy prices affect this type of technology adoption as predicted by economic theory. The econometric model uses the seemingly unrelated Tobit'' method to capture the effects of the industry's experience with both technologies, technical change, and potential cost reductions, as well as energy prices, on adoption. When we include the prices of electricity and coking coal as explanatory variables, the four energy price coefficients have the signs predicted by the law of demand. The two price coefficients have a statistically significant effect on adoption of basic oxygen furnaces. The inclusion of energy prices leads to significantly more efficient estimates of other coefficients in the model. 19 refs., 3 tabs.

  12. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  13. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  14. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Enabling Modernization of the Electric Power System Technology Assessments Cyber and Physical Security Designs, Architectures, and Concepts Electric Energy Storage Flexible and Distributed Energy Resources Measurements, Communications, and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Transmission and Distribution Components Chapter 3: Technology Assessments Introduction Today's electric

  15. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect (OSTI)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  16. Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program supports projects that evaluate the degradation and failure mechanisms of concentrating...

  17. Summary of the NASA Lewis component technology program for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.; Swec, D.M.

    1992-10-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  18. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Dr. Mathew Sottile

    2010-06-30

    The UO portion of the larger TASCS project was focused on the usability subproject identified in the original project proposal. The key usability issue that we tacked was that of supporting legacy code developers in migrating to a component-oriented design pattern and development model with minimal manual labor. It was observed during the lifetime of the TASCS (and previous CCA efforts) that more often than not, users would arrive with existing code that was developed previous to their exposure to component design methods. As such, they were faced with the task of both learning the CCA toolchain and at the same time, manually deconstructing and reassembling their existing code to fit the design constraints imposed by components. This was a common complaint (and occasional reason for a user to abandon components altogether), so our task was to remove this manual labor as much as possible to lessen the burden placed on the end-user when adopting components for existing codes. To accomplish this, we created a source-based static analysis tool that used code annotations to drive code generation and transformation operations. The use of code annotations is due to one of the key technical challenges facing this work | programming languages are limited in the degree to which application-specific semantics can be represented in code. For example, data types are often ambiguous. The C pointer is the most common example cited in practice. Given a pointer to a location in memory, should it be interpreted as a singleton or an array. If it is to be interpreted as an array, how many dimensions does the array have? What are their extents? The annotation language that we designed and implemented addresses this ambiguity issue by allowing users to decorate their code in places where ambiguity exists in order to guide tools to interpret what the programmer really intends.

  19. Development and production of two explosive components using SCB technology

    SciTech Connect (OSTI)

    Tarbell, W.W.; Sanchez, D.H.; Oestreich, M.L.; Prentice, J.W.

    1995-05-01

    For many years, explosive components have used hotwires to convert an electrical stimulus into the thermal energy required to initiate the device. A Semi-Conductor Bridge (SCB) performs the same function, but with the advantage of requiring approximately 1/10 the input energy of a comparable hotwire, while retaining excellent no-fire characteristics. The SCB also demonstrates faster function times due to its inherently-lower thermal mass. This paper discusses the development and production of two SCB-based devices, the MC4491 Initiator and the MC4492 Actuator. The initiator is designed to shock initiate a linear shaped charge by accelerating a thin metal plate across a small gap. The actuator functions several different components, serving as either an actuator by producing a rapidly expanding gas to activate piston mechanisms or as an ignitor by providing hot particles for initiating pyrotechnic mixtures. Details are provided on the construction of both devices, methods of assembly, and performance characteristics (function time, flyer velocity, pressure in a closed bomb, heat content, and no-fire and all-fire levels).

  20. Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar

    Broader source: Energy.gov [DOE]

    The SunShot Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program is taking a physics- and chemistry-based approach to identifying failure modes...

  1. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect (OSTI)

    Svetlana Shasharina

    2010-12-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  2. Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

  3. The Impact of Near-term Climate Policy Choices on Technology and Emissions Transition Pathways

    SciTech Connect (OSTI)

    Eom, Jiyong; Edmonds, James A.; Krey, Volker; Johnson, Nils; Longden, Thomas; Luderer, Gunnar; Riahi, Keywan; Van Vuuren, Detlef

    2015-01-01

    This paper explores the implications of delays associated with currently formulated climate policies (compared to optimal policies) for long-term transition pathways to limit climate forcing to 450ppm CO2e on the basis of the AMPERE Work Package 2 model comparison study. The paper highlights the critical importance of the 2030-2050 period for ambitious mitigation strategies. In this period, the most rapid shift to non-greenhouse gas emitting technology occurs. In the delayed response emissions mitigation scenarios, an even faster transition rate in this period is required to compensate for the additional emissions before 2030. Our physical deployment measures indicate that, without CCS, technology deployment rates in the 2030-2050 period would become considerably high. Yet the presence of CCS greatly alleviates the challenges to the transition particularly after the delayed climate policies. The results also highlight the critical role that bioenergy and CO2 capture and storage (BECCS) could play. If this technology is available, transition pathways exceed the emissions budget in the mid-term, removing the excess with BECCS in the long term. Excluding either BE or CCS from the technology portfolio implies that emission reductions need to take place much earlier.

  4. How fair is safe enough. The cultural approach to societal technology choice

    SciTech Connect (OSTI)

    Rayner, S.; Cantor, R.

    1987-03-01

    This paper consists of an argument and a pilot study. First is a general, perhaps philosophical, argument against the National Academy's viewpoint that dealing with risk is a two-stage process consisting of (a) assessment of facts, and (b) evaluation of facts in sociopolitical context. They argue that societal risk intrinsically revolves around social relations as much as around evaluations of probability. Second, they outline one particular approach to analyzing societal risk management styles. They call this the fairness hypothesis. Rather than focusing on probabilities and magnitudes of undesired events, this approach emphasizes societal preferences for principles of achieving consent to a technology, distributing liabilities, and investing trust in institutions. Conflict rather than probability is the chief focus of this approach to societal risk management. This view is illustrated by a recent empirical pilot study that explored the fairness hypothesis in the context of new nuclear technologies.

  5. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    SciTech Connect (OSTI)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  6. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect (OSTI)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  7. Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar 2 (PREDICTS 2)

    Broader source: Energy.gov [DOE]

    The SunShot Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar 2 (PREDICTS 2) program funds research in physics, chemistry, and advanced data analysis to gain a better understanding of how and why solar PV modules degrade. The resulting improved product tests – either outdoors after installation or during the manufacturing process – will enable evaluation of module reliability and improved prediction of performance over time.

  8. Research Gaps and Technology Needs in Development of PHM for Passive AdvSMR Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2014-01-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically due to losses in economy of scale, thus, there is increased motivation to reduce the controllable operations and maintenance (O&M) costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components. state-of-the-art in PHM.

  9. Research gaps and technology needs in development of PHM for passive AdvSMR components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Henagar, Chuck H. Jr.; Coble, Jamie B.; Bond, Leonard J.

    2014-02-18

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  10. A review of the US joining technologies for plasma facing components in the ITER fusion reactor

    SciTech Connect (OSTI)

    Odegard, B.C. Jr.; Cadden, C.H.; Watson, R.D.; Slattery, K.T.

    1998-02-01

    This paper is a review of the current joining technologies for plasma facing components in the US for the International Thermonuclear Experimental Reactor (ITER) project. Many facilities are involved in this project. Many unique and innovative joining techniques are being considered in the quest to join two candidate armor plate materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, OD copper, CuCrZr). These techniques include brazing and diffusion bonding, compliant layers at the bond interface, and the use of diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. The development and status of these joining techniques will be detailed in this report.

  11. Review of Maintenance and Repair Times for Components in Technological Facilities

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2012-11-01

    This report is a compilation of some unique component repair time data and it also presents citations of more extensive reports where lists of repair times can be found. This collection of information should support analysts who seek to quantify maintainability and availability of high technology and nuclear energy production systems. While there are newer sources of repair time information, most, if not all, of the newer sources are proprietary and cannot be shared. This report offers data that, while older, is openly accessible and can serve as reasonable estimates of repair times, at least for initial studies. Some times were found for maintenance times in radiation environments, and some guidance for multiplicative factors to use to account for work in contamination areas.

  12. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    SciTech Connect (OSTI)

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  13. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  15. Vehicle Technologies Office Merit Review 2014: APEEM Components Analysis and Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about APEEM...

  16. Vehicle Technologies Office Merit Review 2014: Aerodynamic Lightweight Cab Structure Components

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (“Energy SMARRT”) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU’s/year and 6.46 trillion BTU’s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  18. Timeline for Customer Choices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revised September 28, 2015 TIMELINE FOR CUSTOMER CHOICES 2011 AND BEYOND - RECURRING CHOICES 1) Recurring Choices by Notice Deadlines: The choices below are made according to the...

  19. Application of organosilicon pre-sic polymer technology to optimize rapid prototyping of ceramic components

    SciTech Connect (OSTI)

    Saha, C.K.; Zank, G. [Dow Corning Corporation, Midland, MI (United States); Ghosh, A. [Philips Display Components Co., Ann Arbor, MI (United States)

    1995-12-01

    Developments of applications of advanced ceramics e.g., SiC, Si{sub 3}N{sub 4}, CMCs need to be on a faster track than what the current processing technologies can afford. Rapid reduction in time to market of new and complex products can be achieved by using Rapid Prototyping and Manufacturing Technologies (RP&M) e.g., 3D-printing, selective laser sintering, stereolithography etc. These technologies will help advanced ceramics meet the performance challenges at an affordable price with reliable manufacturing technologies. The key variables of the RP&M technologies for ceramics are the nature of the polymer carrier and/or the binder, and the powder. Selection and/or the production of a proper class of polymer carrier/binder, understanding their impact on the processing of ceramics such as polymer-powder interaction, speed of hardening the green body in a controlled manner, ability to retain shape during forming and consolidation, delivering desirable properties at the end, are crucial to develop the low cost, high quality ceramic products. Organosilicon pre-SiC polymer technology route to advanced ceramics is currently being commercialized by Dow Corning. Methods to use this class of polymer as a processing aid in developing potentially better RP&M technologies to make better ceramics have been proposed in this work.

  20. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  1. Fact #814: January 27, 2014 More Choices when Buying Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels Fact 814: January 27, 2014 More Choices when Buying Vehicles that Use Advanced ...

  2. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila; Ucok, Ibrahim

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  3. Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components

    Energy Savers [EERE]

    Energy 5 Budget At-A-Glance Advanced Manufacturing Office FY 2015 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality U.S. manufacturing jobs, enhance global competitiveness, and reduce energy use by encouraging a culture of continuous improvement in corporate energy management. PDF icon fy15_at-a-glance_amo.pdf More

  4. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect (OSTI)

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  5. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support. Annual report, January 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester`s Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  6. Vehicle Technologies Office Merit Review 2015: Laser-Assisted Joining Process of Aluminum and Carbon Fiber Components

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about laser-assisted...

  7. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Gibson, J. [ed.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  8. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect (OSTI)

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in to the marketplace.

  9. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  10. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  11. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  12. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    Gibson, J. [ed.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks.

  13. Rational engineering of Geobacter sulfurreducens electron transfer components: A foundation for building improved Geobacter-based bioelectrochemical technologies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-07-30

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Throughout the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. Inmore » previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.« less

  14. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  15. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  16. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  17. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  18. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  19. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  20. PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable...

    Office of Scientific and Technical Information (OSTI)

    An Analysis of the Choice Facing Renewable Power Projects in the United States Renewable power technologies are inherently capital-intensive, often (but not always) with relatively ...

  1. Solar Choice Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Choice Solutions Inc Jump to: navigation, search Name: Solar Choice Solutions Inc. Place: Calabasas, California Zip: 91302 Sector: Solar Product: Solar Choice Solutions Inc. is an...

  2. Renewable Choice Energy | Open Energy Information

    Open Energy Info (EERE)

    Choice Energy Jump to: navigation, search Name: Renewable Choice Energy Place: Boulder, Colorado Zip: 80301 Sector: Carbon, Renewable Energy Product: Renewable Choice Energy is a...

  3. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Component Manufacturing Facilities Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Advanced ...

  4. A Stark Choice on Solar

    Broader source: Energy.gov [DOE]

    As a nation, we face a stark choice. We can sit back and cede our position in the burgeoning solar industry or we can stand up and compete.

  5. Vehicle Technologies Office Merit Review 2014: Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling of mechanical behavior of cell...

  6. Choices for a Brighter Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices for a Brighter Future For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Golden, Colo., Nov. 12, 1999 - More and more Americans are getting the power to choose electricity suppliers as the utility industry is deregulated and reorganized. Those energy choices can affect health and well-being for many decades to come. Renewable energy sources—solar, wind, biomass, geothermal and hydropower—can provide reliable electricity while reducing environmental

  7. Energy Choice Simulator | Open Energy Information

    Open Energy Info (EERE)

    Choice Simulator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Choice Simulator AgencyCompany Organization: Great Plains Institute Sector: Energy Focus Area:...

  8. Rational engineering of Geobacter sulfurreducens electron transfer components: A foundation for building improved Geobacter-based bioelectrochemical technologies

    SciTech Connect (OSTI)

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-07-30

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Throughout the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve bioelectrochemical technologies.

  9. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  10. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,..."Natural Gas ... " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,..."Natu...

  11. Building Component Library | Open Energy Information

    Open Energy Info (EERE)

    Technology characterizations Resource Type: Dataset Website: bcl.nrel.gov Cost: Free OpenEI Keyword(s): buildings, nrel, data, component Language: English Building...

  12. The Node Monitoring Component of a Scalable Systems Software Environment

    SciTech Connect (OSTI)

    Samuel James Miller

    2006-08-09

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  13. Energetic component treatability study

    SciTech Connect (OSTI)

    Gildea, P.D.; Brandon, S.L.; Brown, B.G. [and others

    1997-11-01

    The effectiveness of three environmentally sound processes for small energetic component disposal was examined experimentally in this study. The three destruction methods, batch reactor supercritical water oxidation, sodium hydroxide base hydrolysis and calcium carbonate cookoff were selected based on their potential for producing a clean solid residue and minimum release of toxic gases after component detonation. The explosive hazard was destroyed by all three processes. Batch supercritical water oxidation destroyed both the energetics and organics. Further development is desired to optimize process parameters. Sodium hydroxide base hydrolysis and calcium carbonate cookoff results indicated the potential for scrubbing gaseous detonation products. Further study and testing are needed to quantify the effectiveness of these later two processes for full-scale munition destruction. The preliminary experiments completed in this study have demonstrated the promise of these three processes as environmentally sound technologies for energetic component destruction. Continuation of these experimental programs is strongly recommended to optimize batch supercritical water oxidation processing, and to fully develop the sodium hydroxide base hydrolysis and calcium carbonate cookoff technologies.

  14. Friction Modeling for Lubricated Engine and Drivetrain Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling for Lubricated Engine and Drivetrain Components Friction Modeling for Lubricated Engine and Drivetrain Components 2010 DOE Vehicle Technologies and Hydrogen Programs...

  15. Manhattan Project: Difficult Choices, 1942

    Office of Scientific and Technical Information (OSTI)

    "Met Lab" alumni at the University of Chicago -- Fermi is on the far left of the front row; Zinn is on Fermi's left; Anderson is on the far right of the front row; and Szilard is over Anderson's right shoulder. DIFFICULT CHOICES (1942) Events More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 By early 1942, as the United States suffered a series of

  16. The International Safeguards Technology Base: How is the Patient Doing? An Exploration of Effective Metrics

    SciTech Connect (OSTI)

    Schanfein, Mark J; Gouveia, Fernando S

    2010-07-01

    The term “Technology Base” is commonly used but what does it mean? Is there a common understanding of the components that comprise a technology base? Does a formal process exist to assess the health of a given technology base? These are important questions the relevance of which is even more pressing given the USDOE/NNSA initiatives to strengthen the safeguards technology base through investments in research & development and human capital development. Accordingly, the authors will establish a high-level framework to define and understand what comprises a technology base. Potential goal-driven metrics to assess the health of a technology base will also be explored, such as linear demographics and resource availability, in the hope that they can be used to better understand and improve the health of the U.S. safeguards technology base. Finally, through the identification of such metrics, the authors will offer suggestions and highlight choices for addressing potential shortfalls.

  17. Energy 101: Lighting Choices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Choices Energy 101: Lighting Choices Addthis Description In this edition of Energy 101, we discuss lighting choices. People have been using the same light bulb since Thomas Edison invented it about 130 years ago. Today, there are more lighting options in stores that will save you energy and money. Text Version Below is the text version for the Energy 101: Lighting Choices video: The video opens with "Energy 101: Lighting Choices." This is followed by shots of a variety of

  18. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  19. NERSC Wins HPCWire Editors' Choice Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins HPCWire Editors' Choice Award NERSC Wins HPCWire Editors' Choice Award November 19, 2014 At SC14 in New Orleans, Tom Tabor, publisher of HPCWire, presented NERSC with HPCWire's 2014 Editors' Choice Award for Best HPC Collaboration Between Government & Industry. The award recognized NERSC's partnership with Intel and Cray in preparation for Cori, the Cray XC supercomputer slated to be deployed at NERSC in 2016. The HPCwire awards are widely recognized as one of the most prestigious HPC

  20. PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power

    Office of Scientific and Technical Information (OSTI)

    Projects in the United States (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States Citation Details In-Document Search Title: PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States Renewable power technologies are inherently capital-intensive, often (but not always) with relatively high construction costs and

  1. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    SciTech Connect (OSTI)

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.

  2. Testing, Manufacturing, and Component Development Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development projects for utility-scale and distributed wind energy from fiscal years 2006 to 2014.

  3. HUD Choice Neighborhoods Planning Grants Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Housing and Urban Development (HUD) is accepting applications for the Choice Neighborhoods Planning Grant Program to leverage investments in public schools and education programs, early learning programs and services, and improved access to jobs.

  4. Lighting Choices - White Background | Department of Energy

    Energy Savers [EERE]

    Choices - White Background Image icon All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014. More...

  5. Choice Soy Energy | Open Energy Information

    Open Energy Info (EERE)

    Missouri farmers and businessmen aiming to build a USD 15m soybean crushing facility and biodiesel plant. References: Choice Soy Energy1 This article is a stub. You can help...

  6. Customer Choice Would Advance Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Customer Choice Would Advance Renewable Energy Golden, Colo., Oct. 31, 2001 Giving consumers a greater choice of how their electricity is generated could boost solar, wind and other "green power" sources 40 percent by the end of the decade, according to a new study by two U.S. Department of Energy national laboratories. Achieving such a result, however, would require an orderly transition to competitive power markets and a significant expansion of the green pricing programs currently

  7. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  8. Maxwell Technologies SA | Open Energy Information

    Open Energy Info (EERE)

    SA Jump to: navigation, search Name: Maxwell Technologies SA Place: Rossens, Switzerland Zip: CH-1728 Product: Maxwell Technologies SA (earlier Montena Components SA) is the Swiss...

  9. IMPCO Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    developer of gaseous alternative fuel system technology and components for internal combustion engines. References: IMPCO Technologies Inc1 This article is a stub. You can help...

  10. Evaluation Of Electrochemical Machining Technology For Surface...

    Office of Scientific and Technical Information (OSTI)

    Technology For Surface Improvements In Additive Manufactured Components Citation Details In-Document Search Title: Evaluation Of Electrochemical Machining Technology For ...

  11. Lithium-based Technologies | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-based Technologies Lithium-based Technologies Y-12's 60 years of rich lithium operational history and expertise make it the clear choice for deployment of new lithium-based ...

  12. Natural Gas Vehicle Webinar: Technology, Best Strategies, and Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Clean Cities program webinar elaborates first on successful past technology choices and then suggests future technological pathways that can be taken for the United States to expand its use of...

  13. Friction and Wear Enhancement of Titanium Alloy Engine Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction and Wear Enhancement of Titanium Alloy Engine Components Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives work together? ...

  14. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling 2009 DOE Hydrogen Program and Vehicle Technologies ...

  15. Physics of Reliability: Evaluating Design Insights for Component...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Funding Opportunity Physics of Reliability: Evaluating Design Insights for ...

  16. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery ...

  17. Major Components of Lending

    Broader source: Energy.gov [DOE]

    The major components of a clean energy financing program are described below, centered around the characteristics and sources of capital.

  18. Reactor component automatic grapple

    DOE Patents [OSTI]

    Greenaway, Paul R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  19. Lighting Choices to Save You Money Banner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Image icon Low-resolution version of the Lighting Choices to Save You Money banner.

  20. Frequently Asked Questions: Lighting Choices to Save You Money | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Frequently Asked Questions: Lighting Choices to Save You Money Frequently Asked Questions: Lighting Choices to Save You Money Frequently Asked Questions: Lighting Choices to Save You Money Below are some of the most frequently asked questions and answers about the new lighting efficiency standards. Learn more about your lighting choices and find out how to shop for lights by lumens, not watts. Why are my lighting choices changing? What is the Energy Independence and Security Act of

  1. Alternative Fuels Data Center: Choice Environmental Services Chooses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Choice Environmental Services Chooses Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Choice Environmental Services Chooses Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Choice Environmental Services Chooses Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Choice Environmental Services Chooses Natural Gas on Google Bookmark Alternative Fuels Data Center: Choice Environmental Services Chooses Natural Gas on Delicious Rank

  2. Evaluation Of Electrochemical Machining Technology For Surface...

    Office of Scientific and Technical Information (OSTI)

    Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components ... ORNL Manufacturing Demonstration Facility worked with ECM ...

  3. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  4. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    n E n v e l o p e This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  5. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 : L i g h t i n g This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  6. SA3654 Component characterization. Final report

    SciTech Connect (OSTI)

    Meir, G.W.

    1996-06-01

    AlliedSignal Inc., Federal Manufacturing & Technologies (FM&T), was provided with production capability assurance program (PCAP) funding to develop, characterize, and qualify purchased product components for use on the PRESS-A program. The SA3654, N-Channel, Power MOSFET was identified as a component needing such activity to support PRESS-A. This report presents the characterization activities and results for the SA3654.

  7. Symposium on electroslag component casting: proceedings

    SciTech Connect (OSTI)

    Judkins, R.R.; Hobday, J.M.

    1984-03-01

    The US Department of Energy (DOE), Office of Fossil Energy, Office of Surface Coal Gasification, has established a Materials Program to develop and apply appropriate materials to coal gasification plant components. The overall goals of the Surface Gasification Materials Program (SGMP) are to improve operational reliability and system durability and to reduce fabrication and operating costs of coal gasification plant components. The SGMP Electroslag Component Casting Project is directed to the development of electroslag casting (ESC) technology for use in coal conversion components such as valve bodies, pump housings, and pipe fittings. The aim is to develop a sufficient data base to permit ESC to become an ASME Code-accepted process. It is also intended to transfer the ESC process technology to private industry. This symposium was planned to discuss not only the SGMP Electroslag Component Casting Project but the activities and experiences of other organizations as well. The symposium addressed descriptions of electroslag processes; a worldwide perspective on the status of ESC technology; and details of production, mechanical properties, economics, and use of ESC for coal gasification components. Ten papers were presented, and a panel discussion was held to provide participants an opportunity to express their opinions and to offer recommendations on the content of the DOE program. This document constitutes the proceedings of that symposium. The papers included here are minimally edited transcripts of the presentations made at the symposium. All papers have been processed for inclusion in the Energy Data Base.

  8. NDE Development for ACERT Engine Components | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_18_sun.pdf More Documents & Publications NDE Development for ACERT Engine Components NDE DEVELOPMENT FOR ACERT ENGINE COMPONENTS Durability of ACERT Engine Components

  9. Montena Components | Open Energy Information

    Open Energy Info (EERE)

    Components Jump to: navigation, search Name: Montena Components Place: Rossens, Switzerland Zip: CH 1728 Product: Montena Components is a manufacturer of ultracapacitors and...

  10. Integrating Program Component Executables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate

  11. Power Choice/Pepco Energy Serv | Open Energy Information

    Open Energy Info (EERE)

    ChoicePepco Energy Serv Jump to: navigation, search Name: Power ChoicePepco Energy Serv Place: New Jersey Phone Number: 202-833-7500 Website: www.pepcoenergy.com Twitter:...

  12. Vehicle Technologies Office: Electric Drive Technologies Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Electric Drive Technologies Research and Development Vehicle Technologies Office: Electric Drive Technologies Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board charger, are essential components of hybrid and plug-in electric vehicles (PEV) propulsion systems. The Vehicle Technologies Office (VTO) supports research and development (R&D) to reduce the cost and improve the

  13. Vote for People's Choice Award! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vote for People's Choice Award! Vote for People's Choice Award! June 6, 2013 - 5:49pm Addthis Vote for your favorite team to win the National Clean Energy Business Plan Competition's "People's Choice Award." Vote for your favorite team to win the National Clean Energy Business Plan Competition's "People's Choice Award." Jennifer Garson Tech to Market Analyst, Commercialization Program (EERE) Editor's note: This article was originally posted on the official blog for the

  14. Environmental Protection Agency Safer Choice Partner of the Year Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Environmental Protection Agency Safer Choice Partner of the Year Awards Environmental Protection Agency Safer Choice Partner of the Year Awards May 11, 2016 - 12:00pm Addthis Environmental Protection Agency Safer Choice Partner of the Year Awards On May 9, the U.S. Environmental Protection Agency (EPA) recognized 24 Safer Choice Partner of the Year award winners from across 12 states, the District of Columbia and Canada for outstanding achievement in the design,

  15. Information for Media on Lighting Choices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Media on Lighting Choices Information for Media on Lighting Choices Information for Media on Lighting Choices These videos, presentation, and images are available for use by media organizations. The materials are copyright-free, and you are welcome to cite the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy as the source. Videos A residential home is shown with newer lighting choices that save energy and money. All of the lightbulbs in this video meet the new energy

  16. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  17. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    SciTech Connect (OSTI)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  18. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E.; Bower, W.; Bonn, R.; Hund, T.D.

    1998-07-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  19. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  20. Evaluation Of Electrochemical Machining Technology For Surface Improvements

    Office of Scientific and Technical Information (OSTI)

    In Additive Manufactured Components (Technical Report) | SciTech Connect Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components Citation Details In-Document Search Title: Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to

  1. Ceramic component for electrodes

    DOE Patents [OSTI]

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  2. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  3. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  4. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  5. Injection molded component

    DOE Patents [OSTI]

    James, Allister W; Arrell, Douglas J

    2014-09-30

    An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.

  6. Surface mount component jig

    DOE Patents [OSTI]

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  7. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system

  8. Final Technical Report - Center for Technology for Advanced Scientific...

    Office of Scientific and Technical Information (OSTI)

    - Center for Technology for Advanced Scientific Component Software (TASCS) Citation Details In-Document Search Title: Final Technical Report - Center for Technology for Advanced ...

  9. Household`s choices of efficiency levels for appliances: Using stated- and revealed-preference data to identify the importance of rebates and financing arrangements

    SciTech Connect (OSTI)

    Train, K.; Atherton, T.

    1994-11-01

    We examine customers` choice between standard and high-efficiency equipment, and the impact of utility incentives such as rebates and loans on this decision. Using data from interviews with 400 households, we identify the factors that customers consider in their choice of efficiency level for appliances and the relative importance of these factors. We build a model that describes customers` choices and can be used to predict choices in future situations under changes in the attributes of appliances and in the utility`s DSM and as part of the appliance-choice component of utilities` end-use forecasting systems. As examples, the model is used to predict the impacts of: doubling the size of rebates, replacing rebates with financing programs, and offering loans and rebates as alternative options for customers.

  10. OTEC mooring technology

    SciTech Connect (OSTI)

    Shields, D.R.; Wendt, R.L.; Johnson, B.A.

    1982-12-01

    This report summarizes existing technology for mooring components which may be suitable for OTEC use. Due to the platform size, depth of water, and length of design life required for an operational OTEC plant, only large and high capacity mooring components were investigated. The report contains engineering, test, and manufacturer's data on wire rope, synthetic rope (nylon, polyester and Kevlar), anchors, deck fittings and machinery, and design concepts for tension leg platform mooring systems. A significant portion of the effort was directed to the assessment of synthetic rope technology and its application to moorings.

  11. How Do You Make Greener Transportation Choices? | Department of Energy

    Energy Savers [EERE]

    Make Greener Transportation Choices? How Do You Make Greener Transportation Choices? February 24, 2011 - 8:44am Addthis On Tuesday, Shannon told you about some innovations from airports, car rental companies, and taxi companies that reduce fuel use and provide some greener transportation options when you travel. How do you make greener transportation choices? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please

  12. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  13. Solar Decathlon: Appalachian State Wins People’s Choice Award

    Broader source: Energy.gov [DOE]

    Appalachian State University won the U.S. Department of Energy Solar Decathlon 2011 People’s Choice Award for its Solar Homestead today.

  14. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  15. Apps for Energy Popular Choice Winners | OpenEI Community

    Open Energy Info (EERE)

    voting has closed and the full list of winners is now available at http:energy.govarticlespopular-choice-winners-announced-apps-energy-competition. Winners of the challenge...

  16. Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-04-01

    This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

  17. Choice FuelCorp Inc | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania Zip: 17702 Product: Pennsylvania-based biodiesel producer, from its plant in Williamsport. References: Choice FuelCorp, Inc.1 This article is a stub. You...

  18. NREL: Energy Systems Integration - Prototype and Component Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype and Component Development NREL develops and tests prototype technologies in its Energy Systems Integration Facility, which can accommodate large power system components. Unique feature such as petascale computing, interconnected AC and DC power circuits, an integrated SCADA system, megawatt-scale power-in-the-loop, and state-of-the-art data analysis and visualization capabilities enable us to help companies bring new technologies to market with more confidence and less risk. Creating

  19. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  20. Durability of ACERT Engine Components | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_11_lin.pdf More Documents & Publications Durability of ACERT Engine Components Durability of ACERT Engine Components Materials for Advanced Engine Valve Train

  1. Technological Assessment of Plasma Facing Components for DEMO Reactors

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  2. Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    None

    2004-11-01

    The project will further reduce porosity and fold defects in lost foam casting to improve production efficiency, mechanical properties, and marketability of castings.

  3. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Bramley, Randall B.

    2012-08-02

    Indiana University’s SWIM activities have primarily been in three areas. All are completed, but we are continuing to work on two of them because refinements are useful to both DoE laboratories and the high performance computing community.

  4. Sprayed skin turbine component

    DOE Patents [OSTI]

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  5. NREL: Energy Systems Integration Facility - Prototype and Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Prototype and Component Development To support prototype and component development, the Energy Systems Integration Facility can accommodate research, development, and demonstration of power system components such as PV inverters, residential smart meters, and appliances for physical testing or simulation using state-of-the-art hardware-in-the-loop technologies. Equipment can be developed, tested, and evaluated under normal and abnormal conditions at scale. Capability Details The

  6. Energy Department Announces $8 Million to Develop Advanced Components for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave, Tidal, and Current Energy Systems | Department of Energy 8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems January 12, 2015 - 11:00am Addthis The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic (MHK) control and component technologies. In the United States,

  7. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  8. Controlled Power Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technologies Ltd Place: Essex, United Kingdom Zip: SS15 6TP Product: Essex-based automotive component supply company involved in powertrain engineering, power electronics and...

  9. Annual Technology Baseline

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.

  10. Collaborative Technology Assessments Of Transient Field Processing And

    Office of Scientific and Technical Information (OSTI)

    Additive Manufacturing Technologies As Applied To Gas Turbine Components (Technical Report) | SciTech Connect Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components Citation Details In-Document Search Title: Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components ORNL partnered with GE Power & Water to investigate

  11. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  12. Friction and Wear Enhancement of Titanium Alloy Engine Components |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm007_blau_2011_o.pdf More Documents & Publications Friction and Wear Enhancement of Titanium Alloy Engine Components Vehicle Technologies Office Merit Review 2014: Friction Reduction through Surface Modification (Agreement ID:23284) Project ID:18518 Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives

  13. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  14. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  15. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  16. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  17. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  18. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  19. Cooling system for electronic components

    DOE Patents [OSTI]

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  20. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

  1. Technology Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Technology Validation In addition to the technical challenges being addressed through research, design, and development, there are obstacles to successful implementation of fuel cells and the corresponding hydrogen infrastructure that can be addressed only by integrating the components into complete systems. After a technology achieves its technical targets in the laboratory, the next step is to show that it can work as designed within complete systems (i.e., fuel cell

  2. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    SciTech Connect (OSTI)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  3. APEEM Components Analysis and Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Aerodynamic Lightweight Cab Structure Components

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Electric Drive Component Manufacturing Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Renewable Energy a Smart Choice for Farmers and Ranchers - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy a Smart Choice for Farmers and Ranchers December 22, 2003 Golden, Colo. - For many rural families, the cost of extending a power line to a home or other facility ...

  7. Lighting Choices to Save You Money Banner | Department of Energy

    Energy Savers [EERE]

    to Save You Money Banner Lighting Choices to Save You Money Banner All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take...

  8. Choices related to chemical cleaning of fossil plant equipment

    SciTech Connect (OSTI)

    Shields, K.

    1995-01-01

    Choices faced by utility personnel responsible for cleanliness of steamside and waterside surfaces of fossil plant equipment are identified and discussed. Electric Power Research Institute (EPRI) guidelines for chemical cleaning are introduced. A chemical cleaning case history is presented.

  9. Leading by Example: Argonne Senior Management Makes "Green" Vehicle Choices

    ScienceCinema (OSTI)

    Peters, Mark; Kearns, Paul;

    2013-04-19

    Argonne's senior management shows leadership in the sustainability arena with their own personal choices in "green" vehicles. They don't just talk the talk ? they walk the walk.

  10. Frequently Asked Questions: Lighting Choices to Save You Money...

    Broader source: Energy.gov (indexed) [DOE]

    be available to save you money. Q: When will the new bulbs be phased in? A: Newer energy-saving lightbulb choices that save about 25% to 75% in energy costs are on the market...

  11. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  12. Beryllium Screening - Informed Choice Document | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beryllium Screening - Informed Choice Document Beryllium Screening - Informed Choice Document January 2007 Cases of chronic beryllium disease (CBD), a legacy of the Department of Energy's (DOE) role in weapons production, have been increasing across the DOE complex. This trend has sparked increased concern about this serious occupational illness. In a national effort to identify current and former workers who have CBD or are sensitized to beryllium and to better understand the illness, DOE has

  13. NREL, Governor's Office Help Coloradans Make Clean Energy Choices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, Governor's Office Help Coloradans Make Clean Energy Choices For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Holmes Barba Golden, Colo., Sept. 13, 2000 - A new publication provides Colorado consumers with the tools to select sensible clean-energy solutions. The booklet, Colorado's Clean Energy Choices, provides basic information on green power available today from Colorado utilities around the state. It also outlines how farmers and ranchers can generate their

  14. Final Technical Report - Center for Technology for Advanced Scientific

    Office of Scientific and Technical Information (OSTI)

    Component Software (TASCS) (Technical Report) | SciTech Connect Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) Citation Details In-Document Search Title: Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on

  15. RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2011-06-06

    Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

  16. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  17. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  18. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  19. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  20. Renewable: A key component of our global energy future

    SciTech Connect (OSTI)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  1. Multi-tipped optical component

    DOE Patents [OSTI]

    D'Urso, Brian R.; Simpson, John T.

    2010-04-13

    An optical component has a plurality of parallel noncontiguous optical conduits of at least one protrusive phase material embedded in a recessive phase material that acts as a support structure. The optical conduits extend from a proximal surface to a distal surface of the optical component. The distal surface has a plurality of spaced apart surface features of the protrusive phase material. Each independent optical conduits act as waveguides for a wavelength or range of wavelengths. The optical component can be formed such that the protruding surface features at the distal end of the component form an ordered array. An optical instrument can include the optical component in conjunction with a light source for illuminating a sample and a detector in optical communication optical component via the optical conduits.

  2. Multi-component assembly casting

    DOE Patents [OSTI]

    James, Allister W.

    2015-10-13

    Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.

  3. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  4. Commercialization effort in support of electroslag-casting technology

    SciTech Connect (OSTI)

    Sikka, V.K.

    1993-06-01

    This report summarizes the results of an effort to revive interest in the electroslag casting (ESC) of components in the United States. The ESC process is an extension of a well established electroslag-remelting (ESR) process. Both processes use the electrode of a material that is continuously melted and cast in a water-cooled copper mold. For simple shapes, the mold can be movable, allowing the continuous casting of long lengths. In an effort to revive US industries` interest in ESC, the following approaches were taken: (1) US industries with prior experience in ESC or currently operating an ESR unit were contacted, followed up with telephone conversation, and/or sent copies of prior published reports on the topic, and, in some cases, personal visits were made; (2) with two companies, a potential interest in ESC was worked out by initially conducting ESR; and (3) to further strengthen the industrial interest, the newly developed iron-aluminide alloy, FA-129, was chosen as the material of choice for this study. The two industrial companies that worked with ORNL were Special Metals Corporation (New Hartford, New York) and Precision Rolled Products, Inc. (PRP) [Florham Park, New Jersey]. Even with its advantages, a survey of the industry indicated that ESC technology has a very limited chance of advancement in the United States. However, the processing of rounds and slabs by the ESR process is a well established commercial technology and will continue to expand. 16 figs, 3 tabs, 12 refs.

  5. Exploration Technologies Technology Needs Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's Geothermal Technologies Program and prepared by Energetics Incorporated under the guidance of Hildigunnur (Hidda) Thorsteinsson, Technology Development Manager of the Exploration Technologies Subprogram, and Tim Reinhardt, Technology Development Manager of the Low-Temperature, Coproduced, and Geopressured Geothermal Subprogram. Amanda I. Greene of Energetics Incorporated was the lead author and designer of the

  6. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  7. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  8. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B.

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  9. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  10. Improving Energy Efficiency by Developing Components for Distributed

    Broader source: Energy.gov (indexed) [DOE]

    Cooling and Heating Based on Thermal Comfort Modeling | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_48_gundlach.pdf More Documents & Publications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating

  11. Durability of ACERT Engine Components

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. AVTA Vehicle Component Cost Model

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. PHEVs Component Requirements and Efficiencies

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Electric Drive Component Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  16. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  17. Vehicle Component Heat Dissipation Improvements - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Vehicle Component Heat Dissipation Improvements Improvements to efficiently, safely, and inexpensively dispel heat from power modules, circuitry, and various devices National Renewable Energy Laboratory Contact NREL About This Technology Heat exchanger with conventional fins Heat exchanger with conventional fins Technology Marketing SummaryVehicle engines, power modules, and electronic circuitry need to be cooled while operating. In order to do this, heat

  18. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  19. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  20. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  1. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  2. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  3. Apparatus for remotely handling components

    DOE Patents [OSTI]

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  4. Deepwater seismic acquisition technology

    SciTech Connect (OSTI)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  5. Ceramic component for MHD electrode

    DOE Patents [OSTI]

    Marchant, David D.; Bates, Junior L.

    1981-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf.sub.x In.sub.y A.sub.z O.sub.2 where x=0.1 to 0.4, y=0.3 to 0.6, z=0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  6. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  7. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  8. Lighting Choices to Save You Money | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Lighting Choices to Save You Money Lighting Choices to Save You Money This Energy 101 video explores the different lighting options available to consumers. Light your home using the same amount of light for less money. By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each year. New lighting standards took effect in 2012, and money-saving options such as halogen incandescent, CFL, and LED

  9. Normal Conducting CLIC Technology

    SciTech Connect (OSTI)

    Jensen, Erk

    2006-01-03

    The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. A newly-developed structure-optimisation procedure has been used to simultaneously balance surface fields, power flow, short and long-range transverse wakefields, RF-to-beam efficiency and the ratio of luminosity to input power. The slotted irises allow a simple structure fabrication by high-precision high-speed 3D milling of just four pieces, and an even easier bolted assembly in a vacuum chamber.

  10. Application Components | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Apply » Application Components Application Components Application available at www.zintellect.com/Posting/Details/1997 A complete application consists of the following documents. Use this checklist to keep track of the required documents. Curriculum Vitae (CV) CV must be uploaded by the applicant as part of the application and must include the following: Applicant Information. Education History. List all institutions from which you received or expect to receive a degree beginning with

  11. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  12. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  13. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  14. Trusted Computing Technologies, Intel Trusted Execution Technology.

    SciTech Connect (OSTI)

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

  15. Final Technical Report: Characterizing Emerging Technologies.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua; Riley, Daniel; Gonzalez, Sigifredo

    2015-12-01

    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  16. State Regulators Promote Consumer Choice in Retail Gas Markets

    Reports and Publications (EIA)

    1996-01-01

    Restructuring of interstate pipeline companies has created new choices and challenges for local distribution companies (LDCs), their regulators, and their customers. The process of separating interstate pipeline gas sales from transportation service has been completed and has resulted in greater gas procurement options for LDCs.

  17. Evaluation of Integrated High Temperature Component Testing Needs

    SciTech Connect (OSTI)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  18. Benchmarking EV and HEV Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking EV and HEV Technologies Tim Burress Oak Ridge National Laboratory 2014 U.S. DOE Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting June 17 th , 2014 Project ID: APE006 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Start - FY04 * Finish - Ongoing * Integrating custom ORNL inverter-motor-controller with OEM components. - Optimizing controls for non-linear motors throughout operation range. *

  19. Technology Assessment

    Office of Environmental Management (EM)

    ... and components such as heat exchangers and pipelines, ... 6%-8% for conventional internal combustion 106 engines, or ... 853 reuse of in-process waste streams a high priority ...

  20. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  1. Stirling technology development status

    SciTech Connect (OSTI)

    Dochat, G.R. ); Dudenhoefer, J.E. )

    1993-01-15

    Free-piston Stirling power converters have the potential to meet the many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area (collector and radiator) than other power converter options. These benefits result in significant dollar savings over the projected mission lifetime. The National Aeronautics and Space Administration (NASA)---Lewis Research Center (LeRC), which has the responsibility to evaluate and develop power technologies that can satisfy anticipated future space mission power requirements, has been developing free-piston Stirling power converters and is bringing the Stirling technology to readiness. As the principal contractor to NASA-LeRC, Mechanical Technology Incorporated (MTI) is under contract to develop the necessary space Stirling technology but also demonstrate the readiness of the technology in two generations of full-scale power converters. The first generation Stirling power converter, the component test power converter (CTPC), initiated cold end testing at the end of 1991, with hot testing scheduled during 1992. This paper reviews test progress of the CTPC including the initial hot engine test results. Modifications incorporated into the CTPC from the earlier space power demonstrator engine are reviewed as well.

  2. ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

  3. Electrolytes - Technology review

    SciTech Connect (OSTI)

    Meutzner, Falk; Urea de Vivanco, Mateo

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  4. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  5. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  6. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  7. IC-Compatible Technologies for Optical MEMS

    SciTech Connect (OSTI)

    Krygowski, T.W.; Sniegowski, J.J.

    1999-04-30

    Optical Micro Electro Mechanical Systems (Optical MEMS) Technology holds the promise of one-day producing highly integrated optical systems on a common, monolithic substrate. The choice of fabrication technology used to manufacture Optical MEMS will play a pivotal role in the size, functionality and ultimately the cost of optical Microsystems. By leveraging the technology base developed for silicon integrated circuits, large batches of routers, emitters, detectors and amplifiers will soon be fabricated for literally pennies per part. In this article we review the current status of technologies used for Optical MEMS, as well as fabrication technologies of the future, emphasizing manufacturable surface micromachining approaches to producing reliable, low-cost devices for optical communications applications.

  8. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  9. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year. Because the number

  10. Careers in science and technology

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The objective of this book is to expose junior and senior high school students to the science and technology fields. It also will convey the importance of getting a general education in science and mathematics while still in high school and of continuing such studies in college. This is intended to encourge students, particularly underrepresented minorities and women, to consider and prepare for careers in science and technology. This book attempts to point out the increasing importance of such knowledge in daily life regardless of occupational choice. This book is intended to be used by junior and senior high school students, as a classroom reference by teachers, and by scientist and engineers participating in outreach activities.

  11. DOE Announces Selections for SSL Core Technology and Product...

    Energy Savers [EERE]

    ... This synergistic approach will establish a technology platform capable of providing high efficiency components, drivers and luminaires. Recipient: Dupont Displays, Inc. Title: ...

  12. Q Tech Quality Technology Korea Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: Manufacturer of components for electronic, telecommunications and automotive industries. References: Q&Tech (Quality & Technology Korea Inc)1 This article is a...

  13. MHK Technologies/SeaDog Pump | Open Energy Information

    Open Energy Info (EERE)

    & Design & Engineering Technology Description The main components of the SEADOG pump include a buoyancy chamber, buoyancy block, piston assembly, piston shaft, piston...

  14. Technologies and Devices International Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 20904 Product: Develops, manufactures and markets electronic components using III-V nitride semiconductor materials and silicon carbide. References: Technologies and...

  15. Vision 2020: Lighting Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    References: Vision 2020: Lighting Technology Roadmap1 Overview "Continued innovation in lamps and other system components, as well as in design practices, have made...

  16. Technology Development Roadmaps - a Systematic Approach to Maturing Needed Technologies

    SciTech Connect (OSTI)

    John W. Colllins; Layne Pincock

    2010-07-01

    Abstract. Planning and decision making represent important challenges for all projects. This paper presents the steps needed to assess technical readiness and determine the path forward to mature the technologies required for the Next Generation Nuclear Plant. A Technology Readiness Assessment is used to evaluate the required systems, subsystems, and components (SSC) comprising the desired plant architecture and assess the SSCs against established Technology Readiness Levels (TRLs). A validated TRL baseline is then established for the proposed physical design. Technology Development Roadmaps are generated to define the path forward and focus project research and development and engineering tasks on advancing the technologies to increasing levels of maturity. Tasks include modeling, testing, bench-scale demonstrations, pilot-scale demonstrations, and fully integrated prototype demonstrations. The roadmaps identify precise project objectives and requirements; create a consensus vision of project needs; provide a structured, defensible, decision-based project plan; and, minimize project costs and schedules.

  17. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  18. Updating and Enhancing the MA3T Vehicle Choice Model

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Analytical Technology

    SciTech Connect (OSTI)

    Goheen, Steven C.

    2001-07-01

    Characterizing environmental samples has been exhaustively addressed in the literature for most analytes of environmental concern. One of the weak areas of environmental analytical chemistry is that of radionuclides and samples contaminated with radionuclides. The analysis of samples containing high levels of radionuclides can be far more complex than that of non-radioactive samples. This chapter addresses the analysis of samples with a wide range of radioactivity. The other areas of characterization examined in this chapter are the hazardous components of mixed waste, and special analytes often associated with radioactive materials. Characterizing mixed waste is often similar to characterizing waste components in non-radioactive materials. The largest differences are in associated safety precautions to minimize exposure to dangerous levels of radioactivity. One must attempt to keep radiological dose as low as reasonably achievable (ALARA). This chapter outlines recommended procedures to safely and accurately characterize regulated components of radioactive samples.

  20. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  1. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Take hold of your energy future: Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Submissions are due by March 4, 2016, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email

  2. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department is challenging high school-aged students to investigate a bioenergy topic and design an infographic that illustrates their research. For more information, please visit energy.gov/eere/bioenergy/infographic-challenge Questions? Email BioenergizeME@ee.doe.gov O P

  3. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Submissions are due by March 4, 2016, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email BioenergizeME@ee.doe.gov For more information, please visit

  4. Interoperable Technologies for Advanced Petascale Simulations (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Interoperable Technologies for Advanced Petascale Simulations Citation Details In-Document Search Title: Interoperable Technologies for Advanced Petascale Simulations Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of

  5. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  6. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  7. Component Modeling Approach Software Tool

    SciTech Connect (OSTI)

    2010-08-23

    The Component Modeling Approach Software Tool (CMAST) establishes a set of performance libraries of approved components (frames, glass, and spacer) which can be accessed for configuring fenestration products for a project, and btaining a U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Transmittance (VT) rating for those products, which can then be reflected in a CMA Label Certificate for code compliance. CMAST is web-based as well as client-based. The completed CMA program and software tool will be useful in several ways for a vast array of stakeholders in the industry: Generating performance ratings for bidding projects Ascertaining credible and accurate performance data Obtaining third party certification of overall product performance for code compliance

  8. Component Modeling Approach Software Tool

    Energy Science and Technology Software Center (OSTI)

    2010-08-23

    The Component Modeling Approach Software Tool (CMAST) establishes a set of performance libraries of approved components (frames, glass, and spacer) which can be accessed for configuring fenestration products for a project, and btaining a U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Transmittance (VT) rating for those products, which can then be reflected in a CMA Label Certificate for code compliance. CMAST is web-based as well as client-based. The completed CMA program and software toolmore » will be useful in several ways for a vast array of stakeholders in the industry: Generating performance ratings for bidding projects Ascertaining credible and accurate performance data Obtaining third party certification of overall product performance for code compliance« less

  9. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  10. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  11. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  12. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  13. Advance Energy Technologies: Order (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE ordered Advance Energy Technologies, Inc., to pay a $8,000 civil penalty after finding Advance Energy Technologies had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standard.

  14. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  15. American Cooler Technologies: Order (2013-CE-5305)

    Broader source: Energy.gov [DOE]

    DOE ordered American Cooler Technologies to pay a $8,000 civil penalty after finding American Cooler Technologies had failed to certify that certain models of walk-in coolers or freezers (WICF) components comply with the applicable energy conservation standards.

  16. Exploration Technologies Technology Needs Assessment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Hydrothermal Exploration Data Gap ...

  17. Laser ultrasonic multi-component imaging

    DOE Patents [OSTI]

    Williams, Thomas K.; Telschow, Kenneth

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  18. Aerodynamic Lightweight Cab Structure Components | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon AeroSysNNC_3-25.pdf More Documents & Publications AeroSys: Noncompliance Determination (2010-SE-0302) AeroSys: Test Notice (2009) AeroSys: Order (2010-CE-01/0201 and 2010-SE-0302)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm060_smith_2012_o.pdf More Documents & Publications Aerodynamic Lightweight Cab Structure Components Vehicle Technologies Office Merit Review 2014: Aerodynamic

  19. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  20. Fueling Components Testing and Certification | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Components Testing and Certification Fueling Components Testing and Certification These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF ...

  1. Rotor component displacement measurement system

    DOE Patents [OSTI]

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  2. Technology and Commercialization Organization Chart | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Validation Technology Validation In addition to the technical challenges being addressed through research, design, and development, there are obstacles to successful implementation of fuel cells and the corresponding hydrogen infrastructure that can be addressed only by integrating the components into complete systems. After a technology achieves its technical targets in the laboratory, the next step is to show that it can work as designed within complete systems (i.e., fuel cell

  3. Human choice and climate change. Four volume set

    SciTech Connect (OSTI)

    Rayner, S.; Malone, E.L.

    1997-12-31

    The four-volume set assesses social science research relevant to global climate change from a wide-ranging interdisciplinary perspective. Taking human choice within social institutions as the starting point, noted researchers examine climate change issues in the context of societal issues such as population and consumption; cultural, institutional, and economic arrangements for human well-being; and the social processes by which decisions are made from local to global levels. This four-volume assessment is intended to complement the work of the intergovernmental Panel on Climate Change.

  4. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  5. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  6. Three-component gyrotropic metamaterial

    SciTech Connect (OSTI)

    Tralle, Igor, E-mail: tralle@ur.edu.pl; Zi?ba, Pawe?; Pa?ko, Wioletta [Faculty of Mathematics and Natural Sciences, Theoretical Physics Department, University of Rzeszw, Pigonia 1, 35-310 Rzeszw (Poland)

    2014-06-21

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of ?, while the other two would be responsible for the negativity of ?. The first component of the mixture is the swarm of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg{sub 1?x}Cd{sub x}Te-compound as well as relative concentrations of the mixture components are established.

  7. Heavy-ion Accelerators for Testing Microelectronic Components at LBNL |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy

  8. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  9. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  10. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  11. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  12. How new ozone particulate matter rules will affect fuel choices?

    SciTech Connect (OSTI)

    Kelly, L.

    1998-07-01

    EPA, OTC and OTAG are all coming out with new air emissions rules for electric utility plants. The economic impact of these new rules is certain to be far-reaching and influence fuel choices, capital investments and electric plant dispatch decisions. Recent studies by Hill and Associates of these emerging rules and their economic impacts under deregulation indicate significant shifting of fuel choices and strong inter-regional wheeling of electricity. The author discusses the following: Which NERC regions fare best and worst under the combination of deregulation and the environmental rules? Whether just switching to cleaner coal will be enough for most coal plants? How coal usage is stimulated by electric utility deregulations? How electric utility mergers affect the economics of environmental compliance? Projections of future SO{sub 2} allowance prices. Why NO{sub x} allowance will likely follow a different price path then SO{sub 2} allowances? How coal prices are likely to respond to increased fuel switching? Which electric transmission bottlenecks are critical to environmental and economic dispatch?

  13. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  14. New technologies for refrigeration without CFCs

    SciTech Connect (OSTI)

    Swift, G.W.

    1992-09-01

    Today the appliance industry and other cooling industries are facing the double challenge of eliminating environmentally harmful CFCs while simultaneously improving energy efficiency. These challenges will force this industry to make tremendous changes and to work out many difficult problems, ranging from choice of technology through production-line retooling to product-liability concerns. Three new cooling technologies--sonic compression, thermoacoustic refrigeration, and Malone refrigeration--have been developed at least in part at Los Alamos National Laboratory. We will discuss the principles, features, and status of each of these three technologies. With these three examples we hope to show that mechanical compression and subsequent evaporation of CFCs is not the only potentially practical way to produce cooling. These examples are only three of many alternative cooling technologies. No new technology can be guaranteed a success before development is complete, from either an economic or engineering point of view. But enough alternative cooling technologies exist, and the probability for success of each technology is high enough, that one or more of these technologies can almost certainly be produced at reasonable cost, eliminate CFCS, and reduce the consumption of electricity.

  15. Vehicle Technologies Office: 21st Century Truck Technical Goals |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Vehicle Technologies Office: 21st Century Truck Technical Goals Improving fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components.

  16. DOE Integrated Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects » DOE Integrated Technology Validation Projects DOE Integrated Technology Validation Projects Integrated hydrogen and fuel cell systems will maximize overall system efficiencies, reduce costs, and optimize component development. DOE's Fuel Cell Technologies Office has a number of demonstrations underway to develop, evaluate, and validate the performance of integrated systems such as Power Parks. The status of DOE's integrated technology validation

  17. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  18. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect (OSTI)

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

  19. Multi-tipped optical component

    DOE Patents [OSTI]

    D'urso, Brian R; Simpson, John T

    2010-04-13

    An optical component includes a support structure having a first composition including a recessive phase material and a second composition including protrusive phase material, the protrusive phase material defining a plurality of spaced apart surface features, each of the surface features comprising a distal end opposite the support structure, integrated with the support structure, and protruding distally from a surface of the support structure, each of the surface features reducing in cross sectional area distally from the support structure to provide a lowest cross sectional area at the distal end, the recessive phase material supporting and separating the surface features and defining a contiguous recessed surface area between the surface features, at least two of the protrusive features being characterized as optical waveguides.

  20. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  1. Energy Department Awards $7.4 Million to Develop Advanced Components for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave and Tidal Energy Systems | Department of Energy 7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems Energy Department Awards $7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems August 6, 2015 - 1:14pm Addthis The Energy Department today announced four entities selected to receive $7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically for marine and

  2. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    SciTech Connect (OSTI)

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  3. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  4. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  5. Iowa Powder Atomization Technologies, Inc.

    Broader source: Energy.gov [DOE]

    Iowa Powder Atomization Technologies, Inc. (IPAT), based in Nevada, Iowa, is using gas atomization technology developed at Ames Laboratory to make titanium powder with processes that are ten times more efficient than traditional powder-making methods — significantly lowering the cost of the powder to manufacturers. The powder form of titanium is easier to work with than having to cast the metal — where manufacturers melt and pour liquid metal into molds — particularly given titanium’s tendency to react with the materials used to form molds. Titanium’s strength, light weight, biocompatibility and resistance to corrosion make it ideal for use in a variety of parts — from components for artificial limbs — like those used by wounded veterans returning from Iraq and Afghanistan — to military vehicle components, biomedical implants, aerospace fasteners and chemical plant valves.

  6. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  7. Choices in the design of weathering tests for fenestration systems

    SciTech Connect (OSTI)

    Masters, L.W.; Scott, J.L.; Bond, L.F.

    1995-12-31

    Manufactured products, such as fenestration systems and the materials comprising the systems, are often observed to degrade due to exposure to the elements of weather. While standard and nonstandard methods have been developed to provide a means of assessing the effect of weathering, questions often arise concerning the relationship of resultant test data with actual in-service performance. In view of the questions concerning the relevance of test data and the rapidly growing focus on quality assurance, there is strong interest in developing improved test protocols. This paper focuses on the key choices that must be made in the design of weathering tests and includes identification of the currently available methods used for weathering of fenestration systems and the primary shortcomings of those methods.

  8. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  9. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  10. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  11. Energy technologies and their impact on demand

    SciTech Connect (OSTI)

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  12. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  13. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  14. The International Safeguards Technology Base: How is the Patient Doing? An Exploration of Effective Metrics

    SciTech Connect (OSTI)

    Schanfein, Mark; Gouveia, Fernando; Crawford, Cary E.; Pickett, Chris J.; Jay, Jeffrey

    2010-07-15

    The term “Technology Base” is commonly used but what does it mean? Is there a common understanding of the components that comprise a technology base? Does a formal process exist to assess the health of a given technology base? These are important questions the relevance of which is even more pressing given the USDOE/NNSA initiatives to strengthen the safeguards technology base through investments in research & development and human capital development. Accordingly, the authors will establish a high-level framework to define and understand what comprises a technology base. Potential goal-driven metrics to assess the health of a technology base will also be explored, such as linear demographics and resource availability, in the hope that they can be used to better understand and improve the health of the U.S. safeguards technology base. Finally, through the identification of such metrics, the authors will offer suggestions and highlight choices for addressing potential shortfalls. Introduction The U.S. safeguards technology base got its start almost half a century ago in the nuclear weapons program of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) and their predecessors: AEC & ERDA. Due to nuclear materials’ strategic importance and value, and the risk associated with the public’s and worker’s health and the potential for theft, significant investments were made to develop techniques to measure nuclear materials using both destructive assay (DA) and non-destructive assay (NDA). Major investment within the U.S. DOE Domestic Safeguards Program continued over the next three decades, resulting in continuous improvements in the state-of-the-art of these techniques. This was particularly true in the area of NDA with its ability to use gamma rays, neutrons, and heat to identify and quantify nuclear materials without the need to take direct samples of the material. Most of these techniques were commercialized and transferred to industry, opening their applications to the nuclear industry worldwide and to the International Atomic Energy Agency (IAEA).

  15. A Plan for Modularization of Tritium Components

    Office of Environmental Management (EM)

    Tritium Components Randy Davis Davis Consultants M-TRT-H-00089 Savannah River Nuclear Solutions, LLC April 22, 2014 M-TRT-H-00089 Current Approach * All "tritium wetted components" ...

  16. Battery components employing a silicate binder

    DOE Patents [OSTI]

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  17. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Weapons Components Successfully Dismantled | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing ...

  18. Manufacturing complex silica aerogel target components

    SciTech Connect (OSTI)

    Defriend Obrey, Kimberly Ann [Los Alamos National Laboratory; Day, Robert D [Los Alamos National Laboratory; Espinoza, Brent F [Los Alamos National Laboratory; Hatch, Doug [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Feng, Shihai [Los Alamos National Laboratory

    2008-01-01

    Aerogel is a material used in numerous components in High Energy Density Physics targets. In the past these components were molded into the proper shapes. Artifacts left in the parts from the molding process, such as contour irregularities from shrinkage and density gradients caused by the skin, have caused LANL to pursue machining as a way to make the components.

  19. Metal Cutting for Large Component Removal

    SciTech Connect (OSTI)

    Hulick, Robert M.

    2008-01-15

    Decommissioning of commercial nuclear power plants presents technological challenges. One major challenge is the removal of large components mainly consisting of the reactor vessel, steam generators and pressurizer. In order to remove and package these large components nozzles must be cut from the reactor vessel to precise tolerances. In some cases steam generators must be segmented for size and weight reduction. One innovative technology that has been used successfully at several commercial nuclear plant decommissioning is diamond wire sawing. Diamond wire sawing is performed by rotating a cable with diamond segments attached using a flywheel approximately 24 inches in diameter driven remotely by a hydraulic pump. Tension is provided using a gear rack drive which also takes up the slack in the wire. The wire is guided through the use of pulleys keeps the wire in a precise location. The diamond wire consists of 1/4 inch aircraft cable with diamond beads strung over the cable separated by springs and brass crimps. Standard wire contains 40 diamond beads per meter and can be made to any length. Cooling the wire and controlling the spread of contamination presents significant challenges. Under normal circumstances the wire is cooled and the cutting kerf cleaned by using water. In some cases of reactor nozzle cuts the use of water is prohibited because it cannot be controlled. This challenge was solved by using liquid Carbon Dioxide as the cooling agent. The liquid CO{sub 2} is passed through a special nozzle which atomizes the liquid into snowflakes which is introduced under pressure to the wire. The snowflakes attach to the wire keeping it cool and to the metal shavings. As the CO{sub 2} and metal shavings are released from the wire due to its fast rotation, the snowflakes evaporate leaving only the fine metal shavings as waste. Secondary waste produced is simply the small volume of fine metal shavings removed from the cut surface. Diamond wire sawing using CO{sub 2} cooling has been employed for cutting the reactor nozzles at San Onofre Unit 1 and at Connecticut Yankee. These carbon steel nozzles ranged up to 54 inch diameter with a 15 inch thick wall and an interior stainless cladding. Diamond wire sawing using traditional water cooling has been used to segment the reactor head at Rancho Seco and for cutting reactor nozzles and control rod drive tubes at Dairyland Power's Lacrosse BWR project. Advantages: - ALARA: All cutting is preformed remotely significantly reducing dose. Stringing of wires is accomplished using long handle tools. - Secondary waste is reduced to just the volume of material cut with the diamond wire. - The potential for airborne contamination is eliminated. Due to the flexibility of the wire, any access restrictions and interferences can be accommodated using pulleys and long handle tools. - The operation is quiet. Disadvantages: - With Liquid Carbon Dioxide cooling and cleaning, delivery of the material must be carefully planned. The longer the distance from the source to the cut area, the greater the chance for pressure drop and subsequent problems with line freezing. - Proper shrouding and ventilation are required for environmental reasons. In each case, the metal structures were cut at a precise location. Radiation dose was reduced significantly by operating the equipment from a remote location. The cuts were very smooth and completed on schedule. Each project must be analyzed individually and take into account many factors including access, radiological conditions, environmental conditions, schedule requirements, packaging requirements and size of cuts.

  20. Energy Technology Solutions

    Broader source: Energy.gov [DOE]

    Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

  1. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  2. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

    1999-01-01

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  3. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  4. RSP Tooling Technology

    SciTech Connect (OSTI)

    2001-11-20

    RSP Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The general concept involves converting a mold design described by a CAD file to a tooling master using a suitable rapid prototyping (RP) technology such as stereolithography. A pattern transfer is made to a castable ceramic, typically alumina or fused silica (Figure 1). This is followed by spray forming a thick deposit of a tooling alloy on the pattern to capture the desired shape, surface texture, and detail. The resultant metal block is cooled to room temperature and separated from the pattern. The deposit's exterior walls are machined square, allowing it to be used as an insert in a standard mold base. The overall turnaround time for tooling is about 3 to 5 days, starting with a master. Molds and dies produced in this way have been used in high volume production runs in plastic injection molding and die casting. A Cooperative Research and Development Agreement (CRADA) between the Idaho National Engineering and Environmental Laboratory (INEEL) and Grupo Vitro has been established to evaluate the feasibility of using RSP Tooling technology for producing molds and dies of interest to Vitro. This report summarizes results from Phase I of this agreement, and describes work scope and budget for Phase I1 activities. The main objective in Phase I was to demonstrate the feasibility of applying the Rapid Solidification Process (RSP) Tooling method to produce molds for the manufacture of glass and other components of interest to Vitro. This objective was successfully achieved.

  5. Expandable Metal Liner For Downhole Components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  6. Manufacture of Advanced Battery Metal Containers & Components

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Manufacture of Advanced Battery Metal Containers & Components

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Toda Material/Component Production Facilities

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Toda Material/Component Production Facilities

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. NDE DEVELOPMENT FOR ACERT ENGINE COMPONENTS

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  11. PowerChoice Residential Customer Response to TOU Rates

    SciTech Connect (OSTI)

    Peters, Jane S.; Moezzi, Mithra; Lutzenhiser, Susan; Woods, James; Dethman, Linda; Kunkle, Rick

    2009-10-01

    Research Into Action, Inc. and the Sacramento Municipal Utility District (SMUD) worked together to conduct research on the behaviors and energy use patterns of SMUD residential customers who voluntarily signed on to a Time-of-Use rate pilot launched under the PowerChoice label. The project was designed to consider the how and why of residential customers ability and willingness to engage in demand reduction behaviors, and to link social and behavioral factors to observed changes in demand. The research drew on a combination of load interval data and three successive surveys of participating households. Two experimental treatments were applied to test the effects of increased information on households ability to respond to the Time-of-Use rates. Survey results indicated that participants understood the purpose of the Time-of-Use rate and undertook substantial appropriate actions to shift load and conserve. Statistical tests revealed minor initial price effects and more marked, but still modest, adjustments to seasonal rate changes. Tests of the two information interventions indicated that neither made much difference to consumption patterns. Despite the lackluster statistical evidence for load shifting, the analysis points to key issues for critical analysis and development of residential Time-of-Use rates, especially pertinent as California sets the stage for demand response in more California residences.

  12. Fuel Cell Technologies Manufacturing Research and Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy You are here Home » Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Within the Office of Energy Efficiency and Renewable Energy (EERE), the Fuel Cell Technologies Office (FCTO) supports manufacturing research and development (R&D) activities to improve processes and reduce the cost of components and systems for hydrogen production, delivery,

  13. Advanced Technologies and Practices - Building America Top Innovations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technologies and Practices - Building America Top Innovations Advanced Technologies and Practices - Building America Top Innovations July 16, 2014 - 4:04pm Addthis Advanced Technologies and Practices - Building America Top Innovations Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air

  14. Integrating Human Performance and Technology

    SciTech Connect (OSTI)

    Ronald K. Farris; Heather Medema

    2012-05-01

    Human error is a significant factor in the cause and/or complication of events that occur in the commercial nuclear industry. In recent years, great gains have been made using Human Performance (HU) tools focused on targeting individual behaviors. However, the cost of improving HU is growing and resistance to add yet another HU tool certainly exists, particularly for those tools that increase the paperwork for operations. Improvements in HU that are the result of leveraging existing technology, such as hand-held mobile technologies, have the potential to reduce human error in controlling system configurations, safety tag-outs, and other verifications. Operator rounds, valve line-up verifications, containment closure verifications, safety & equipment protection, and system tagging can be supported by field-deployable wireless technologies. These devices can also support the availability of critical component data in the main control room and other locations. This research pilot project reviewing wireless hand-held technology is part of the Light Water Reactor Sustainability Program (LWRSP), a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE). The project is being performed in close collaboration with industry R&D programs to provide the technical foundations for licensing, and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRSP vision is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current nuclear reactor fleet.

  15. Is Carbon a Realistic Choice for ITER's Divertor?

    SciTech Connect (OSTI)

    C.H. Skinner; G. Federici

    2005-05-13

    Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.

  16. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  17. Element choices for explicit and implicit nonlinear finite-element computation. ISPRA courses on structural dynamics - lecture notes

    SciTech Connect (OSTI)

    Goudreau, G.L.

    1983-05-01

    The confrontation of the finite element technology with the awesome number crunching required for the nonlinear problem has forced a new assessment. The finite element community discovered that for impact, wave propagation and even slower impulsively driven dynamic problems, the finite difference hydrocodes were much more efficient, albeit requiring contorted mesh topologies to model practical geometries and fifty thousand time steps to follow a quasi-static process or reach static equilibrium. The experience of engineering analysis at the Lawrence Livermore National Laboratory has straddled both worlds, and the intent of this lecture is to review choices in the context of the two and three dimensional implicit and explicit Lagrangian codes developed in our Methods Development Group. The explicit DYNA2D and DYNA3D and implicit NIKE2D and NIKE3D of Hallquist form the focus of this discussion.

  18. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons stockpile, the National Nuclear Security Administration announced that uranium components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, TN. Y-12 workers

  19. Cold worked ferritic alloys and components

    DOE Patents [OSTI]

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  20. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L.; Schenter, Robert E.

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  1. Improved current control makes inverters the power sources of choice

    SciTech Connect (OSTI)

    Yamamoto, H.; Harada, S.; Ueyama, T.

    1997-02-01

    It is now generally understood that by increasing the operating or switching frequency of a power source the size of the main transformer and main reactor can be shrunk. Thus, a 300-A DC welding power source weighing well under 100 lb can be produced. This makes the inverter power source an ideal choice for applications requiring equipment maneuverability. It is also generally understood that due to higher switching frequencies, a smoother output is obtained from inverter power sources. In the late 1980s, the company developed a new double-inverter power source by which inverted DC weld output is inverted back to AC weld output. This product was the first of its kind in the world. Again, the small compact size of this product was of great interest. Utilizing current waveform control, it was realized that fast response switching from electrode negative to electrode positive could be accurately controlled, offering benefits such as AC GTA welding with high-frequency start only, even at a low welding current. The primary benefit is the ability to limit the electrode positive half cycle to less than 5%. The electrode positive half cycle is responsible for tungsten erosion, which also creates the balling effect of a tungsten electrode. By limiting the electrode positive portion of the AC cycle to a very low level, a rather sharp point can be maintained on the tungsten, which creates a very concentrated, focused arc column. This ability provides excellent joint penetration in fillet welding of aluminum alloys, especially on thick plate. It also reduces the heat-affected zone in AC GTA welding of aluminum.

  2. Porous templated pyrolytic carbons as electrocatalyst components...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Porous templated pyrolytic carbons as electrocatalyst components. Citation Details In-Document Search ... Publication Date: 2008-03-01 OSTI Identifier: 1146178 Report ...

  3. Component and System Qualification Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings from the U.S. DOE Hydrogen Component and System Qualification Workshop, held at Sandia National Laboratory in Livermore, CA, on November 4, 2010.

  4. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  5. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  6. Bonding and structure in dense multi-component molecular mixtures

    SciTech Connect (OSTI)

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ? T ? 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  7. Bonding and structure in dense multi-component molecular mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systemsmore » engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  8. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  9. Preliminary Notice of Violation, National Security Technologies, LLC- NEA-2011-03

    Broader source: Energy.gov [DOE]

    Issued to National Security Technologies, LLC related to Deficiencies in Inspection and Installation of Penetration Fire Seals and Other Components at the Nevada National Security Site

  10. Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC

    Office of Scientific and Technical Information (OSTI)

    Selected component failure rate values from fusion safety assessment tasks Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC CONFINEMENT; THERMONUCLEAR DEVICES;...

  11. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  12. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  13. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect (OSTI)

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  14. Densified edge seals for fuel cell components

    DOE Patents [OSTI]

    DeCasperis, Anthony J.; Roethlein, Richard J.; Breault, Richard D.

    1982-01-01

    A porous fuel cell component, such as an electrode substrate, has a densified edge which forms an improved gas seal during operation when soaked with electrolyte. The edges are made from the same composition as the rest of the component and are made by compressing an increased thickness of this material along the edges during the fabrication process.

  15. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  16. Proceedings of the international workshop on spallation materials technology

    SciTech Connect (OSTI)

    Mansur, L.K.; Ullmaier, H. [comps.] [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  17. Advance Energy Technologies: Proposed Penalty (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards.

  18. Impact of Technological Change and Productivity on the Coal Market

    Reports and Publications (EIA)

    2000-01-01

    This paper examines the components of past gains in productivity, including regional shifts, the exit of less productive producers, and technological progress Future prospects for continuing productivity gains at sustained, but lower, rates of improvement are discussed.

  19. American Cooler Technologies: Proposed Penalty (2013-CE-5305)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that American Cooler Technologies failed to certify walk-in coolers and freezer (WICF) components as compliant with the energy conservation standards.

  20. Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

    SciTech Connect (OSTI)

    McGrath, R.; Allen, S.; Hill, D.; Brooks, J.; Mattas, R.; Davis, J.; Lipschultz, B.; Ulrickson, M.

    1993-10-01

    The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel`s findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development.

  1. Microsoft Word - Advanced Components_Final_v2_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix B3: A Systems View of the Modern Grid ADVANCED COMPONENTS Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability March 2007 Office of Electricity Delivery and Energy Reliability Page B3-1 Modern Grid Systems View: Appendix B3 v2.0 Advanced Components TABLE OF CONTENTS Executive Summary........................................................................2 Current

  2. Project Profile: Physics-Based Reliability Models for Supercritical-CO2 Turbomachinery Components

    Broader source: Energy.gov [DOE]

    GE, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be leveraging internally developed models to predict the reliability of hybrid gas bearing (HGB) and dry gas seal (DGS) components in the turboexpander of a supercritical CO2 turbine. The Bayesian model is to include phase changes, low cycle fatigue/high cycle fatigue, dynamic instabilities, and corrosion processes.

  3. Electric Drive Component Manufacturing: Magna E-Car Systems of America,

    Broader source: Energy.gov (indexed) [DOE]

    Inc. | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt027_ape_peaslee_2012_p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

  4. Electric Drive Component Manufacturing: Magna E-Car Systems of America,

    Broader source: Energy.gov (indexed) [DOE]

    Inc. | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt027_ape_thomas_2011_p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Battery and Electric Drive Manufacturing Distribution Map - American Recovery and Reinvestment Act funding

  5. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  6. Battery systems performance studies- HIL components testing

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. NDE Development for ACERT Engine Components

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Toda Material/Component Production Facilities

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  10. Uncertainty with New Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with New Technology As the U.S. electricity grid experiences the effects of aging infrastructure, a push toward renewable technologies and increasing demands for energy, new technologies may be necessary to economically meet future grid demands. However, adopting new technology is difficult when decision makers do not understand the new technology and do not know how it comtpares to alternatives. Energy storage technologies show great promise for improving the grid's operations. However, as a

  11. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  13. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  14. CBI Technology Impact Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBI Technology Impact Framework 2014 Building Technologies Office Peer Review Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, ...

  15. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  16. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  17. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BYPASS 19 First National Technology First National Technology Center Center System Performance Specifications Fault Clearing Without Grid: 10-15 X Rated Current Overload: 150% ...

  18. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  19. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  20. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge ...

  1. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology - 2015 October HAPLS Completes Phase 1 Energy-Ramping Campaign Shaping NIF's Beams for Direct-Drive Experiments September A Pioneering Betatron...

  2. Technology Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  3. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  4. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Building Technologies Program Jerry Dion Acting Program Manager Building Technologies Program State Energy Advisory Board Meeting October 17, 2007 The investment ...

  5. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  6. New Jersey firm creates jobs and vital components for world-leading

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiment | Princeton Plasma Physics Lab Jersey firm creates jobs and vital components for world-leading experiment By John Greenwald July 10, 2012 Tweet Widget Google Plus One Share on Facebook This superconducting wire will become thin as a needle when Oxford Superconducting Technology finishes manufacturing it. (Photo by Elle Starkman, PPPL Office Of Communications) This superconducting wire will become thin as a needle when Oxford Superconducting Technology finishes manufacturing it.

  7. Diagnostic studies on Li-battery cells and cell components | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_02_abraham.pdf More Documents & Publications Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report Diagnostic Studies on Li-Battery Cells and Cell Components Mitigating Performance Degradation of High-Energy Lithium-Ion Cells

  8. Fact #814: January 27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels

    Broader source: Energy.gov [DOE]

    The number of models and types of alternative fuel vehicles produced by manufacturers has varied considerably over the last 22 years. In 1991, there were a total of 19 models available that did not...

  9. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  10. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office FY 2016 Budget At-A-Glance Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Vehicle Technologies Office FY 2017 Budget ...

  11. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies ...

  12. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results PDF icon 2010amr08.pdf ...

  13. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    Open Energy Info (EERE)

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  14. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration...

    Office of Scientific and Technical Information (OSTI)

    TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY ...

  15. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This ...

  16. Sun Materials Technology aka Shanyang Technology | Open Energy...

    Open Energy Info (EERE)

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  17. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  18. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  19. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect (OSTI)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  20. Downhole component with a pressure equalization passageway

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Dahlgren, Scott; Reynolds, Jay T.; Breihan, James W.; Briscoe, Michael A.

    2006-08-22

    The present invention includes a downhole component adapted for transmitting downhole data. The downhole component includes a threaded end on a downhole component. The threaded end furthermore includes an interior region, and exterior region, and a mating surface wherein a cavity is formed. A data transmission element is disposed in the cavity and displaces a volume of the cavity. At least one passageway is formed in the threaded region between interior and exterior regions. The passageway is in fluid communication with both the interior and exterior regions and thereby relieves pressure build up of thread lubricant upon tool joint make up.

  1. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  2. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  3. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect (OSTI)

    Lutz, J.D.; Wheelis, W.T.; Gundiler, I.H.

    1995-02-01

    Sandia National Laboratories (SNL) is tasked to support the Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials in discrete sub-components. SNL developed and demonstrated a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The remaining components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. The New Mexico Bureau of Mines & Mineral Resources assisted SNL in investigation of size-reduction and separation technologies and in the development of a conceptual design for a mechanical separation system.

  4. Tracers and Exploration Technologies

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

  5. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  6. Thermochemical nanolithography components, systems, and methods

    DOE Patents [OSTI]

    Riedo, Elisa; Marder, Seth R.; de Heer, Walt A.; Szoskiewicz, Robert J.; Kodali, Vamsi K.; Jones, Simon C.; Okada, Takashi; Wang, Debin; Curtis, Jennifer E.; Henderson, Clifford L.; Hua, Yueming

    2013-06-18

    Improved nanolithography components, systems, and methods are described herein. The systems and methods generally employ a resistively heated atomic force microscope tip to thermally induce a chemical change in a surface. In addition, certain polymeric compositions are also disclosed.

  7. Stationary turbine component with laminated skin

    DOE Patents [OSTI]

    James, Allister W.

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  8. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  9. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  10. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  11. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including the cost of sensor and lighting Reduce ... * Smart shadings * Highly insulated windows * Windows attachment 8 Building Envelope R&D Priorities Technology 2025 ...

  12. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), ... The R&D is also aimed at better understanding and improving ...

  13. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), ... The R&D is also aimed at better understanding and improving ...

  14. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, L.M.; Haynes, H.D.; Ayers, C.W.

    1996-01-16

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.

  15. Method and apparatus for monitoring aircraft components

    DOE Patents [OSTI]

    Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.

    1996-01-01

    Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.

  16. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  17. RDCDS Meteorologoical Component Quick Installation Guide

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.

    2007-11-20

    This guide provides step-by-step instructions for the deployment of one of the Rapidly Deployable Chemical Defense System (RDCDS) weather stations and central control system. Instructions for the deployment and operation of the Atmospheric Systems Corporation miniSODAR™ (SOnic Detection and Ranging) can be found in accompanying manuals developed by Atmospheric Systems Corporation. A detailed description of the system and its components can be found in the manual entitled Description of the RDCDS Meteorological Component.

  18. AVTA: Battery Testing- Electric Drive and Advanced Battery and Components Testbed

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The AVTA runs the Electric Drive and Advanced Battery and Components Testbed to capture batteries’ real-world performance. The Testbed simulates battery charging as well as on-road driving. Researchers run the Testbed on a daily basis on cycles that represent typical driving and charging patterns. This research was conducted by Idaho National Laboratory.

  19. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel Efficient Choices for Consumers

    Broader source: Energy.gov [DOE]

    Over the last six years, manufacturers have made more fuel efficient choices available to consumers in several size classes. For a consumer purchasing a new large car in 2008, the highest combined...

  20. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  1. TECHNOLOGY TRANSFER COORDINATORS

    Broader source: Energy.gov [DOE]

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  2. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  3. Customizing a VOC control technology

    SciTech Connect (OSTI)

    Enneking, J.C.

    1998-12-31

    An extremely important but very difficult element in applying an emission control device to an exhaust stream is to chose the proper technology. Once it has been determined that recovery, rather than destruction, is appropriate, there are still several process choices available. The type of process is generally dictated by the VOC concentration and total air flow rate. Adsorption is usually chosen for low concentrations and high flow rates while refrigeration is usually best for high concentrations and low flow rates. This paper describes six applications. Adsorption was applied to two of them and condensation to the other four. Solvent vapors from a tape coating operation are recovered in an activated carbon adsorption process and reused. VOC`s from soil vapor extraction operations are captured by activated carbon which is regenerated by a mobile unit. VOC`s displaced from filling tank cars at a refinery are condensed at low temperatures in a high pressure system which uses a pressure swing dryer to remove water. Two different processes were installed to prevent VOC emissions from pharmaceutical processing plants. They both use a thermal swing dryer to remove moisture and low temperature condensation to recover the solvent. With very high concentrations of solvent in an inert gas stream, indirect condensation is used to purify the nitrogen and recover the solvent for reuse. Process flow diagrams and operating results are presented.

  4. A compendium of solar dish/Stirling technology

    SciTech Connect (OSTI)

    Stine, W.B.; Diver, R.B.

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

  5. Component Repair Times Obtained from MSPI Data

    SciTech Connect (OSTI)

    Eide, Steven A.

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 – 2007. Also, trend information over 2003 – 2012 will be presented to indicate whether the 2003 – 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.

  6. Multi-Component Harvesting of Wheat Straw

    SciTech Connect (OSTI)

    None

    2006-06-01

    The objective of this project is to develop commercially-viable technologies that will potentially overcome these barriers and enable the use of wheat residues as an inexpensive feedstock resource.

  7. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen

    SciTech Connect (OSTI)

    Quack, H.; Seemann, I.; Klaus, M.; Haberstroh, Ch.; Berstad, D.; Walnum, H. T.; Neksa, P.; Decker, L.

    2014-01-29

    In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which it could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop is extremely tight.

  8. Vehicle Technologies Office: Modeling, Testing, Data and Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data and Results Vehicle Technologies Office: Modeling, Testing, Data and Results Along with work in individual technologies, the Vehicle Technologies Office (VTO) funds research that explores how to connect these components and systems together in the most effective, efficient way possible. Much of this work uses specialized equipment and software that VTO developed in partnership with the national laboratories, including the industry-leading modeling

  9. THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP |

    Energy Savers [EERE]

    Department of Energy THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP More than 230 lighting leaders from across North America gathered in Portland, OR, November 17-18, 2015, for the tenth annual Solid-State Lighting Technology Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing lighting, control, and components companies as well as research

  10. NREL: Transportation Research - Vehicle Technology Simulation and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools Vehicle Technology Simulation and Analysis Tools NREL's systems analysis and integration team uses the following NREL-developed modeling, simulation, and analysis tools to investigate novel vehicle technologies with the potential to achieve significant fuel savings and greenhouse gas reductions. NREL conducts technical analyses of promising technologies and explores trade-offs between component sizes and design goals (e.g., fuel economy versus performance) to find cost-competitive

  11. Conceptual design of an integrated technology model for carbon policy assessment.

    SciTech Connect (OSTI)

    Backus, George A.; Dimotakes, Paul E.

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  12. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect (OSTI)

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the inner to the outer jet grows beyond a certain threshold.

  13. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  14. Introduction to Cyber Technologies exercise environment

    Energy Science and Technology Software Center (OSTI)

    2014-12-17

    Exercise environment for Introduction to Cyber Technologies class. This software is essentially a collection of short scripts, configuration files, and small executables that form the exercise component of the Sandia Cyber Technologies Academy’s Introduction to Cyber Technologies class. It builds upon other open-source technologies, such as Debian Linux and minimega, to provide comprehensive Linux and networking exercises that make learning these topics exciting and fun. Sample exercises: a pre-built set of home directories the studentmore » must navigate through to learn about privilege escalation, the creation of a virtual network playground designed to teach the student about the resiliency of the Internet, and a two-hour Capture the Flag challenge for the final lesson. There are approximately thirty (30) exercises included for the students to complete as part of the course.« less

  15. Introduction to Cyber Technologies exercise environment

    SciTech Connect (OSTI)

    2014-12-17

    Exercise environment for Introduction to Cyber Technologies class. This software is essentially a collection of short scripts, configuration files, and small executables that form the exercise component of the Sandia Cyber Technologies Academy?s Introduction to Cyber Technologies class. It builds upon other open-source technologies, such as Debian Linux and minimega, to provide comprehensive Linux and networking exercises that make learning these topics exciting and fun. Sample exercises: a pre-built set of home directories the student must navigate through to learn about privilege escalation, the creation of a virtual network playground designed to teach the student about the resiliency of the Internet, and a two-hour Capture the Flag challenge for the final lesson. There are approximately thirty (30) exercises included for the students to complete as part of the course.

  16. Component evaluation testing and analysis algorithms.

    SciTech Connect (OSTI)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  17. Protection of lithographic components from particle contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Rader, Daniel J.

    2000-01-01

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  18. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Daly, Jeffery E.

    2009-05-05

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  19. Summary of monitoring station component evaluation project 2009-2011.

    SciTech Connect (OSTI)

    Hart, Darren M.

    2012-02-01

    Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

  20. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  1. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  2. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  3. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  4. SSL Technology Development Workshop

    Broader source: Energy.gov [DOE]

    Rapid advances make it easy to forget that SSL technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL Technology...

  5. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  6. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  7. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  8. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  9. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  10. Do New Technologies Matter?

    Broader source: Energy.gov [DOE]

    Check out a few stories of companies who have taken a breakthrough energy technology and run with it.

  11. Technology Integration Overview

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Robert Jilek: Pellion Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  13. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  14. Geothermal Technologies Office April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report Geothermal Technologies Office April 2016 1 2015 Annual Report | Geothermal Technologies Office Director's Message Geothermal Technologies Office FY 2016 Budget at a Glance Enhanced Geothermal Systems Hydrothermal Program Low-Temperature and Coproduced Resources Systems Analysis Events and Highlights People Acronyms Resources Table of Contents 2 2 3 7 13 17 19 23 26 28 2015 Achievements Geothermal Technologies Office Steam, West Flank of Coso, NV The 2015 Annual Report of the

  15. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  16. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BTO) Ecosystem Emerging Technologies ... Heat Flow + Air Flow + Water Flow Ventilation Thermal ... and related services 3. Enable buildings to ...

  17. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  19. Long Term Innovative Technologies

    Broader source: Energy.gov [DOE]

    Presentation by Bryan Pivovar on DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop - Lakewood, CO March 16, 2010

  20. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. States & Emerging Energy Technologies

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  2. Overview of Fuels Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  4. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  5. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  6. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  7. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  8. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of

  9. Materials performance in advanced fossil technologies

    SciTech Connect (OSTI)

    Natesan, K. )

    1991-11-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented.

  10. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  11. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS

    SciTech Connect (OSTI)

    M. A. Alvin

    2009-06-12

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760C with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

  12. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  13. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    SciTech Connect (OSTI)

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-03-03

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies.

  14. Tritium Waste Treatment System component failure data analysis from June 18, 1984--December 31, 1989

    SciTech Connect (OSTI)

    Cadwallader, L.C. ); Stolpe Gavett, M.A. )

    1990-09-01

    This document gives the failure rates for the major tritium-bearing components in the Tritium Waste Treatment System at the Tritium Systems Test Assembly, which is a fusion research and technology facility at the Los Alamos National Laboratory. The failure reports, component populations, and operating demands/hours are given in this report, and sample calculations for binomial demand failure rates and poisson hourly failure rates are given in the appendices. The failure rates for tritium-bearing components were on the order of the screening failure rate values suggested for fusion reliability and risk analyses. More effort should be directed toward collecting and analyzing fusion component failure data, since accurate failure rates are necessary to refine reliability and risk analyses. 15 refs., 4 figs., 4 tabs.

  15. Prognostic Health Monitoring System: Component Selection Based on Risk Criteria and Economic Benefit Assessment

    SciTech Connect (OSTI)

    Binh T. Pham; Vivek Agarwal; Nancy J Lybeck; Magdy S Tawfik

    2012-05-01

    Prognostic health monitoring (PHM) is a proactive approach to monitor the ability of structures, systems, and components (SSCs) to withstand structural, thermal, and chemical loadings over the SSCs planned service lifespans. The current efforts to extend the operational license lifetime of the aging fleet of U.S. nuclear power plants from 40 to 60 years and beyond can benefit from a systematic application of PHM technology. Implementing a PHM system would strengthen the safety of nuclear power plants, reduce plant outage time, and reduce operation and maintenance costs. However, a nuclear power plant has thousands of SSCs, so implementing a PHM system that covers all SSCs requires careful planning and prioritization. This paper therefore focuses on a component selection that is based on the analysis of a component's failure probability, risk, and cost. Ultimately, the decision on component selection depend on the overall economical benefits arising from safety and operational considerations associated with implementing the PHM system.

  16. NGNP Creating Validated TRL and TDRMs for Critical Systems, Subsystems, and Components

    SciTech Connect (OSTI)

    John W. Collins; John M. Beck; Emmanuel O. Opare; Layne F. Pincock

    2008-09-01

    This report introduces two draft Next Generation Nuclear Plant (NGNP) Technology Development Roadmaps (TDRMs) and documents the methods used to create them. As such, this report depicts the development of the hardware needed to successfully operate the NGNP and identifies this hardware by the area of the plant it supports and by system, subsystem, and component (SSC). Several options exist for which technologies are selected to fulfill the functions of the NGNP. These options are represented by differing SSCs and are grouped into reference designs. Each SSC associated with each reference design is evaluated, rated, and assigned a technology readiness level (TRL). A rollup of the TRLs allows for comparison of the various reference designs. A TDRM then documents the tasks needed to obtain information in key discriminating criteria to support technology down selection and the tasks and test required to sufficiently mature the technology and reduce the likelihood of technological failure upon installation. This report presents the path forward, methods, and tools used to understand the requirements, manage the uncertainty, and mitigate the risk for the NGNP project. The key tool, TDRMs, is the means to facilitate NGNP risk-informed decision making, technology down selection, and technology qualification and maturation while serving to coordinate engineering, research and development, and licensing efforts.

  17. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the ...

  18. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  19. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by ...

  20. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  1. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...

  2. Annual Report on Technology Transfer and Related Technology Partnering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 Annual Report on Technology ...

  3. Efficient White SSL Component for General Illumination

    SciTech Connect (OSTI)

    Sean Evans

    2011-01-31

    Cree has developed a new, high-efficiency, low-cost, light emitting diode (LED) module that should be capable of replacing standard, halogen, fluorescent and metal halide lamps based on the total cost of ownership. White LEDs are produced by combining one or more saturated color LEDs with a phosphor or other light down-converting media to achieve white broad-band illumination. This two year project addressed LED chip, package and phosphor efficiency improvements to establish a technology platform suitable for low-cost, high-efficiency commercial luminaires. New phosphor materials with improved quantum efficiency at 'real-life' operating conditions were developed along with new package technology to improve the efficiency of warm white LED modules compared to the baseline technology. Specifically, Cree has successfully demonstrated warm white LED modules providing 540 lumens at a correlated color temperature (CCT) of 3000 K. The LED module had an efficacy of 102.8 lumens per watt (LPW) using 1 mm2 chips biased at 350 mA - a 27% improvement over the technology at project start (81 LPW at 3000K). The white modules also delivered an efficacy of 88 LPW at elevated junction temperatures of 125 C. In addition, a proof-of-concept 4-inch downlight luminaire produced a flux of 1183 lumens at a CCT of 2827 K and a color rendering index (CRI) of 80 using this project's phosphor developments.

  4. Materials technology assessment for a 1050 K Stirling Space Engine design

    SciTech Connect (OSTI)

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  5. A Virtual Test Approach to Incorporate Materials and Manufacturing Processes to Aid Design choices in High Performance Composites

    SciTech Connect (OSTI)

    Gonzalez-Murillo, C.; Price, M.

    2011-05-04

    The increasing use of fibre reinforced composites in structural components in the aerospace industry is providing many challenges to designers in understanding how they can be used more effectively to exploit their advantages. One of the main challenges is the selection of lay-ups for a given application. The difficulty lies in the variability that is achievable with composites. Each new layup or configuration is effectively a new material and requires and extensive test programme to validate the performance, from coupons which give basic material characteristics, up through the test pyramid through to large sub-component which contains basic assemblies. This variety of testing gives confidence in understanding the material behaviour and performance in structural assemblies. On the other hand, the manufacturing process is also important here with different processes sometimes needed for different materials or thicknesses. This is a time consuming and expensive process requiring many thousands of small tests leading up to a few major tests which are complex to set up and carry out. This research is attempting to address this by developing a virtual test system which will sit hand-in-hand with a physical test system. The goal of virtual tests appears reachable using the finite element analysis technique in which many experimental tests can be replaced by high fidelity simulations. The payoff in reduced cycle time and costs for designing and certifying composite structures is very attractive; and the possibility also arises of considering material configurations that are too complex to certify by purely empirical methods. The validated simulations could then be subsequently used for variants or derivatives of composites to inform design choices and establish new validation programmes where appropriate. This paper presents a series of simulations of the critical testing procedures needed to validate high performance composites materials using linear and non-linear models and compares the results with physical test performed in carbon fibre specimens.

  6. NREL: Photovoltaics Research - Emerging Technologies Engineering Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Evaluation Emerging Technologies Engineering Testing and Evaluation NREL's Photovoltaic (PV) Engineering group supports the industry through field and laboratory testing and evaluation, as well as data collection for PV components, modules, and systems. The following key projects highlight the group's capabilities: Shared Data Set for Flat-Plate PV Module Model Validations This project developed a comprehensive data set of measured I-V curves and associated meteorological data for PV

  7. Three component vibrational time reversal communication

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Brian E.; Ulrich, Timothy J.; Ten Cate, James A.

    2015-01-01

    Time reversal provides an optimal prefilter matched signal to apply to a communication signal before signal transmission. Time reversal allows compensation for wave speed dispersion and can function well in reverberant environments. Time reversal can be used to focus elastic energy to each of the three components of motion independently. A pipe encased in concrete was used to demonstrate the ability to conduct communications of information using three component time reversal. Furthermore, the ability of time reversal to compensate for multi-path distortion (overcoming reverberation) will be demonstrated and the rate of signal communication will be presented. [The U.S. Department ofmore » Energy, through the LANL/LDRD Program, is gratefully acknowledged for supporting this work.]« less

  8. System for inspecting large size structural components

    DOE Patents [OSTI]

    Birks, Albert S. (Columbus, OH); Skorpik, James R. (Kennewick, WA)

    1990-01-01

    The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.

  9. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

  10. FY2014 Electric Drive Technologies Annual Progress Report

    SciTech Connect (OSTI)

    2014-12-01

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  11. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    SciTech Connect (OSTI)

    Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.; Housley, Gregory K.; Bragg-Sitton, Shannon M.

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.

  12. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  13. Konarka Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  14. Briza Technologies | Open Energy Information

    Open Energy Info (EERE)

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  15. Minerals Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  16. Gerar Technology | Open Energy Information

    Open Energy Info (EERE)

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  17. EKB Technology | Open Energy Information

    Open Energy Info (EERE)

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  18. Rubicon Technology | Open Energy Information

    Open Energy Info (EERE)

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  19. Shorepower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  20. PCN Technology | Open Energy Information

    Open Energy Info (EERE)

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  1. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  2. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  3. Energy deposition in STARFIRE reactor components

    SciTech Connect (OSTI)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  4. Atmosphere Component in Community Earth System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atiq Warraich About Us Atiq Warraich - Technical Lead/Project Manager Atiq Warraich

    Atmosphere Component in Community Earth System Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  5. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IP v.6 - Internet protocol version 6 Emergence of component level standards addressing energy use optimization Networking communication data compression speed bandwidth...

  6. Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Projects Recentongoing competitive fuels awards with biofuel component - late FY 2014 competitive award * Cummins Engine Co. : E85Diesel Premixed Compression Ignition (EDPCI) ...

  7. Data transmission system for a downhole component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., Tracy H.; Pixton, David S.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron; Briscoe, Michael A.

    2006-05-09

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  8. Data Transmission System For A Downhole Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael

    2005-01-18

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  9. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  10. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

  11. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect (OSTI)

    Kenneth L. Knittel

    2005-05-09

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Kyocera also continued research of the FM systems with the intention of developing commercial markets for a variety of applications. The continued development of FM technology by Kyocera is seen as a direct result of the cooperation established under this funding. Kyocera has a specific interest in the commercial development of the FM technology and have licensed it and have paid for the right to develop FM materials for the commercial exploitation. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Superior Rock Bit was permitted to evaluate tri-cone roller bits in drilling applications at a mine in the Iron Range of Minnesota. Brady performed evaluation of the roof bit inserts at coal mines in medium hardness strata. The coal mine used for testing was not revealed. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development. While ACR was able to perform field testing in a number of mines, tunnel boring locations and at a hot metal extrusion house under this effort, limitations of material suppliers reduced our ability to take advantage of the offered facilities at mines in the southern Arizona region. Phelps Dodge mine at Green Valley Arizona provided equipment inserts to modify for evaluation. It was a lack of available standard materials that prevented a field test to evaluate the ACR FM inserts in the application at the Green Valley mine. Efforts to develop an alternate copper electrowinning anode were pursued with additional funding from DOE. Material systems were fabricated and evaluated by research partner Hazen Research. While a drop-in replacement was not identified promising directions for future research were suggested.

  12. Local-Level Prognostics Health Management Systems Framework for Passive AdvSMR Components. Interim Report

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Roy, Surajit; Hirt, Evelyn H.; Pardini, Allan F.; Jones, Anthony M.; Deibler, John E.; Pitman, Stan G.; Tucker, Joseph C.; Prowant, Matthew S.; Suter, Jonathan D.

    2014-09-12

    This report describes research results to date in support of the integration and demonstration of diagnostics technologies for prototypical AdvSMR passive components (to establish condition indices for monitoring) with model-based prognostics methods. The focus of the PHM methodology and algorithm development in this study is at the localized scale. Multiple localized measurements of material condition (using advanced nondestructive measurement methods), along with available measurements of the stressor environment, enhance the performance of localized diagnostics and prognostics of passive AdvSMR components and systems.

  13. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  14. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Technology and energy supply

    U.S. Energy Information Administration (EIA) Indexed Site

    Donald L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future

  16. Hydrogen Technologies Safety Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  17. Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage

  18. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. A photo of three men looking at a colorful, floor-to-ceiling, 3-D visualization of a biomass analysis model. View a summary of

  19. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  20. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sciences and Technology Information Sciences and Technology National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Steve Stringer Business Development Executive Richard P. Feynman Center for Innovation (505) 660-2177 Email Los Alamos leverages advances in theory, algorithms,