Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

2

Building Technologies Office: Field Test Best Practices Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Test Best Field Test Best Practices Website to someone by E-mail Share Building Technologies Office: Field Test Best Practices Website on Facebook Tweet about Building Technologies Office: Field Test Best Practices Website on Twitter Bookmark Building Technologies Office: Field Test Best Practices Website on Google Bookmark Building Technologies Office: Field Test Best Practices Website on Delicious Rank Building Technologies Office: Field Test Best Practices Website on Digg Find More places to share Building Technologies Office: Field Test Best Practices Website on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

3

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

4

DOE Launches New Website to Bring Energy Technology Information to the  

Broader source: Energy.gov (indexed) [DOE]

New Website to Bring Energy Technology Information to New Website to Bring Energy Technology Information to the Public DOE Launches New Website to Bring Energy Technology Information to the Public December 9, 2009 - 12:00am Addthis WASHINGTON, DC - Secretary Chu announced today that the Department of Energy is launching Open Energy Information (www.openEI.org) - a new open-source web platform that will make DOE resources and open energy data widely available to the public. The data and tools housed on the free, editable and evolving wiki-platform will be used by government officials, the private sector, project developers, the international community, and others to help deploy clean energy technologies across the country and around the world. The website was launched as part of a broader effort at DOE, the White House Office of Science and Technology Policy, and across

5

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

6

Database-Driven Website Development for Non-Profit Agencies Rob Elliott, Computer Information and Graphics Technology  

E-Print Network [OSTI]

and Graphics Technology School of Engineering and Technology The Near Eastside Legacy Initiative grant programDatabase-Driven Website Development for Non-Profit Agencies Rob Elliott, Computer Information in Indianapolis. Two non-profit organizations were selected to receive grant funds in Spring 2013 and chose

Zhou, Yaoqi

7

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

8

Vehicle Technologies Office Merit Review 2014: Characterization...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with...

9

Website Contact  

Broader source: Energy.gov [DOE]

Contact the website administrator with questions, comments, or issues related to the Federal Energy Management Program website. If your inquiry is in regard to a specific Web page, please include...

10

Technology Characterizations. Environmental Information Handbook  

SciTech Connect (OSTI)

The Environmental Handbook Series is designed to overcome the deficiency of information utility and transfer. Each of the works in this series brings together information in an area and format that is useful to both public and private sector needs. It is meant to serve as a basic reference document that will stand for a period of time and help to enrich decisionmaking and research in the interface of energy and the environment. This particular handbook deals with environmental characterization data for the energy technologies and presents the data in a format for use by DOE policy analysts. This treatment includes not only the actual information base, but also a preface which explains the present concept, the historical growth of the program, and the new direction for improved utility. The information base, itself, is constantly being enhanced and is republished periodically as necessary. The specific energy systems for which environmental/technology characterization information is provided are grouped as follows: nuclear energy; coal; petroleum; gas; synthetic fuels; solar energy; geothermal energy; and hydroelectricity.

Not Available

1980-06-01T23:59:59.000Z

11

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

1 4.5.1 Microearthquake Technology for EGS Fracture Characterization Presentation Number: 021 Investigator: Foulger, Gillian (Foulger Consulting) Objectives: To understand how EGS...

12

Characterization, monitoring, and sensor technology crosscutting program: Technology summary  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

NONE

1995-06-01T23:59:59.000Z

13

Fracture Characterization Technologies | Open Energy Information  

Open Energy Info (EERE)

Fracture Characterization Technologies Fracture Characterization Technologies Jump to: navigation, search Geothermal ARRA Funded Projects for Fracture Characterization Technologies Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

14

Environmental data, energy technology characterizations: petroleum  

SciTech Connect (OSTI)

Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. The first publication, Summary, provides information in tabular form on the eight technology areas examined; subsequent publications provide more detailed information on the technologies. This publication provides documentation of petroleum. The transformation of the energy in petroleum into a more useful form is described in this document in terms of major activity areas in the petroleum cycle, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. These activities represent both well-documented and less well-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The less well-documented activity areas examined are those like oil storage in salt domes and exploration for which engineering studies were performed. The organization of the chapters in this volume is designed to support the tabular presentation in the Summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

Serrajian, N.M.

1980-04-01T23:59:59.000Z

15

Rural Living Canada Website | Open Energy Information  

Open Energy Info (EERE)

Rural Living Canada Website Rural Living Canada Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Rural Living Canada Website Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: rurallivingcanada.4t.com/Pag00167.htm Equivalent URI: cleanenergysolutions.org/content/rural-living-canada-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Net Metering & Interconnection This website is a compendium of Canadian non-urban energy access resources and websites since 1998. The website lists several resources for rural communities that cover more than just energy related technologies or

16

Expedited site characterization. Innovative technology summary report  

SciTech Connect (OSTI)

Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

NONE

1998-12-01T23:59:59.000Z

17

Development of a Hydrologic Characterization Technology for Fault Zones Final Report  

E-Print Network [OSTI]

Hydrologic Characterization Technology of Fault Zones, Phaseof Characterization Technology for Fault Zones, LBNL-1635E,Characterization on Technology of Fault Zones Phase II

Karasaki, Kenzi

2014-01-01T23:59:59.000Z

18

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

19

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

20

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SRS - Website Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1/2011 1/2011 SEARCH GO menu spacer SRS Home Savannah River Site Website Map About SRS Mission & Vision Where We Are SRS History Fact Sheets Tour SRS Contact SRS SRS Organizations Savannah River Nuclear Solutions, LLC (SRNS) Savannah River Remediation LLC (SRR) Savannah River Ecology Laboratory (SREL) USDA Forest Service - Savannah River Wackenhut Services, Inc. Mixed Oxide Fuel Fabrication Facility (MOX) Parsons Related Links & Resources Department of Energy (DOE) Department of Energy - Environmental Management (DOE-EM) National Nuclear Security Administration (NNSA) American Recovery & Reinvestment Act (ARRA) News News Releases Video Releases Fact Sheets Photo Gallery Speakers Media Contacts Business Opportunities Community Reuse Organization Technology Transfer Savannah River National Laboratory (SRNL)

22

Geocommunicator Website | Open Energy Information  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geocommunicator Website Abstract This website is an interactive map published by...

23

Distributed Energy Technology Characterization (Desiccant Technologies), January 2004  

Broader source: Energy.gov [DOE]

Desiccant technology and applications, and designing them for utilization of available thermal energy in a combined heat and power (CHP) system.

24

DOE Launches Gasifipedia Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Launches Gasifipedia Website Launches Gasifipedia Website DOE Launches Gasifipedia Website July 23, 2010 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has launched a new public website called "Gasifipedia," a comprehensive online collection of resources to promote better understanding of gasification technology. Gasification offers an alternative to more established ways of converting feedstocks such as coal and biomass into useful products such as electricity or fuels. It is anticipated to be the technology of choice for future near zero-emissions, coal-based plants that produce power, fuels, and/or chemicals. Gasification is a technological process that uses heat, pressure, and steam to convert any carbon-based raw material into synthesis gas, or syngas.

25

Gas-Fired Distributed Energy Resource Technology Characterizations  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

26

Microearthquake Technology for EGS Fracture Characterization  

Broader source: Energy.gov [DOE]

Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks.

27

EERE Website Contact  

Office of Energy Efficiency and Renewable Energy (EERE)

Use this form to send us your comments, report problems, and/or ask questions about information on the EERE website.

28

Energy Saver Website Contact  

Broader source: Energy.gov [DOE]

This form is used to submit comments, report problems, and/or ask questions about information on the Energy Saver website.

29

Energy Basics Website Contact  

Broader source: Energy.gov [DOE]

his form is used to submit comments, report problems, and/or ask questions about information on the Energy Basics website.

30

Oil field waste disposal in salt caverns: An information website  

SciTech Connect (OSTI)

Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

Tomasko, D.; Veil, J. A.

1999-12-10T23:59:59.000Z

31

Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary  

SciTech Connect (OSTI)

The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

Not Available

1994-04-01T23:59:59.000Z

32

RadBall Technology For Hot Cell Characterization  

Broader source: Energy.gov (indexed) [DOE]

Tech Fact Sheet Savannah River National Laboratory South Carolina RadBall Technology For Hot Cell Characterization Challenge Operations at various DOE sites have resulted in substantial radiological contamination of tools, equipment, and facilities. A critical step in planning and implementing Deactivation and Decommissioning (D&D) of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside the facilities. The use of remote technologies to gather this information is imperative to keep worker exposures as-low-as reasonably achievable (ALARA) in these highly contaminated environments, which are usually associated with extremely high radiological dose rates. Quantitative characterization data

33

Website Policies / Important Links | DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links...

34

PBA Transportation Websites  

Broader source: Energy.gov [DOE]

PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

35

University Launches Website for FIU Research Sponsored by EM | Department  

Broader source: Energy.gov (indexed) [DOE]

University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM July 11, 2013 - 12:00pm Addthis The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. MIAMI - A new website features research performed under a cooperative

36

Technology Evaluation Workshop Report for Tank Waste Chemical Characterization  

SciTech Connect (OSTI)

A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

Eberlein, S.J.

1994-04-01T23:59:59.000Z

37

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

38

Project Website Information Architecture  

E-Print Network [OSTI]

Project Website Information Architecture Overview Purpose: To describe up front what your initiative/project does. This section does not need to literally be called "Overview;" you can come up with anther suitable title that is more specific to your project. Examples of what to include: Information

39

Kirloskar unveils energy audit website  

Science Journals Connector (OSTI)

Kirloskar Brothers Ltd (KBL) has launched an energy audit services website for pumps and motors at www.pumpenergyaudit.com.

2011-01-01T23:59:59.000Z

40

Arizona Department of Environmental Quality's AZPDES Website...  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's AZPDES Website Abstract This website provides...

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Federal Business Opportunities website | Open Energy Information  

Open Energy Info (EERE)

Opportunities website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Federal Business Opportunities website Abstract This website lists federal...

42

FAA Airport Categories Website | Open Energy Information  

Open Energy Info (EERE)

Categories Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FAA Airport Categories Website Abstract This website lists FAA airport categories....

43

EPA's Brownfields Application Website | Open Energy Information  

Open Energy Info (EERE)

Application Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA's Brownfields Application Website Abstract This website provides information...

44

California Waste Discharge Requirements Website | Open Energy...  

Open Energy Info (EERE)

Requirements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Waste Discharge Requirements Website Abstract This website contains...

45

EPA Regulations Overview Website | Open Energy Information  

Open Energy Info (EERE)

Overview Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Regulations Overview Website Abstract This website contains information about laws...

46

The Rocky Flats Environmental Technology Site beryllium characterization project  

SciTech Connect (OSTI)

A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

Morrell, D.M. [Kaiser-Hill Co. LLC, Golden, CO (United States); Miller, J.R. [Radian International LLC, Los Alamos, NM (United States); Allen, D.F. [Radian International LLC, Oak Ridge, TN (United States)

1999-06-01T23:59:59.000Z

47

Property:Geothermal/Partner1Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Geothermal/Partner1Website Property Type URL Description Partner 1 Website (URL) Pages using the property "Geothermal/Partner1Website" Showing 25 pages using this property. (previous 25) (next 25) A Alum Innovative Exploration Project Geothermal Project + http://www.spectir.com/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.fpl.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.apexhipoint.com/ + Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project + http://www.unr.edu/Geothermal/ +

48

DNAPLs at DOE sites: Background and assessment of characterization technologies  

SciTech Connect (OSTI)

The Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP) within the Office of Technology Development (OTD) has responsibility for identification, evaluation, and delivery of technologies needed for the work of the Department of Energy`s Office of Environmental Restoration and Waste Management. This report addresses part of that responsibility by providing summary information on DNAPL site characterization. A dense nonaqueous phase liquid (DNAPL) is a source of contamination that can persist in the subsurface for decades before dissipating completely into the vapor phase and groundwater. The DNAPL chemicals of particular concern to the DOE are chlorinated volatile organic compounds (Cl VOCS) such as carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and perchloroethylene (PCE). These Cl VOCs were used in multiple ton quantities at DOE sites and were often released to the subsurface. The predicted fate of released Cl VOC liquid is downward movement through the soil under the force of gravity. As it moves, some of the Cl VOC liquid becomes trapped in the soil pores as residual saturation. The liquid also moves rapidly downward if small fractures are present. This migration continues until an impermeable or semi-permeable layer is encountered. Then lateral movement or spreading occurs. The downward and lateral migration in the subsurface leads to DNAPL pools, lenses, and residual saturation that can cause long-term contamination of groundwater at levels well above drinking water standards. Although Cl VOCs have been detected as dissolved components in the groundwater and as vapor in the soil gas at several DOE sites, direct evidence of their presence as DNAPL is sparse and no measurements of the amounts of DNAPL present within a given volume of subsurface have been made. Consequently, unresolved DNAPL issues exist at DOE sites.

Junk, G.A.; Haas, W.J. Jr.

1993-12-01T23:59:59.000Z

49

Redesigned CCS Website Offers Wealth of Information on Worldwide  

Broader source: Energy.gov (indexed) [DOE]

Redesigned CCS Website Offers Wealth of Information on Worldwide Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects June 28, 2011 - 1:00pm Addthis Washington, DC - A wealth of information about worldwide carbon capture and storage (CCS) technologies and projects is available on the newly launched, updated and redesigned National Carbon Sequestration Database and Geographic Information System (NATCARB) website. NATCARB is an interactive virtual encyclopedia of key CCS information, including locations and information on field projects, a map of all publically announced worldwide CCS projects and their status; and the complete latest edition of NETL's assessment of carbon storage resource potential in the United States and portions of Canada.

50

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

51

Property:Geothermal/Partner3Website | Open Energy Information  

Open Energy Info (EERE)

Partner3Website Partner3Website Jump to: navigation, search Property Name Geothermal/Partner3Website Property Type URL Description Partner 3 Website (URL) Pages using the property "Geothermal/Partner3Website" Showing 14 pages using this property. A Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://jobs.ornl.gov/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.unr.edu/home/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.tetramertechnologies.com/ +

52

Property:Geothermal/Partner2Website | Open Energy Information  

Open Energy Info (EERE)

Partner2Website Partner2Website Jump to: navigation, search Property Name Geothermal/Partner2Website Property Type URL Description Partner 2 Website (URL) Pages using the property "Geothermal/Partner2Website" Showing 19 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.dri.edu/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.climatemaster.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://optimsoftware.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.altarockenergy.com/ +

53

Property:Geothermal/Partner5Website | Open Energy Information  

Open Energy Info (EERE)

Partner5Website Partner5Website Jump to: navigation, search Property Name Geothermal/Partner5Website Property Type URL Description Partner 5 Website (URL) Pages using the property "Geothermal/Partner5Website" Showing 6 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.westerngeco.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.thermasource.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://- + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

54

Property:Geothermal/Partner4Website | Open Energy Information  

Open Energy Info (EERE)

Partner4Website Partner4Website Jump to: navigation, search Property Name Geothermal/Partner4Website Property Type URL Description Partner 4 Website (URL) Pages using the property "Geothermal/Partner4Website" Showing 7 pages using this property. A Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.smu.edu/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sandia.gov/ + D Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

55

D3 website database  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

56

Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519  

Broader source: Energy.gov [DOE]

Presentation given by Cummins at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about catalyst characterization.

57

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

58

Introduction to Renewable Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

Introduction to Renewable Energy Technologies Introduction to Renewable Energy Technologies Jump to: navigation, search Tool Summary Name: Introduction to Renewable Energy Technologies Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Technology characterizations Resource Type: Webinar, Training materials Website: www1.eere.energy.gov/femp/technologies/multimedia_presentation.html Introduction to Renewable Energy Technologies Screenshot References: Introduction to Renewable Energy Technologies[1] Logo: Introduction to Renewable Energy Technologies The Introduction to Renewable Energy Technologies webinar provides an overview of renewable energy technologies available to help Federal facilities meet their renewable energy goals. Description "The Introduction to Renewable Energy Technologies webinar provides an

59

PPPO Official Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operations. Other DMSAs become available for DOE activities, or for common use by both USEC and DOE. Characterization of the DMSA materials is the subject of an Agreed Order with...

60

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEQ UPDES Forms Website | Open Energy Information  

Open Energy Info (EERE)

Forms Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: DEQ UPDES Forms Website Abstract A website containing forms and guidance for applying for...

62

Colorado Nonpoint Source Website | Open Energy Information  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Nonpoint Source Website Abstract This is the website of the Colorado Nonpoint Source...

63

Utah's Public Notice Website | Open Energy Information  

Open Energy Info (EERE)

Public Notice Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah's Public Notice Website Abstract This website allows users to view public...

64

California Statewide Property Inventory Website | Open Energy...  

Open Energy Info (EERE)

Inventory Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Statewide Property Inventory Website Abstract The Statewide Property...

65

Solid Waste Program Website | Open Energy Information  

Open Energy Info (EERE)

Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Solid Waste Program Website Author Alaska Division of Environmental Health Published...

66

NPDES Permit Program Website | Open Energy Information  

Open Energy Info (EERE)

Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NPDES Permit Program Website Author Environmental Protection Agency Published Publisher...

67

DOE Showcases Websites for Tight Gas Resource Development | Department of  

Broader source: Energy.gov (indexed) [DOE]

Showcases Websites for Tight Gas Resource Development Showcases Websites for Tight Gas Resource Development DOE Showcases Websites for Tight Gas Resource Development July 30, 2009 - 1:00pm Addthis Washington, D.C. -- Two U.S. Department of Energy (DOE) projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. Operators can use the data on the websites to expand natural gas recovery in the San Juan Basin of New Mexico and the central Appalachian Basin of West Virginia and Pennsylvania. As production from conventional natural gas resources declines, natural gas from tight-gas sandstone formations is expected to contribute a growing percentage to the nation's energy supply. "Tight gas" is natural gas

68

Property:Website | Open Energy Information  

Open Energy Info (EERE)

URL. URL. Pages using the property "Website" Showing 25 pages using this property. (previous 25) (next 25) 1 1366 Technologies + http://www.1366tech.com/ + 1st Light Energy, Inc. + http://1stlightenergy.com + 1st Mile + http://www.1stmile.dk/ + 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + http://doe-iips.pr.doe.gov/iips/busopor.nsf/Solicitation%2BBy%2BNumber/398A9D69EEE9E3CB85256CAA006CE1C9?OpenDocument + 2008 Solar Technologies Market Report + http://www1.eere.energy.gov/solar/pdfs/46025.pdf + 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition + http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasIII/2010atlasIII.pdf + 2010 Solar Market Transformation Analysis and Tools + http://www1.eere.energy.gov/solar/pdfs/2010_mt_overview.pdf +

69

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

IEA Technology Roadmaps IEA Technology Roadmaps Jump to: navigation, search Tool Summary Name: IEA Technology Roadmaps Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Industry, Solar, Transportation, Wind Topics: Finance, Implementation, Low emission development planning, Market analysis, Pathways analysis, Technology characterizations Resource Type: Guide/manual Website: www.iea.org/subjectqueries/keyresult.asp?KEYWORD_ID=4156 References: IEA Technology Roadmaps[1] "... the IEA is developing a series of global low-carbon energy technology roadmaps covering the most important technologies. The IEA is leading the process, under international guidance and in close consultation with government and industry. The overall aim is to advance global development

70

Characterization and Development of Advanced Heat Transfer Technologies  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

71

Characterization and Development of Advanced Heat Transfer Technologies  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

72

Measurement and Characterization of Unregulated Emissions from Advanced Technologies  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

73

Measurement and Characterization of Unregulated Emissions from Advanced Technologies  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

74

Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

75

Measurement and Characterization of Unregulated Emissions from Advanced Technologies  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

76

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

77

Home Energy Saver Website Leads the Way to Savingstown | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy Saver Website Leads the Way to Savingstown Energy Saver Website Leads the Way to Savingstown Home Energy Saver Website Leads the Way to Savingstown November 28, 2012 - 11:18am Addthis Visit the Home Energy Saver website to learn energy-saving specifics about your home. Visit the Home Energy Saver website to learn energy-saving specifics about your home. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? The Home Energy Saver website pinpoints the inefficient aspects of your home and makes recommendations that could save you hundreds of dollars. Energy Saver Blog readers interested in saving energy in their homes and starting to take back some of the hard cash they're spending on power should check out this website called Home Energy Saver.

78

Technology Characterization Models and Their Use in Designing Complex Systems  

E-Print Network [OSTI]

has two choices: the inventor?s photo-chromic window or an electro-chromic window (changes its optical properties to react to an applied voltage). I will assume that both technologies are completely customizable (size, shape, thickness, how...

Parker, Robert Reed

2011-08-08T23:59:59.000Z

79

Virtual environmental applications for buried waste characterization technology evaluation report  

SciTech Connect (OSTI)

The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

NONE

1995-05-01T23:59:59.000Z

80

Last Time... on the website  

E-Print Network [OSTI]

will block until the command finishes netscape & #12;Complex Commands · The shell's power is in its abilityLast Time... on the website #12;Lecture 6 Shell Scripting #12;What is a shell? · The user interface programming language · A program like any other ­ This is why there are so many shells #12;Shell History

Mohri, Mehryar

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The option to abandon: Stimulating innovative groundwater remediation technologies characterized by technological uncertainty  

Science Journals Connector (OSTI)

Abstract Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon. Furthermore, this real option analysis not only considers the ex ante decision analysis of the investment in a new technology under uncertainty, but also allows for an ex post evaluation of the investment. Based on a case study regarding the adoption of an innovative groundwater remediation strategy, it is demonstrated that when the option to abandon the innovative technology is taken into account, the decision maker decides to invest in this technology, while at the same time it determines an optimal timing to abandon the technology if its operation proves to be inefficient. To reduce uncertainty about the effectiveness of groundwater remediation technologies, samples are taken. Our analysis shows that when the initial belief in an effective innovative technology is low, it is important that these samples provide correct information in order to justify the adoption of the innovative technology.

T. Compernolle; S. Van Passel; K. Huisman; P. Kort

2014-01-01T23:59:59.000Z

82

Integration of 'omics technologies for characterization of complex microbial ecosystems  

SciTech Connect (OSTI)

Environmental remediation sites possess complexity at both biotic and abiotic levels, with temporal shifts that are associated with the interaction of both systems. Single scientific disciplines no longer serve to address and understand the complex nature of these sites. An integration of physical, chemical, and biological characterizations or a more inclusive environmental systems approach is needed. As a proof of concept, an integrated approach was developed to identify bio-signatures from a complex environmental community to provide sensitive, early indicators and predictors of response to radionuclide and chemical exposures of interest for environmental management. Specifically, the integrated approach used a combination of genetics, transcriptomics, proteomics, and computational statistics to characterize a complex periphyton community following uranium exposure. This additional, specific information has promise to further reduce uncertainties in environmental remediation and monitoring in realizing the potential impacts of exposure in advance to reduce potential mitigation efforts. Results from this study establish a basis for bio-signature characterization of any ecosystem for comparison or monitoring of biotic exposure and effects in response to a specific contaminant. (authors)

Miracle, A.L.; Bailey, V.L.; Baker, S.E.; Bunn, A.L.; Magnuson, J.; Webb-Robertson, B.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

2008-07-01T23:59:59.000Z

83

NDEP BWPC Website | Open Energy Information  

Open Energy Info (EERE)

NDEP BWPC Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NDEP BWPC WebsiteLegal Abstract The Nevada Department of...

84

Migratory Bird Program Website | Open Energy Information  

Open Energy Info (EERE)

Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Migratory Bird Program WebsiteLegal Abstract Summary of the Migratory...

85

Utah DEQ Website | Open Energy Information  

Open Energy Info (EERE)

DEQ Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Website Author Utah Department of Environmental Quality Published Utah Department...

86

TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION TO END-USE FORECASTING WITH COMMEND 4.0  

E-Print Network [OSTI]

LBL-34243 UC - 1600 TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION Technologies, and the Office of Environmental Analysis, Office of Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Technology Data Characterizing Lighting

87

U.S. Department of Energy Launches New Website for Asset Revitalization  

Broader source: Energy.gov (indexed) [DOE]

Launches New Website for Asset Launches New Website for Asset Revitalization Initiative (ARI) U.S. Department of Energy Launches New Website for Asset Revitalization Initiative (ARI) July 3, 2013 - 12:00pm Addthis Screenshot of Asset Revitalization Initiative (ARI) website. Screenshot of Asset Revitalization Initiative (ARI) website. WASHINGTON, D.C. - Today, the U.S.Department of Energy (DOE) launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and a highly skilled workforce. ARI promotes a more efficient business environment to encourage collaboration between public and private resources. ARI efforts will

88

Arizona State Land Department Applications and Permits Website...  

Open Energy Info (EERE)

Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Applications and Permits Website Abstract This website...

89

Applicable EPA Regulations and Description Website | Open Energy...  

Open Energy Info (EERE)

Description Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Applicable EPA Regulations and Description Website Abstract This website provides...

90

Bureau of Indian Affairs Contact Information Website | Open Energy...  

Open Energy Info (EERE)

Information Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Indian Affairs Contact Information Website Abstract This website...

91

UPDES Storm Water Permits: General Construction Website | Open...  

Open Energy Info (EERE)

Construction Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: UPDES Storm Water Permits: General Construction Website Abstract this website...

92

BLM Geothermal Guidance Documents Website | Open Energy Information  

Open Energy Info (EERE)

Documents Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Geothermal Guidance Documents Website Abstract This website contains a list...

93

An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site  

SciTech Connect (OSTI)

The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department`s future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

Holt, D.L.; Butcher, B.T.

1992-05-01T23:59:59.000Z

94

An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site  

SciTech Connect (OSTI)

The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department's future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

Holt, D.L.; Butcher, B.T.

1992-05-01T23:59:59.000Z

95

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

96

General Renewable Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

General Renewable Energy Technology Module General Renewable Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy Technology Module[1] Resource Generation and Transmission Interconnection Process Overview, PJM Manual, Transmission and Interconnection Planning Department, System Planning Division, PJM Interconnection, LLC References ↑ "General Renewable Energy Technology Module" Retrieved from "http://en.openei.org/w/index.php?title=General_Renewable_Energy_Technology_Module&oldid=328701

97

CSP Technology, Markets and Development Presentation | Open Energy  

Open Energy Info (EERE)

CSP Technology, Markets and Development Presentation CSP Technology, Markets and Development Presentation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CSP Technology, Markets and Development Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Market analysis, Technology characterizations Resource Type: Presentation, Training materials Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com//w/images/0/0a/CSP_ References: CSP Technology, Markets and Development Presentation[1] Presentation References ↑ "CSP Technology, Markets and Development Presentation" Retrieved from "http://en.openei.org/w/index.php?title=CSP_Technology,_Markets_and_Development_Presentation&oldid=686664"

98

Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

99

Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment  

SciTech Connect (OSTI)

Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

2011-12-09T23:59:59.000Z

100

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

Science Journals Connector (OSTI)

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System ... In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. ...

A.I. Schfer; A. Broeckmann; B.S. Richards

2006-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Website Interaction Satisfaction: A Reassessment  

Science Journals Connector (OSTI)

......2001), or focused on site technology (primarily navigability...Orsini S., Opwos K. Intranet satisfaction questionnaire...user satisfaction with the Intranet. Comput. Hum. Behav...Internet-Related Program Technology (IPT) and Advertising......

Dana-Nicoleta Lascu; Kenneth E. Clow

2013-07-01T23:59:59.000Z

102

WEBSITE RESOURCES FOR GREEN JOBS  

E-Print Network [OSTI]

Clean Technology Jobs Listings http://jobs.cleanedge.com/ ­ Source for clean tech job seekers http://www.cleanloop.com/ ­ Clean technology job listings and opinions, as well as a blog http://cleantech.jobthread.com/ ­ Job listings of commercial clean technologies http://cleantechjobs.cleantechies.com ­ Many listings of clean

Edwards, Paul N.

103

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

104

Austria-Program on Technologies for Sustainable Development | Open Energy  

Open Energy Info (EERE)

Austria-Program on Technologies for Sustainable Development Austria-Program on Technologies for Sustainable Development Jump to: navigation, search Name Austria-Program on Technologies for Sustainable Development Agency/Company /Organization Nachhaltig Wirtschaften Sector Energy Focus Area Renewable Energy Topics Background analysis, Technology characterizations Website http://www.nachhaltigwirtschaf Country Austria UN Region Western Europe References Program on Technologies for Sustainable Development[1] Background "This initiative has been developed by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT). It initiates and supports trendsetting research and development projects and the implementation of exemplary pilot projects." Objectives "*New opportunities for the economy

105

Federal Energy Management Program Website Contact  

Broader source: Energy.gov [DOE]

Use this form to send us your comments, report problems, and/or ask questions about information on the Federal Energy Management Program (FEMP) website.

106

Miljoforden Website | Open Energy Information  

Open Energy Info (EERE)

Miljoforden Website Miljoforden Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Miljoforden Website Focus Area: Natural Gas Topics: Deployment Data Website: www.miljofordon.se/in-english/this-is-miljofordon-se Equivalent URI: cleanenergysolutions.org/content/miljoforden-website Language: "English,Swedish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

107

Algeria-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Algeria-Clean Technology Fund (CTF) Algeria-Clean Technology Fund (CTF) Jump to: navigation, search Name Algeria-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Renewable Energy, Solar, - Concentrating Solar Power Topics Background analysis, - Energy Security, Finance, Implementation, Low emission development planning, -LEDS, Market analysis, Policies/deployment programs, Technology characterizations Website https://www.climateinvestmentf Country Algeria UN Region South-Eastern Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1]

108

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Vision 2020: Lighting Technology Roadmap Vision 2020: Lighting Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vision 2020: Lighting Technology Roadmap Agency/Company /Organization: United States Department of Energy, LBNL International Energy Studies, International Association of Lighting Designers, International Association of Lighting Management Companies Partner: NAED, NEMA, NEMRA, NECA, NAILD Sector: Energy Focus Area: Energy Efficiency Topics: Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/fy00osti/27996.pdf References: Vision 2020: Lighting Technology Roadmap[1] Overview "Continued innovation in lamps and other system components, as well as in design practices, have made lighting progressively more effective,

109

Climate Technology Initiative (CTI) | Open Energy Information  

Open Energy Info (EERE)

search Logo: Climate Technology Initiative Name: Climate Technology Initiative Place: Japan Year Founded: 1995 Website: http:www.climatetech.net Coordinates: 36.204824,...

110

EM's Oak Ridge Office Launches New Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Office Launches New Website EM's Oak Ridge Office Launches New Website February 6, 2014 - 12:00pm Addthis The Oak Ridge Office of Environmental Management's new website,...

111

Bureau of Land Management - NEPA Website | Open Energy Information  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land Management - NEPA Website Abstract This page links to the BLM NEPA website....

112

EPA EPCRA Section 304 Website | Open Energy Information  

Open Energy Info (EERE)

Section 304 Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA EPCRA Section 304 Website Abstract This website explains Emergency Planning...

113

Advisory Council on Historic Preservation website | Open Energy...  

Open Energy Info (EERE)

website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Advisory Council on Historic Preservation website Abstract This is the website for the Advisory...

114

EPA Rainfall Erosivity Factor Calculator Website | Open Energy...  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Rainfall Erosivity Factor Calculator Website Abstract This website allows the developer to...

115

Army Enhanced Use Lease (EUL) website | Open Energy Information  

Open Energy Info (EERE)

website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Army Enhanced Use Lease (EUL) website Abstract This website provides information regarding U.S....

116

Idaho State Historical Society Website | Open Energy Information  

Open Energy Info (EERE)

Society Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho State Historical Society Website Abstract This is the website for the Idaho State...

117

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

118

Updated Website - Data Management for Data Providers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Website: Data Management for Data Providers Website: Data Management for Data Providers Data providers have a newly designed section on the ORNL DAAC website. The ORNL DAAC team has reworked the data provider information pages on the website to create a well-defined path through the data management process-- from planning to creation to active archiving. The new web pages explain the practical steps to be taken by providers and ORNL DAAC staff to efficiently manage your data to prepare them for successful archiving and sharing. Building on the DAAC Best Practices for preparing environmental data sets, these steps guide beginning and experienced data providers through practical methods to share and archive your data. Please look through the new data management pages-- Overview, Plan, Manage, Archive, and DAAC Curation. If you have questions and would like to discuss

119

Laboratory Equipment Donation Program - Website Policies and...  

Office of Scientific and Technical Information (OSTI)

Javascript Not Enabled OSTI Security Website Policies and Important Links U.S. Department of Energy U.S. Deparment of Energy Office of Science Office of Scientific and Technical...

120

Property:Incentive/Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Property Type String Description Website for incentives. Could also contain additional information so making it a string type. Specifically,created for EZFeed but could be used for others. Pages using the property "Incentive/Website" Showing 25 pages using this property. (previous 25) (next 25) 4 401 Certification (Vermont) + http://www.nrb.state.vt.us/wrp/rules.htm + A Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut) + http://www.ct.gov/dep/lib/dep/air/regulations/mainregs/sec7.pdf + Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut) + http://www.ct.gov/dep/lib/dep/air/regulations/mainregs/sec24.pdf + Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) + http://www.ct.gov/dep/lib/dep/air/regulations/mainregs/22a-174-31.pdf +

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Department of Energy Launches Website Supporting Energy-Saving...  

Office of Environmental Management (EM)

Website Supporting Energy-Saving Reconstruction in the Gulf Coast Department of Energy Launches Website Supporting Energy-Saving Reconstruction in the Gulf Coast November 22, 2005...

122

Hawaii State Historic Preservation Website | Open Energy Information  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii State Historic Preservation Website Author State of Hawaii State Historic Preservation...

123

Spill Prevention and Response Website | Open Energy Information  

Open Energy Info (EERE)

and Response Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Spill Prevention and Response Website Author Alaska Department of Environmental...

124

Hawaii Clean Energy Initiative Website | Open Energy Information  

Open Energy Info (EERE)

Initiative Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Clean Energy Initiative Website Author Hawaii Clean Energy Initiative...

125

Idaho State Historic Preservation Office Website | Open Energy...  

Open Energy Info (EERE)

Office Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho State Historic Preservation Office Website Abstract This webpage provides an...

126

EPA Hazardous Waste Generators Website | Open Energy Information  

Open Energy Info (EERE)

Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

127

Utah Water Quality Standards Workgroup Website | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Quality Standards Workgroup Website Abstract This website contains information related...

128

California Construction Storm Water Program Website | Open Energy...  

Open Energy Info (EERE)

Storm Water Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Construction Storm Water Program Website Abstract This page...

129

Innovative Direct Push Technologies for Characterization of the 216-Z-9 Trench at DOE's Hanford Site  

SciTech Connect (OSTI)

Because of the significant radiological and chemical hazards present at the 216-Z-9 Trench at the US Department of Energy Hanford Site, the only practical subsurface characterization methods are those that minimize or control airborne vapors and particles. This study evaluates and compares the performance of two Direct Push Technologies (Hydraulic Hammer Rig (HHR) and Cone Penetrometer Testing (CPT)) with traditional cable tool drilling in similar difficult geologic conditions. The performance was based on the depth of penetration, the ability to collect representative vadose zone soil samples, the penetration rate, and the relative cost. The HHR achieved deeper penetration depths and faster penetration rates than CPT techniques, while still maintaining the waste minimization benefits of direct push technologies. Although cable tool drilling achieved the deepest penetration, the safety and disposal concerns due to the soil cuttings that were generated made this drilling approach both slow and costly compared to the direct push techniques. (authors)

Bratton, W.; Moser, K.; Holm, R. [Vista Engineering Technologies, LLC, Washington (United States); Morse, J.; Tortoso, A. [US Department of Energy - Richland Operations Office, Washington (United States)

2008-07-01T23:59:59.000Z

130

Characterization of Service Induced Flaws on the Far Side of Austenitic Welds Using Phased Array Technology  

SciTech Connect (OSTI)

Conventional ultrasonic testing methods continue to exhibit problems for applications involving coarse-grained structures. Pacific Northwest National Laboratory is evaluating the capabilities and limitations of phased array (PA) technology to detect service-type flaws in these coarse-grained materials. The work is being sponsored by the U.S. Nuclear Regulatory Commission, Office of Research. Work to determine detection capabilities through welds with varied grain structures is being explored to provide a better understanding of the acoustic properties of these welded structures. Piping specimens with welds fabricated in vertical and horizontal positions to simulate field conditions have been studied. The insights gained from the austenitic piping will be applied to dissimilar metal weld configurations, corrosion resistant clad piping and cast stainless steels. This paper presents results for using PA ultrasonic technology to determine the effectiveness of detecting and accurately characterizing flaws on the far-side of austenitic piping welds.

Anderson, Michael T.; Cumblidge, Stephen E.

2004-01-01T23:59:59.000Z

131

DEPLOYMENT OF INNOVATIVE CHARACTERIZATION TECHNOLOGIES AND IMPLEMENTATION OF THE MARSSIM PROCESS AT RADIOLOGICALLY CONTAMINATED SITES.  

SciTech Connect (OSTI)

The success of this Accelerated Site Technology Deployment (ASTD) project is measured on several levels. First, the deployment of this innovative approach using in situ characterization, portable field laboratory measurements, and implementation of MARSSIM was successfully established for all three phases of D and D characterization, i.e., pre-job scoping, on-going disposition of waste, and final status surveys upon completion of the activity. Unlike traditional D and D projects, since the Brookhaven Graphite Research Reactor Decommissioning Project (BGRR-DP) is operating on an accelerated schedule, much of the work is being carried out simultaneously. Rather than complete a full characterization of the facility before D and D work begins, specific removal actions require characterization as the activity progresses. Thus, the need for rapid and cost-effective techniques for characterization is heightened. Secondly, since the approach used for this ASTD project was not thoroughly proven prior to deployment, a large effort was devoted to demonstrating technical comparability to project managers, regulators and stakeholders. During the initial phases, large numbers of replicate samples were taken and analyzed by conventional baseline techniques to ensure that BGRR-DP quality assurance standards were met. ASTD project staff prepared comparisons of data gathered using ISOCS and BetaScint with traditional laboratory methods and presented this information to BGRR-DP staff and regulators from EPA Region II, NYS Department of Environmental Conservation, and the Suffolk County Board of Health. As the results of comparability evaluations became available, approval for these methods was received and the techniques associated with in situ characterization, portable field laboratory measurements, and implementation of MARSSIM were gradually integrated into BGRR-DP procedures.

KALB,P.D.; MILIAN,L.; LUCKETT,L.; WATTERS,D.; MILLER,K.M.; GOGOLAK,C.

2001-05-01T23:59:59.000Z

132

Minerals Technologies | Open Energy Information  

Open Energy Info (EERE)

Place: Bethlehem, PA Website: http:www.mineralstechnologie References: Minerals Technologies1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

133

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

134

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

135

Technology data characterizing water heating in commercial buildings: Application to end-use forecasting  

SciTech Connect (OSTI)

Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

136

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect (OSTI)

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

137

Property:Event/Website | Open Energy Information  

Open Energy Info (EERE)

Event/Website Event/Website Jump to: navigation, search Property Name Event/Website Property Type URL Description A link to an external website devoted to the event. Pages using the property "Event/Website" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + http://www.iea.org/work/workshopdetail.asp?WS_ID=517 + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + http://www.iea.org/work/workshopdetail.asp?WS_ID=517 + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + https://gc21.giz.de/ibt/gc21/area=gc21/style=liny/paint=bizyb/en/usr/modules/gc21/ws-FLEXdialogue/info/ibt/ibf2012.sxhtml + 18th Africa Partnership Forum + http://www.africapartnershipforum.org/pages/0%2C2987%2Cen_37489563_37489442_1_1_1_1_1%2C00.html +

138

International Energy Agency Technology Roadmap for Wind Energy | Open  

Open Energy Info (EERE)

Technology Roadmap for Wind Energy Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Market analysis, Technology characterizations Resource Type Guide/manual Website http://www.iea.org/Papers/2009 References Technology Roadmap for Wind Energy[1] Summary "To achieve this ambitious goal, the IEA has undertaken an effort to develop a series of global technology roadmaps covering 19 technologies, under international guidance and in close consultation with industry. These technologies are evenly divided among demand side and supply side technologies. This wind roadmap is one of the initial roadmaps being

139

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect (OSTI)

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

140

Position Description Website and Video Coordinator  

E-Print Network [OSTI]

, feature content that supports the School's mission and employs best practices (i.e. chunking content, short pages, bulleted list, etc.); follow best practices with search engine optimization; creating clearPosition Description Website and Video Coordinator School of Global Environmental Sustainability

Barnes, Elizabeth A.

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

142

E-Democracy and Network Externalities The Case of Websites of Finnish Members  

E-Print Network [OSTI]

channel for political activism. [8]. As in any technology application and adoption environment, learning of Parliament, web-sites, net- work externalities 1 Introduction Not even political life can escape the power Author manuscript, published in "Software Services for e-World Springer (Ed.) (2012) 112-117" DOI : 10

Boyer, Edmond

143

Reconnecting America's Resource Center Website | Open Energy Information  

Open Energy Info (EERE)

Reconnecting America's Resource Center Website Reconnecting America's Resource Center Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reconnecting America's Resource Center Website Focus Area: Clean Transportation Topics: Best Practices Website: www.reconnectingamerica.org/resource-center/ Equivalent URI: cleanenergysolutions.org/content/reconnecting-americas-resource-center Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This website hosts Reconnecting America's Resource Center Website. Reconnecting America is a non-profit organization that promotes best practices in transit. This clearinghouse provides research, tools and case

144

The Energy Efficiency Exchange Website | Open Energy Information  

Open Energy Info (EERE)

The Energy Efficiency Exchange Website The Energy Efficiency Exchange Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Energy Efficiency Exchange Website Focus Area: Other Energy Efficiency Topics: Training Material Website: eex.gov.au/ Equivalent URI: cleanenergysolutions.org/content/energy-efficiency-exchange-website Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Retrofits This online joint initiative of Australia's national, state, and territorial governments aims to support the development and implementation of energy management and energy efficiency strategies among medium to large businesses. The website accomplishes this by providing information from

145

IEA Energy Technology Data Exchange | Open Energy Information  

Open Energy Info (EERE)

IEA Energy Technology Data Exchange IEA Energy Technology Data Exchange Jump to: navigation, search Tool Summary Name: IEA Energy Technology Data Exchange Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Technology characterizations Resource Type: Dataset Website: www.etde.org/ References: IEA Energy Technology Data Exchange[1] Mission "ETDE's mission is: "To provide governments, industry and the research community in the member countries with access to the widest range of information on energy research, science and technology and to increase dissemination of this information to developing countries."" References ↑ "IEA Energy Technology Data Exchange" Retrieved from "http://en.openei.org/w/index.php?title=IEA_Energy_Technology_Data_Exchange&oldid=32878

146

Script Handbook for Interactive Scientific Website Building  

E-Print Network [OSTI]

In this script handbook, we collect the basic (and partially upgraded) PHP scripts used for building the AMIDAS website (http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/), an online interactive simulation/data analysis system for direct Dark Matter detection experiments and phenomenology. In this (1.73205) version, we add more materials and improve the scripts for offering a more convenient, comfortable and user-friendly environment on interactive scientific computing websites. Some basic, often used commands of (X)HTML, CSS, JavaScript, HTML DOM, and PHP are also given in Appendix. Online demonstrations and downloadable template scripts are given on http://www.tir.tw/iswb/ss2012/templates.php.

Chung-Lin Shan

2010-08-06T23:59:59.000Z

147

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

148

EPA Region 7 Air Program Website | Open Energy Information  

Open Energy Info (EERE)

7 Air Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Region 7 Air Program Website Author Environmental Protection Agency Published...

149

Hawaii Department of Health Website | Open Energy Information  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Department of Health Website Author State of Hawaii Department of Health Published...

150

EPA Class V Permitting Authorities Website | Open Energy Information  

Open Energy Info (EERE)

Authorities Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Class V Permitting Authorities Website Abstract Provides overview of Class V...

151

Montana Bureau of Mines and Geology Website | Open Energy Information  

Open Energy Info (EERE)

Geology Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital...

152

Script Handbook for Interactive Scientific Website Building  

E-Print Network [OSTI]

In this handbook, I collect the basic (and eventually upgraded) PHP scripts used for building the AMIDAS website (http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/), an online interactive simulation/data analysis system for direct Dark Matter detection experiments. Some basic, often used commands of (X)HTML, CSS, JavaScript, HTML DOM, and PHP are also given in the appendix.

Shan, Chung-Lin

2010-01-01T23:59:59.000Z

153

U.S. OpenLabs - Technology Data | Open Energy Information  

Open Energy Info (EERE)

Where can I find cost and performance characterizations of clean energy Where can I find cost and performance characterizations of clean energy technologies? There are a number of data resources available from the US National Labs which can assist in the development of viable clean energy projects as well as inform planning and policy decisions internationally. The data sources listed below provide general cost and performance trends for clean energy technologies, which although drawn from U.S. datasets can also be indicative of international trends. Contents 1 Data Books 2 Technology Roadmaps 3 Useful Websites 4 Search all US National Laboratory Technology Characterization Tools and Data Data Books Data Books provide cost and performance characterizations for a number of clean energy technologies. NREL Renewable Energy Databook - 2009

154

United States National Energy Technology Laboratory's (NETL)...  

Open Energy Info (EERE)

Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States National Energy Technology...

155

Funding Opportunity Announcement Webinar: Technology Advancement...  

Energy Savers [EERE]

website. Presentation Materials Now Available Addthis Related Articles U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Amendment to...

156

Teamwork Technology See Tocardo | Open Energy Information  

Open Energy Info (EERE)

Tocardo Jump to: navigation, search Name: Teamwork Technology See Tocardo Region: Netherlands Sector: Marine and Hydrokinetic Website: http:http:www.tocardo.com This...

157

Muroran Institute of Technology | Open Energy Information  

Open Energy Info (EERE)

Institute of Technology Address: 27 1 Mizumoto cho Place: Muroran Zip: 050-8585 Region: Japan Sector: Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: http:...

158

Satisfier and dissatisfier factors of websites users: an exploratory study  

Science Journals Connector (OSTI)

This exploratory study aims at identifying satisfier and dissatisfier factors of website clients. Herzberg's classic bifactorial model of motivation, which has been transposed by Zhang and von Dran [1] to the analysis of (dis)satisfaction with websites, ... Keywords: bifactorial model, usability, users satisfaction, websites quality

Isabel Pinho; Armnio Rego; Elisabeth Kastenholz

2007-05-01T23:59:59.000Z

159

DOE Launches Public Website for Energy Technology Information...  

Broader source: Energy.gov (indexed) [DOE]

16, 2009 - 11:54am Addthis DOE has unveiled Open Energy Information, an open-source Web platform that will make DOE resources and energy data widely available to the public....

160

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies |  

Open Energy Info (EERE)

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Jump to: navigation, search Tool Summary Name: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy, Climate Focus Area: Greenhouse Gas Topics: Technology characterizations Resource Type: Publications, Guide/manual, Training materials Website: uneprisoe.org/ Cost: Free Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Screenshot References: UNEP-Risoe[1] Logo: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies This guidebook deals with the transfer of proven technologies both between countries and within them. "The purpose of the TNA project is to assist participant developing country

162

NREL-Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

NREL-Solar Technologies Market Report NREL-Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: NREL-Solar Technologies Market Report Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Website: www.nrel.gov/analysis/pdfs/46025.pdf NREL-Solar Technologies Market Report Screenshot References: NREL Solar Tech Market Report[1] Logo: NREL-Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry

163

UNIDO ICS Portal for Technology Transfer | Open Energy Information  

Open Energy Info (EERE)

UNIDO ICS Portal for Technology Transfer UNIDO ICS Portal for Technology Transfer Jump to: navigation, search Tool Summary Name: UNIDO ICS Portal for Technology Transfer Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Topics: Technology characterizations Resource Type: Dataset Website: portal.ics.trieste.it/Portal/Default.aspx References: UNIDO ICS Portal for Technology Transfer[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "UNIDO ICS Portal for Technology Transfer" Retrieved from "http://en.openei.org/w/index.php?title=UNIDO_ICS_Portal_for_Technology_Transfer&oldid=329335" Categories: Tools Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

164

IEA-Technology Roadmap: Smart Grids | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Smart Grids IEA-Technology Roadmap: Smart Grids Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA-Technology Roadmap: Smart Grids Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Pathways analysis, Technology characterizations Resource Type: Publications, Guide/manual Website: www.iea.org/papers/2011/smartgrids_roadmap.pdf Cost: Free IEA-Technology Roadmap: Smart Grids Screenshot References: Technology Roadmap: Smart Grid[1] "This roadmap focuses on smart grids - the infrastructure that enables the delivery of power from generation sources to end-uses to be monitored and managed in real time. Smart grids are required to enable the use of a range of low-carbon technologies, such as variable renewable resources and

165

Environmental Information Sources: Websites and Books  

E-Print Network [OSTI]

Buildings to Be Green and Energy-Efficient: OptimizingResource Problems. (Green Energy and Technology). London:climate, ecology, green living, and energy technology.

Shrode, Flora

2011-01-01T23:59:59.000Z

166

Image examples of marketing claims to accompany Smoking Revolution". A Content Analysis of Electronic Cigarette Retail Websites  

E-Print Network [OSTI]

of Electronic Cigarette Retail Websites W ebsites Americanof Electronic Cigarette Retail Websites American Journal ofon branded e-cigarette retail websites. Methods: Websites

Grana, Rachel A.; Ling, Pamela M.

2014-01-01T23:59:59.000Z

167

Energy.TooManyWebsites.gov | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy.TooManyWebsites.gov Energy.TooManyWebsites.gov Energy.TooManyWebsites.gov June 14, 2011 - 12:52pm Addthis Cammie Croft Cammie Croft Senior Advisor, Director of New Media & Citizen Engagement What are the steps? Identify our website footprint. Eliminate wasteful spending by consolidating and reducing websites. Establish clear governance and guidance. Yesterday, in a blog post titled TooManyWebsites.gov, my counterpart at the White House, Macon Phillips outlined the President and Vice-President's plans to improve how the federal government delivers information and services to the public online by reducing the number of websites it maintains. It's part of the Campaign to Cut Waste -- a new effort to root out wasteful spending at every agency and department in the federal government.

168

Canada's Fuel Consumption Guide Website | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Website Canada's Fuel Consumption Guide Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canada's Fuel Consumption Guide Website Focus Area: Fuel Efficiency Topics: Market Analysis Website: oee.nrcan.gc.ca/transportation/tools/fuelratings/ratings-search.cfm Equivalent URI: cleanenergysolutions.org/content/canadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website provides a compilation of fuel consumption ratings for passenger cars and light-duty pickup trucks, vans and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices

169

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

170

Appropriate Technology Sourcebook | Open Energy Information  

Open Energy Info (EERE)

Appropriate Technology Sourcebook Appropriate Technology Sourcebook Jump to: navigation, search Tool Summary Name: Appropriate Technology Sourcebook Agency/Company /Organization: Village Earth Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: - Energy Access Resource Type: Publications User Interface: Website Website: villageearth.org/appropriate-technology/appropriate-technology-sourceb Cost: Free Language: English Review of over 1,150 of the best books on appropriate technology. The Appropriate Technology Sourcebook reviews over 1,150 of the best books on appropriate technology. References http://villageearth.org/appropriate-technology/appropriate-technology-sourcebook Retrieved from "http://en.openei.org/w/index.php?title=Appropriate_Technology_Sourcebook&oldid=392707"

171

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

172

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

SciTech Connect (OSTI)

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

Xu, T.; Slaa, J.W.; Sathaye, J.

2010-12-15T23:59:59.000Z

173

Taxes, Permits, and the Adoption of Abatement Technology under Imperfect  

Open Energy Info (EERE)

Taxes, Permits, and the Adoption of Abatement Technology under Imperfect Taxes, Permits, and the Adoption of Abatement Technology under Imperfect Compliance Jump to: navigation, search Name Taxes, Permits, and the Adoption of Abatement Technology under Imperfect Compliance Agency/Company /Organization Resources for the Future Sector Energy Topics Market analysis, Technology characterizations Resource Type Publications Website http://www.rff.org/RFF/Documen References Taxes, Permits, and the Adoption of Abatement Technology under Imperfect Compliance[1] Abstract "This paper analyzes the effects of the choice between price-based and quantity-based emissions regulations on compliance incentives and social welfare in the presence of incomplete enforcement and technology adoption. We show that if the regulator does not adjust the level of the policies in

174

Parabolic-Trough Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Parabolic-Trough Technology Roadmap Parabolic-Trough Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Parabolic-Trough Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/csp/troughnet/pdfs/24748.pdf References: Parabolic-Trough Technology Roadmap[1] Overview "The working group reviewed the status of today's trough technologies, evaluated existing markets, identified potential future market opportunities, and developed a roadmap toward its vision of the industry's potential-including critical advancements needed over the long term to significantly reduce costs while further increasing

175

Renewable Energy Technology Costs and Drivers | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Technology Costs and Drivers Renewable Energy Technology Costs and Drivers Jump to: navigation, search Tool Summary Name: Renewable Energy Technology Costs and Drivers Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Topics: Finance, Market analysis, Technology characterizations Resource Type: Publications Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com//w/images/6/63/RE_C Renewable Energy Technology Costs and Drivers Screenshot References: Renewable Energy Technology Costs and Drivers[1] Summary "Provided herein is a preliminary, high-level summary of future and projected cost estimates for 1) Biofuels, 2) Solar (PV & CSP), and 3) Vehicle Batteries. Cost estimates are dependent on various assumptions and

176

Arid site characterization and technology assessment: Volatile Organic Compounds-Arid Integrated Demonstration  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) program was initiated in March 1991 to evaluate technologies for all phases of remediation of VOCs in soils and groundwater at DOE arid/semiarid sites. The primary site for field demonstrations under the VOC-Arid ID program is the Hanford Site. The purpose of this report is to describe (1) the bases for technologies currently under evaluation in the VOC-Arid ID program; (2) the types of subsurface contamination at DOE arid/semiarid sites; and (3) the areas of potential common technology interests based on perceived technology needs at other DOE sites. This report was compiled by Pacific Northwest Laboratory in response to DOE`s Office of Technology Development`s mission to carry out an aggressive program to accelerate the development and implementation of new and existing technologies to meet a 30-year goal set by DOE in June 1989 to clean up all of its sites and to bring all sites into compliance with current and future environmental regulations. A key component of this program is the development of technologies that are better, faster, safer, and cheaper than those technologies currently available. Included in this report are an evaluation of technologies currently (fiscal year 1993) being pursued at the Hanford Site under the auspices of the VOC-Arid ID program, an assessment of subsurface contaminants at arid/semiarid sites, a summarization of technologies under consideration at other DOE sites, a discussion of areas of potential common technology interests, and the conclusions. Also included are a summary of the extent of contamination at the DOE arid/semiarid sites under consideration and a bibliography of source documents from which this report was prepared.

Riley, R.G.

1993-06-01T23:59:59.000Z

177

Department of Energy Launches Website Supporting Energy-Saving  

Broader source: Energy.gov (indexed) [DOE]

Website Supporting Energy-Saving Website Supporting Energy-Saving Reconstruction in the Gulf Coast Department of Energy Launches Website Supporting Energy-Saving Reconstruction in the Gulf Coast November 22, 2005 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today launched a Disaster Recovery and Building Reconstruction website at http://www.eere.energy.gov/buildings/ as part of its continuing effort to support hurricane victims in the Gulf Coast. The website provides relevant resources and information for consumers, state and local officials, builders and contractors, and encourages cost-effective, durable and energy-efficient reconstruction in areas devastated by recent hurricanes. "The Department of Energy's Disaster Recovery and Building Reconstruction website brings together collective resources, building research and lessons

178

Website Policies and Important Links | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links Print page Print page Email page Email page This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

179

SC e-journals Website Policies and Important Links  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

180

Science Open Access Journals - Website Policies/Important Links  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TopTen Energy Efficient Products Website | Open Energy Information  

Open Energy Info (EERE)

TopTen Energy Efficient Products Website TopTen Energy Efficient Products Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: TopTen Energy Efficient Products Website Focus Area: Energy Efficiency Topics: Market Analysis Website: www.topten.info/ Equivalent URI: cleanenergysolutions.org/content/topten-energy-efficient-products-webs Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Web portal intends to: 1) guide consumers to the most energy efficient products in Europe, China, and the United States; 2) provide policy

182

Impact of a dermatology wiki website on dermatology education  

E-Print Network [OSTI]

(DNN), an open source web content management platform (convenience of the World Wide Web. Crotty et al. exploreddemwiki website, owing to its web storage limitations, was

2015-01-01T23:59:59.000Z

183

Los Alamos National Laboratory Safety Cinema website earns internation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

won the 2013 Communicator Award from the International Academy of Visual Arts in the education category. The website also won the International Summit Creative Award in the...

184

Superior Energy Performance: New Website Live and Ready for Business  

Broader source: Energy.gov [DOE]

Superior Energy Performance (SEP) announces its new websitea valuable resource for manufacturers who want to prove their achievements in energy management and lower plant energy costs.

185

Property:Geothermal/NewsWebsite | Open Energy Information  

Open Energy Info (EERE)

search Property Name GeothermalNewsWebsite Property Type URL Description News Web URL Retrieved from "http:en.openei.orgwindex.php?titleProperty:Geothermal...

186

Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

187

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

188

Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations  

Science Journals Connector (OSTI)

Abstract Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of \\{ATPSs\\} composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete \\{ATPSs\\} could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45min/run), and tie line determination (less than 45min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides a cost, time and material effective approach for characterization of ATPS phase diagram on base on highly accurate and comprehensive data. By this means the derived data opens the door for a more detailed description of ATPS towards generating mechanistic based models, since molecular approaches such as MD simulations or molecular descriptions along the line of QSAR heavily rely on accurate and comprehensive data.

Sven Amrhein; Marie-Luise Schwab; Marc Hoffmann; Jrgen Hubbuch

2014-01-01T23:59:59.000Z

189

Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies  

SciTech Connect (OSTI)

The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an overview of wireless emissions sources, the need for EMC characterization of power and signal cables with exposure to wireless devices, and an intelligent and automated emissions measurement system. Such a system can be used in nuclear power plants to determine the spectral quality of the wireless band, the EMC characterization of power and signal cables, and if wireless technologies can be collocated in plants while reducing the risk of interference with I and C systems. (authors)

Keebler, P. F.; Phipps, K. O. [EPRI Solutions, 942 Corridor Park Blvd, Knoxville, TN 37932 (United States)

2006-07-01T23:59:59.000Z

190

Low-Carbon Technology Cooperation in the Climate Regime | Open Energy  

Open Energy Info (EERE)

Low-Carbon Technology Cooperation in the Climate Regime Low-Carbon Technology Cooperation in the Climate Regime Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Carbon Technology Cooperation in the Climate Regime Agency/Company /Organization: Energy Research Centre of the Netherlands Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Low emission development planning, Technology characterizations Resource Type: Publications Website: www.rivm.nl/bibliotheek/rapporten/500102034.pdf Low-Carbon Technology Cooperation in the Climate Regime Screenshot References: Low-Carbon Technology Cooperation in the Climate Regime[1] Abstract "Low-carbon technology cooperation for climate change is needed to address the challenge of scaling up development and transfer of low-carbon technology, with the ultimate aim to reduce emissions globally. This was

191

U.S. Department of Energy Solar Energy Technologies Program | Open Energy  

Open Energy Info (EERE)

Department of Energy Solar Energy Technologies Program Department of Energy Solar Energy Technologies Program Jump to: navigation, search Logo: U.S. Department of Energy Solar Energy Technologies Program Name U.S. Department of Energy Solar Energy Technologies Program Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Topics Policies/deployment programs, Technology characterizations Website http://en.openei.org/wiki/Gate References U.S. Department of Energy Solar Energy Technologies Program[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "U.S. Department of Energy Solar Energy Technologies Program" Retrieved from "http://en.openei.org/w/index.php?title=U.S._Department_of_Energy_Solar_Energy_Technologies_Program&oldid=375298"

192

Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

193

Energy technology characterizations handbook: environmental pollution and control factors. Third edition  

SciTech Connect (OSTI)

This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

Not Available

1983-03-01T23:59:59.000Z

194

Freight Best Practice Website | Open Energy Information  

Open Energy Info (EERE)

Freight Best Practice Website Freight Best Practice Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Freight Best Practice Website Focus Area: Public Transit Topics: Policy, Deployment, & Program Impact Website: www.freightbestpractice.org.uk/ Equivalent URI: cleanenergysolutions.org/content/freight-best-practice-website Language: "English,Welsh" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

195

Sustainable Logistics Website | Open Energy Information  

Open Energy Info (EERE)

Sustainable Logistics Website Sustainable Logistics Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Logistics Website Focus Area: Clean Transportation Topics: Best Practices Website: www.duurzamelogistiek.nl/ Equivalent URI: cleanenergysolutions.org/content/sustainable-logistics-website Language: "English,Dutch" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

196

Website Design and Trust Across Cultures  

Science Journals Connector (OSTI)

?Refer to Srite and Karahanna (2006) for a discussion of the role of individual and espoused cultural values in technology acceptance.

Dianne Cyr

2011-01-01T23:59:59.000Z

197

Environmental Information Sources: Websites and Books  

E-Print Network [OSTI]

the use and potential of geothermal energy along withsome history of geothermal energy use in the U.S. ,photos of applications of geothermal energy technology, and

Shrode, Flora

2009-01-01T23:59:59.000Z

198

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

199

Statement of Work for Direct Push Technology Characterization Borehole Installations During Fiscal Year 2006, 300-FF-5 Operable Unit  

SciTech Connect (OSTI)

This document specifies activities to be performed by FHI to fulfill Part II of the 300-FF-5 Operable Unit Limited Field Investigation. The scope includes driving up to 15 direct push technology boreholes to the water table for radiological geophysical logging of the vadose zone to define the vertical extent and concentration of process uranium waste in the subsurface. Drilling and sampling field activates will follow FHI waste management, risk assessment and QA process and procedures. The sampling and analysis of information recovered during this characterization will meet the Hanford Performance Assessment Project QAAP requirements.

Williams, Bruce A.

2005-11-29T23:59:59.000Z

200

Canadian Wind Energy Atlas Potential Website | Open Energy Information  

Open Energy Info (EERE)

Canadian Wind Energy Atlas Potential Website Canadian Wind Energy Atlas Potential Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Wind Energy Atlas Potential Website Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.windatlas.ca/en/index.php Equivalent URI: cleanenergysolutions.org/content/canadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance Environment Canada's Wind Energy Atlas website aims at developing new meteorological tools to be used by Canada's wind energy industry. It offers the possibility to browse through the results of the numerical simulations that were run on all of Canada in order to determine its wind energy potential. Consultants and the general public will find valuable data about

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

202

Property:Geothermal/AwardeeWebsite | Open Energy Information  

Open Energy Info (EERE)

AwardeeWebsite AwardeeWebsite Jump to: navigation, search Property Name Geothermal/AwardeeWebsite Property Type URL Description Awardee Website Pages using the property "Geothermal/AwardeeWebsite" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + http://www.magmaenergycorp.com/s/Home.asp + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + http://www.mtech.edu/ + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + http://www.nmt.edu/ +

203

Office of Nuclear Energy Launches New Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

204

Help Build a Better Energy Information Administration Website | Department  

Broader source: Energy.gov (indexed) [DOE]

Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website February 10, 2012 - 1:11pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Visit EIA's beta site and offer feedback on their new tools. The U.S. Energy Information Administration (EIA) is launching a beta website that encourages the public, researchers, analysts and others to test and comment on the agency's latest product enhancements, and review other users' comments. This approach allows EIA to "crowd test" innovations before they are introduced on the agency's official website. The first features you can test on the beta site allow you to easily create

205

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

206

Help Build a Better Energy Information Administration Website | Department  

Broader source: Energy.gov (indexed) [DOE]

Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website February 10, 2012 - 1:11pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Visit EIA's beta site and offer feedback on their new tools. The U.S. Energy Information Administration (EIA) is launching a beta website that encourages the public, researchers, analysts and others to test and comment on the agency's latest product enhancements, and review other users' comments. This approach allows EIA to "crowd test" innovations before they are introduced on the agency's official website. The first features you can test on the beta site allow you to easily create

207

A Review on the Portuguese Enterprises Web Accessibility Levels A Website Accessibility High Level Improvement Proposal  

Science Journals Connector (OSTI)

Abstract The Web accessibility issue has been subject of study for a wide number of organizations all around the World. The current paper describes an accessibility evaluation that aimed to test the Portuguese enterprises websites. Has the presented results state, the evaluated websites accessibility levels are significantly bad, but the majority of the detected errors are not very complex from a technological point-of-view. With this is mind, our research team, in collaboration with a Portuguese enterprise named ANO and the support of its UTAD-ANOgov/PEPPOL research project, elaborated an improvement proposal, directed to the Web content developers, which aimed on helping these specialists to better understand and implement Web accessibility features.

Ramiro Gonalves; Jos Martins; Frederico Branco

2014-01-01T23:59:59.000Z

208

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

209

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

210

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

211

Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment  

SciTech Connect (OSTI)

This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

1994-07-01T23:59:59.000Z

212

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

213

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

214

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

215

Invert/EE-Lab Website | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Invert/EE-Lab Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Invert/EE-Lab Website Focus Area: Renewable Energy Topics: Policy Impacts Website: www.invert.at Equivalent URI: cleanenergysolutions.org/content/invertee-lab-website Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: Mandates/Targets This tool can be used to evaluate support schemes for renewable energy heating and cooling systems. It can help users simulate the effects of promotional programs on the energy carrier mix, CO2 reductions, and costs

216

Greenhouse Gas Regional Inventory Protocol (GRIP) Website | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Regional Inventory Protocol (GRIP) Website Greenhouse Gas Regional Inventory Protocol (GRIP) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Regional Inventory Protocol (GRIP) Website Focus Area: Other Crosscutting Topics: Potentials & Scenarios Website: www.getagriponemissions.com/index-cycle.html Equivalent URI: cleanenergysolutions.org/content/greenhouse-gas-regional-inventory-pro Language: English Policies: Deployment Programs DeploymentPrograms: "Lead by Example" is not in the list of possible values (Audit Programs, Demonstration & Implementation, Green Power/Voluntary RE Purchase, High Performance Buildings, Industry Codes & Standards, Project Development, Public Tenders, Procurement, & Lead Examples, Public-Private Partnerships, Retrofits, Ride Share, Bike Share, etc., Technical Assistance, Training & Education, Voluntary Appliance & Equipment Labeling, Voluntary Industry Agreements) for this property.

217

Property:Incentive/Cont4Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Incentive/Cont4Website Property Type URL Pages using the property "Incentive/Cont4Website" Showing 19 pages using this property. A AEP (Central and North) - CitySmart Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tnc.asp + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + http://www.aepefficiency.com/projectsponsorlist/tcc.asp + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tnc.asp + B Blue Ridge Electric Cooperative - Heat Pump Loan Program (South Carolina) + http://www.blueridge.coop/ + C Chatham County - Green Building Rebate Program + http://www.chathamnc.org/Index.aspx?page=112 + ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate Program (Illinois) + http://www.peoplesgasdelivery.com +

218

Property:Incentive/ContWebsite | Open Energy Information  

Open Energy Info (EERE)

ContWebsite ContWebsite Jump to: navigation, search Property Name Incentive/ContWebsite Property Type URL Pages using the property "Incentive/ContWebsite" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + http://www.state.vt.us/tax + 4 401 Certification (Vermont) + http://www.nrb.state.vt.us/wrp/index.htm + A AEP (Central and North) - CitySmart Program (Texas) + http://www.aepefficiency.com/TCC.html + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + http://www.clearesult.com/ + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + http://www.CLEAResult.com + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/TCC.html +

219

EFRC Websites | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRC Websites EFRC Websites Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers EFRC Websites Print Text Size: A A A RSS Feeds FeedbackShare Page External Websites of the Energy Frontier Research Centers Centers ordered alphabetically by state and then by center name Arizona Center for Bio-Inspired Solar Fuel Production (BISfuel) External link Devens Gust, Arizona State University Center for Interface Science: Solar Electric Materials (CISSEM) External link Neal R. Armstrong, University of Arizona California Center for Energy Efficient Materials (CEEM) External link John Bowers, University of California, Santa Barbara Center for Energy Nanoscience (CEN) External link P. Daniel Dapkus, University of Southern California

220

Field Test Best Practices Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings » Building America » Field Test Best Residential Buildings » Building America » Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website is a start-to-finish best practice guide for building science researchers engaged in field evaluations of energy efficiency measures. Developed by the National Renewable Energy Laboratory (NREL), this site is a collaborative effort to improve the quality of research methods that aim to improve energy efficiency of homes. On this website, find detailed guidance on: Defining the research objectives Planning for and conducting a field test Choosing, testing, and installing components Selecting equipment and knowing when and how to use it.

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Property:RAPID/Contact/ID9/Website | Open Energy Information  

Open Energy Info (EERE)

Website" Showing 1 page using this property. U Utah Department of Environmental Quality + http:www.deq.utah.gov + Retrieved from "http:en.openei.orgwindex.php?titleProperty...

222

FEMP Website Moves Into Energy.gov | Department of Energy  

Energy Savers [EERE]

Addthis The Federal Energy Management Program (FEMP) in January moved its Web pages into Energy.gov, the U.S. Department of Energy's website. Although the FEMP site has a new...

223

ADEQ Hazardous Waste Management website | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal Abstract The ADEQ provides links and information related to...

224

EPA 401 Water Quality Certification website | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA 401 Water Quality Certification websiteLegal Abstract The United States Environmental Protection...

225

State Government Websites With Indian Tribe Information | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information This list was compiled by the federal government's Interagency Working Group on Indian Affairs (IWGIA) as an aid to federal agency consultation with federally recognized Indian tribes. It is not intended to be an exhaustive source of information about Indian tribes in each state or about which tribes must be consulted by federal agencies for a proposed action or program within a particular state. The IWGIA has not verified the accuracy of the information. It is intended only to provide possible sources to learn about which tribes may be ancestral to a particular state. If an Indian tribe is not mentioned on a state's website, it cannot be assumed that the tribe has no interest in

226

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Broader source: Energy.gov (indexed) [DOE]

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

227

Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization Characterization of the Rust Fungus, Puccinia emaculata, and Evaluation of Genetic Variability for Rust Resistance in Switchgrass Populations Srinivasa Rao Uppalapati & Desalegn D. Serba & Yasuhiro Ishiga & Les J. Szabo & Shipra Mittal & Hem S. Bhandari & Joseph H. Bouton & Kirankumar S. Mysore & Malay C. Saha # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Several fungal pathogens have been identified on ornamental and native stands of switchgrass (Panicum virga- tum L.). Diseases of switchgrass, particularly rust, have been largely neglected and are likely to become the major limiting factor to biomass yield and quality, especially when monocul- tured over a large acreage. Based on teliospore morphology and internal transcribed spacer-based diagnostic primers, the rust pathogen collected

228

External (SON) - Primary Standards Laboratory (PSL) Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation The Primary Standards Laboratory is accredited over a broad range of parameters by the National Institute of Standards and Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) as a calibration laboratory (Lab Code 105002). This accreditation validates the high level of technical competence achieved by the laboratory and its staff.

229

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

230

National Energy Map for India:Technology Vision 2030 | Open Energy  

Open Energy Info (EERE)

for India:Technology Vision 2030 for India:Technology Vision 2030 Jump to: navigation, search Name National Energy Map for India:Technology Vision 2030 Agency/Company /Organization Government of India, The Energy and Resources Institute (TERI) Sector Energy Focus Area Conventional Energy, Energy Efficiency, Renewable Energy Topics GHG inventory, Resource assessment, Pathways analysis, Background analysis, Technology characterizations Resource Type Guide/manual Website http://psa.gov.in/writereaddat Country India UN Region South-Eastern Asia References National Energy Map for India:Technology Vision 2030[1] National Energy Map for India:Technology Vision 2030 Screenshot Overview "The report discusses the data, assumptions, and methodological framework used to estimate useful energy requirements of the country based on

231

Slang characterization and removal using pulse detonation technology during coal gasification  

SciTech Connect (OSTI)

Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

1997-03-25T23:59:59.000Z

232

EM Launches Revamped Website: New cutting-edge platform with sleek  

Broader source: Energy.gov (indexed) [DOE]

Launches Revamped Website: New cutting-edge platform with sleek Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use EM Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use January 7, 2013 - 12:00pm Addthis A screenshot of the newly revamped EM website. A screenshot of the newly revamped EM website. EM's previous website EM's previous website A screenshot of the newly revamped EM website. EM's previous website WASHINGTON, D.C. - EM entered 2013 with a bold transition to a more user-friendly public website, http://energy.gov/em. EM launched the redesigned site after an extensive effort to recreate its old EM web pages and provide a modern Internet experience for website visitors. Based on Energy.gov's fresh innovative appearance and effective

233

EM Launches Revamped Website: New cutting-edge platform with sleek  

Broader source: Energy.gov (indexed) [DOE]

EM Launches Revamped Website: New cutting-edge platform with sleek EM Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use EM Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use January 7, 2013 - 12:00pm Addthis A screenshot of the newly revamped EM website. A screenshot of the newly revamped EM website. EM's previous website EM's previous website A screenshot of the newly revamped EM website. EM's previous website WASHINGTON, D.C. - EM entered 2013 with a bold transition to a more user-friendly public website, http://energy.gov/em. EM launched the redesigned site after an extensive effort to recreate its old EM web pages and provide a modern Internet experience for website visitors. Based on Energy.gov's fresh innovative appearance and effective

234

External (SON) - Primary Standards Laboratory (PSL) Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Fact Sheets Links Contacts Primary Standards Laboratory Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation

235

California Lighting Technology Center (University of California, Davis) |  

Open Energy Info (EERE)

Lighting Technology Center (University of California, Davis) Lighting Technology Center (University of California, Davis) Jump to: navigation, search Name California Lighting Technology Center (University of California, Davis) Place Davis, CA Website http://cltc.ucdavis.edu/ References CLTC Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections California Lighting Technology Center (University of California, Davis) is a research institution located in Davis, CA. References ↑ "CLTC Website" Retrieved from "http://en.openei.org/w/index.php?title=California_Lighting_Technology_Center_(University_of_California,_Davis)&oldid=381592"

236

Technology Deployment List | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Technology Deployment List Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Deployment List Agency/Company /Organization: Federal Energy Management Program Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: Implementation User Interface: Website Website: www1.eere.energy.gov/femp/technologies/newtechnologies_matrix.html#cat OpenEI Keyword(s): EERE tool, Technology Deployment List Language: English References: Technology Deployment List[1] Identify emerging-and underused-energy-saving technologies, including building envelope; heating, ventilation, and air conditioning; lighting; water heating; and refrigeration, computer power management, and vending

237

NREL's Renewable Energy Project Finance Website | Open Energy Information  

Open Energy Info (EERE)

NREL's Renewable Energy Project Finance Website NREL's Renewable Energy Project Finance Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL's RE Project Finance Website Agency/Company /Organization: NREL Sector: Energy Focus Area: Renewable Energy, Biomass, Energy Efficiency, Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Determine Baseline, Evaluate Options Topics: Background analysis, Finance, Market analysis, Policies/deployment programs Resource Type: Case studies/examples, Guide/manual, Lessons learned/best practices, Publications, Software/modeling tools User Interface: Website Website: financere.nrel.gov/finance/ Country: United States Cost: Free Northern America Coordinates: 39.7444909°, -105.1520004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7444909,"lon":-105.1520004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Cosmological toolkit project featured on DOE energy website | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cosmological toolkit project featured on DOE energy website Cosmological toolkit project featured on DOE energy website October 2, 2013 Tweet EmailPrint Researchers from Argonne National Laboratory, in partnership with Fermilab and Lawrence Berkeley National Laboratory, are developing a state-of-the-art toolkit for analyzing cosmological simulation data. The work was recently featured on the DOE website Energy.gov. Leading the Argonne team are Salman Habib, senior physicist and computational scientist in Argonne's High Energy Physics and Mathematics and Computer Science Divisions, and Ravi Madduri, project manager in the MCS Division. The multilaboratory team seeks to create an open platform with a web-based front end that will allow scientists to transfer, search, and analyze the complex data being generated by galaxy-formation simulations. Key to this

239

Property:Incentive/Cont3Website | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Incentive/Cont3Website Jump to: navigation, search Property Name Incentive/Cont3Website Property Type URL Pages using the property "Incentive/Cont3Website" Showing 25 pages using this property. (previous 25) (next 25) A AEP (Central and North) - CitySmart Program (Texas) + http://www.clearesult.com/ + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.clearesult.com/ + AEP Texas - Commercial and Industrial Energy Efficiency Rebate Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tcc.asp + B Belle Fourche River Compact (South Dakota) + http://www.bellefourchewatershed.org/ + Blue Ridge Electric Cooperative - Heat Pump Loan Program (South Carolina) + http://www.blueridge.coop/ +

240

DOE Launches Public Test Procedure Guidance Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Launches Public Test Procedure Guidance Website Launches Public Test Procedure Guidance Website DOE Launches Public Test Procedure Guidance Website July 22, 2010 - 4:14pm Addthis The Department of Energy this week launched a new online database offering guidance on the Department's test procedures for appliances and commercial equipment. The new database will provide a publicly accessible forum for anyone with questions about -- or needing clarification of -- DOE's test procedures. This new online resource will also ensure that all manufacturers and members of the public are equally and immediately aware of the Department's interpretations of its test procedures. The database is available here. The database -- which is searchable by product category -- is designed to enable manufacturers, trade associations, and all other interested members

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

242

Property:Incentive/Cont2Website | Open Energy Information  

Open Energy Info (EERE)

Cont2Website Cont2Website Property Type URL Pages using the property "Incentive/Cont2Website" Showing 25 pages using this property. (previous 25) (next 25) A AEP (Central and North) - CitySmart Program (Texas) + http://www.aepefficiency.com/SWEPCO.html + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + https://www.aeptexas.com/Default.aspx + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/SWEPCO.html + AEP SWEPCO - CitySmart Program (Texas) + http://www.centerpointenergy.com/about/contact/ + AEP SWEPCO - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/SWEPCO.html + AEP SWEPCO - SCORE Program (Texas) + https://www.aeptexas.com/Default.aspx + AEP Texas - Commercial and Industrial Energy Efficiency Rebate Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tnc.asp +

243

DOE Launches Public Test Procedure Guidance Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Test Procedure Guidance Website Public Test Procedure Guidance Website DOE Launches Public Test Procedure Guidance Website July 22, 2010 - 4:14pm Addthis The Department of Energy this week launched a new online database offering guidance on the Department's test procedures for appliances and commercial equipment. The new database will provide a publicly accessible forum for anyone with questions about -- or needing clarification of -- DOE's test procedures. This new online resource will also ensure that all manufacturers and members of the public are equally and immediately aware of the Department's interpretations of its test procedures. The database is available here. The database -- which is searchable by product category -- is designed to enable manufacturers, trade associations, and all other interested members

244

DOE Energy Technology Prices and Trends | Open Energy Information  

Open Energy Info (EERE)

DOE Energy Technology Prices and Trends DOE Energy Technology Prices and Trends Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DOE Energy Technology Prices and Trends Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy Phase: Determine Baseline Topics: Market analysis, Technology characterizations Resource Type: Software/modeling tools User Interface: Website Website: energy.gov/prices-trends Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Name Name Address Place Zip Category Sector Telephone number Website  

Open Energy Info (EERE)

Category Sector Telephone number Website Category Sector Telephone number Website Coordinates Testing Facilities Overseen References Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street Shrewsbury Street Holden Massachusetts Category Testing Facility Operators Hydro Hydro http www aldenlab com http www aldenlab com Alden Tow Tank Alden Wave Basin Alden Small Flume Alden Large Flume Bucknell University Bucknell University Civil Mechanical Engineering Departments Hydraulic Flume Moore Avenue Dana Engineering Building Lewisburg Pennsylvania Category Testing Facility Operators Hydro http www bucknell edu x16287 xml Bucknell Hydraulic Flume Colorado State University Hydrodynamics Colorado State University Hydrodynamics Daryl B Simons Building Engineering Research Center Campus Delivery

246

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Technical progress report  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. This is the third quarterly technical progress report for the project. Significant technical achievements accomplished include the drilling of four horizontal wells (two producers and two steam injectors) utilizing a new and lower cost drilling program, the drilling of five observation wells to monitor the horizontal steamflood pilot, the installation of a subsurface harbor channel crossing for delivering steam to an island location, and a geochemical study of the scale minerals being created in the wellbore. Cyclic steam injection into the two horizontal injection wells began in mid-December 1995 utilizing the new 2400 ft steam line under the Cerritos channel and the wells will be placed on production in May. Cyclic steam injection into the two horizontal producers will start in May. Work on the basic reservoir engineering is expected to be completed in March 1996. The deterministic geologic model was improved to add eight layers to the previous ten.

Hara, S.

1996-05-06T23:59:59.000Z

247

DOE Research and Development Accomplishments Website Policies/Important  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned right. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of originators expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

248

European Smart Power Market Project Report Website | Open Energy  

Open Energy Info (EERE)

European Smart Power Market Project Report Website European Smart Power Market Project Report Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Smart Power Market Project Report Website Focus Area: Renewable Energy Topics: Market Analysis Website: climatepolicyinitiative.org/publication/smart-power-market-project/ Equivalent URI: cleanenergysolutions.org/content/european-smart-power-market-project-r Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Resource Integration Planning,Utility/Electricity Service Costs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

249

Bureau of Energy Efficiency Standard & Labelling (India) Website | Open  

Open Energy Info (EERE)

Bureau of Energy Efficiency Standard & Labelling (India) Website Bureau of Energy Efficiency Standard & Labelling (India) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bureau of Energy Efficiency Standard & Labelling (India) Website Focus Area: Energy Efficiency, - Utility Topics: Policy, Deployment, & Program Impact Website: www.beeindia.in/ Equivalent URI: cleanenergysolutions.org/content/bureau-energy-efficiency-standard-lab Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Voluntary Appliance & Equipment Labeling Regulations: "Building Codes,Energy Standards,Incandescent Phase-Out" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

250

Renewable Energy and Energy Efficiency Partnership Ongoing Project Website  

Open Energy Info (EERE)

and Energy Efficiency Partnership Ongoing Project Website and Energy Efficiency Partnership Ongoing Project Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Partnership Ongoing Project Website Focus Area: Wind Topics: Deployment Data Website: www.reeep.org/16085/completed-projects.htm Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Fuel Efficiency Standards,Appliance & Equipment Standards and Required Labeling,Audit Requirements,Building Certification,Energy Standards,Feed-in Tariffs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

251

Formal Verification of Websites1 Sonia Flores2  

E-Print Network [OSTI]

. As expected in any software project, the web developers or designers must guarantee that the system (i, Universidad Polit´ecnica de Valencia Camino de Vera s/n, 46022 Valencia, Spain Abstract In this paper, a model as the environment of the system. We also present the logic which is used to specify properties of websites

Lucas, Salvador

252

Formal Verification of Websites1 Sonia Flores2  

E-Print Network [OSTI]

. As expected in any software project, the web developers or designers must guarantee that the system (i Polit´ecnica de Valencia Camino de Vera s/n, 46022 Valencia, Spain Abstract In this paper, a model as the environment of the system. We also present the logic which is used to specify properties of websites

Villanueva, Alicia

253

Poster Printing Instructions As specified on our website,  

E-Print Network [OSTI]

Poster Printing Instructions As specified on our website, http://www.niu.edu/engagedlearning/research/undergraduate_research_day.shtml under "poster guidelines", your poster should be no larger than 32" x 40". Before submitting your poster to Media Services, ensure your faculty mentor has approved your final poster, as it will only be printed

Karonis, Nicholas T.

254

University Policy Website Policy Development and Review Checklist  

E-Print Network [OSTI]

University Policy Website Policy Development and Review Checklist Updated May 2009 Page 1 of 3 UNIVERSITY POLICY DEVELOPMENT AND REVIEW CHECKLIST Purpose This checklist is designed to assist individuals developing and reviewing university policies and procedures. The questions below will not apply to every

Pedersen, Tom

255

Policy and Procedure Writing Tips University Policy Website  

E-Print Network [OSTI]

Policy and Procedure Writing Tips University Policy Website Policy and Procedure Writing Tips Updated May 2009 Page 1 of 2 · Differentiate between policies and procedures. o University Policies review and approval for policy issuance and revision. o University Procedures are the processes

Pedersen, Tom

256

The Visibility of Political Websites during Electoral Campaigns  

Science Journals Connector (OSTI)

This paper discusses how political parties and candidates try to enhance the public visibility of their websites during electoral campaigns, through a process that the author proposes calling the "meta-campaign." This process significantly depends on ... Keywords: Campaigning, Elections, European Parliament, Internet, Political Parties

J. Paulo Serra

2013-10-01T23:59:59.000Z

257

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

Scott Hara

2001-05-07T23:59:59.000Z

258

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Organization Organization Address Place Zip Notes Website Region Organization Organization Address Place Zip Notes Website Region Adirondack North Country Association Adirondack North Country Association Main Street Suite Saranac Lake New York http www adirondack org Northeast NY NJ CT PA Area African Renewable Energy Alliance AREA African Renewable Energy Alliance AREA Online http area network ning com xg source msg mes network Alliance for Sustainable Colorado Alliance for Sustainable Colorado Wynkoop Street Denver Colorado Mission of is to catalyze the shift to a truly sustainable world by fostering collaboration among nonprofits businesses governments and academia http www sustainablecolorado org Rockies Area American Clean Skies Foundation American Clean Skies Foundation st Street NE Suite Washington District of Columbia http www cleanskies

259

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Institution Name Institution Name Address Place Zip Notes Website Region Institution Name Institution Name Address Place Zip Notes Website Region ARCH Venture Partners Texas ARCH Venture Partners Texas Bridgepoint Parkway Bldg Suite Austin Texas http www archventure com Texas Area ARCH Venture Partners Washington ARCH Venture Partners Washington Second Avenue Suite Seattle Washington http www archventure com Pacific Northwest Area African Wind Energy Association South Africa African Wind Energy Association South Africa South Africa http www afriwea org en south africa htm Alternative Energy Institute Alternative Energy Institute russell long blvd Canyon Texas http www windenergy org Texas Area Applied Process Engineering Laboratory Applied Process Engineering Laboratory Hills Street Suite Richland Washington http www apel org

260

STUDENTS - HOW TO SEARCH AND APPLY FOR JOBS ON THE USAJOBS WEBSITE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- HOW TO SEARCH AND APPLY FOR JOBS ON THE USAJOBS WEBSITE STEP 1: Locate the USAJOBS website at http:usajobs.gov STEP 2: Select "Students and Recent Graduates" STEP 3: Click on...

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Department of Energy Launches New Website for Asset Revitalizatio...  

Broader source: Energy.gov (indexed) [DOE]

Revitalization Initiative (ARI) website. WASHINGTON, D.C. - Today, the U.S.Department of Energy (DOE) launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide...

262

Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

263

Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

264

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

265

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

266

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

267

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

Scott Hara

2000-02-18T23:59:59.000Z

268

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

Scott Hara

2001-05-08T23:59:59.000Z

269

Distributed Wind Policy Comparison Tool Website | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Distributed Wind Policy Comparison Tool Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Policy Comparison Tool Website Focus Area: Renewable Energy Topics: Security & Reliability Website: www.eformativeoptions.com/dwpolicytool/ Equivalent URI: cleanenergysolutions.org/content/distributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: "Utility/Electricity Service Costs,Feed-in Tariffs,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

270

Wind Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Technology Module Wind Energy Technology Module Jump to: navigation, search Tool Summary Name: Wind Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Wind Topics: Background analysis, Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: Russia, China Eastern Europe, Eastern Asia Coordinates: 54.5283298°, 112.9648819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.5283298,"lon":112.9648819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

272

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

technology partners for solar projects in India Kawar Energy Kawar Energy Amman Jordan Services Amman based project developer focused on bringing technologies solutions and...

273

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Boston Area Green Fuel Technologies Corporation Green Fuel Technologies Corporation Smith Place Cambridge Massachusetts Biofuels Recycles CO2 from flue gases to produce...

274

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-06-16T23:59:59.000Z

275

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-08-10T23:59:59.000Z

276

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

Raj Kumar; Keith Brown; T. Scott Hickman; James J. Justice

2000-04-27T23:59:59.000Z

277

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-12-11T23:59:59.000Z

278

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman

2003-01-17T23:59:59.000Z

279

A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ideal system,'' could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

1992-11-01T23:59:59.000Z

280

A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ``ideal system,`` could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

How to Receive Documents and Information from the Smithsonian Institution SI Website: The Smithsonian website (www.si.edu) is an interrelated, searchable system of  

E-Print Network [OSTI]

How to Receive Documents and Information from the Smithsonian Institution SI Website be able to help you. For documents not available on our website, send a request to the Smithsonian providing: B A description of the information or documents you want to receive. Provide as much detail

Mathis, Wayne N.

282

Revised March 2011 Faculty of Graduate Studies Website  

E-Print Network [OSTI]

and current projects include: clean coal technology and processing; coal/gas outbursts prevention; crown

Lotze, Heike K.

283

Viryd Technologies | Open Energy Information  

Open Energy Info (EERE)

Viryd Technologies Viryd Technologies Jump to: navigation, search Name Viryd Technologies Address 9701 Metric Blvd. Suite 200 Place Austin, Texas Zip 78758 Sector Wind energy Product Developer of continuously variable transmission technology for wind turbines. Phone number 512.879.2800 Website http://viryd.com References Viryd Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Viryd Technologies is a company located in Austin, Texas . Viryd Technologies' mission is to develop, design and execute enhanced technology, in order to harness the renewable energy of wind to power businesses and communities. Viryd Technologies proprietary technologies include rotor blades, transmissions, control systems and tilt-down towers. We bring enhanced

284

Measurement and Characterization of Unregulated Emissions from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Measurement and Characterization of Unregulated Emissions from Advanced Technologies Effects of Advanced Combustion Technologies on...

285

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

286

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

287

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

288

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

289

Get Daily Energy Analysis Delivered to Your Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your Website Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Go to EIA's outreach page for Today in Energy widgets, badges and banners. Now everyone can feature the U.S. Energy Information Administration's (EIA) Today in Energy content on their website and favorite social networking sites. Today in Energy, the agency's education product published every weekday, highlights current energy issues, topics, and data trends in short articles written in plain language. EIA has banners and widgets in different colors and sizes to fit many different websites.

290

Website Policies and Important Links | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

291

About EIA - Website - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

About EIA.gov About EIA.gov Screen capture of www.eia.gov Our website, EIA.gov, is the primary communication channel for the U.S. Energy Information Administration (EIA) and serves as the agency's world-wide energy information point of contact for: Federal, state, and local governments The academic and research communities Businesses and industry Foreign governments and international organizations The news media Financial institutions The general public From January-December 2012, there were 22 million visitor sessions to the site, averaging 183 million visits per month. The site consists of approximately 500K files of all types that support our wide range of products, 41 email subscription lists, four Application Programming Interface (API) data sets, and 11 RSS feeds. EIA has forged a tradition of

292

PoisonAmplifier: A Guided Approach of Discovering Compromised Websites through Reversing Search Poisoning Attacks  

Science Journals Connector (OSTI)

Through injecting dynamic script codes into compromised websites, attackers have widely launched search poisoning attacks to achieve their malicious goals, such as spreading spam or scams, distributing malware...

Jialong Zhang; Chao Yang; Zhaoyan Xu

2012-01-01T23:59:59.000Z

293

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

SciTech Connect (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

294

Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation  

Broader source: Energy.gov [DOE]

This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

295

Catalyst Characterization | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalyst Characterization Catalyst Characterization Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519...

296

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Charge Inc Charge Inc Dallas Texas Developer of patented technology Charge Inc Charge Inc Dallas Texas Developer of patented technology for faster battery charging time which also extends battery lifetime Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products Technologies Technologies Hartwell Avenue North Lexington Massachusetts Gateway Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc Soltech Inc Richardson Texas Texas based PV module maker st Light Energy Inc st Light Energy Inc McHennry Ave Suite F Modesto

297

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)

1996-12-01T23:59:59.000Z

298

Risk assessment for the Waste Technologies Industries (WTI) Hazardous Waste Incineration Facility (East Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions  

SciTech Connect (OSTI)

Contents: Introduction; Data Used in Characterizing Emissions; Incinerator Stack Emissions; Fugitive Emissions; Uncertainty in Emissions Characterization; and References.

NONE

1997-05-01T23:59:59.000Z

299

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Sumitomo and US based steel tank manufacturer T Bailey Kawar Energy Kawar Energy Amman Jordan Services Amman based project developer focused on bringing technologies solutions and...

300

Photo Company: Powerful Colour Image Website: http://www.pcimagehk.com/index.php  

E-Print Network [OSTI]

Photo Company: Powerful Colour Image Website: http://www.pcimagehk.com/index.php Address: 36: pcimagejc@pcimagejc.com.hk http://www.pcimagehk.com/index.php Photos will be available at the website http://www.pcimagehk.com/index.php

Huang, Jianwei

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect (OSTI)

The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

T. Scott Hickman; James J. Justice

2002-01-09T23:59:59.000Z

302

Manuscript submitted to Website: http://AIMsciences.org AIMS' Journals  

E-Print Network [OSTI]

underactuated mechanical systems of interest such as the inertia wheel-pendulum, the inverted pendulum on a cart system and the ball and beam system. 1. Introduction. Consider a dynamical system on a smooth connected and Dynamical Systems California Institute of Technology Pasadena, CA 91125 Sujit Nair United Technologies

Nair, Sujit

303

Analysis on Current Status of the Gas Filling Station Networks Website |  

Open Energy Info (EERE)

Analysis on Current Status of the Gas Filling Station Networks Website Analysis on Current Status of the Gas Filling Station Networks Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis on Current Status of the Gas Filling Station Networks Website Focus Area: Natural Gas Topics: Potentials & Scenarios Website: www.gashighway.net/default.asp?sivuID=25922&component=/modules/bbsView Equivalent URI: cleanenergysolutions.org/content/analysis-current-status-gas-filling-s Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website provides country level analyses of natural gas fueling station networks, the need for further fueling stations and their optimal locations in certain countries. Proposed network expansion strategies are based on available information on vehicle travel patterns and geographic

304

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

305

Renewable Energy and Energy Efficiency Toolkit Website | Open Energy  

Open Energy Info (EERE)

Renewable Energy and Energy Efficiency Toolkit Website Renewable Energy and Energy Efficiency Toolkit Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Toolkit Website Focus Area: Renewable Energy Topics: Policy Impacts Website: toolkits.reeep.org/ Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: "English,Chinese,French,Portuguese,Spanish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

306

Technology Needs Assessment Handbook | Open Energy Information  

Open Energy Info (EERE)

Technology Needs Assessment Handbook Technology Needs Assessment Handbook Jump to: navigation, search Tool Summary Name: Technology Needs Assessment Handbook Agency/Company /Organization: United Nations Development Programme Partner: United Nations Environment Programme Sector: Energy, Land Focus Area: Energy Efficiency Topics: Low emission development planning, Background analysis Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: content.undp.org/go/newsroom/publications/environment-energy/www-ee-li References: TNA Homepage[1] Logo: Technology Needs Assessment Handbook To assist countries, UNDP, in collaboration with Climate Technology Initiative (CTI), the EGTT and the UNFCCC Secretariat, developed a Handbook for conducting technology needs assessments for climate change.

307

Development of an e-commerce website for innovations emerging from a public sector healthcare system  

Science Journals Connector (OSTI)

In the UK National Health Service (NHS), there is a national network of nine regional innovation hubs set up to undertake technology transfer and commercialisation of innovations emerging from the NHS. However, it was recognised that there was also a need to develop an outlet for products which are not commercially viable, but which are potentially beneficial to the NHS. To meet this need, an e-commerce website was developed to market and sell such products within the NHS. This paper describes the development, implementation and evaluation of this novel approach, and highlights the complexities and problems involved in such a venture, which has been analysed using a conceptual model of business innovation. The analysis of the metrics shows that site traffic, and sales have remained fairly constant, rather than increasing over the first two years. This maybe due to the reticence of other hubs, despite generally positive feedback, to populate the site and the non-commercial nature of the goods may quickly lead to market saturation.

Ann P. Starkey; Lyndon Judd; Richard Clark; Michael A. Smith

2011-01-01T23:59:59.000Z

308

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

McClellan Technology Incubator Clean Start McClellan Technology McClellan Technology Incubator Clean Start McClellan Technology Incubator Bailey Loop McClellan California http www sarta org go cs Bay Area Corvalence Corvalence Jackson St San Francisco California Bay Area Energy BioSciences Institute Energy BioSciences Institute Berkeley California http www energybiosciencesinstitute org Bay Area Environmental Business Cluster Environmental Business Cluster North First Street Third Floor San Jose California http www environmentalcluster org Bay Area Global Climate and Energy Project Global Climate and Energy Project Via Ortega Suite Stanford California http gcep stanford edu Bay Area Google org Google org Amphitheatre Parkway Mountain View California http www google org Bay Area Lawrence Berkeley National Laboratory LBNL Lawrence Berkeley National

309

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products Technologies Technologies Hartwell Avenue North Lexington Massachusetts Gateway Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com st Light Energy Inc st Light Energy Inc McHennry Ave Suite F Modesto California Gateway Solar http stlightenergy com Southern CA Area Century Solar Inc Century Solar Inc Garland Texas Gateway Solar Privately owned Garland based manufacturer of solar grade polysilicon

310

A speech-enabled system for website bookmarking  

E-Print Network [OSTI]

In recent years, much advancement has been made in both search and speech technology. The former seeks to organize and retrieve the ever-growing amount of online information efficiently, while the latter strives to increase ...

Sun, Xin, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

311

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products Technologies Technologies Hartwell Avenue North Lexington Massachusetts Gateway Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com st Light Energy Inc st Light Energy Inc McHennry Ave Suite F Modesto California Gateway Solar http stlightenergy com Southern CA Area Century Solar Inc Century Solar Inc Garland Texas Gateway Solar Privately owned Garland based manufacturer of solar grade polysilicon

312

Polluted online information? Surfing Italian websites dealing with the topic of waste and  

Science Journals Connector (OSTI)

In the field of health communication, a particularly critical issue is communication to the public of environmental risks, especially on topics for which there is still a high degree of scientific uncertainty regarding risk estimates. One such topic is undoubtedly the impact of waste on people's health. The aim of this study was to evaluate the presence and characteristics of Italian websites dealing with the topic of waste and health. The keywords 'waste' and 'health' were entered in 2010 in the three most commonly used search engines, and the first five pages were analysed. The selected websites were coded according to the content analysis method. For websites of interest we evaluated the 'page rank'. Out of the 150 occurrences analysed, the number of websites found to deal with this subject was only 19, four of which were of an institutional nature. The majority of websites gave a message of increased health risk associated with the three kinds of waste disposal tackled. As regards visibility, only one of the four institutional websites maintained its position on the first page of the three search engines. We found that institutional health websites have low visibility, despite extensive media coverage of waste and health issues in Italy as a result of the Naples case, which was debated globally. This indicates that public health institutions' web strategies are basically unable to meet people's health information requirements, which could strengthen rival health information providers.

G Orizio; M K Locatelli; L Caimi; U Gelatti

2011-01-01T23:59:59.000Z

313

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

314

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

315

LANL >> GFP Website >> Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL GFP Technology LANL GFP Technology About Us Organization GFP Home Uses for GFP Quantifying expression Solubility determination Soluble domain discovery Protein-protein interaction Drug Discovery Licensing Technical Library CONTACTS Technology Contact Geoff Waldo gfp@lanl.gov Licensing Contact David Hadley tmt-1@lanl.gov Green Fluorescent Protein (GFP) Toolbox protein graphic Nobel Prize awarded for GFP Our congratulations to the scientists who won the Nobel Prize for their work on Green Fluorescent Protein. Here is what each one contributed to receive the prize: Osamu Shimomura first isolated GFP from the jellyfish Aequorea victoria, which drifts with the currents off the west coast of North America. He discovered that this protein glowed bright green under ultraviolet light. Martin Chalfie demonstrated the value of GFP as a luminous genetic tag for various biological phenomena. In one of his first experiments, he coloured six individual cells in the transparent roundworm Caenorhabditis elegans with the aid of GFP.

316

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

AWEA American Wind Energy Association AWEA American Wind Energy Association AWEA M Street NW Suite Washington District of Columbia http www awea org Asociacion Argentina de Energia Eolica Asociacion Argentina de Energia Eolica Buenos Aires Argentina http www argentinaeolica org ar Clean Tech Trade Alliance Clean Tech Trade Alliance Wheaton Way Bremerton Washington Internationally focused hybrid trade alliance that will create a successful Clean Technology business cluster http www cleantechtradealliance org Pacific Northwest Area Clean Technology Sustainable Industries Organization Clean Technology Sustainable Industries Organization Coolidge Hwy Royal Oak Michigan http www ct si org Green Integrated Design Green Integrated Design Tempe Arizona http www GreenIntegratedDesign com Massachusetts Hydrogen Coalition Massachusetts Hydrogen Coalition Cummings

317

Microsoft Word - JDC Website Resume 3Feb2011.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory 9700 S. Cass Avenue, Bldg. 205 Argonne, IL 60439 phone: 630/252-4544 fax: 630/972-4544 e-mail: jdavidcarter@anl.gov Professional Experience * October 1996- Present Materials Engineer and Group Leader (2006) supporting SOFC development (Solid State Energy Conversion Alliance - SECA), PEM bipolar plate development (DOE Fuel Cells Technology Program), and Fuel Cell Deployment at Argonne National Laboratory. Collaborator in Japan - US Clean Energy Technology Plan. * 1994-1996 Post Doctorate at Argonne National Laboratory. * 1992- 1994 Visiting Scientist at Risoe National Laboratory * 1987- 1988 Lab Technician at Ceramatec Inc. Education Ph.D., Ceramic Engineering, University of Missouri-Rolla (1992)

318

NREL: Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

319

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

Paris-Sud XI, Université de

320

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. [Quarterly report], October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. This is the third quarterly technical progress report for the project. Through December 1995, the project is on schedule and on budget. Several significant technical achievements have already been successfully accomplished including the drilling of four horizontal wells (two producers and two steam injectors) utilizing a new and lower cost drilling program, the drilling of five observation wells to monitor the horizontal steamflood pilot, the installation of a subsurface harbor channel crossing for delivering steam to an island location, and a geochemical study of the scale minerals being created in the wellbore. Steam injection into the two horizontal injection wells began in mid-December 1995 utilizing the new 2400 ft steam line under the Cerritos Channel. Work on the basic reservoir engineering is expected to be completed in March 1996. A working deterministic geologic model was completed which allowed work to commence on the stochastic geologic and reservoir simulation models.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)

1996-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications  

SciTech Connect (OSTI)

The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

Griffin, John [university of Alabama - Birmingham] [university of Alabama - Birmingham

2014-02-20T23:59:59.000Z

322

H2RES: Energy Planning of Islands and Isolated Regions Website | Open  

Open Energy Info (EERE)

H2RES: Energy Planning of Islands and Isolated Regions Website H2RES: Energy Planning of Islands and Isolated Regions Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: H2RES: Energy Planning of Islands and Isolated Regions Website Focus Area: Crosscutting Topics: System & Application Design Website: www.powerlab.fsb.hr/h2RES/index.html Equivalent URI: cleanenergysolutions.org/content/h2res-energy-planning-islands-and-iso Language: English Policies: Regulations Regulations: "Net Metering & Interconnection,Resource Integration Planning" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

323

E-print Network Website Policies and Important Links -- Energy, science,  

Office of Scientific and Technical Information (OSTI)

Disclaimer Disclaimer This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

324

DOE's Energy Savers Website Helps Consumers "Stay Warm, Save Money" |  

Broader source: Energy.gov (indexed) [DOE]

Energy Savers Website Helps Consumers "Stay Warm, Save Money" Energy Savers Website Helps Consumers "Stay Warm, Save Money" DOE's Energy Savers Website Helps Consumers "Stay Warm, Save Money" October 1, 2008 - 3:43pm Addthis DOE Helps Americans Be Energy Efficient at Home and Save on Energy Costs WASHINGTON - The U.S. Department of Energy (DOE) today, on the first day of Energy Awareness Month, launched the Stay Warm, Save Money website and educational outreach campaign to help consumers be more energy efficient and save on energy costs. The information focuses on proactive ways to implement simple, cost-effective, energy saving solutions for both homes and businesses this winter and will expand to year-round home energy efficient tips. The site also features the Department's work to develop

325

A guide to web content for Heriot-Watt University websites  

E-Print Network [OSTI]

1 A guide to web content for Heriot-Watt University websites #12;2 Contents A guide to web content..........................................................................................................................3 Why is writing for the web different?..........................................................................................3 Planning your web content

Howie, Jim

326

CourseDiff : a system for identifying and reporting changes to course websites  

E-Print Network [OSTI]

CourseDiff is a prototype system that periodically samples course websites and notifies users via email when it identifies changes to those sites. The system was developed after conducting a study of 120 web pages from 50 ...

Kopylov, Igor, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

327

Pleasenotethatthisisanauthor-producedPDFofanarticleacceptedforpublicationfollowingpeerreview.Thedefinitivepublisher-authenticatedversionisavailableonthepublisherWebsite Journal of Volcanology and Geothermal  

E-Print Network [OSTI]

-producedPDFofanarticleacceptedforpublicationfollowingpeerreview.Thedefinitivepublisher-authenticatedversionisavailableonthepublisherWebsite 1 Journal of Volcanology and Geothermal Research August 2013, Volume 264, Pages 72­84 http Author manuscript, published in "Journal of Volcanology and Geothermal Research 264 (2013) 72-84" DOI

Paris-Sud XI, Université de

328

2013 MEES Photo Contest Colloquium Website: http://www.umces.edu/hpl/meescolloquium2013  

E-Print Network [OSTI]

2013 MEES Photo Contest Colloquium Website: http Photo Contest Theme: "Capturing MEES Life" Photos Due: 12:00 noon on Sept to meesphoto@yahoo.com o Photos must be received no later than 12:00 noon September

Boynton, Walter R.

329

New Website Social Network Advertising: What Works and What Doesn't  

E-Print Network [OSTI]

CRUZ New Website Social Network Advertising: What Worksand What Doesnt A thesis submitted in partial satisfactionSocial Network Advertising: What Works and What Doesnt by

Wu, Rui

2014-01-01T23:59:59.000Z

330

PoisonAmplifier: a guided approach of discovering compromised websites through reversing search poisoning attacks  

Science Journals Connector (OSTI)

Through injecting dynamic script codes into compromised websites, attackers have widely launched search poisoning attacks to achieve their malicious goals, such as spreading spam or scams, distributing malware and launching drive-by download attacks. ...

Jialong Zhang; Chao Yang; Zhaoyan Xu; Guofei Gu

2012-09-01T23:59:59.000Z

331

DOE's Office of Science Launches Website for U.S. Role at Large Hadron  

Broader source: Energy.gov (indexed) [DOE]

Launches Website for U.S. Role at Large Launches Website for U.S. Role at Large Hadron Collider DOE's Office of Science Launches Website for U.S. Role at Large Hadron Collider September 12, 2007 - 2:32pm Addthis U.S. scientists join international colleagues to explore universe's mysteries at world's largest scientific experiments WASHINGTON, DC - The U.S. Department of Energy's Office of Science today launched a new website to tell the story of the U.S. role in the Large Hadron Collider (LHC), a particle accelerator that will begin operating in Europe, near Geneva, Switzerland, next year. Hundreds of physicists, engineers and students from the United States are joining with colleagues from around the globe in the largest and most complex scientific experiments ever built. The LHC experiments will address some of the most

332

PNNL Global Energy Technology Strategy Program | Open Energy Information  

Open Energy Info (EERE)

Technology Strategy Program Technology Strategy Program Jump to: navigation, search Logo: Global Energy Technology Strategy Program Name Global Energy Technology Strategy Program Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://www.pnl.gov/gtsp/ References Global Energy Technology Strategy Program [1] "Since its inception in 1998, the Global Energy Technology Strategy Program (GTSP) has been assessing the important roles that technology can play in effectively managing the long-term risks of climate change. This involves an integrated approach to fully exploring all aspects of climate change - including scientific, economic, regulatory, and social impacts - and then aligning new or existing technologies to mitigate negative consequences.[1]

333

Website design in an international context: The role of gender in masculine versus feminine oriented countries  

Science Journals Connector (OSTI)

Previous research confirms there are differences between men and women concerning website design preferences. A few researchers have further suggested website preferences based on gender (i.e. whether one is a man or a woman) differ in countries that are typically considered higher in masculinity versus higher in femininity. As such, this supposes fewer differences exist between men and women in more feminine societies, while more significant differences occur in more masculine societies. To test this assumption, we survey a total of 955 participants located in six countries. More particularly, we examine design constructs of Information Content, Navigation Design, Visual Design modeled to Website Trust and Website Satisfaction. We are interested to determine if gender differences are strong in higher masculinity countries and weak in lower masculinity countries. We also investigate if gender moderates the various relationships in our model. As predicted, in higher masculinity countries there are more differences between men and women, and gender is more likely to moderate the relationships in the model. This research has implications for the complexity of website design preferences, and extends earlier work on website design in a multiple country sample where masculinityfemininity differs. Theoretical contributions and design issues are elaborated.

Dianne Cyr; Milena Head

2013-01-01T23:59:59.000Z

334

Rural Electrification with Renewable Energy: Technologies, quality  

Open Energy Info (EERE)

Rural Electrification with Renewable Energy: Technologies, quality Rural Electrification with Renewable Energy: Technologies, quality standards and business models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Rural Electrification with Renewable Energy: Technologies, quality standards and business models Agency/Company /Organization: The Alliance for Rural Electrification Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: - Energy Access Resource Type: Publications User Interface: Website Website: www.ruralelec.org/fileadmin/DATA/Documents/06_Publications/ARE_TECHNOL Cost: Free Language: English This publication aims to give eve- ryone, from the general public to decision makers, from potential investors to project promoters, the tools to understand what off-grid renewable energy technologies are all about.

335

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Center for Sustainable Center for Sustainable Energy Balboa Ave San Diego California Helps residents businesses and public agencies save energy reduce grid demand and generate their own power http energycenter org Southern CA Area Clean Tech Los Angeles Clean Tech Los Angeles Los Angeles California Collaboration between CRA LA Caltech DWP JPL Mayor s Office Port UCLA and USC to establish Los Angeles as the global leader in research commercialization and deployment of clean technologies http cleantechlosangeles org Southern CA Area Clean Tech San Diego Clean Tech San Diego Executive Drive San Diego California Non profit membership organization formed to accelerate San Diego as a world leader in the clean technology economy http www cleantechsandiego org Southern CA Area Community Environmental Council Community Environmental Council W Anapamu

336

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products st century Green Solutions LLC st century Green Solutions LLC Grand Blanc Michigan Wind energy Exclusive rights to manufacture and distribute kW wind turbine technology in North America Degrees Degrees Embarcadero Center Suite San Francisco California Bioenergy Buildings Carbon Geothermal energy Services Gateway Solar Wind energy Environmental Commodities http www degreesinc com Bay Area E E Brussels Belgium Buildings Hydro Services Gateway Solar Wind energy

337

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Laboratory Applied Process Engineering Laboratory Applied Process Engineering Laboratory Hills Street Suite Richland Washington http www apel org contact html Pacific Northwest Area Austin Clean Energy Incubator Austin Clean Energy Incubator West Braker Lane Austin Texas http www ati utexas edu clean energy clean energy html Texas Area Clean Edge Inc Clean Edge Inc Portland Oregon http www cleanedge com Pacific Northwest Area Clean Start McClellan Technology Incubator Clean Start McClellan Technology Incubator Bailey Loop McClellan California http www sarta org go cs Bay Area Corvalence Corvalence Jackson St San Francisco California Bay Area E Co E Co Franklin Street Bloomfield New Jersey http www eandco net EcoElectron Ventures Inc EcoElectron Ventures Inc Second Street PMB Encinitas California http www ecoelectron com Southern CA Area

338

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Incubator Austin Clean Energy Incubator West Braker Incubator Austin Clean Energy Incubator West Braker Lane Austin Texas http www ati utexas edu clean energy clean energy html Texas Area Bank of Italy Bank of Italy Via nazionale Rome Italy http www bancaditalia Brookhaven National Laboratory Brookhaven National Laboratory William Floyd Parkway Upton New York http www bnl gov Northeast NY NJ CT PA Area Centro de Energ as Renovables CER Centro de Energ as Renovables CER Agustinas piso Santiago Chile http www cer gov cl Clean Start McClellan Technology Incubator Clean Start McClellan Technology Incubator Bailey Loop McClellan California http www sarta org go cs Bay Area Colorado Renewable Energy Collaboratory Colorado Renewable Energy Collaboratory th Street Suite Denver Colorado http www coloradocollaboratory org

339

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

American Photovoltaics American Photovoltaics Houston Texas Gateway American Photovoltaics American Photovoltaics Houston Texas Gateway Solar Will manufacture thin film solar modules http apv us com Texas Area C Voltaics C Voltaics Cullen Blvd Science and Research Building Houston Texas Gateway Solar Novel manufacturing process for solar cells with initial focus on OPV http www c voltaics com Texas Area CMNA Power CMNA Power Technology Blvd Austin Texas Wind energy Developing non turbine wind power technology http www cmnapower com Texas Area CPower Texas CPower Texas Congress Avenue Suite Austin Texas Efficiency Provides various energy efficiency management services http www cpowered com Texas Area Celestial Power Celestial Power Hermitage Drive Austin Texas Gateway Solar Solar energy contractor http celestialpower biz Texas Area

340

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Entrepreneurs Network Austin Solar Energy Entrepreneurs Entrepreneurs Network Austin Solar Energy Entrepreneurs Network Austin Texas Provide networking opportunities for professionals to generate and attract Solar Energy businesses to Central Texas http www austinseen googlepages com Texas Area Austin Technology Incubator Austin Technology Incubator West Braker Lane Austin Texas http www ati utexas edu Texas Area Biodiesel Coalition of Texas Biodiesel Coalition of Texas Congress Avenue Austin Texas Non profit corporation created by biodiesel pioneers and industry leaders to ensure that biodiesel receives favorable treatment by state regulatory agencies and the Texas Legislature http www biodieselcoalitionoftexas org Texas Area Texas Renewable Energy Industries Association Texas Renewable Energy Industries Association P O Box Austin Texas Represents over member

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Characterizations of Hydrogen Energy Technologies  

SciTech Connect (OSTI)

In 1996, Dr. Ed Skolnik of Energetics, Incorporated, began a series of visits to the locations of various projects that were part of the DOE Hydrogen Program. The site visits/evaluations were initiated to help the DOE Program Management, which had limited time and limited travel budgets, to get a detailed snapshot of each project. The evaluations were soon found to have other uses as well: they provided reviewers on the annual Hydrogen Program Peer Review Team with an in-depth look at a project--something that is lacking in a short presentation--and also provided a means for hydrogen stakeholders to learn about the R&D that the Hydrogen Program is sponsoring. The visits were conducted under several different contract mechanisms, at project locations specified by DOE Headquarters Program Management, Golden Field Office Contract Managers, or Energetics, Inc., or through discussion by some or all of the above. The methodology for these site-visit-evaluations changed slightly over the years, but was fundamentally as follows: Contact the Principal Investigator (PI) and arrange a time for the visit; Conduct a literature review. This would include a review of the last two or three years of Annual Operating Plan submittals, monthly reports, the paper submitted with the last two or three Annual Peer Review, published reviewers' consensus comments from the past few years, publications in journals, and journal publications on the same or similar topics by other researchers; Send the PI a list of questions/topics about a week ahead of time, which we would discuss during the visit. The types of questions vary depending on the project, but include some detailed technical questions that delve into some fundamental scientific and engineering issues, and also include some economic and goal-oriented topics; Conduct the site-visit itself including--Presentations by the PI and/or his staff. This would be formal in some cases, informal in others, and merely a ''sit around the table'' discussion in others; The format was left to the discretion of the PI; A tour of the facility featuring, whenever possible, a demonstration of the process in operation; Detailed discussions of the questions sent to the PI and other topics; and Writing a report on the visit. This compilation presents the reports for all the site-visits held between February 1996 and July 2001, each written shortly after the visit. While nothing has been changed in the actual content of any of the reports, reformatting for uniformity did occur. In each report, where the questions and their respective answers are discussed, the questions are shown in bold. In several cases, the PI chose to answer these questions in writing. When this occurs, the PI's answers are produced ''verbatim, in quotes, using a different font.'' Discussion of the questions, tour/demonstration, and anything else raised during the visit is presented in normal type. Comments that represent the opinion of Dr. Skolnik, including those added during the writing of the report are shown in italics. The reports compiled here, as stated, covers a period through July 2001. Since then, site-visits to various project locations and the accompanying evaluations have continued. Thus, a second compilation volume should follow in the fall of 2003. Following the compilation of reports, is an afterward that briefly discusses what has happened to some of the projects or project personnel since that particular report was written.

Energetics Inc

2003-04-01T23:59:59.000Z

342

Israeli i.d.e.a.s. website  

E-Print Network [OSTI]

of Israel, as in 2011 it is set to launch two ambitious transportation projects: first, the worlds first fully functional electric car grid with recharging stations throughout the country and second, the implementation of a light rail system... that will make the world a better place." --- Shai Agassi (Founder and CEO of Better Place) 2011 is a landmark year for Israel and technological advancements taking place there. Not only will the much anticipated electric car grid launch throughout the nation...

Franzblau, Matthew J.

2011-10-05T23:59:59.000Z

343

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Massachusetts Ballardvale Street Suite Massachusetts Ballardvale Street Suite A260 Wilmington Massachusetts Venture capital firm investing in early stage clean technology enterprises http www ventures com Greater Boston Area Advent International Advent International State Street Boston Massachusetts Global private equity firm http www adventinternational com Greater Boston Area Battery Ventures Battery Ventures Winter Street Suite Waltham Massachusetts Venture Capital http www battery com Greater Boston Area Black Coral Capital Black Coral Capital Union Street rd Floor Boston Massachusetts Cleantech private equity http www blackcoralcapital com Greater Boston Area Commons Capital Commons Capital Washington Street th floor Brookline Massachusetts Early stage venture capital fund http www commonscapital

344

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Alliance for Sustainable Colorado Alliance for Sustainable Colorado Wynkoop Street Denver Colorado Mission of is to catalyze the shift to a truly sustainable world by fostering collaboration among nonprofits businesses governments and academia http www sustainablecolorado org Rockies Area American Solar Energy Society American Solar Energy Society Central Ave Boulder Colorado Nonprofit organization dedicated to increasing the use of solar energy energy efficiency and other sustainable technologies in the U S http www ases org Rockies Area Boulder Innovation Center Boulder Innovation Center th Street Boulder Colorado http www boulderinnovationcenter com Rockies Area Clean Economy Network Rockies Clean Economy Network Rockies Denver Colorado http rockies cleaneconomynetwork org Rockies Area

345

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Brad Thompson Company st Ct NE Kirkland Washington Brad Thompson Company st Ct NE Kirkland Washington Energy developer http www bradtco com Pacific Northwest Area Clean Tech Trade Alliance Clean Tech Trade Alliance Wheaton Way Bremerton Washington Internationally focused hybrid trade alliance that will create a successful Clean Technology business cluster http www cleantechtradealliance org Pacific Northwest Area Northwest Biodiesel Network Northwest Biodiesel Network Phinney Ave N Seattle Washington To promote the use and benefits of biodiesel through awareness campaigns educational programs and specific initiatives http www nwbiodiesel org Pacific Northwest Area Puget Sound Clean Air Agency Puget Sound Clean Air Agency Third Avenue Seattle Washington Special purpose regional agency chartered by state

346

1366 Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: 1366 Technologies Name 1366 Technologies Address 45 Hartwell Avenue Place North Lexington, Massachusetts Zip 02421 Sector Solar Product Developer of technologies for enhancing PV efficiency, including new cell wiring and wafer packaging systems. Website http://www.1366tech.com/ Coordinates 42.472405°, -71.257792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.472405,"lon":-71.257792,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Cost of Renewable Energy Technology Options | Open Energy Information  

Open Energy Info (EERE)

Cost of Renewable Energy Technology Options Cost of Renewable Energy Technology Options Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost of Renewable Energy Technology Options Focus Area: Solar Topics: Opportunity Assessment & Screening Website: www1.eere.energy.gov/tribalenergy/guide/renewable_technologies_costs.h Equivalent URI: cleanenergysolutions.org/content/cost-renewable-energy-technology-opti Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This resource has been extracted and reformatted from the U.S. National Renewable Energy Laboratory's Power Technologies Energy Data Book. The data book is an excellent source of consistent information on renewable energy technology status and future expectations. Cost information is available

348

PNNL Technology Systems Analysis Group | Open Energy Information  

Open Energy Info (EERE)

Technology Systems Analysis Group Technology Systems Analysis Group Jump to: navigation, search Logo: Technology Systems Analysis Name Technology Systems Analysis Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tsa.pnl.gov/ References Technology Systems Analysis [1] "The Technology Systems Analysis group is part of the Pacific Northwest National Laboratory's Energy Environment Directorate. Our signature capabilities include sustainable design and development, building systems and energy technology analysis, and carbon management. We work with government and private sector clients to solve energy, environmental, and economic systems challenges, such as global climate change, sustainable development, energy systems. Examples of our current work include

349

What is the Industrial Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

350

Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Clean Technology Fund (CTF) Clean Technology Fund (CTF) Jump to: navigation, search Name Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Algeria, Egypt, Indonesia, Jordan, Kazakhstan, Mexico, Morocco, Nigeria, Philippines, South Africa, Thailand, Tunisia UN Region South-Eastern Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1]

351

Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations  

Open Energy Info (EERE)

Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Cost-Benefit_Analysis_of_Smart_Grid_Technologies_Through_System_Simulations&oldid=514355"

352

Highly Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

353

Expedited Site Characterization | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

money in the characterization of DOE sites, Ames Lab scientists are advancing adoption of innovative technologies along with a more efficient characterization method. What we are...

354

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Arch Venture Partners Owens Street San Francisco Arch Venture Partners Owens Street San Francisco California Venture capital firm investing in alternative energy production http www archventure com Bay Area Atrium Capital Atrium Capital Sand Hill Road Building Suite Menlo Park California Corporate strategic venture investing http www atriumcapital com Bay Area CMEA Capital CMEA Capital Embarcadero Center San Francisco California http www cmea com Bay Area CalCEF Clean Energy Angel Fund CalCEF Clean Energy Angel Fund Third Street Suite San Francisco California Seed Stage Venture Capital Firm http www calcefangelfund com Bay Area Clean Pacific Ventures Clean Pacific Ventures California Street Suite San Francisco California Venture capital firm investing in early stage clean technology companies http www cleanpacific com Bay Area

355

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

boro biofuel boro biofuel maiden lane New York New York Biofuels Multi boro biofuel boro biofuel maiden lane New York New York Biofuels Multi feed stock http borobiofuel com Northeast NY NJ CT PA Area A2BE Carbon Capture LLC A2BE Carbon Capture LLC Panorama Ave Boulder Colorado Biofuels Developing technology for producing valuable fuel and food from CO2 using algal photosynthesis and bio harvesting http www algaeatwork com Rockies Area AE Biofuels Inc formerly Marwich II Ltd AE Biofuels Inc formerly Marwich II Ltd West Palm Beach Florida Biofuels Marwich II Ltd OTC BB MWII OB merged in December with AE Biofuels Inc formerly American Ethanol Subsequently Marwich II Ltd has changed its name to AE Biofuels OTC AEBF AHL TECH AHL TECH PO Box Cincinnati Ohio Biofuels Manufacturing Research and development Other Efficient Utilization http www AHL TECH com

356

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

DHeat Ltd DHeat Ltd United Kingdom Efficiency DHeat Limited DHL was DHeat Ltd DHeat Ltd United Kingdom Efficiency DHeat Limited DHL was formed in to industrialize a novel heating element technology that requires significantly less energy to manufacture and offers significantly better heating efficiency than conventional coiled wire elements A O Smith A O Smith Wisconsin Efficiency Gateway Solar Wisconsin based based company that makes both water heating equipment and electric motors and also is in the water treatment business Its water heating focus includes a focus on high efficiency and solar suitable equipment A O Smith A O Smith Milwaukee Wisconsin Efficiency http www aosmith com A123 Systems A123 Systems Arsenal Street Watertown Massachusetts Efficiency Nanotech batteries http www a123systems com Greater Boston Area

357

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

DHeat Ltd DHeat Ltd United Kingdom Efficiency DHeat Limited DHL was DHeat Ltd DHeat Ltd United Kingdom Efficiency DHeat Limited DHL was formed in to industrialize a novel heating element technology that requires significantly less energy to manufacture and offers significantly better heating efficiency than conventional coiled wire elements A O Smith A O Smith Wisconsin Efficiency Gateway Solar Wisconsin based based company that makes both water heating equipment and electric motors and also is in the water treatment business Its water heating focus includes a focus on high efficiency and solar suitable equipment A O Smith A O Smith Milwaukee Wisconsin Efficiency http www aosmith com A123 Systems A123 Systems Arsenal Street Watertown Massachusetts Efficiency Nanotech batteries http www a123systems com Greater Boston Area

358

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

A2BE Carbon Capture LLC A2BE Carbon Capture LLC Panorama Ave Boulder A2BE Carbon Capture LLC A2BE Carbon Capture LLC Panorama Ave Boulder Colorado Biofuels Developing technology for producing valuable fuel and food from CO2 using algal photosynthesis and bio harvesting http www algaeatwork com Rockies Area AC Solar Inc AC Solar Inc P O Box Florence Colorado Gateway Solar Solar and wind sales for residential http www acsolar com Rockies Area ALD Nanosolutions ALD Nanosolutions E Burbank Street Unit Broomfield Colorado http www aldnanosolutions com contact php Rockies Area Abengoa Solar Abengoa Solar W th Ave Lakewood Colorado Gateway Solar Solar developer http www abengoasolar com Rockies Area Abound Solar Abound Solar Rocky Mountain Avenue Suite Loveland Colorado Gateway Solar Thin film cadmium telluride solar modules http www abound

359

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Partners Inc Advanced Materials Partners Inc Pine Partners Inc Advanced Materials Partners Inc Pine Street New Canaan Connecticut Venture investor http www amplink com Northeast NY NJ CT PA Area Akeida Capital Management Akeida Capital Management New York New York Financing Environmental Projects http www akeidacapital com Northeast NY NJ CT PA Area Ardour Capital Ardour Capital th ave New York New York http www ardourcapital com Northeast NY NJ CT PA Area Asia West LLC Asia West LLC One East Weaver Street Greenwich Connecticut Strategic investor in environmental technologies http www asiawestfunds com Northeast NY NJ CT PA Area BEV Capital BEV Capital Tresser Blvd th Floor Stamford Connecticut Venture capital firm http www bevcapital com Northeast NY NJ CT PA Area Battelle Ventures Battelle Ventures Carnegie Center Suite Princeton

360

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Colorado Renewable Energy Society Colorado Renewable Energy Society PO Box Golden Colorado Works for the sensible adoption of cost effective energy efficiency and renewable energy technologies by Colorado businesses and consumers http www cres energy org Rockies Area Environmental Entrepreneurs E2 Environmental Entrepreneurs E2 Pearl Street Suite Boulder Colorado http www e2 org jsp controller docName roxchapterwebpage Rockies Area Hogan Hartson Hogan Hartson Walnut Street Boulder Colorado Climate Change Clean Energy http www hhlaw com Rockies Area Northern Colorado Clean Energy Cluster Northern Colorado Clean Energy Cluster Denver Colorado Business led project oriented group of regional partners seeking to have a global impact http www nccleanenergy com Rockies Area Sustainability Center of the Rockies Sustainability Center of the Rockies

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

TIER TIER Sixth Avenue Seattle Washington Services Assessment and forecasting TIER TIER Sixth Avenue Seattle Washington Services Assessment and forecasting products for wind solar and hydro http www tier com Pacific Northwest Area boro biofuel boro biofuel maiden lane New York New York Biofuels Multi feed stock http borobiofuel com Northeast NY NJ CT PA Area A1 Sun Inc A1 Sun Inc th St Berkeley California Gateway Solar Solar PV Design and Installation http www a1suninc com Bay Area A10 Power A10 Power E Blithedale Ave Mill Valley California Gateway Solar Solar Financing and Integration http www a10power com Bay Area A2BE Carbon Capture LLC A2BE Carbon Capture LLC Panorama Ave Boulder Colorado Biofuels Developing technology for producing valuable fuel and food from CO2 using algal photosynthesis and bio harvesting http www algaeatwork com Rockies Area

362

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Ventures Massachusetts Ballardvale Street Suite Ventures Massachusetts Ballardvale Street Suite A260 Wilmington Massachusetts Venture capital firm investing in early stage clean technology enterprises http www ventures com Greater Boston Area Access Venture Partners Access Venture Partners Turnpike Drive Suite Westminster Colorado Venture Capital http www accessvp com Rockies Area Advanced Materials Partners Inc Advanced Materials Partners Inc Pine Street New Canaan Connecticut Venture investor http www amplink com Northeast NY NJ CT PA Area Advent International Advent International State Street Boston Massachusetts Global private equity firm http www adventinternational com Greater Boston Area African Development Bank African Development Bank Rue Joseph Anoma BP Abidjan Abidjan C te d Ivoire Ivory Coast http www afdb org en

363

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Angeleno Group Century Park East Suite Los Angeles California Angeleno Group Century Park East Suite Los Angeles California Private equity firm focused on high growth investments in energy and environmental technology companies http www angelenogroup com Southern CA Area Applied Ventures LLC Applied Ventures LLC Bowers Avenue Santa Clara California Venture capital http www appliedventures com Southern CA Area EcoElectron Ventures EcoElectron Ventures nd Street Encinitas California Seed stage capital investment fund http www ecoelectron com Southern CA Area GreenCore Capital GreenCore Capital Vista Sorrento Parkway San Diego California Invests in developing promising renewable energy companies http www greencorecapital com Southern CA Area Hydrogen Ventures Hydrogen Ventures N Studabaker Road Long Beach California

364

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

365

Appropriate Technology Library | Open Energy Information  

Open Energy Info (EERE)

Appropriate Technology Library Appropriate Technology Library Jump to: navigation, search Tool Summary Name: Appropriate Technology Library Agency/Company /Organization: Village Earth Sector: Energy Focus Area: Renewable Energy Phase: Create Early Successes Topics: - Energy Access Resource Type: Publications User Interface: Other Website: villageearth.org/appropriate-technology/appropriate-technology-library Cost: Paid Language: English The most comprehensive, compact, and cost effective appropriate technology and sustainable living resource in the world! The most comprehensive, compact, and cost effective appropriate technology and sustainable living resource in the world! The AT Library contains the full text and images from over 1050 of the best books dealing with all areas of do-it-yourself technology. Portable and easy to use on 28 CDs or 2

366

Website Provides Data for Key Oil Play in North Dakota, Eastern Montana |  

Broader source: Energy.gov (indexed) [DOE]

Website Provides Data for Key Oil Play in North Dakota, Eastern Website Provides Data for Key Oil Play in North Dakota, Eastern Montana Website Provides Data for Key Oil Play in North Dakota, Eastern Montana July 19, 2011 - 1:00pm Addthis Washington, DC - A new web-based geographic information system designed to improve oil production in North Dakota and eastern Montana has been launched with support from the U.S. Department of Energy. The Bakken Decision Support System (BDSS) assembles data for the Bakken and Three Forks Formations into an application that enables a user to visualize geologic and oil production information.The online tool, called the Bakken Decision Support System (BDSS), assembles data for the Bakken and Three Forks Formations into an application that enables a user to visualize geologic and oil production information. The system was developed by the

367

FAQs: Copyrighted Images and Text on the Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FAQs: Copyrighted Images and Text on the Website FAQs: Copyrighted Images and Text on the Website FAQs: Copyrighted Images and Text on the Website December 9, 2011 - 9:28am Addthis Retailers, researchers, and students of all ages often contact the Energy Savers webmaster to find out: "Can I use your (image, diagram, or text) in my presentation?" The answer is: yes! All of the material on Energysavers.gov is copyright-free, and is in the public domain. That means the public - you - are welcome to use it without express permission from Energy Savers. We have made most of our diagrams available for download in low- and high-resolution so you can use them in your print and Web presentations. Of course, you may want to cite the U.S. Department of Energy as the source, as this adds credibility to your work. Also consider adding a link

368

Website Collects EM's D&D Lessons Learned | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Website Collects EM's D&D Lessons Learned Website Collects EM's D&D Lessons Learned Website Collects EM's D&D Lessons Learned September 30, 2013 - 12:00pm Addthis This photo is included in a report that discusses worker protective suits. The report is part of the lessons learned, best practices and other guidance now featured in the Deactivation and Decommissioning Knowledge Management Information Tool. The worker pictured, an insulator, is wearing a protective suit designed to fit better around the respirator and allow for improved breathing. This photo is included in a report that discusses worker protective suits. The report is part of the lessons learned, best practices and other guidance now featured in the Deactivation and Decommissioning Knowledge Management Information Tool. The worker pictured, an insulator, is wearing

369

U.S. Department of Energy Launches Website with Energy Saving Tips for  

Broader source: Energy.gov (indexed) [DOE]

Website with Energy Saving Tips Website with Energy Saving Tips for Consumers U.S. Department of Energy Launches Website with Energy Saving Tips for Consumers April 22, 2008 - 10:49am Addthis Site Highlights Ways to Make Everyday Earth Day with Wise Energy Choices WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today launched a new internet feature which provides tips to consumers on how to make everyday Earth Day by making smart energy choices to save money while protecting the environment. The interactive web page shows consumers steps to use less energy with household electronics, lighting, and appliances to save on monthly bills and how to avoid wasting energy by improving the energy efficiency of their homes and cars. The site also features the Department's work to develop cleaner, more

370

Website Collects EM's D&D Lessons Learned | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Website Collects EM's D&D Lessons Learned Website Collects EM's D&D Lessons Learned Website Collects EM's D&D Lessons Learned September 30, 2013 - 12:00pm Addthis This photo is included in a report that discusses worker protective suits. The report is part of the lessons learned, best practices and other guidance now featured in the Deactivation and Decommissioning Knowledge Management Information Tool. The worker pictured, an insulator, is wearing a protective suit designed to fit better around the respirator and allow for improved breathing. This photo is included in a report that discusses worker protective suits. The report is part of the lessons learned, best practices and other guidance now featured in the Deactivation and Decommissioning Knowledge Management Information Tool. The worker pictured, an insulator, is wearing

371

ITTF-016 Website Development-Maintenance Log 09_0909 EOTA - Business Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Website Development-Maintenance Log 09_0909 6 Website Development-Maintenance Log 09_0909 EOTA - Business Form Document Title: ITTP-015 Web Site Development / Maintenance Document Number: Website Development and Maintenance log ITT Melissa Otero N/A Referenced Documents: Parent Document: ITTF-016 Rev. 11_0419 Approvers: Melissa Otero Document Owner: Ben Aragon Backup Owner: Notify of Changes: A B 08_0818 Revision History: Rev. Description of Change Intitial Release. Added headings to address to include: Performance Requirements, Statutory and Regulatory Requirements, Information from Previous Similar Designs, and Other Requirements. Added additional column to indicate "Estimated Completion Date" of WSD projects. "Design Verification Complete" and "Design Validation Complete" columns removed from log.

372

Power Technologies Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Energy Data Book Power Technologies Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Power Technologies Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, Wind Topics: Resource assessment, Pathways analysis Resource Type: Dataset Website: www.nrel.gov/analysis/power_databook/ References: Program Website[1] Logo: Power Technologies Energy Data Book The data book compiles a comprehensive set of data about power technologies from diverse sources. "The main purpose of the data book is to compile, in one central document, a comprehensive set of data about power technologies from diverse sources. The need for policy makers and analysts to be well-informed about power

373

Website link prediction using a Markov chain model based on multiple time periods  

Science Journals Connector (OSTI)

Growing size and complexity of many websites have made navigation through these sites increasingly difficult. Attempting to automatically predict the next page for a website user to visit has many potential benefits, for example in site navigation, automatic tour generation, adaptive web applications, recommendation systems, web server optimisation, web search and web pre-fetching. This paper describes an approach to link prediction using a Markov chain model based on an exponentially smoothed transition probability matrix which incorporates site usage statistics collected over multiple time periods. The improved performance of this approach compared to earlier methods is also discussed.

Shantha Jayalal; Chris Hawksley; Pearl Brereton

2007-01-01T23:59:59.000Z

374

Wakonda Technologies | Open Energy Information  

Open Energy Info (EERE)

Wakonda Technologies Wakonda Technologies Jump to: navigation, search Logo: Wakonda Technologies Name Wakonda Technologies Address 2A Gill Street Place Woburn, Massachusetts Zip 01801 Sector Solar Product High efficiency solar panels Year founded 2005 Number of employees 1-10 Website http://wakondatech.com/ Coordinates 42.5108195°, -71.1478095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5108195,"lon":-71.1478095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Greenward Technologies | Open Energy Information  

Open Energy Info (EERE)

Greenward Technologies Greenward Technologies Jump to: navigation, search Name Greenward Technologies Address PO Box 203814 Place Austin, Texas Zip 78720 Sector Wind energy Product Developing a prototype energy-generating windmill design using 4 counter-rotating turbines Website http://www.greenward-technolog Coordinates 30.2669°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2669,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Albeo Technologies | Open Energy Information  

Open Energy Info (EERE)

Albeo Technologies Albeo Technologies Jump to: navigation, search Logo: Albeo Technologies Name Albeo Technologies Address 3125 Sterling Circle Place Boulder, Colorado Zip 80301 Sector Efficiency Product LED lighting Website http://www.albeotech.com/ Coordinates 40.031501°, -105.228587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.031501,"lon":-105.228587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Shorepower Technologies | Open Energy Information  

Open Energy Info (EERE)

Shorepower Technologies Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name Shorepower Technologies Address 2351 NW York St. Place Portland, Oregon Zip 97210 Sector Services Product Transportation Electrification Infrastructure Year founded 2005 Number of employees 1-10 Phone number 5038927345 Website http://www.shorepower.com/ Coordinates 45.539256°, -122.700291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.539256,"lon":-122.700291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

PNNL Technology Systems Analysis Group | Open Energy Information  

Open Energy Info (EERE)

Analysis Group Analysis Group (Redirected from Technology Systems Analysis) Jump to: navigation, search Logo: Technology Systems Analysis Name Technology Systems Analysis Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tsa.pnl.gov/ References Technology Systems Analysis [1] "The Technology Systems Analysis group is part of the Pacific Northwest National Laboratory's Energy Environment Directorate. Our signature capabilities include sustainable design and development, building systems and energy technology analysis, and carbon management. We work with government and private sector clients to solve energy, environmental, and economic systems challenges, such as global climate change, sustainable development, energy systems. Examples of our current work include

379

UNIDO Investment and Technology Promotion | Open Energy Information  

Open Energy Info (EERE)

UNIDO Investment and Technology Promotion UNIDO Investment and Technology Promotion Jump to: navigation, search Name UNIDO Investment and Technology Promotion Agency/Company /Organization United Nations Industrial Development Organization Topics Finance, Implementation, Market analysis Website http://www.unido.org/index.php References UNIDO Investment and Technology Promotion [1] "Economic growth required for eradication of poverty and the achievement of the other associated MDGs depends on capital accumulation (investment) and technical change going hand in hand. Investment in plant and machinery, with its impulse of new ideas and technologies, contributes to productivity growth, as do technological progress, upgrading and diffusion. Foreign direct investment (FDI) in particular is an important driver of industrial

380

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Planning and Deployment Group Planning and Deployment Group (Redirected from Technology Planning and Deployment) Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1]

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » 2008 Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: 2008 Solar Technologies Market Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar PV Topics: Market analysis, Resource assessment Resource Type: Publications Website: www1.eere.energy.gov/solar/pdfs/46025.pdf Cost: Free 2008 Solar Technologies Market Report Screenshot References: 2008 Solar Technologies Market Report[1] Logo: 2008 Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The

382

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

383

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

384

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

385

NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimSciences.org c American Institute of Mathematical Sciences  

E-Print Network [OSTI]

NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimSciences.org c American Institute. Only a local micro-phase separation occurs: micro-domains rich in A and B emerge. These micro-monomers appear. This phenomenon is known as micro-phase separation. For a further analysis of the scaling

Niethammer, Barbara

386

Exploring the Benefits and Uses of Web Analytics Tools for Non-Transactional Websites  

E-Print Network [OSTI]

Exploring the Benefits and Uses of Web Analytics Tools for Non-Transactional Websites Manya Sleeper web analytics tools to better understand their visitors for a range of purposes. However, there is lim- ited understanding of how owners of non-transactional web- sites use and benefit from web analytics

Cortes, Corinna

387

Quick Notes on CO2 Diagram and Energy Diagram For the ESRP 285 Website (Spring 2008)  

E-Print Network [OSTI]

(CO2) emissions are the largest source of greenhouse gas emissions, accounting for over 80Quick Notes on CO2 Diagram and Energy Diagram For the ESRP 285 Website (Spring 2008) Carbon dioxide% of the emissions in the USA (EIA 2003, p. 35). CO2 emissions arise from the combustion of carbon fuels

Ford, Andrew

388

Conference Rankings I promised to send you a website for CS conference rankings. It is at  

E-Print Network [OSTI]

Conference Rankings I promised to send you a website for CS conference rankings. It is at http://www.csconferenceranking.org/conferencerankings/alltopics.html It is not the only such ranking, but it seems to agree with what I have found in attending conferences to rank conference are anonymous only revealed after their death. The reason is that people have been

Allan, Vicki H.

389

UCSF PD Emergency Management Division UCSF PD Website: http://police.ucsf.edu/  

E-Print Network [OSTI]

UCSF PD Emergency Management Division UCSF PD Website: http://police.ucsf.edu/ Emergency Kit 2014.doc Version Date: 02 2014 Emergency Preparedness Kit Suggestions You can purchase premade emergency kits and supplies. UCSF PD has contracted with Your Safety Place to offer specially priced disaster

Derisi, Joseph

390

www.northernsportcentre.ca12 *Information is subject to change, please refer to the website  

E-Print Network [OSTI]

www.northernsportcentre.ca12 *Information is subject to change, please refer to the website for updated and current information www.northernsportcentre.ca JOIN THE NORTHERN SPORT CENTRE FOR OUR ANNUAL MULTISPORT ENDURANCE EVENT! THE STORM IS COMING! www.northernsportcentre.ca Register in person

Northern British Columbia, University of

391

GOOGLE AND GIS INTEGRATED ON THE ARM WEBSITE: A WORK IN PROGRESS  

E-Print Network [OSTI]

GOOGLE AND GIS INTEGRATED ON THE ARM WEBSITE: A WORK IN PROGRESS A. Cialella and R. Wagener to zoom in at varying resolutions, with satellite images and/or street maps as backdrops. The ACRF GIS (ESRI ArcGIS) database was merged with Google to include markers for the SGP site facilities. A new SGP

392

Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Fund (CTF) Fund (CTF) (Redirected from Vietnam-Clean Technology Fund (CTF)) Jump to: navigation, search Name Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Algeria, Egypt, Indonesia, Jordan, Kazakhstan, Mexico, Morocco, Nigeria, Philippines, South Africa, Thailand, Tunisia UN Region South-Eastern Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1]

393

Morgantown Energy Technology Center, technology summary  

SciTech Connect (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

394

SVTC Technologies | Open Energy Information  

Open Energy Info (EERE)

SVTC Technologies SVTC Technologies Jump to: navigation, search Name SVTC Technologies Address 3901 North First Street Place San Jose, California Zip 95134 Sector Solar Product Provides emiconductor process tools for new silicon developers Website http://www.svtc.com/ Coordinates 37.411854°, -121.950581° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.411854,"lon":-121.950581,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Noveda Technologies | Open Energy Information  

Open Energy Info (EERE)

Noveda Technologies Noveda Technologies Jump to: navigation, search Name Noveda Technologies Address 31 Tannery Road Place Branchburg, NJ Zip 08876 Sector Services Product Real Time Data Monitoring system Year founded 2007 Number of employees 11-50 Phone number 908 534 8855 Website http://www.noveda.com Coordinates 40.607325°, -74.726874° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.607325,"lon":-74.726874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Coulomb Technologies | Open Energy Information  

Open Energy Info (EERE)

Coulomb Technologies Coulomb Technologies Jump to: navigation, search Name Coulomb Technologies Address 1692 Dell Ave. Place Campbell, California Zip 95008 Sector Efficiency Product Networked charging stations for PHEV's Website http://www.coulombtech.com/ Coordinates 37.261444°, -121.957627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.261444,"lon":-121.957627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Maxwell Technologies | Open Energy Information  

Open Energy Info (EERE)

Maxwell Technologies Maxwell Technologies Jump to: navigation, search Name Maxwell Technologies Address 9244 Balboa Avenue Place San Diego, California Zip 92123 Sector Efficiency Product Manufacturer of ultracapacitors, energy storage devices designed for use in power-generating windmills Website http://www.maxwell.com/ Coordinates 32.823193°, -117.13126° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.823193,"lon":-117.13126,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

399

South Africa-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

South Africa-Clean Technology Fund (CTF) South Africa-Clean Technology Fund (CTF) Jump to: navigation, search Name South Africa-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country South Africa Southern Africa References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1] South Africa-CTF Investment Plan[2] South Africa-Clean Technology Fund (CTF) Screenshot

400

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nigeria-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Nigeria-Clean Technology Fund (CTF) Nigeria-Clean Technology Fund (CTF) Jump to: navigation, search Name Nigeria-Climate Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Nigeria Western Africa References Nigeria-CTF Investment Plan[1] Nigeria-Climate Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds, promotes scaled-up financing for demonstration, deployment and transfer of

402

Climate Technology Initiative Training Courses | Open Energy Information  

Open Energy Info (EERE)

Climate Technology Initiative Training Courses Climate Technology Initiative Training Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Technology Initiative Training Courses Agency/Company /Organization: Climate Technology Initiative Sector: Energy, Land Focus Area: Renewable Energy Topics: Finance, Low emission development planning, Market analysis, Policies/deployment programs Resource Type: Training materials Website: www.climatetech.net/about/training.cfm References: CTI Training Courses[1] "Training courses are organised in collaboration with relevant international organisations, with a focus on the special requirements and circumstances of the target countries/regions. Specific activities include: Capacity building for technology needs assessment, project planning

403

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Deployment Group Deployment Group Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1] Primary Services Building and facilities energy utilization assessments, audits,

404

Renewable Energy Technologies Financial Model (RET Finance) | Open Energy  

Open Energy Info (EERE)

Renewable Energy Technologies Financial Model (RET Finance) Renewable Energy Technologies Financial Model (RET Finance) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies Financial Model (RET Finance) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: analysis.nrel.gov/retfinance/login.asp Equivalent URI: cleanenergysolutions.org/content/renewable-energy-technologies-financi Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The RET Finance model calculates levelized cost of energy of renewable electricity generation technologies including biomass, geothermal, solar, and wind. The model calculates project earnings, detailed cash flows, and debt payments and also computes a project's levelized cost of electricity,

405

Turkey-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Turkey-Clean Technology Fund (CTF) Turkey-Clean Technology Fund (CTF) Jump to: navigation, search Name Turkey-Climate Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Turkey Western Asia References Turkey-CTF Investment Plan[1] Turkey-Climate Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds, promotes scaled-up financing for demonstration, deployment and transfer of

406

Kazakhstan-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Kazakhstan-Clean Technology Fund (CTF) Kazakhstan-Clean Technology Fund (CTF) Jump to: navigation, search Name Climate Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Kazakhstan Central Asia References Kazakhstan-CTF Investment Plan[1] Climate Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds, promotes scaled-up financing for demonstration, deployment and transfer of

407

Colombia-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Colombia-Clean Technology Fund (CTF) Colombia-Clean Technology Fund (CTF) Jump to: navigation, search Name Colombia-Climate Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Colombia South America References Colombia-CTF Investment Plan[1] Colombia-Climate Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds, promotes scaled-up financing for demonstration, deployment and transfer of

408

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

409

Chile-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Chile-Clean Technology Fund (CTF) Chile-Clean Technology Fund (CTF) Jump to: navigation, search Name Chile-Climate Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Chile South America References Chile-CTF Investment Plan[1] Chile-Climate Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds, promotes scaled-up financing for demonstration, deployment and transfer of

410

India-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

India-Clean Technology Fund (CTF) India-Clean Technology Fund (CTF) Jump to: navigation, search Name India-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country India Southern Asia References India-CTF Investment Plan[1] India-Clean Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds, promotes scaled-up financing for demonstration, deployment and transfer of

411

Fusion Website  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

412

Oil and Gas Company Oil and Gas Company Address Place Zip Website  

Open Energy Info (EERE)

Company Oil and Gas Company Address Place Zip Website Company Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat Petroleum Company Damascus Syria http www afpc sy com new history htm Dolphin Energy Dolphin Energy Abu Dhabi Trade Center Building Abu Dhabi United Arab Emirates http www dolphinenergy com Public default index htm ExxonMobil ExxonMobil Las Colinas Boulevard Irving Texas http www exxonmobil com Corporate Gazprom Gazprom Nametkina St Moscow Russia http www gazprom com Gulfsands Petroleum Gulfsands Petroleum Cork Street London United Kingdom W1S LG http www gulfsands com s Home asp Kuwait Petroleum Corporation Kuwait Petroleum Corporation Safat Kuwait http www kpc com kw default aspx

413

State Oil and Gas Board State Oil and Gas Board Address Place Zip Website  

Open Energy Info (EERE)

State Oil and Gas Board Address Place Zip Website State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Tuscaloosa Alabama http www gsa state al us ogb ogb html Alaska Division of Oil and Gas Alaska Division of Oil and Gas W th Ave Suite Anchorage Alaska http dog dnr alaska gov Alaska Oil and Gas Conservation Commission Alaska Oil and Gas Conservation Commission W th Ave Ste Anchorage Alaska http doa alaska gov ogc Arizona Oil and Gas Commission Arizona Oil and Gas Commission W Congress Street Suite Tucson Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Little Rock Arkansas http www aogc state ar us JDesignerPro JDPArkansas AR Welcome html California Division of Oil Gas and Geothermal Resources California

414

Instructions for Human Subjects CITI Training 1. Go to the ORC IRB website at http://www.uncg.edu/orc/irb.html  

E-Print Network [OSTI]

Instructions for Human Subjects CITI Training 1. Go to the ORC IRB website at http://www.uncg.edu/orc

Saidak, Filip

415

Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions  

SciTech Connect (OSTI)

This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

Husillos Rodriguez, N., E-mail: nuriah@ietcc.csic.e [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), Serrano Galvache 4, 28033 Madrid (Spain); Martinez Ramirez, S.; Blanco Varela, M.T. [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), Serrano Galvache 4, 28033 Madrid (Spain); Guillem, M.; Puig, J. [Cementos Molins S.A., Crta. N-340, 2 al 38, E-08620 Sant Vicenc dels Horts, Barcelona (Spain); Larrotcha, E.; Flores, J. [Aguas de Barcelona S.A., Avenida Diagonal 211, 08018 Barcelona (Spain)

2010-05-15T23:59:59.000Z

416

Geothermal Technologies Office 2012 Peer Review Report | Department...  

Broader source: Energy.gov (indexed) [DOE]

Report 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program...

417

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

418

PNNL Global Energy Technology Strategy Program | Open Energy Information  

Open Energy Info (EERE)

Technology Strategy Program Technology Strategy Program (Redirected from Global Energy Technology Strategy Program) Jump to: navigation, search Logo: Global Energy Technology Strategy Program Name Global Energy Technology Strategy Program Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://www.pnl.gov/gtsp/ References Global Energy Technology Strategy Program [1] "Since its inception in 1998, the Global Energy Technology Strategy Program (GTSP) has been assessing the important roles that technology can play in effectively managing the long-term risks of climate change. This involves an integrated approach to fully exploring all aspects of climate change - including scientific, economic, regulatory, and social impacts - and then aligning new or existing technologies to mitigate negative consequences.[1]

419

Evaluating learning technologies: frameworks and case studies  

Science Journals Connector (OSTI)

Evaluation frameworks have been developed for studying learning technology. In this paper, we review their application to a number of evaluation projects, reflect on recent developments in the area of evaluation and illustrate how these frameworks have been applied by reflecting on the methods employed in three contrasting case studies. Each case study is an evaluation of an innovative use of information technology. The first case study describes the evaluation activities related to the technology-enhanced components of an introductory physics course for distance learners, 'Physical World', focusing on the evaluation of multimedia tutorials. The second case study discusses an evaluation project focusing on the impact of networked technologies on learning at school level, the 'ImpaCT2' evaluation, and describes the methods used in tracking use of technology both at school and at home. The third case study involves the evaluation of a history website on a full time higher education course, 'The History of the USA'.

Eileen Scanlon; Canan Blake; Kim Issroff; Cathy Lewin

2006-01-01T23:59:59.000Z

420

Biodetection Technologies for First Responders: 2014 Edition  

SciTech Connect (OSTI)

This report summarizes commercially-available, hand-portable technologies that can be used by first responders in the field. This is not meant to be an exhaustive list, nor an endorsement of any technology described herein. Rather, this report is meant to provide useful information about available technologies to help end-users make informed decisions about biodetection technology procurement and use. Information listed in this report is primarily vendor-provided; however, where possible it has been supplemented with additional information obtained from publications, reports, and websites. Manufacturers were given the chance to review summaries of their technologies from August through November 2013 to verify the accuracy of technical specifications, available references, and pricing.

Ozanich, Richard M.; Baird, Cheryl L.; Bartholomew, Rachel A.; Colburn, Heather A.; Straub, Tim M.; Bruckner-Lea, Cindy J.

2014-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident  

SciTech Connect (OSTI)

The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administrations Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

Blumenthal, Daniel J. [NNSA; Clark, Harvey W. [NSTec; Essex, James J. [NSTec; Wagner, Eric C. [NSTec

2013-07-01T23:59:59.000Z

422

Seeing (and Hearing) is Believing! How Screen Capture Software Makes Website Usability Data a More Effective Tool  

E-Print Network [OSTI]

tasks on the Libraries? website. It also outlines the steps involved to produce thematic videos to demonstrate various website ?hotspots? (problem features) using clips from the first-hand testimonials of test subjects. Overall, this session... usability session (sights and sounds) saved to one complete file Saved files easily accessible (e.g., via shared folders on staff server, via intranet, etc.) and portable (e.g., distribution via email, via CDs, etc.) for review Saved files (raw videos...

Stark, Jeffrey; Goodwin, Susan

2004-06-19T23:59:59.000Z

423

IEA Renewable Energy Technology Deployment | Open Energy Information  

Open Energy Info (EERE)

IEA Renewable Energy Technology Deployment IEA Renewable Energy Technology Deployment Jump to: navigation, search Name IEA Renewable Energy Technology Deployment Agency/Company /Organization International Energy Agency - Renewable Energy Technology Deployment Implementing Agreement Sector Energy Focus Area Renewable Energy Topics Policies/deployment programs Resource Type Publications Website http://www.iea-retd.org Country Canada, Norway, Denmark, Germany, Netherlands, France, United Kingdom, Ireland, Japan Northern America, Northern Europe, Northern Europe, Western Europe, Western Europe, Western Europe, Northern Europe, Northern Europe, Eastern Asia References RETD Homepage [1] This article is a stub. You can help OpenEI by expanding it. "RETD Implementing Agreement is one of the key outcomes from the

424

Ukraine-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Ukraine-Clean Technology Fund (CTF) Jump to: navigation, search Name Ukraine-Climate Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Ukraine Eastern Europe References Ukraine-CTF Investment Plan[1] Ukraine-Climate Technology Fund (CTF) Screenshot Overview "The Clean Technology Fund (CTF), one of two Climate Investment Funds,

425

Tunisia-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Tunisia-Clean Technology Fund (CTF) Jump to: navigation, search Name Tunisia-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Tunisia Northern Africa References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1] Tunisia-Clean Technology Fund (CTF) Screenshot

426

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program...

427

Detection and Characterization of Natural and Induced Fractures...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program...

428

Post-test Cell Characterization Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

test Cell Characterization Facility Post-test Cell Characterization Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

429

Tracer Methods for Characterizing Fracture Creation in Enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture...

430

Tracer Methods for Characterizing Fracture Stimulation in Enhanced...  

Broader source: Energy.gov (indexed) [DOE]

Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing...

431

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

432

Conservation Technologies | Open Energy Information  

Open Energy Info (EERE)

Logo: Conservation Technologies Name Conservation Technologies Address 4804 Oneota St Place Duluth, Minnesota Zip 55807 Sector Solar Product solar electric systems Phone number (218) 722-9003 Website http://www.conservtech.com/ Coordinates 46.7398823°, -92.1566468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7398823,"lon":-92.1566468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Apex Technology | Open Energy Information  

Open Energy Info (EERE)

Apex Technology Apex Technology Address 2703 Merrywood Drive Place Edison, NJ Zip 08817 Website http://www.apextgi.com/ Coordinates 40.5288539°, -74.4094414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5288539,"lon":-74.4094414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

435

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

436

Renewable Energy Technologies for Rural Electrification - The Role of the  

Open Energy Info (EERE)

Renewable Energy Technologies for Rural Electrification - The Role of the Renewable Energy Technologies for Rural Electrification - The Role of the Private Sector Jump to: navigation, search Tool Summary Name: Renewable Energy Technologies for Rural Electrification - The Role of the Private Sector Agency/Company /Organization: The Alliance for Rural Electrification Sector: Energy Focus Area: Renewable Energy Topics: - Energy Access, Finance Resource Type: Publications User Interface: Website Website: www.ruralelec.org/fileadmin/DATA/Documents/06_Publications/Position_pa Cost: Free Language: English This important statement to reflect what the industry is doing for rural electrification in terms of products, services and financing, what are the challenges ahead (based on the industry experience) and what is the role of ARE vis-à-vis to this industry.

437

Enabling Thin Silicon Solar Cell Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cracking problem in silicon cell technology," says Budiman. "The ALS provides us with a light that allows us to measure and characterize molecular stress in a very quantitative...

438

Sandia National Laboratories: Marine Energy Technology Symposium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine Energy Technology Symposium Wave Energy Resource Characterization at US Test Sites On September 16, 2014, in Computational Modeling & Simulation, Energy, News, News &...

439

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

440

International Low-Carbon Energy Technology Platform | Open Energy  

Open Energy Info (EERE)

International Low-Carbon Energy Technology Platform International Low-Carbon Energy Technology Platform Jump to: navigation, search Tool Summary LAUNCH TOOL Name: International Low-Carbon Energy Technology Platform Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.iea.org/platform.asp International Low-Carbon Energy Technology Platform Screenshot References: International Low-Carbon Energy Technology Platform[1] Logo: International Low-Carbon Energy Technology Platform "The Technology Platform's central aim is to accelerate and scale-up action for the development and deployment of clean energy technologies. It will do this by creating a forum that:

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Agricultural Technologies for Climate Change Mitigation and Adaptation in  

Open Energy Info (EERE)

Agricultural Technologies for Climate Change Mitigation and Adaptation in Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Jump to: navigation, search Tool Summary Name: Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Land Focus Area: Agriculture, Biomass Topics: Adaptation, Implementation, Policies/deployment programs Resource Type: Guide/manual, Publications Website: ictsd.org/downloads/2010/06/agricultural-technologies-for-climate-chan Language: English Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Screenshot

442

Analysis of Technology Transfer in CDM Projects | Open Energy Information  

Open Energy Info (EERE)

Analysis of Technology Transfer in CDM Projects Analysis of Technology Transfer in CDM Projects Jump to: navigation, search Tool Summary Name: Analysis of Technology Transfer in CDM Projects Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: Finance, Implementation Resource Type: Publications Website: cdm.unfccc.int/Reference/Reports/TTreport/TTrep08.pdf Analysis of Technology Transfer in CDM Projects Screenshot References: Analysis of Technology Transfer in CDM Projects[1] Overview "Although the Clean Development Mechanism (CDM) does not have an explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries. This report analyzes the claims of

443

Technology Areas and Offices  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Energy Efficiency and Renewable Energy (EERE) consists of several offices that support EERE's mission. This page lists all of the major offices and their websites.

444

Emerging Technologies  

Broader source: Energy.gov [DOE]

The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption.

445

URL To Story: http://press.arrivenet.com/technology/article.php/993701.html RFID Innovation in Healthcare  

E-Print Network [OSTI]

URL To Story: http://press.arrivenet.com/technology/article.php/993701.html RFID Innovation on the RFID Tribe websit http://www.rfidtribe.com/home/index.php?option=com_events&Itemid=67 About RFID Tribe in Healthcare URL: http://press.arrivenet.com/technology/print.php

Chiao, Jung-Chih

446

file://C:\MyFiles\TeamWorks%20Website\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14, 2005 14, 2005 Shipments scheduled to arrive 07/17/05 - 07/23/05 23 Hanford - 2 INL - 18 LANL - 1 SRS - 2 (subject to change) 3,743 total shipments received as of 07/13/05 Waste disposed as of 07/13/05 : 312 100-gallon drums 4,471 standard waste boxes 1,837 ten-drum overpacks Page 1 of 2 TRU TeamWorks - a biweekly e-newsletter for the Waste Isolation Pilot Plant (WIPP) team 7/14/2005 file://C:\MyFiles\TeamWorks%20Website\index.htm 62,425 waste drums 29,900 cubic meters Page 2 of 2 TRU TeamWorks - a biweekly e-newsletter for the Waste Isolation Pilot Plant (WIPP) team 7/14/2005 file://C:\MyFiles\TeamWorks%20Website\index.htm WIPP Silver shines in Colorado competition Silver Mine Rescue Team members navigate the field exercise during the Colorado

447

TRC Advanced Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

TRC Advanced Technologies Inc TRC Advanced Technologies Inc Jump to: navigation, search Logo: TRC Advanced Technologies Inc Name TRC Advanced Technologies Inc Address 8700 Commerce Park Place Houston, Texas Zip 77036 Sector Solar Product Remote power PV systems Website http://www.trcat.com/ Coordinates 29.685775°, -95.535791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.685775,"lon":-95.535791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Premier Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: Premier Solar Technologies Name Premier Solar Technologies Place Dubai, United Arab Emirates Sector Renewable Energy Product Integrated Storage Collector Website http://premiersolartechnologie Coordinates 24.985960773822°, 55.194025039673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.985960773822,"lon":55.194025039673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

GreenFoot Technologies | Open Energy Information  

Open Energy Info (EERE)

GreenFoot Technologies GreenFoot Technologies Jump to: navigation, search Logo: GreenFoot Technologies Name GreenFoot Technologies Address 700 108th AVE NE Suite 200 Place Bellevue, Washington Zip 98004 Website http://www.greenfootjobs.com/ Coordinates 47.616506°, -122.195725° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.616506,"lon":-122.195725,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

LUCA Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

LUCA Technologies Inc LUCA Technologies Inc Jump to: navigation, search Logo: LUCA Technologies Inc Name LUCA Technologies Inc Address 500 Corporate Circle, Suite C Place Golden, Colorado Zip 80401 Sector Biofuels Product Biofuels developer Website http://www.lucatechnologies.co Coordinates 39.720088°, -105.192312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.720088,"lon":-105.192312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Porous Power Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies LLC Porous Power Technologies LLC Jump to: navigation, search Logo: Porous Power Technologies LLC Name Porous Power Technologies LLC Address 2765 Dagny Way, Suite 200 Place Lafayette, Colorado Zip 80026 Sector Efficiency Product Laminable, porous, absorbent Li-ion batteries Website http://www.porouspower.com/ Coordinates 40.0130129°, -105.1327972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0130129,"lon":-105.1327972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Ocean Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Power Technologies Jump to: navigation, search Logo: Ocean Power Technologies Name Ocean Power Technologies Address 1590 Reed Road Place Pennington, New Jersey Zip 08534 Year founded 1994 Number of employees 100 Website http://www.oceanpowertechnolog Coordinates 40.297652°, -74.794481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.297652,"lon":-74.794481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

454

Allied Sun Technologies | Open Energy Information  

Open Energy Info (EERE)

Sun Technologies Sun Technologies Jump to: navigation, search Logo: Allied Sun Technologies Name Allied Sun Technologies Address 6881 Alvarado Road, Suite 4 Place San Diego, California Zip 92120 Sector Solar Product solar power systems Phone number (888-765-2740) Website http://www.alliedsun.com Coordinates 32.775565°, -117.051215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.775565,"lon":-117.051215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Alternative Concepts and Technology | Open Energy Information  

Open Energy Info (EERE)

and Technology and Technology Jump to: navigation, search Logo: Alternative Concepts and Technology Name Alternative Concepts and Technology Place Orlando, Florida Sector Solar Product solar power, water catchments, organic gardening Year founded 2007 Website http://www.alternativeconcepts Coordinates 28.5383355°, -81.3792365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5383355,"lon":-81.3792365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

457

Rive Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Rive Technology Inc Rive Technology Inc Jump to: navigation, search Name Rive Technology Inc Address One Canal Park Place Cambridge, Massachusetts Zip 02141 Sector Biofuels Product Catalyst technology for petroleum refining to dramatically increase the yield of transportation fuels Website http://www.rivetechnology.com/ Coordinates 42.369496°, -71.07676° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.369496,"lon":-71.07676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

459

Tools & Technologies  

Broader source: Energy.gov [DOE]

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

460

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

Note: This page contains sample records for the topic "technology characterizations website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Characterization of organic-rich colloids from surface and ground waters at the actinide-contaminated Rocky Flats Environmental Technology Site (RFETS), Colorado, USA  

Science Journals Connector (OSTI)

Colloids, i.e. nanoparticles and macromolecules, play an important role in the environmental dispersion of actinides. Thus, colloids (3kDa0.5?m) were collected and purified from three different environments, i.e. surface water, pond water and near-surface ground water at the Rocky Flats Environmental Technology Site, Colorado, where elevated actinide concentrations had previously been documented. Their chemical composition was determined in order to better understand their role in actinide migration. All three types of colloid samples were found to be similar in chemical composition, with a higher percentage of organic carbon, OC (518%), than any other measured component, and only small amounts of Si, Mn, Al, and Fe (1.5% or below). Analytically determined components account for 4056% of the colloidal matter, with water likely making up the difference. Transmission electron microscopy (TEM) images of colloidal material from all three sample types indicate the presence of cellulose or chitin, likely from plant (terrestrial and/or aquatic) material. Other major components include humic acid type particles, with only small amounts (<5%) of mineral particles. Our findings of colloids high in organic and low in inorganic matter content agree with previously reported results on Pu(IV) associated with an acidic natural macromolecular organic compound that also contains small amounts of Fe. Pu/OC and Fe/OC ratios both showed a steady decrease from surface water to pond water to groundwater, with a more marked decrease in the Fe/OC ratio, but no significant change in overall colloidal organic carbon (COC) concentrations.

Kimberly A. Roberts; Peter H. Santschi; Gary G. Leppard; M.Marcia West

2004-01-01T23:59:59.000Z

462

Characterizing Test Methods and Emissions Reduction Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

463

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

464

CLEERS Activities: Diesel Soot Filter Characterization & NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

465

Exploration Technologies Technology Needs Assessment  

Broader source: Energy.gov [DOE]

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

466

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

467

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

Energy Technology Cost and Performance Data Energy Technology Cost and Performance Data (Redirected from US Department of Energy - Energy Technology Cost and Performance Data) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1] Logo: Energy Technology Cost and Performance Data This data indicates the range of recent cost estimates for renewable energy

468

Energy Technologies  

Broader source: Energy.gov [DOE]

Best practices, project resources, and other tools on energy efficiency and renewable energy technologies.

469

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

470

Energy Technology Systems Analysis Program (MARKAL) | Open Energy  

Open Energy Info (EERE)

Energy Technology Systems Analysis Program (MARKAL) Energy Technology Systems Analysis Program (MARKAL) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Systems Analysis Program (MARKAL) Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Co-benefits assessment, Pathways analysis, Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.etsap.org/index.asp Country: Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, South Korea, Netherlands, Norway, Sweden, United States, United Kingdom, Switzerland, Albania, Australia, Austria, Bosnia and Herzegovina, Brazil, Bulgaria, Colombia, Croatia, India, Indonesia, Kazakhstan, Malaysia, New Zealand, China, Philippines, Poland, Portugal, South Africa, Romania, Serbia, Spain, Taiwan, Thailand, Vietnam

471

Methods for Climate Change Technology Transfer Needs Assessments and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Focus Area: Energy Access Topics: Potentials & Scenarios Website: www.climatetech.net/pdf/Ccmethod.pdf Equivalent URI: cleanenergysolutions.org/content/methods-climate-change-technology-tra Language: English

472

Waste-to-Energy Research and Technology Council (WTERT) | Open Energy  

Open Energy Info (EERE)

Waste-to-Energy Research and Technology Council (WTERT) Waste-to-Energy Research and Technology Council (WTERT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wast-to-Energy Research and Technology Council (WTERT) Agency/Company /Organization: Wast-to-Energy Research and Technology Council (WTERT) Sector: Energy, Land, Climate Focus Area: Biomass, - Waste to Energy, Greenhouse Gas Phase: Create a Vision Resource Type: Dataset, Maps, Presentation, Publications, Guide/manual, Training materials, Case studies/examples User Interface: Website Website: www.seas.columbia.edu/earth/wtert Cost: Free The Waste-to-Energy Research and Technology Council (WTERT) brings together engineers, scientists and managers from universities and industry. The mission of WTERT is to identify and advance the best available

473

Event:IEA Low-Carbon Energy Technology Platform - Smart Grids in Mexico and  

Open Energy Info (EERE)

Low-Carbon Energy Technology Platform - Smart Grids in Mexico and Low-Carbon Energy Technology Platform - Smart Grids in Mexico and surrounding regions Jump to: navigation, search Calendar.png IEA Low-Carbon Energy Technology Platform - Smart Grids in Mexico and surrounding regions: on 2011/06/22 Country-led collaboration - Smart Grids in Mexico and surrounding regions, Mexico City, 22-23 June 2011 Event Details Name IEA Low-Carbon Energy Technology Platform - Smart Grids in Mexico and surrounding regions Date 2011/06/22 Organizer International Energy Agency (IEA) Tags LEDS Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:IEA_Low-Carbon_Energy_Technology_Platform_-_Smart_Grids_in_Mexico_and_surrounding_regions&oldid=353

474

Quantum Imaging Technologies  

E-Print Network [OSTI]

Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum ghost imaging and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of methods for characterizing the elusive quantum state itself. In this document, we describe new technologies that use the quantum properties of light for security. The first is a technique that extends the principles behind QKD to the field of imaging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that are secure against intercept-resend jamming attacks. The second technology presented in this article is based on an extension of quantum ghost imaging. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this document is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. We discuss the development of two OAM-QKD protocols based on the BB84 and Ekert QKD protocols. The fourth and final technology presented in this article is a relatively new technique called direct measurement that uses sequential weak and strong measurements to characterize a quantum state. We use this technique to characterize the quantum state of a photon with a dimensionality of d=27, and measure its rotation in the natural basis of OAM.

Mehul Malik; Robert W. Boyd

2014-06-06T23:59:59.000Z

475

file://C:\MyFiles\TeamWorks%20Website\index.htm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, 2005 , 2005 Shipments scheduled to arrive 05/15/05 - 05/21/05 20 Hanford - 4 INL - 9 LANL - 1 SRS - 6 (subject to change) 3,586 total shipments received as of 05/11/05 Waste disposed as of 05/11/05 : 4,429 standard waste boxes 1,580 ten-drum overpacks 62,073 waste drums 28,472 cubic meters Page 1 of 1 TRU TeamWorks - a biweekly e-newsletter for the Waste Isolation Pilot Plant (WIPP) team 5/12/2005 file://C:\MyFiles\TeamWorks%20Website\index.htm The Revised §311/RH TRU Waste Permit Modification Request Local Partners Washington TRU Solutions General Manager Dick Raaz and Laurie Roche, Carlsbad executive director of United Way, shake hands as TRU Solutions' donates $12,000 to assist local United Way partner agencies. On April 29, WIPP submitted the Revised Section 311/RH TRU Waste Permit

476

Particle Size Characterization  

E-Print Network [OSTI]

NISTrecommended p r a c t i c e g u i d e Special Publication 960-1 #12;i Particle Size Characterization Ajit.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Karen H. Brown, Acting Under Steve Freiman, Said Jahanmir, James Kelly, Patrick Pei and Dennis Minor and of the Ceramics Division

477

Green Fuel Technologies Corporation | Open Energy Information  

Open Energy Info (EERE)

Technologies Corporation Technologies Corporation Jump to: navigation, search Name Green Fuel Technologies Corporation Address 29 Smith Place Place Cambridge, Massachusetts Zip 02138 Sector Biofuels Product Recycles CO2 from flue gases to produce biofuels Website http://www.greenfuelonline.com Coordinates 42.3911653°, -71.150853° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP"