National Library of Energy BETA

Sample records for technology characterizations website

  1. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  2. DOE Launches Public Website for Energy Technology Information | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators |Departmentof Energy Public Website for

  3. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Environmental Management (EM)

    technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide...

  4. Applying reservoir characterization technology

    SciTech Connect (OSTI)

    Lake, L.W.

    1994-12-31

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  5. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

  6. Characterization, Monitoring, and Sensor Technologies - Teaming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization, Monitoring, and Sensor Technologies - Teaming with DOE to Develop, Transfer, and Deploy Technologies Ames Laboratory scientists are contributing their expertise...

  7. Technology Characterizations. Environmental Information Handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Environmental Handbook Series is designed to overcome the deficiency of information utility and transfer. Each of the works in this series brings together information in an area and format that is useful to both public and private sector needs. It is meant to serve as a basic reference document that will stand for a period of time and help to enrich decisionmaking and research in the interface of energy and the environment. This particular handbook deals with environmental characterization data for the energy technologies and presents the data in a format for use by DOE policy analysts. This treatment includes not only the actual information base, but also a preface which explains the present concept, the historical growth of the program, and the new direction for improved utility. The information base, itself, is constantly being enhanced and is republished periodically as necessary. The specific energy systems for which environmental/technology characterization information is provided are grouped as follows: nuclear energy; coal; petroleum; gas; synthetic fuels; solar energy; geothermal energy; and hydroelectricity.

  8. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  9. Vehicle Technologies Office Merit Review 2015: Fuel Economy Guide and fueleconomy.gov Website

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel...

  10. Characterization, monitoring, and sensor technology catalogue

    SciTech Connect (OSTI)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  11. Expedited site characterization. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  12. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  13. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  14. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  15. RadBall Technology For Hot Cell Characterization

    Office of Environmental Management (EM)

    accurately characterize different radiation sources is ongoing along with development and building of the 3D visualization part of the technology to overlay RadBall data onto...

  16. Website Helps Students Prepare For Range of Virginia Standards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    website. For the first time, the website now includes high school Biology, in addition to Math 2, 3, 4, 5, 6, 7 and 8; Science 3, 5 and 8; Technology 5 and 8 and high school...

  17. EERE Website Content Checklist

    Broader source: Energy.gov [DOE]

    This checklist is a tool to guide EERE content developers and editors in creating and reviewing content for websites.

  18. Oil field waste disposal in salt caverns: An information website

    SciTech Connect (OSTI)

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  19. Technological Education Applicant Information Sheet Broad-based Technology areas are listed on our website: http://educ.queensu.ca/tech

    E-Print Network [OSTI]

    Fletcher, Robin

    Technological Education Applicant Information Sheet Broad-based Technology areas are listed on our Program Program Description Diploma Granted Three Year College Technology Program Program Description information collected on this form is collected under the legal authority of the Royal Charter of 1841

  20. Archiving EERE Websites

    Broader source: Energy.gov [DOE]

    You should archive an Office of Energy Efficiency and Renewable Energy (EERE) website or application when it no longer serves a purpose. Follow these guidelines for archiving.

  1. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  2. Websites | Department of Energy

    Energy Savers [EERE]

    Getting Approval for Websites Do you know that you need approval to start a Web project, and approval to go live? Learn about the Web Governance Team and how they work. Section 508...

  3. PBA Transportation Websites

    Broader source: Energy.gov [DOE]

    PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  4. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    SciTech Connect (OSTI)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

  5. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  6. Website Privacy Notice Applicability

    E-Print Network [OSTI]

    in this privacy notice. Other units at the university may collect and use visitor information in different ways. Therefore, visitors to other university websites should review the privacy notices for the particular sites such changes will be consistent with our commitment to respecting visitor privacy, and will be clearly posted

  7. Solar Market Pathways Website

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  8. Helpful Websites Ebling Library

    E-Print Network [OSTI]

    Bohnhoff, David

    Helpful Websites · Ebling Library o http://ebling.library.wisc.edu/ · Ebling Library NIH Public Access Policy Help o http://ebling.library.wisc.edu/help/nih.cfm · PubMed o http://www.pubmed.gov · NIH Public Access Homepage o http://publicaccess.nih.gov/ · NIH Manuscript Submission System o http://nihms.nih

  9. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect (OSTI)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  10. Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Cummins at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about catalyst characterization.

  11. ORISE: Protecting Human Subjects Website

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protecting Human Subjects Website Institutions that engage in human subjects research are required by federal policy to establish an institutional review board (IRB) to ensure that...

  12. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  13. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  14. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  15. EERE Website Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Web Governance, Roles, & Responsibilities EERE Website Reports EERE Website Reports For each fiscal year, the Office of Energy Efficiency and Renewable Energy (EERE) reports on...

  16. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    E-Print Network [OSTI]

    Zhang, Haijiang

    2012-01-01

    We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

  17. Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery...

  18. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  20. Recent advances and trends in subsea technologies and seafloor properties characterization

    E-Print Network [OSTI]

    Djikpesse, Hugues

    Following the 2012 SEG Annual Meeting in Las Vegas, the SEG Research Committee sponsored a post-convention research workshop on subsea technologies, in general, and on seafloor characterization in particular. The goal of ...

  1. Virtual environmental applications for buried waste characterization technology evaluation report

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  2. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    SciTech Connect (OSTI)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  3. Building Technologies Program Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessment Toolkit Jump

  4. International Partnership for Geothermal Technology Launches Website |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of EnergyPresentation | Department of

  5. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part A, Characterization, decontamination, dismantlement

    SciTech Connect (OSTI)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

  6. EERE Annual Website Reports | Department of Energy

    Energy Savers [EERE]

    Website Reports For each fiscal year, EERE reports on its website activities and overall Web analytics. For other EERE overall and EERE Office Web statistic reports from FY 2007-FY...

  7. Technologies to characterize natural gas emissions tested in field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies

  8. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  9. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.

  10. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  11. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  12. Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

    2011-12-09

    Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

  13. Website Policies / Important Links | sciencecinema

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministrationTechnicalTechnicalScience.gov App Find scienceWebsite Policies /

  14. Website Policies / Important Links | Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProject AssessmentWe Webcam for NewH-7 PadWebsite

  15. Environmental Information Sources: Websites and Books

    E-Print Network [OSTI]

    Shrode, Flora

    2012-01-01

    http://www.fs.fed.us/sopa/index.php The website explainsSchedule of Proposed Actions (SOPA) is published in January,

  16. Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment

    SciTech Connect (OSTI)

    Usibelli, A.; Deibler, P.; Sathaye, J.

    1980-12-01

    Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

  17. The tmRNA website

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudson, C. M.; Williams, K. P.

    2014-11-05

    The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.

  18. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  19. Field Test Best Practices Website | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website...

  20. Course Materials • ALWAYS check the MA 15300 website FIRST ...

    E-Print Network [OSTI]

    Devlin, Patrick M

    2015-01-03

    policies and understand all the course materials on the website. • ALWAYS check the MA 15300 · website FIRST when searching for class information.

  1. Fermilab | Fermilab at Work | Web Form | FAW Website Suggestions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAW Website Suggestions Submit your FAW website suggestion using the form below. All fields are required. Which FAW page is this suggestion for? Main FAW page Work Resources...

  2. Innovative Direct Push Technologies for Characterization of the 216-Z-9 Trench at DOE's Hanford Site

    SciTech Connect (OSTI)

    Bratton, W.; Moser, K.; Holm, R. [Vista Engineering Technologies, LLC, Washington (United States); Morse, J.; Tortoso, A. [US Department of Energy - Richland Operations Office, Washington (United States)

    2008-07-01

    Because of the significant radiological and chemical hazards present at the 216-Z-9 Trench at the US Department of Energy Hanford Site, the only practical subsurface characterization methods are those that minimize or control airborne vapors and particles. This study evaluates and compares the performance of two Direct Push Technologies (Hydraulic Hammer Rig (HHR) and Cone Penetrometer Testing (CPT)) with traditional cable tool drilling in similar difficult geologic conditions. The performance was based on the depth of penetration, the ability to collect representative vadose zone soil samples, the penetration rate, and the relative cost. The HHR achieved deeper penetration depths and faster penetration rates than CPT techniques, while still maintaining the waste minimization benefits of direct push technologies. Although cable tool drilling achieved the deepest penetration, the safety and disposal concerns due to the soil cuttings that were generated made this drilling approach both slow and costly compared to the direct push techniques. (authors)

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  4. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  5. Global Health Center (GHC) Website Architecture

    E-Print Network [OSTI]

    Chapman, Michael S.

    Global Health Center (GHC) Website Architecture About Global Health Student Interest Group Contact) Leadership Electives (overview) PTGH Conversations in Global Health OHSU Global Health Grants Concentration in Global Health Studies Scholarship · Information · Awards · Reports News & Events Donate to the Center

  6. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect (OSTI)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  7. Arizona Department of Environmental Quality's General Permits Website |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaArise Technologies CorpandGuidance Website

  8. Arizona Department of Environmental Quality's Individual Permits Website |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaArise Technologies CorpandGuidance WebsiteOpen

  9. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  10. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  11. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect (OSTI)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  12. United States National Energy Technology Laboratory's (NETL)...

    Open Energy Info (EERE)

    United States National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  13. Test Preparation Options Free Test Prep Websites

    E-Print Network [OSTI]

    Stowell, Michael

    Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

  14. Ranking websites through prioritized web accessibility barriers

    E-Print Network [OSTI]

    Brajnik, Giorgio

    of these comments apply as well to the current WCAG 2.0 draft, to Section 508 and to the Italian official technical criteria in WCAG 2.0), or when they do it (like priority levels in WCAG 1.0) they do not depend on specificRanking websites through prioritized web accessibility barriers Giorgio Brajnik Dip. di Matematica

  15. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Q3 Deliverable: Develop Site Workflows and Design Website Layout Q3 GoNo-Go DOE Decision Point: Passed Q1 Milestone: Develop Data Entry Forms Q2 Milestone: Release Technology...

  16. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology

    SciTech Connect (OSTI)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Nitrosi, Andrea; Burani, Aldo

    2013-10-15

    Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results: At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.

  17. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  18. Generation of policy-rich websites from declarative models

    E-Print Network [OSTI]

    Chang, Felix Sheng-Ho

    2009-01-01

    Protecting sensitive data stored behind online websites is a major challenge, but existing techniques are inadequate. Automated website builders typically offer very limited options for specifying custom access policies. ...

  19. Coding Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    These coding requirements are used on websites that are hosted outside of Energy.gov's Drupal environment.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  1. EPA's Brownfields Application Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformationBrownfields Application Website Jump

  2. NNMCAB Website Directory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen Lichvar FEofNewsletters NNMCABNNMCAB Website

  3. PPPO Website Directory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack,1PPPO Website Directory

  4. EERE Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphics »DepartmentEERE Website Contact

  5. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

  6. Utah's Public Notice Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Public Notice Website

  7. Property:Incentive/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv JumpTechDsc Jump to: navigation,Website

  8. NDEP BWQP website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota:EnergyNARI Jump to:BWQP website Jump to:

  9. D3 website database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of EnergyCyrus Wadia About Us Cyrus Wadia -D3 website

  10. Website Policies / Important Links | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministrationTechnicalTechnicalScience.gov App Find science informationVideoWebsite

  11. EERE Fiscal Year 2012 Website Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of EnergyDepartmentDepartmentPVEERE EnergyStar2 WEBSITE

  12. EERE Fiscal Year 2013 Website Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of EnergyDepartmentDepartmentPVEERE EnergyStar2 WEBSITE

  13. EERE Annual Website Reports | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |SectorforOXFORD ICP-DRIEEERE Annual Website Reports

  14. Environmental Information Sources: Websites and Books

    E-Print Network [OSTI]

    Shrode, Flora

    2011-01-01

    Buildings to Be Green and Energy-Efficient: OptimizingResource Problems. (Green Energy and Technology). London:climate, ecology, green living, and energy technology. “

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  16. Course Materials • ALWAYS check the MA 15300 website FIRST ...

    E-Print Network [OSTI]

    Devlin, Patrick M

    2015-08-22

    Course Materials. • Go to the MA 15300 website and read through all the course materials. • It is your responsibility to know all the course policies and ...

  17. Impact of a dermatology wiki website on dermatology education

    E-Print Network [OSTI]

    2015-01-01

    end of your education? _______________________ What is yourwebsite on dermatology education *Chante Karimkhani BA 1 , *The Dermatology Education Wiki (dermwiki) website serves as

  18. Quality Assurance Checklists for Energy.gov Websites

    Broader source: Energy.gov [DOE]

    Use these quality assurance (QA) checklists for websites and Web pages in energy.gov's Drupal content management system to ensure they meet mandatory requirements:

  19. Website Maintenance Process and Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more about EERE's expectations for website maintenance. In June and December every year, Web coordinators will be asked to attend two special Web Governance Team meetings to report...

  20. Department of Energy Launches Website Supporting Energy-Saving...

    Broader source: Energy.gov (indexed) [DOE]

    at http:www.eere.energy.govbuildings as part of its continuing effort to support hurricane victims in the Gulf Coast. The website provides relevant resources and information...

  1. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  2. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    SciTech Connect (OSTI)

    Keebler, P. F.; Phipps, K. O. [EPRI Solutions, 942 Corridor Park Blvd, Knoxville, TN 37932 (United States)

    2006-07-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an overview of wireless emissions sources, the need for EMC characterization of power and signal cables with exposure to wireless devices, and an intelligent and automated emissions measurement system. Such a system can be used in nuclear power plants to determine the spectral quality of the wireless band, the EMC characterization of power and signal cables, and if wireless technologies can be collocated in plants while reducing the risk of interference with I and C systems. (authors)

  3. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D.; Phillips, E.

    2008-07-01

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

  4. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

  5. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

  6. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  7. Characterizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremonySynchrotronCharacterization

  8. Websites and Software 1 The National Library of Virtual Manipulatives

    E-Print Network [OSTI]

    Lee, Carl

    Websites and Software 1 The National Library of Virtual Manipulatives nlvm.usu.edu This is a very description is quoted directly from the website: The National Library of Virtual Manipulatives (NLVM) is an NSF supported project that began in 1999 to develop a library of uniquely interactive, web

  9. Project Title: High Street Precinct Website Content Development

    E-Print Network [OSTI]

    Hickman, Mark

    Project Title: High Street Precinct Website Content Development Bachelor of Arts Internships Organisation Supervisor: Zoe Roland Academic Supervisor: Katie Pickles Project Reference Number: S112/Historic Places Trust is developing a website to commemorate the High Street Precinct. It will be designed around

  10. To appear in International Journal of Mining Science and Technology Ground characterization and roof mapping

    E-Print Network [OSTI]

    Ray, Asok

    part of excavation operations for rock characterization and ground support design that require reliable 8637606 E-mail address: jur17@psu.edu. #12;I. Introduction Application of rock bolts is standard practice in ground support due to the relatively easy installation, lightweight, convenient transportation, and high

  11. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    SciTech Connect (OSTI)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  15. Environmental Information Sources: Websites and Books

    E-Print Network [OSTI]

    Shrode, Flora

    2009-01-01

    the use and potential of geothermal energy along withsome history of geothermal energy use in the U.S. ,photos of applications of geothermal energy technology, and

  16. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01

    froth flotation technology, plastics of similar densitiescost estimates for plastics separations technologies vary in2000), the technology to recover plastics from car residues

  17. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  18. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  19. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  20. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  2. Jefferson Lab Website Offers Preparation Help For Virginia Standards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the return of warm weather and blooming flowers, another sure sign of spring is increased usage of the U.S. Department of Energy's Jefferson Lab Science Education website....

  3. Jefferson Lab Website Offers Help For Virginia Standards of Learning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the return of warm weather and blooming flowers, another sure sign of spring is increased usage of the U.S. Department of Energy's Jefferson Lab Science Education website....

  4. EERE Website and Digital Media Standards and Guidelines | Department...

    Energy Savers [EERE]

    research. Getting Approval for Websites Do you know that you need approval to start a Web project, and approval to go live? Learn about the Web Governance Team and how they...

  5. FEMP Website Moves Into Energy.gov | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - 11:49am Addthis The Federal Energy Management Program (FEMP) in January moved its Web pages into Energy.gov, the U.S. Department of Energy's website. Although the FEMP site...

  6. Get Daily Energy Analysis Delivered to Your Website

    Broader source: Energy.gov [DOE]

    Now everyone can feature the U.S. Energy Information Administration’s (EIA) Today in Energy content on their website and favorite social networking sites. Today in Energy, the agency’s education...

  7. Slang characterization and removal using pulse detonation technology during coal gasification

    SciTech Connect (OSTI)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

    1997-03-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

  8. International Partnership for Geothermal Technology Launches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload power source. It is clean,...

  9. Engineering, Science, & Technology Expo | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, Science, & Technology Expo Sep 10 2013 10:30 AM - 03:30 PM Louisiana State Baton Rouge, LA CONTACT : Email: Phone: Add to Calendar SHARE Event website...

  10. NASA Creates Space Technology Mission Directorate

    E-Print Network [OSTI]

    drew media attention and articles on 3D printing, including coverage by Popular Mechanics and website on 3D printing and prototyping technology to create parts for the Space Launch System at Marshall Space

  11. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  12. iSchool Website: Creating & Changing Content J. Cox/N. Singh June 1, 2011 iSchool Website: Creating & Changing Content

    E-Print Network [OSTI]

    Toronto, University of

    iSchool Website: Creating & Changing Content ­ J. Cox/N. Singh June 1, 2011 iSchool Website their profiles. Contact nalini.singh@utoronto.ca C. Blogs Creators maintain their own blogs. WebSchool Website: Creating & Changing Content ­ J. Cox/N. Singh June 1, 2011 2. Creator creates content after

  13. Property:Geothermal/Partner10Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTemp JumpFYNewsWebsiteWebsite Jump

  14. Property:Geothermal/Partner11Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTemp JumpFYNewsWebsiteWebsite

  15. Property:Geothermal/Partner5Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTempPartner2WebsitePartner5Website

  16. Property:Incentive/Cont2Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7WebsiteCertReqs Jump to: navigation,Website Jump

  17. Property:Incentive/Cont3Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7WebsiteCertReqs Jump to: navigation,Website

  18. Property:Incentive/ContWebsite | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7WebsiteCertReqs Jump to:ContName JumpContWebsite

  19. Engineering by Design For more information, visit our website

    E-Print Network [OSTI]

    Virginia Tech

    Engineering by Design For more information, visit our website at http://www.aoe.vt.edu or call 540 in the aerospace and related industries and in the shipbuilding, naval engineering, and ship design fields. Some also choose to go into related fields such as automotive engineering, structural engineering

  20. Navigating Mnoa Institutional Research Website Mnoa Institutional Research Office (MIRO)

    E-Print Network [OSTI]

    ;Surveys #12;FACTS ­ Fast Facts #12;FACTS ­College Navigator #12;Information Sources: MIRO reportsNavigating Mnoa Institutional Research Website Mnoa Institutional Research Office (MIRO) University of information #12;Two Dimensions of Navigation HOME REPORTS RANKINGS SURVEYS FACTS DECISION SUPPORT Fast Facts

  1. Policy and Procedure Writing Tips University Policy Website

    E-Print Network [OSTI]

    Victoria, University of

    Policy and Procedure Writing Tips University Policy Website Policy and Procedure Writing Tips Updated May 2009 Page 1 of 2 · Differentiate between policies and procedures. o University Policies review and approval for policy issuance and revision. o University Procedures are the processes

  2. University Policy Website Policy Development and Review Checklist

    E-Print Network [OSTI]

    Victoria, University of

    University Policy Website Policy Development and Review Checklist Updated May 2009 Page 1 of 3 UNIVERSITY POLICY DEVELOPMENT AND REVIEW CHECKLIST Purpose This checklist is designed to assist individuals developing and reviewing university policies and procedures. The questions below will not apply to every

  3. DESIGN AND IMPLEMENTATION OF A HIGHLY MODIFIABLE RETAIL E-COMMERCE WEBSITE

    E-Print Network [OSTI]

    Soenen, Mark

    2008-07-22

    The availability, modifiability, and performance of retail e-commerce websites(RECWEB) is greatly impacted by seasonal constraints. For many RECWEB, half of the calendar year is comprised of holidays and seasons. Spikes in website traffic...

  4. Coding Links on Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    If you're coding links for a website outside of the Energy.gov environment, follow these guidelines. This includes explanations of how to code links, how to add the "external website" pop-up, how...

  5. Scripts and Dynamic Pages on Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    This page describes the requirements for developing scripts and dynamic pages on EERE websites outside of Energy.gov. The use of scripting allows the creation of dynamic websites that allow user...

  6. U.S. Department of Energy Launches New Website for Asset Revitalizatio...

    Office of Environmental Management (EM)

    Revitalization Initiative (ARI) website. WASHINGTON, D.C. - Today, the U.S.Department of Energy (DOE) launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide...

  7. Title Tags for Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    These standards are required when coding title tags on websites and applications outside the Energy.gov Drupal environment.

  8. HTML Syntax for Websites Outside of the Energy.gov Drupal Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    These HTML syntax standards are required on websites and applications outside the Energy.gov Drupal environment.

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  14. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01

    Institute and National Renewable Energy Laboratory. (2003).of Energy Efficiency and Renewable Energy. Xu, P. , Feng, J.End‐Use Energy Efficiency Renewable Energy Technologies

  15. Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

  16. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  18. Hawaii Department of Health Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio:Website Jump to: navigation, search OpenEI

  19. Spill Prevention and Response Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill Prevention and Response Website Jump to:

  20. Property:Geothermal/Partner9Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website Jump to: navigation,

  1. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    of Elco Technologies that provides AMI meter device managment services in the energy efficiency sector Acorn Technology Corporation Acorn Technology Corporation Miles Road...

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  3. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  4. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01

    approaches (e.g. , thermal storage). Due to the wideof gas engines, thermal storage and new working fluids. Gasto be installed. Thermal storage is an “old” technology

  5. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    SciTech Connect (OSTI)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ``ideal system,`` could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  7. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    SciTech Connect (OSTI)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ideal system,'' could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  8. Thorough characterization of a EUV mask

    E-Print Network [OSTI]

    McIntyre, G.

    2010-01-01

    SRAM (M! ) thorough characterization Figure 13 shows theresults of a thorough characterization of the SRAM area onFigure 13 Thorough characterization of 32nm technology node

  9. Idaho State Historical Society Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro|How toProofFormSociety Website

  10. Hawaii State Historic Preservation Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio:Website JumpPolluted Runoff ControlRulesState

  11. File FTP Document Upload Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris IncFile FTP Document Upload Website Author

  12. Oregon Water Quality Permit Program (Stormwater Discharge Permits) Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open EnergyInformationSitingSystems (DEQ FormWebsite|

  13. Property:Geothermal/NewsWebsite | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTemp JumpFYNewsWebsite Jump to:

  14. Property:Geothermal/Partner2Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTempPartner2Website Jump to:

  15. Property:Geothermal/Partner3Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTempPartner2Website Jump

  16. Property:Geothermal/Partner4Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeTypeGeofluidTempPartner2Website

  17. Property:Geothermal/Partner7Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website Jump to: navigation, search Property

  18. Property:Geothermal/Partner8Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website Jump to: navigation, search

  19. Property:Incentive/Cont4Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7WebsiteCertReqs Jump to:

  20. Advisory Council on Historic Preservation website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdemaInformationwebsite Jump to: navigation,

  1. SC e-journals Website Policies and Important Links

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmall ReactorRaymond Davis,Robert Curl,SHelp TableWebsite

  2. Greenhouse Gas Regional Inventory Protocol (GRIP) Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformation Regional Inventory Protocol (GRIP) Website

  3. Application of reservoir characterization and advanced technology to improve recovery and economic in a lower quality shallow shelf carbonate reservoir. First quarter 1995

    SciTech Connect (OSTI)

    Taylor, A.M.

    1995-05-04

    The focus of the project is to show that the use of advanced technology can improve the economics of CO{sub 2} projects in low permeability reservoirs. The approach involves the use of tomography, 3-D seismic and detailed petrophysical descriptions to enhance reservoir characterization. Cyclic CO{sub 2} stimulations and model designed frac treatments will be used to increase and facilitate oil recovery to improve project economics. The detailed reservoir characterization will be used to create a geological model for use in simulation to arrive at an optimum operating plan to be instituted during the second budget period. Objectives to be accomplished during the third quarter include: (1) Complete petrophysical description on cores from observation wells. (2) Apply petrophysical data to geologic model. (3) Conduct additional laboratory analysis on cores and fluids. (4) Refine 3-D seismic interpretations. (5) Complete tomography surveys. (6) Process tomography data. (7) Establish relationship between seismic and tomography interpretations. (8) Conduct preliminary simulator runs with improved geologic model. (9) Evaluate results of cyclic CO{sub 2} stimulation treatments. (10) Design frac treatment for linear flood fronts. All of the above objectives were worked on during the current quarter and the overall project is fairly well on schedule. The area of greatest concern time-wise is reservoir simulation. The simulator depends on the geologic model, which in turn depends on the petrophysical, 3-D seismic and tomography interpretations. Hence, the final geologic model won`t be available until all of the reservoir characterization work is completed.

  4. Jefferson Lab's Science Education Website Helps Students Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    math and science questions; 5th grade math, science and technology questions; 8th grade math, science and technology questions; and high school algebra I & II, geometry, earth...

  5. Jefferson Lab's Science Education Website Helps Students Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    math and science questions; 5th grade math, science and technology questions; 8th grade math, science and technology questions; high school algebra I & II, geometry, earth...

  6. JLab's Science Education Website Helps Students Prep for 2006...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    math and science questions; 5th grade math, science and technology questions; 8th grade math, science and technology questions; high school algebra I & II, geometry, earth...

  7. T:\\WEBSITE DOCUMENTS LOUISIANA STATE UNIVERSITY HEALTH SCIENCES CENTER, NEW ORLEANS

    E-Print Network [OSTI]

    of Allied Health Professions DEPARTMENT OF OCCUPATIONAL THERAPY 1900 Gravier Street New Orleans, LA 70112T:\\WEBSITE DOCUMENTS LOUISIANA STATE UNIVERSITY HEALTH SCIENCES CENTER, NEW ORLEANS School

  8. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  9. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    SciTech Connect (OSTI)

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy`s (DOE) request for demonstration, testing and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000.

  10. Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation

    Broader source: Energy.gov [DOE]

    This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

  11. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  12. South Florida Sun-Sentinel.com South Florida a bargain haven for used cars, website says

    E-Print Network [OSTI]

    Fernandez, Eduardo

    South Florida Sun-Sentinel.com South Florida a bargain haven for used cars, website says By Donna on a used car. According to CarGurus.com, a car-shopping website, used cars in Broward, Palm Beach and Miami on an analysis of 3 million listings for pre-owned cars across the country. Shopping patterns seem to bear

  13. Content-Based Methods for Predicting Web-Site Demographic Attributes Santosh Kabbur

    E-Print Network [OSTI]

    Minnesota, University of

    , and different ways of aggregat- ing web-page level predictions that take into account the web's hyperlinked, occupation, etc.) about the audience of a web-site (i.e., the set of users viewing the web-pages) play the demographic attributes of a user or a web-site's audience by utilizing different features such as web-page

  14. Responder Technology Alert Monthly (January 2015)

    SciTech Connect (OSTI)

    Upton, Jaki F.; Stein, Steven L.

    2015-02-01

    As part of technology foraging for the Responder Technology Alliance, established by the Department of Homeland Science and Technologies First Responders Group, this report summarizes technologies that are relevant in the area of “wearables,” with the potential for use by first responders. The content was collected over the previous month(s) and reproduced from a general Internet search using the term wearables. Additional information is available at the websites provided. This report is not meant to be an exhaustive list nor an endorsement of any technology described herein. Rather, it is meant to provide useful information about current developments in the areas wearable technology.

  15. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM's CleanupPowerJanuary 2004 |

  16. Leeds for Life website: Guide for Personal Tutors (we welcome feedback via: leedsforlife@leeds.ac.uk)

    E-Print Network [OSTI]

    Haase, Markus

    1 Leeds for Life website: Guide for Personal Tutors (we welcome feedback via: leedsforlife@leeds.ac.uk) Overview 1. The Leeds for Life website (www.leedsforlife.leeds.ac.uk) is accessed using the University. Students see a link on the Portal. 2. The Leeds for Life (LfL) website has been developed: A. to support

  17. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  18. Research Website Laboratory Website

    E-Print Network [OSTI]

    and Human Adaptation Program University of Michigan, Ann Arbor, MI 2007 ­ present Director, Core Assay Foundation (IOS-1353110, Role: Co-PI), LTREB Renewal: Fitness consequences of pleiotropic androgen effects

  19. WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

  20. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    North Lexington Massachusetts Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc...

  1. Institution Name Institution Name Address Place Zip Notes Website...

    Open Energy Info (EERE)

    llnl gov Los Alamos National Laboratory Los Alamos National Laboratory P O Box Los Alamos New Mexico http www lanl gov Massachusetts Technology Collaborative Renewable Energy Trust...

  2. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  3. Advanced Technologies in Energy-Economy Models for

    E-Print Network [OSTI]

    Advanced Technologies in Energy-Economy Models for Climate Change Assessment Jennifer F. Morris: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;1 Advanced Technologies in Energy-Economy Models is applied to a global economy-wide model to study the roles of low-carbon alternatives in the power sector

  4. Revised March 2011 Faculty of Graduate Studies Website

    E-Print Network [OSTI]

    Brownstone, Rob

    and current projects include: clean coal technology and processing; coal/gas outbursts prevention; crown, mineral processing, and the development of innovative instruments and technologies in these fields. Many and reserve estimation; coal bed methane and CO2 storage Wellbore stability FACULTY AND RESEARCH INTERESTS

  5. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    SciTech Connect (OSTI)

    Griffin, John

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  6. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Characterizations March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Resource Characterization Inflow Characterization Tasks-Patrick Moriarty, National...

  7. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  8. Low Temperature Performance Characterization | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Low Temperature Performance Characterization Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in...

  9. Expedited Site Characterization | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expedited Site Characterization Working to save time and money in the characterization of DOE sites, Ames Lab scientists are advancing adoption of innovative technologies along...

  10. Plant Phenotype Characterization System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Phenotype Characterization System Plant Phenotype Characterization System New X-Ray Technology Accelerates Plant Research The ability to analyze plant root structure and...

  11. CourseDiff : a system for identifying and reporting changes to course websites

    E-Print Network [OSTI]

    Kopylov, Igor, M. Eng. Massachusetts Institute of Technology

    2010-01-01

    CourseDiff is a prototype system that periodically samples course websites and notifies users via email when it identifies changes to those sites. The system was developed after conducting a study of 120 web pages from 50 ...

  12. Testing an Academic Library Website for Usability with Faculty and Graduate Students

    E-Print Network [OSTI]

    Emde, Judith; Morris, Sara E.; Claassen, Monica

    2009-01-01

    Objectives - This usability study was developed to observe faculty and graduate students’ reactions to a recent redesign of the University of Kansas (KU) Libraries’ website. The redesign included new navigational features, ...

  13. Coding Online Forms on Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    Follow these requirements to code forms on websites outside of the Energy.gov Drupal environment. If you want to code a webform on Energy.gov, see Energy.gov Webforms.

  14. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Company Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al...

  15. Introduction The goal of the Emotion Research WEB-Site is to act as a

    E-Print Network [OSTI]

    Fellous, Jean-Marc

    1 Introduction The goal of the Emotion Research WEB-Site is to act as a repository of information, and practical information such as researcher web-pages, conference announcement and other relevant on

  16. Native File Formats and PDFs on Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    Websites and applications outside the Energy.gov Drupal environment should follow these requirements when linking to non-HTML resources or native files like PDFs or Word, Excel, and PowerPoint files.

  17. Browser Testing Suite for Websites Outside of the Energy.gov Drupal Environment

    Broader source: Energy.gov [DOE]

    When developing an EERE website or application outside the Energy.gov Drupal environment, you are required to test its performance on the browsers most used by EERE's visitors.

  18. Students Use JLab Website to Prep for Virginia Standards of Learning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab's website. New test categories added this year include (alphabetically) Algebra 1, Algebra II, Geometry, Math 8, Math 7, Math 6, Math 5, Math 4, Math 3, Science 5, and...

  19. A guide to web content for Heriot-Watt University websites

    E-Print Network [OSTI]

    Howie, Jim

    1 A guide to web content for Heriot-Watt University websites #12;2 Contents A guide to web content..........................................................................................................................3 Why is writing for the web different?..........................................................................................3 Planning your web content

  20. DOE Launches New Website to Bring Energy Technology Information to the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominate anDepartment ofTraining|

  1. DOE Showcases Websites for Tight Gas Resource Development

    Broader source: Energy.gov [DOE]

    Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

  2. Revised January 2011 Faculty of Graduate Studies Website

    E-Print Network [OSTI]

    Brownstone, Rob

    integration specialists, electronic resource coordinators, information re- search specialists, electronic, spreadsheets, and presentation software. To ensure successful completion of the MLIS program, students entering the program are expected to have the following basic technology skills either before entering the Program

  3. Characterizations of Hydrogen Energy Technologies

    SciTech Connect (OSTI)

    Energetics Inc

    2003-04-01

    In 1996, Dr. Ed Skolnik of Energetics, Incorporated, began a series of visits to the locations of various projects that were part of the DOE Hydrogen Program. The site visits/evaluations were initiated to help the DOE Program Management, which had limited time and limited travel budgets, to get a detailed snapshot of each project. The evaluations were soon found to have other uses as well: they provided reviewers on the annual Hydrogen Program Peer Review Team with an in-depth look at a project--something that is lacking in a short presentation--and also provided a means for hydrogen stakeholders to learn about the R&D that the Hydrogen Program is sponsoring. The visits were conducted under several different contract mechanisms, at project locations specified by DOE Headquarters Program Management, Golden Field Office Contract Managers, or Energetics, Inc., or through discussion by some or all of the above. The methodology for these site-visit-evaluations changed slightly over the years, but was fundamentally as follows: Contact the Principal Investigator (PI) and arrange a time for the visit; Conduct a literature review. This would include a review of the last two or three years of Annual Operating Plan submittals, monthly reports, the paper submitted with the last two or three Annual Peer Review, published reviewers' consensus comments from the past few years, publications in journals, and journal publications on the same or similar topics by other researchers; Send the PI a list of questions/topics about a week ahead of time, which we would discuss during the visit. The types of questions vary depending on the project, but include some detailed technical questions that delve into some fundamental scientific and engineering issues, and also include some economic and goal-oriented topics; Conduct the site-visit itself including--Presentations by the PI and/or his staff. This would be formal in some cases, informal in others, and merely a ''sit around the table'' discussion in others; The format was left to the discretion of the PI; A tour of the facility featuring, whenever possible, a demonstration of the process in operation; Detailed discussions of the questions sent to the PI and other topics; and Writing a report on the visit. This compilation presents the reports for all the site-visits held between February 1996 and July 2001, each written shortly after the visit. While nothing has been changed in the actual content of any of the reports, reformatting for uniformity did occur. In each report, where the questions and their respective answers are discussed, the questions are shown in bold. In several cases, the PI chose to answer these questions in writing. When this occurs, the PI's answers are produced ''verbatim, in quotes, using a different font.'' Discussion of the questions, tour/demonstration, and anything else raised during the visit is presented in normal type. Comments that represent the opinion of Dr. Skolnik, including those added during the writing of the report are shown in italics. The reports compiled here, as stated, covers a period through July 2001. Since then, site-visits to various project locations and the accompanying evaluations have continued. Thus, a second compilation volume should follow in the fall of 2003. Following the compilation of reports, is an afterward that briefly discusses what has happened to some of the projects or project personnel since that particular report was written.

  4. New training options in NDT predictive technologies offered through NIAR/WATC

    E-Print Network [OSTI]

    New training options in NDT predictive technologies offered through NIAR/WATC partnership Thursday training program for Nondestructive Testing (NDT) Predictive Technologies. The courses are offered through class. For specifics on course offerings visit the WATC website. The Predictive Technologies program

  5. Manuscript submitted to Website: http://AIMsciences.org AIMS' Journals

    E-Print Network [OSTI]

    Lods, Bertrand

    pp. X­XX VARIATIONAL CHARACTERIZATIONS OF THE EFFECTIVE MULTIPLICATION FACTOR OF A NUCLEAR REACTOR reactor theory. This work follows a recent paper by M. Mokhtar-Kharroubi [23] devoted to the leading in the reactor core. Precisely, when an atom undergoes nuclear fission, some neutrons are ejected from

  6. 2010 US Lighting Market Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 U.S. Lighting Market Characterization January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program Office of Energy Efficiency and Renewable Energy...

  7. Revised April 2013 Faculty of Graduate Studies Website

    E-Print Network [OSTI]

    Brownstone, Rob

    industry. Research areas include mechanisms, design, thermo-fluids, energy, dynamics, solid mechanics. It normally takes 48 months to complete beyond the MASc degree. RESEARCH AREAS Fluid Mechanics (numerical, Clean Coal Technology Bauer, R., Grinding Manufacturing Process, Dynamics and Control Chuang, J

  8. Characterizing Google Hacking: A First Large-Scale Quantitative Study

    E-Print Network [OSTI]

    Gu, Guofei

    Characterizing Google Hacking: A First Large-Scale Quantitative Study Jialong Zhang, Jayant Notani.com Abstract. Google Hacking continues to be abused by attackers to find vulnerable websites on current the characteristics of vulnerabilities targeted by Google Hacking (e.g., what kind of vulnerabilities are typically

  9. Program Website: http://www.nrel.colostate.edu/projects/ires EA-IRES: East African International Research

    E-Print Network [OSTI]

    MacDonald, Lee

    Program Website: http://www.nrel.colostate.edu/projects/ires EA-IRES: East African Ecology Laboratory (NREL) in the Warner College of Natural Resources

  10. Responder Technology Alert Monthly (Oct-Nov 2014)

    SciTech Connect (OSTI)

    Upton, Jaki F.; Stein, Steven L.

    2015-01-21

    As part of technology foraging for the Responder Technology Alliance, established by the Department of Homeland Science and Technologies First Responders Group, this report summarizes technologies that are relevant in the area of “wearables,” with the potential for use by first responders. The content was collected over the previous month(s) and reproduced from a general Internet search using the term wearables. Additional information is available at the websites provided. This report is not meant to be an exhaustive list nor an endorsement of any technology described herein. Rather, it is meant to provide useful information about current developments in the areas wearable technology.

  11. Company Name Company Name Address Place Zip Product Website Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntas CERANBulh es

  12. Company Name Company Name Address Place Zip Product Website Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntas CERANBulh esprivate

  13. Company Name Company Name Address Place Zip Product Website Region

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntas CERANBulh

  14. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntas CERANBulhSystems

  15. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntas CERANBulhSystemsA1

  16. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtd JumpAntas

  17. TopTen Energy Efficient Products Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFRTopTen Energy Efficient Products

  18. Arizona Department of Environmental Quality's AZPDES Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaArise Technologies Corpand

  19. Arizona State Land Department Applications and Permits Website | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaArise TechnologiesEnergy Information

  20. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  1. DMBC: SEO (Search Engine Optimization) Search Engine Optimization is the practice of increasing the visibility of a website within

    E-Print Network [OSTI]

    Stowell, Michael

    platforms and websites · For brands, create a Linkedin Business page with company info, contact resources of increasing the visibility of a website within search engines in a natural, non-promoted or advertised way descriptions · Commonly link to you main page in general posts · Complete your About and Info Pages · Add links

  2. Skip to the content A website from the Institute of Physics

    E-Print Network [OSTI]

    Leung, Pui-Tak "Peter"

    . Others were more general and open-ended: would you study physics if you were starting universitySkip to the content A website from the Institute of Physics Physics: past, present, future Dec 6, present and future of physics? "Oh no, not another survey." "What a good idea." "These answers are off

  3. GOOGLE AND GIS INTEGRATED ON THE ARM WEBSITE: A WORK IN PROGRESS

    E-Print Network [OSTI]

    GOOGLE AND GIS INTEGRATED ON THE ARM WEBSITE: A WORK IN PROGRESS A. Cialella and R. Wagener to zoom in at varying resolutions, with satellite images and/or street maps as backdrops. The ACRF GIS (ESRI ArcGIS) database was merged with Google to include markers for the SGP site facilities. A new SGP

  4. Exploring the Benefits and Uses of Web Analytics Tools for Non-Transactional Websites

    E-Print Network [OSTI]

    Cortes, Corinna

    Carnegie Mellon University Pittsburgh, PA msleeper@cs.cmu.edu Sunny Consolvo Google Mountain View, CA sconsolvo@google.com Jessica Staddon Google Mountain View, CA staddon@google.com ABSTRACT Website owners use and that copies bear this notice and the full cita- tion on the first page. Copyrights for third-party components

  5. FAU Payment Card Industry (PCI) Training Welcome to the FAU PCI training website!

    E-Print Network [OSTI]

    Marques, Oge

    FAU Payment Card Industry (PCI) Training Welcome to the FAU PCI training website! You will find all the information you need on this site to become PCI certified for FAU. PCI Certification is required for all a self assessment questionnaire on all requirements for PCI Compliance. · Employee Training - all

  6. Web-Site Boundary Detection Ayesh Alshukri, Frans Coenen, and Michele Zito

    E-Print Network [OSTI]

    Coenen, Frans

    , is an important but complicated task. In this paper a web-page clustering approach to boundary detection is sug, Web-page Clustering, Web Archiving. 1 Introduction As the World Wide Web has grown in size, in working with whole web-sites, and other compound web- objects rather than single web-pages [5

  7. Getting Started 1) Visit the Java VChill website at http://chill.colostate.edu/java/

    E-Print Network [OSTI]

    Rutledge, Steven

    VCHILL Getting Started 1) Visit the Java VChill website at http://chill.colostate.edu/java/ 2) Click on "Launch VChill" (you will see Java start up * ) 3) Enter signon name (password dialog pops up bookmark case * If it does not, you may need to install Java first. Click on the Download Center link (in

  8. A Real-time Integration of Concept-based Search and Summarization on Chinese Websites

    E-Print Network [OSTI]

    engine, and an automatic summarizer. When the user enters one or more fairly general and vague terms query structure. They prefer limiting their searches to one or a simple list of terms, while seekingA Real-time Integration of Concept-based Search and Summarization on Chinese Websites Joe F Zhou

  9. Page | 1 International Office, University of Iceland, November 2012 General website www.hi.is

    E-Print Network [OSTI]

    Petriu, Emil M.

    Page | 1 International Office, University of Iceland, November 2012 General website www University of Iceland International Office Háskólatorg, Sæmundargata 4 101 Reykjavík Iceland Tel: +354 525, University of Iceland, November 2012 One passport photograph Transcript of records. Original in English

  10. Page | 1 International Office, University of Iceland, December 2014 General website www.hi.is

    E-Print Network [OSTI]

    Herrmann, Samuel

    Page | 1 International Office, University of Iceland, December 2014 General website www University of Iceland International Office Háskólatorg, Sæmundargata 4 101 Reykjavík Iceland Tel: +354 525 (signed by the student and his/her coordinator) #12;Page | 2 International Office, University of Iceland

  11. Renewable Energy Companies Website Algal Biomass Organization http://www.algaebiomass.org/

    E-Print Network [OSTI]

    McGaughey, Alan

    Renewable Energy Companies Website Biomass Algal Biomass Organization http://www.algaebiomass.org/ Aventine Renewable Energy, Inc. http://www.aventinerei.com/ Biomass Engineering UK http Renewable Energy http://www.crimsonrenewable.com/ DTE Biomass Energy http://www.dtebe.com/ ESI Inc

  12. Check our website at: library.queensu.ca/research/guide/genealogy LIBRARY LOCATIONS & ACRONYMS

    E-Print Network [OSTI]

    Fletcher, Robin

    GENEALOGY Check our website at: library.queensu.ca/research/guide/genealogy LIBRARY LOCATIONS & ACRONYMS SL Stauffer Library OGS Ontario Genealogical Society Docs Government Documents, Stauffer Library Library Genealogy Information: www.kfpl.ca/ and http://www.kfpl.ca/genealogy-resources Cyndi's List

  13. How to Purchase Tickets for Natural History's Butterfly Pavilion. Ticket Website

    E-Print Network [OSTI]

    Miller, Scott

    How to Purchase Tickets for Natural History's Butterfly Pavilion. Ticket Website Tickets at the National Museum of Natural History or at the Air and Space Museum. The next screen will ask you carefully. Please note all applicable fees will be listed at this time. All phone and Internet purchases

  14. National incinerator testing and evaluation program: The environmental characterization of refuse-derived fuel (RDF) Combustion Technology, Mid-Connecticut Facility, Hartford, Connecticut. Final report, June 1987-March 1993

    SciTech Connect (OSTI)

    Finklestein, A.; Klicius, R.D.

    1994-12-01

    The report gives results of an environmental characterization of refuse-derived (RDF) semi-suspension burning technology at a facility in Hartford, Connecticut, that represents state-of-the-art technology, including a spray dryer/fabric filter flue-gas cleaning (FGC) system for each unit. Results were obtained for a variety of steam production rates, combustion conditions, flue gas temperatures, and acid gas removal efficiencies. All incoming wastes and residue streams were weighed, sampled, and analyzed. Key combustor and FGC system operating variables were monitored on a real time basis. A wide range of analyses for acid gases, trace organics, and heavy metals was carried out on gas emissions and all ash residue discharges.

  15. Technology Assessment TECHNOLOGY ASSESSMENT

    E-Print Network [OSTI]

    Rock, Chris

    Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications

  16. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  17. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  18. Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing...

  19. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture...

  20. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced...

  1. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  2. Technology reviews: Glazing systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  3. MATH 225 Fall 2013 Differential Equations Course Website: http://ams.mines.edu/Courses/course.php?num=math225/

    E-Print Network [OSTI]

    MATH 225 Fall 2013 Differential Equations Course Website: http://ams.mines.edu/Courses/course.php?num=math engineering, and environmental sciences. Prerequisites: C or better in MATH112 or MATH122. Text Differential

  4. MATH 225 Fall 2012 Differential Equations Course Website: http://ams.mines.edu/Courses/course.php?num=math225/

    E-Print Network [OSTI]

    MATH 225 Fall 2012 Differential Equations Course Website: http://ams.mines.edu/Courses/course.php?num=math. Prerequisites: MATH112 or MATH122. Text Differential Equations with Boundary-Value Problems, 8th ed., D. Zill, W

  5. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J. [NNSA; Clark, Harvey W. [NSTec; Essex, James J. [NSTec; Wagner, Eric C. [NSTec

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  6. Biodetection Technologies for First Responders: 2014 Edition

    SciTech Connect (OSTI)

    Ozanich, Richard M.; Baird, Cheryl L.; Bartholomew, Rachel A.; Colburn, Heather A.; Straub, Tim M.; Bruckner-Lea, Cindy J.

    2014-03-28

    This report summarizes commercially-available, hand-portable technologies that can be used by first responders in the field. This is not meant to be an exhaustive list, nor an endorsement of any technology described herein. Rather, this report is meant to provide useful information about available technologies to help end-users make informed decisions about biodetection technology procurement and use. Information listed in this report is primarily vendor-provided; however, where possible it has been supplemented with additional information obtained from publications, reports, and websites. Manufacturers were given the chance to review summaries of their technologies from August through November 2013 to verify the accuracy of technical specifications, available references, and pricing.

  7. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    SciTech Connect (OSTI)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  8. Ultrasonic Characterization of Wastes | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrasonic Characterization of Wastes It's commonplace for seeing babies in utero, fish underwater and submarines in the ocean, but now sonar technology will be giving DOE an image...

  9. Synthesis and Characterization of Cathode Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Synthesis and Characterization of Cathode Materials Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in...

  10. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  11. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  12. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  13. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  14. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. [Quarterly report], October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Taylor, A.R.

    1996-01-01

    West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, TX. This field was discovered early 1940`s and produces oil under a solution gas drive mechanism from the Sand Adres formation at {approx}4800 ft. This field has been under waterflood for 30 yr and a significant portion has been infill drilled on 20-ac density. A 1982-86 CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed phased development of a miscible CO{sub 2} injection project at the South Welch Unit. Reservoir quality is poorer at West Welch Unit due to relative position to sea level during deposition, and this unit is ideal for demonstrating methods for enhancing economics of IOR projects in lower quality SSC (shallow shelf carbonate) reservoirs. This Class 2 project concentrates on the efficient design of a miscible CO{sub 2} project based on detailed reservoir characterization. During the quarter, progress was made on petrophysical analysis and tomography processing. The geologic model is dependent on these, and the actual reservoir simulation cannot start until the geologic model is complete, although all the preliminary simulation work is being done.

  15. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  16. Website Policies and Important Links | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministrationTechnicalTechnicalScience.gov App Find scienceWebsite Policies

  17. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  18. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  19. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01

    energy-efficiency technology costs and improvementon behavioral responses, technology costs, energy savings,is to characterize technology costs and potentials for

  20. Appendix A: Energy storage technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  1. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  2. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. End of budget period report, August 3, 1994--December 31, 1996

    SciTech Connect (OSTI)

    Taylor, A.R.; Hinterlong, G.; Watts, G.; Justice, J.; Brown, K.; Hickman, T.S.

    1997-12-01

    The Oxy West Welch project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in a lower quality shallow shelf carbonate reservoir. The research and design phase primarily involves advanced reservoir characterization and accelerating the production response. The demonstration phase will implement the reservoir management plan based on an optimum miscible CO{sub 2} flood as designed in the initial phase. During Budget Period 1, work was completed on the CO{sub 2} stimulation treatments and the hydraulic fracture design. Analysis of the CO{sub 2} stimulation treatment provided a methodology for predicting results. The hydraulic fracture treatment proved up both the fracture design approach a and the use of passive seismic for mapping the fracture wing orientation. Although the 3-D seismic interpretation is still being integrated into the geologic model and interpretation of borehole seismic is still underway, the simulator has been enhanced to the point of giving good waterflood history matches. The simulator-forecasted results for an optimal designed miscible CO{sub 2} flood in the demonstration area gave sufficient economics to justify continuation of the project into Budget Period 2.

  3. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  4. 2/1/2014 geddem.com Wave Your iPhone for Power (Carefully): Micro-Windmill Technology http://www.geddem.com/2014/01/15/wave-your-iphone-for-power-carefully-micro-windmill-technology/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    2/1/2014 geddem.com » Wave Your iPhone for Power (Carefully): Micro-Windmill Technology http://www.geddem.com/2014/01/15/wave-your-iphone-for-power-carefully-micro-windmill-technology/ 1/3 Search here Subscribe (300) Tech (150) Gaming (5) Websites (23) Wave Your iPhone for Power (Carefully): Micro-Windmill

  5. Website coverage for Sustainability@CityU and CityU Community of Practice for Sustainability (CoP-S)/Green Connections

    E-Print Network [OSTI]

    Po, Lai-Man

    Website coverage for Sustainability@CityU and CityU Community of Practice for Sustainability (CoP-S)/Green Connections Sustainability@CityU CoP-S / Green Connections Scope This website is maintained by the Provost's Office and gives an overview of the University's commitment to sustainability. It covers: goals

  6. Email: urop@ust.hk | Website: http://urop.ust.hk/| Facebook: HKUST's UROP 1 UROP Online Project Management System Guide Book

    E-Print Network [OSTI]

    Email: urop@ust.hk | Website: http://urop.ust.hk/| Facebook: HKUST's UROP 1 UROP Online Project://urop.ust.hk/| Facebook: HKUST's UROP 2 UROP Online Project Management System Guide Book Login to the UROP Online Project1100/2100/3100/4100 series? #12;Email: urop@ust.hk | Website: http://urop.ust.hk/| Facebook: HKUST

  7. Email: urop@ust.hk | Website: http://urop.ust.hk/| Facebook: HKUST's UROP 1 UROP Student Online Application System Guide Book

    E-Print Network [OSTI]

    Email: urop@ust.hk | Website: http://urop.ust.hk/| Facebook: HKUST's UROP 1 UROP Student Online://urop.ust.hk/| Facebook: HKUST's UROP 2 UROP Student Online Application System Guide Book Login to the UROP Student ­ Project Listing Page) #12;Email: urop@ust.hk | Website: http://urop.ust.hk/| Facebook: HKUST's UROP 3 UROP

  8. Characterization and analysis of process variability in deeply-scaled MOSFETs

    E-Print Network [OSTI]

    Balakrishnan, Karthik, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Variability characterization and analysis in advanced technologies are needed to ensure robust performance as well as improved process capability. This thesis presents a framework for device variability characterization ...

  9. European biofuel plans could spell disaster -environmentalresearchweb A community website from IOP Publishing Sign in Forgotten your password? Sign

    E-Print Network [OSTI]

    European biofuel plans could spell disaster - environmentalresearchweb A community website from IOP. Corporate Partners Sustainable Futures Dec 17, 2007 European biofuel plans could spell disaster European Union plans to increase the use of biofuels could spell disaster for some of the world's poorest people

  10. Latent Session Model for Web User Clustering A case study on modeling users of an online real estate website

    E-Print Network [OSTI]

    Murphy, Robert F.

    of Washington Abstract We analyze the web access log of Zillow.com ­ one of the largest real estate website content data from Zillow.com ­ one of the biggest real estate web portals in the U.S. This study leads. The online real estate market has experienced a rapid growth over the past years: according to latest reports

  11. F:\\Website\\Vet Med students\\vetmed_health_history_20152016.docx Return completed form by mail to

    E-Print Network [OSTI]

    Tullos, Desiree

    receive to relieve your allergies: 3. Do you have asthma? If yes, list the cause(s) of asthma (if you do:\\Website\\Vet Med students\\vetmed_health_history_20152016.docxc ENVIRONMENTAL ALLERGIES/ASTHMA Yes No 1. Do you have not know, write unknown): List symptoms that occur when you are suffering from asthma: Severity of Symptoms

  12. ANU Library anulib.anu.edu.au/training ilp@anu.edu.au Navigating the ANU Library Website

    E-Print Network [OSTI]

    , theses, reference materials, etc. By entering your keywords and terms into the search box on the Library journal and newspaper articles, print and electronic books, websites, etc. Enter your search terms by subject basis, and can be accessed by searching the Library catalogue, e-journal and e-resources databases

  13. Recommendations for AS&E Websites The recommendations outlined in this section were developed to help improve consistency in navigation

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    and mobile devices that sites should be tested against for compatibility issues are also provided. It is recommended that sites be designed with mobile devices in mind. 1. Department Homepages Each department Devices As the portion of traffic to our websites from mobile devices increases, each department should

  14. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineered Geothermal System through Hydraulic and Thermal Stimulation Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Newberry EGS...

  15. A Genetic Algorithm Approach for Technology Characterization 

    E-Print Network [OSTI]

    Galvan, Edgar

    2012-10-19

    . For example, suppose automotive designers wish to explore various engine types. Engine concepts of interest might include a turbocharged inline 4-cylinder, a V6, and a V8 Diesel. Although these concepts have different design variables and analysis models...

  16. Fracture Characterization Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump

  17. Microearthquake Technology for EGS Fracture Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal toDepartment ofEnergy Michigan3Sheet, 2014

  18. Microearthquake Technology for EGS Fracture Characterization; 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal toDepartment ofEnergy Michigan3Sheet,

  19. Microearthquake Technology for EGS Fracture Characterization | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane Hydrate Program AnnualEnergy PhotoSheet, 2014

  20. Tank characterization reference guide

    SciTech Connect (OSTI)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  1. Performance Characterization

    Broader source: Energy.gov [DOE]

    Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

  2. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  3. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  4. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    SciTech Connect (OSTI)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  5. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a...

  6. New technology for the independent producer

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This technology transfer conference consisted of the following six sessions: reservoir characterization; drilling, testing and completion; enhanced oil recovery; 3-d seismic and amplitude variation with offset (AVO); biotechnology for field applications; and well logging technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization

    SciTech Connect (OSTI)

    Schreck, S.; Lundquist, J.; Shaw, W.

    2008-06-01

    This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

  8. Information Technology and Libraries

    E-Print Network [OSTI]

    Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

    2011-01-01

    static, Dreamweaver- and HTML-created website to an entirelywas created using static HTML and its organi- zationalDreamweaver and the static HTML approach to web design and

  9. Multi-Scale Characterization of Improved Algae Strains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BETO) 2015 Project Peer Review Multi-Scale Characterization of Improved Algae Strains March 23, 2015 Algae Technology Area Review Dr. Taraka Dale Los Alamos...

  10. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis...

  11. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode 2009 DOE Hydrogen Program and Vehicle Technologies...

  12. Characterization of Thermo-Mechanical Behaviors of Advanced High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHHS) Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHHS) Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

  13. Dynamic Characterization of Spot Welds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welds Dynamic Characterization of Spot Welds Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

  14. Synthesis and Characterization of Silicon Clathrates for Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

  15. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  16. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  17. AMIDAS-II: Upgrade of the AMIDAS Package and Website for Direct Dark Matter Detection Experiments and Phenomenology

    E-Print Network [OSTI]

    Chung-Lin Shan

    2014-11-13

    In this paper, we give a detailed user's guide to the AMIDAS (A Model-Independent Data Analysis System) package and website, which is developed for online simulations and data analyses for direct Dark Matter detection experiments and phenomenology. Recently, the whole AMIDAS package and website system has been upgraded to the second phase: AMIDAS-II, for including the new developed Bayesian analysis technique. AMIDAS has the ability to do full Monte Carlo simulations as well as to analyze real/pseudo data sets either generated by another event generating programs or recorded in direct DM detection experiments. Moreover, the AMIDAS-II package can include several "user-defined" functions into the main code: the (fitting) one-dimensional WIMP velocity distribution function, the nuclear form factors for spin-independent and spin-dependent cross sections, artificial/experimental background spectrum for both of simulation and data analysis procedures, as well as different distribution functions needed in Bayesian analyses.

  18. Cost-Benefit Analysis of Smart Grid Technologies Through System...

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.netindex.php?id131 Equivalent URI:...

  19. Dept. of Applied Physics and Applied Math, Columbia University. NY, NY 10027. 212-854-4496 Web-site: http://depts.washington.edu/ufa/home.html

    E-Print Network [OSTI]

    Dept. of Applied Physics and Applied Math, Columbia University. NY, NY 10027. 212-854-4496 Web-site: http://depts.washington.edu/ufa/home.html 16 February 2006 Fusion Energy Science Research: Burning

  20. Digital palettes : assessing cultural and industry specific color usage in website design

    E-Print Network [OSTI]

    Tang, Annie Yue

    2014-01-01

    It is without a doubt that color is one of the most important and distinctive features of any physical or digital product. With the expansion of the world wide web and increasingly new digital media and online technologies, ...

  1. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...

  2. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  3. Materials Science & Technology, MST: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for new technologies and specialized hardware; and Providing user-based materials characterization capabilities. MST Groups overview Metallurgy (MST-6) foamvoids Polymers...

  4. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  5. Technology Assessment

    Office of Environmental Management (EM)

    capabilities that are energy efficient, low environmental impact 72 and lower cost and that are employed to manufacture technologies and products for clean energy 73...

  6. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  7. New SBIR All-in-One Web Tool Helps Small Businesses Navigate Nine Websites

    Broader source: Energy.gov [DOE]

    To help small businesses save time, the Energy Department’s Office of Energy and Efficiency and Renewable Energy (EERE) launched a new interactive all-in-one online tool that makes it easier to apply for EERE’s Small Business Innovation Research (SBIR) and Technology Transfer (STTR) programs. SBIR/STTR provide funding to small businesses, with a focus on minority- and woman-owned small businesses, to develop and commercialize clean energy technologies that cut carbon pollution and drive the economy forward.

  8. Proceedings of Student Research Day, CSIS, Pace University, May 9th, 2003 Rockefeller State Park Website

    E-Print Network [OSTI]

    Tappert, Charles

    experience engaging and interactive. ArcView provides GIS data about various geographical and geological is characterized by variety of habitats and activities, many people other than the local ones do not know it and more visitors to the park. This source provides historical, geographical, geological and botanical

  9. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  10. sustainable technologies

    E-Print Network [OSTI]

    Zhang, Junshan

    : · realize continuous improvements in performance (efficiency), cost and manufacturability of PV technologies, transformative PV technologies that circumvent cost/performance trade-offs and maintain compatibility with P the growing demand for energy. Photovoltaics (PV) leverages one of the 20th century's greatest scientific

  11. summer term 2013 updates on our website: www.unicat.tu-berlin.de page 1 / 1

    E-Print Network [OSTI]

    Nabben, Reinhard

    chemistry of divalent lanthanide and trivalent uranium complexes be catalytic ? Some insights from theory ­ Lecture Hall C 264, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Department of Chemistry, C Building of Organic Chemistry, Institute for Biological Interfaces (IBG2), Karlsruher Institute of Technology (KIT

  12. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    SciTech Connect (OSTI)

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  13. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  14. INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY

    E-Print Network [OSTI]

    Columbia University

    1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) ­ Will guarantee performance and Operation and Maintenance ­ Serves solid waste

  15. ENERGY STAR, EnerGuide and R-2000 Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformation ECr TechnologiesEERE

  16. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  17. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive...

  18. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving...

  19. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  20. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  1. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

  2. Arizona State Land Department Rights-of-Way Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaArise TechnologiesEnergy

  3. E-print Network Website Policies and Important Links -- Energy, science,

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01TechnicalScientific andScientificDOE Data IDand technology for

  4. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  5. REVIEW OF CURRENT PRACTICE IN CHARACTERIZATION AND MONITORING

    SciTech Connect (OSTI)

    M.A.Ebadian, Ph.D.

    2001-01-01

    Characterization and monitoring are important parts of environmental remediation of contaminated sites by the Department of Energy--Office of Environmental Management (DOE-EM). The actual remediation process often cannot begin or even be planned until characterization is complete. Monitoring is essential to verify the progress of remediation and of the waste stream. However, some contaminated sites are difficult, costly, or have a high exposure risk to personnel to characterize or monitor using the baseline technology or current practice. Therefore, development of new characterization and monitoring technologies is time-critical to remediate these sites. The main task of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to develop and deploy innovative characterization and monitoring technologies that improve performance and reduce personnel exposure, cost, and detection limits. However, to evaluate different proposals for new technologies to decide which ones to develop or deploy, it is necessary to compare their cost and performance to the baseline technology. The goal of this project is to facilitate the direct comparison of new technologies to the baseline technology by documenting the current practices for site characterization and monitoring at DOE sites and by presenting the information in an easy-to-use, concise database. The database will assist the CMST-CP and others in evaluating or designing new technologies by identifying the baseline technologies and describing their performance and cost. The purpose of this document is to report on the completion of this project and to describe the database. Section 2.0 describes the data assessment methodology. Section 3.0 presents the database and serves as a user manual. Section 4.0 lists the references used for each baseline technology in the database. The full references can be found in the Appendix.

  6. Engineering &Technology

    E-Print Network [OSTI]

    Southampton, University of

    Software Technologies Deloitte Dialog Semiconductor ECM Selection EDT-Year in Industry EMC Corporation to join our organisation and be based in our Ferndown, Dorset, location within our product electronics have application, design and manufacturing facilities in Canada, America, Europe and China. We

  7. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  8. Pyroprocessing Technologies

    E-Print Network [OSTI]

    Kemner, Ken

    of pyrochemical processes for the recycle of oxide, carbide and other advanced fuels and laid the foundationPyroprocessing Technologies RECYCLING USED NUCLEAR FUEL FOR A SUSTAINABLE ENERGY FUTURE #12;32 Storing Used Nuclear Fuel is a Real Waste Nuclear power is the most environmentally friendly way

  9. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  10. SA3654 Component characterization. Final report

    SciTech Connect (OSTI)

    Meir, G.W.

    1996-06-01

    AlliedSignal Inc., Federal Manufacturing & Technologies (FM&T), was provided with production capability assurance program (PCAP) funding to develop, characterize, and qualify purchased product components for use on the PRESS-A program. The SA3654, N-Channel, Power MOSFET was identified as a component needing such activity to support PRESS-A. This report presents the characterization activities and results for the SA3654.

  11. Vacuum Technology

    SciTech Connect (OSTI)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  12. MRS Website -Home Page http://www.mrs.org/s_mrs/index.asp 1 of 1 01/23/2006 10:44 AM

    E-Print Network [OSTI]

    Lin, Xi

    MRS Website - Home Page http://www.mrs.org/s_mrs/index.asp 1 of 1 01/23/2006 10:44 AM Meetings View Cart Polymer Actuator A conducting polymer can be actuated by shining a light of a specific exposure. The effect of light is to create positive charges (red) in a localized area which enhance

  13. 1. Go to Website: https://portal.cms.gov/wps/portal/unauthportal/home/ 2. Click on New User Registration on the right side of the screen

    E-Print Network [OSTI]

    Chapman, Michael S.

    1. Go to Website: https://portal.cms.gov/wps/portal/unauthportal/home/ 2. Click on New User click link in #1 above) and login to the portal 2. Select "Request Access Now" 3. Select "Request New screen. 7. Logout and then log back in to the portal. https://portal.cms.gov/wps/portal

  14. This paper has been downloaded from the website of the Building and Environmental Thermal Systems Research Group at Oklahoma State University

    E-Print Network [OSTI]

    utilized cooling load calculation methods or energy analysis procedures. For these, practitioners are leftThis paper has been downloaded from the website of the Building and Environmental Thermal Systems is feasible using numerical methods, only one-dimensional analyses are commonly integrated into building

  15. TGS COMMONS RESERVATION FORM Please review the policies, access and regulations posted on The Graduate School website before you complete this

    E-Print Network [OSTI]

    TGS COMMONS RESERVATION FORM Please review the policies, access and regulations posted on The Graduate School website before you complete this form (http://www.tgs.northwestern.edu/graduate-life/commons/). It must be returned with a signed policies and regulations form to The Graduate School (tgs

  16. Survey respondents were asked what information on the CDM website they--as CDM students --found most relevant. Out of 257 respondents, the top four response

    E-Print Network [OSTI]

    Miller, Craig

    CDM Survey Results Survey respondents were asked what information on the CDM website they-- as CDM Information, Degree Information, Faculty Information and Schedule. The category Course Information was mentioned 122 times. The category Course Information also included responses that mentioned the words "class

  17. Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 5th Weather Station Website for Pace University Environmental Center

    E-Print Network [OSTI]

    Tappert, Charles

    weather table currently on the web server using a Data Transformation Service (DTS) job. A SQL Agent job by students in the Spring of 2005. The website gathered data using a comma-delimited file produced by Weather and sunset [2] while predictions of weather were completely based on observation. It was not until

  18. New Part 1904 reporting requirements effective January 1 Reports of severe injuries or illnesses will be made public on OSHA's website

    E-Print Network [OSTI]

    Stuart, Steven J.

    New Part 1904 reporting requirements effective January 1 Reports of severe injuries or illnesses will be made public on OSHA's website Posted January 1, 2015 OSHA's final rule revising the reporting on January 1, 2015. Under the revised rule, all employers must report: All work-related fatalities within 8

  19. Accessing Journal Article from Libraries Website The majority of the e-reserve journal articles are available in print or via library subscription databases.

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Accessing Journal Article from Libraries Website The majority of the e-reserve journal articles are available in print or via library subscription databases. Students will need the journal article citation (located on the Library A-Z list); enter DOI and click on `Look Up.' Option #2 Click on the Journals & e

  20. School of Maths Graduation Information 2015 The main ceremonies website is http://www.leeds.ac.uk/graduation/. This site also has lots of other

    E-Print Network [OSTI]

    Haase, Markus

    School of Maths Graduation Information 2015 The main ceremonies website is http://www.leeds on 14th of July 2015 at 9:30am. #12;Checklist ­ Before your graduation day 3 Refer to http://www.leeds Payment ÝView Account Summary, and also the Library: https://wam.leeds.ac.uk/patroninfo). 3 Check

  1. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  2. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    SciTech Connect (OSTI)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  3. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  4. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  5. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  6. Quality Website Templates Build a professional website.

    E-Print Network [OSTI]

    Gosselin, Frédéric

    , it would take them a bit longer to recognize the image as a battery," Gibson says. The researchers employed identify a AA battery from the side profile. But, let's say the person could see the same battery only from; from the bottom, the corners of the battery now are not visible and information about the corners

  7. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  8. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006–2014

    SciTech Connect (OSTI)

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  9. Portal Technology

    E-Print Network [OSTI]

    Warner, Beth Forrest

    2002-03-27

    Portal Technology Beth Forrest Warner Director, KU Digital Library Initiatives bwarner@ku.edu PUAD 839 March 27, 2002 Defining the issue… Today’s government agencies at all levels should note that the citizens they serve are “little concerned... their citizens’ perspectives. Instead of launching online services on a department-by-department basis, they are aggregating services across departments, accessible through a common portal.” (Janet Caldow, “The Quest for Electronic Government: A Defining...

  10. Emerging technologies

    SciTech Connect (OSTI)

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  11. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  12. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  13. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  14. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  15. Characterization of New Cathode Materials using Synchrotron-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

  16. Characterization of Nb?Sn superconducting strand under pure bending

    E-Print Network [OSTI]

    Harris, David L., S.M. Massachusetts Institute of Technology

    2005-01-01

    Characterizing the strain-dependent behavior of technological Nb?Sn superconducting strand has been an important subject of research for the past 25 years. Most of the effort has focused on understanding the uniaxial tension ...

  17. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01

    its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged

  18. Information Technology and Libraries

    E-Print Network [OSTI]

    Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

    2011-01-01

    Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). ”Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |

  19. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  20. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and Fuels VehiclesTechnologies

  1. Hierarchical Characterization and Generation of Blogosphere Workloads

    E-Print Network [OSTI]

    to a subject of general interest (e.g., politics, sports, and technology, etc.), many blogs have a more, which comprises a rich interconnected web of blog postings and comments by an increas­ ingly prominent#erent levels. The user view characterizes how individual users interact with blogosphere objects (blogs

  2. Hierarchical Characterization and Generation of Blogosphere Workloads

    E-Print Network [OSTI]

    to a subject of general interest (e.g., politics, sports, and technology, etc.), many blogs have a more, which comprises a rich interconnected web of blog postings and comments by an increas- ingly prominent different levels. The user view characterizes how individual users interact with blogosphere objects (blogs

  3. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  4. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce...

  5. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Technology Transfer" award from the Federal Laboratory Consortium. Application of this technology reduces the costs and energy associated with more conventional scrubbing...

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    SciTech Connect (OSTI)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  8. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  9. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  10. Technology Support Bob Davis

    E-Print Network [OSTI]

    Technology Support Services · Bob Davis · Associate Director User Support Services 1 #12;Technology Support Services · NUIT Technology Support Services (TSS) helps Northwestern faculty, staff, and students Technologies · Brian Nielsen · Project Manager Faculty Initiatives 8 #12;Support for Teaching & Learning

  11. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated AcrossSolarTechnology

  12. Technologies de base Architectures

    E-Print Network [OSTI]

    Grigoras, .Romulus

    Technologies de base Architectures Cinquième partie Technologies Web Intergiciels et applications communicantes 1 / 38 #12;Technologies de base Architectures Client-serveur HTTP Présentation Plan 1 Technologies Contenu dynamique 2-tier 3-tier V ­ Technologies Web 2 / 38 #12;Technologies de base Architectures Client

  13. TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer

    E-Print Network [OSTI]

    Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements for such intellectual property with companies for commercial applications of ORNL-developed technologies. Such licenses

  14. APPROPRIATE HOME TECHNOLOGY: Depending on Dependable Technology

    E-Print Network [OSTI]

    Sommerville, Ian

    penetrate more and more into people's everyday lives and homes, the `design problem' is not so muchAPPROPRIATE HOME TECHNOLOGY: Depending on Dependable Technology Systems Guy Dewsbury, Karen Clarke 2002 #12;Dewsbury et al (2002): Appropriate Home Technology APPROPRIATE HOME TECHNOLOGY: Depending

  15. Department Name Degrees Phone Email Website Aerospace Engineering MS, PhD 303-492-6416 aerograd@colorado.edu http://www.colorado.edu/aerospace

    E-Print Network [OSTI]

    Mulligan, Jane

    Department Name Degrees Phone Email Website Aerospace Engineering MS, PhD 303-492-6416 aerograd@colorado.edu http://www.colorado.edu/aerospace Anthropology MA, PhD 303-492-7947 anthro@colorado.edu http://www.colorado.edu/anthropology Applied Mathematics MS, PhD 303-492-1238 amgradco@colorado.edu http://amath.colorado.edu Art and Art

  16. The Libraries' website is a gateway to locating articles of all types (journal, magazine, newspaper) via the online databases we subscribe to. From Blackboard, click "Library" tab, you will find Online Library Tutorials

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    the library homepage (http://library.binghamton.edu/) and type your search term to get a start. This "one______________________________________________________________________________________________________________________ The Libraries' website is a gateway to locating articles of all types (journal, magazine, newspaper) via the online

  17. This form is downloadable from CEE Student Resources website: http://www.ce.washington.edu/students/undergrad.html H: Advising/Sr Yr Plan Sheet Rev.4/26/2012

    E-Print Network [OSTI]

    Eberhard, Marc O.

    This form is downloadable from CEE Student Resources website: http://www.ce.washington.edu/students/undergrad.html for the following year will be available online at www.ce.washington.edu/students/timeschedule.html. After meeting

  18. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  19. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel Anaerobic Digestion Heat X Y Power X Y Biogas production via cracking of fats, oil, and grease X 1. This effort included the characterization of the status of crops and crop production technologies

  20. Coal slurry combustion and technology. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  1. HOME TRENDS/ISSUES LOGISTICS MANUFACTURING SOURCING REVERSE SUPPLY CHAIN GOVT/REGULATORY RESOURCES SCDIGEST WEBSITE The Green Supply

    E-Print Network [OSTI]

    HOME TRENDS/ISSUES LOGISTICS MANUFACTURING SOURCING REVERSE SUPPLY CHAIN GOVT/REGULATORY RESOURCES. It is definitely a technology global logistics managers should keep an eye on. Is there a market need for this kind

  2. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  3. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  4. CHARACTERIZATION Volume 1: Report

    E-Print Network [OSTI]

    #12;EFFLUENT CHARACTERIZATION STUDY Volume 1: Report for FRASER RIVER ESTUARY MANAGEMENT PROGRAM Report No.: F07201RP.J11 #12;EFFLUENT CHARACTERIZATION STUDY i PREFACE The Fraser River Estuary Resource Inc. (TRI) was contracted to characterize the effluent from eleven industrial sites. Mc

  5. Technology Application Centers: Facilitating Technology Transfer 

    E-Print Network [OSTI]

    Kuhel, G. J.

    1994-01-01

    Industrial DSM programs cannot succeed unless customers learn about and implement new technologies in a timely manner. Why? Because this expeditious transfer of new technologies represents the key challenge for the 1990s. This paper explores...

  6. LANL >> GFP Website >> Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a protein are soluble Evaluate how a protein interacts with other proteins (protein-protein interaction) Reveal the effect of a small molecule on the protein's folding...

  7. CAHNRS Alumni & Friends website

    E-Print Network [OSTI]

    Collins, Gary S.

    , textiles scientist and AMDT chair Karen Leonas is leading a project to develop a biodegradable fabric mulch to replace the expensive, petroleum-based black plastic that so many specialty crop grow- ers currently use

  8. overview_forWebsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named|Got Solitons? SUpdated: 04/20/10 Chief Financial

  9. ARM - Website Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow,ProductstoacessProductsrlprofrlprofmerge1turnPlainsVisiting

  10. Visit our website

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A CountyFeet) Cooley Policies GARRMissiongov

  11. Fermilab | Website Edits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) | SciTechSubmitted MoreTraffic Safety

  12. Websites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWave Energy Prize

  13. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  14. Complete Characterization of Quantum-Optical Processes

    E-Print Network [OSTI]

    Mirko Lobino; Dmitry Korystov; Connor Kupchak; Eden Figueroa; Barry C. Sanders; A. I. Lvovsky

    2008-11-17

    The technologies of quantum information and quantum control are rapidly improving, but full exploitation of their capabilities requires complete characterization and assessment of processes that occur within quantum devices. We present a method for characterizing, with arbitrarily high accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on a set of coherent states, i.e. classical fields produced by common laser sources. We demonstrate the capability of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.

  15. Updated U.S. Geothermal Supply Characterization

    SciTech Connect (OSTI)

    Petty, S.; Porro, G.

    2007-03-01

    This paper documents the approach taken to characterize and represent an updated assessment of U.S. geothermal supply for use in forecasting the penetration of geothermal electrical generation in the National Energy Modeling System (NEMS). This work is motivated by several factors: The supply characterization used as the basis of several recent U.S. Department of Energy (DOE) forecasts of geothermal capacity is outdated; additional geothermal resource assessments have been published; and a new costing tool that incorporates current technology, engineering practices, and associated costs has been released.

  16. Characterization Theorems by Generalized Indiscernibles

    E-Print Network [OSTI]

    Scow, Lynn Cho

    2010-01-01

    5.2 Characterization of NIP T . . . . . . . . .Property 3.3.1 Characterization: sufficiency . . . . .3.3.2 Characterization: necessity . . . . . . 4 Trees 4.1

  17. Empirical Characterization of Camera Noise

    E-Print Network [OSTI]

    Manduchi, Roberto; Baumgartner, Jeremy; Hinsche, Markus

    2013-01-01

    Empirical Characterization of Camera Noise JeremyAbstract. Noise characterization is important for severalprocedure produces a characterization of camera noise as a

  18. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01

    study of architecture through references to “Technology andhis new “Architecture for Man” that combines technology withArchitecture and Minarc Architects, two contemporary designers that are pushing prefab technologies

  19. Adoption of New Technology

    E-Print Network [OSTI]

    Hall, Bronwyn H.; Khan, Beethika

    2003-01-01

    Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.affect whether or not new technologies are successful, the

  20. Technology & Engineering Division

    E-Print Network [OSTI]

    Technology & Engineering Division High-Temperature Superconducting Magnets for Fusion: New & Engineering Division Contents · Background on Superconductivity · Fusion Magnets ­ Present and Future ­ Vision/15/2014 2Joseph V. Minervini #12;Technology & Engineering Division Superconductivity #12;Technology

  1. Adoption of New Technology

    E-Print Network [OSTI]

    Hall, Bronwyn H.; Khan, Beethika

    2003-01-01

    Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.the Diffusion of New Technology in the Banking Industry. ”

  2. Separation science and technology

    SciTech Connect (OSTI)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  3. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect (OSTI)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  4. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  5. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  6. Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    of management decisions by identifying key technologies that have been demonstrated to work or by highlighting immature or unproven technologies that might result in increased...

  7. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  8. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use...

  9. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  10. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  11. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge...

  12. Essays on University Technology Management

    E-Print Network [OSTI]

    Drivas, Kyriakos

    2011-01-01

    of university technology management and their implicationson University Technology Management by Kyriakos Drivas Aon University Technology Management by Kyriakos Drivas

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  14. Technology Licensing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License ORNL Technologies Licensing Guidelines NDA(s) and MTA(s) Sample Agreements Technology Innovation Program Technology Assistance Program Licensing Staff Technology Search...

  15. Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Faculty Center Verification & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718

  16. Development of Hydrologic Characterization Technology of Fault Zones

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2009-01-01

    was provided by the Nuclear waste Management Organization of1 Introduction The Nuclear Waste Management Organization of51-68. Swedish Nuclear Fuel and Waste Management Co. , 2005,

  17. Development of Characterization Technology for Fault Zone Hydrology

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2010-01-01

    USA Junichi Goto Nuclear Waste Management Organization ofUSA Tadashi Miwa Nuclear Waste Management Organization ofHiroyuki Tsuchi Nuclear Waste Management Organization of

  18. Technology Characterization Models and Their Use in Designing Complex Systems 

    E-Print Network [OSTI]

    Parker, Robert Reed

    2011-08-08

    ............................................................................................................... 17 2.1 Parameterized Pareto dominance ................................................................... 17 2.2 Support vector domain description ................................................................. 18 2.3 Interpolation... ........................................................................................ 23 3.1 Support vector domain description (SVDD) .................................................. 24 3.2 Interpolation on efficient set ........................................................................... 26 3.3 Parameterized Pareto...

  19. Harnessing glycomics technologies: Integrating structure with function for glycan characterization

    E-Print Network [OSTI]

    Robinson, Luke N.

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecule which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In ...

  20. Synthesis, Characterization, and Integration of Silicon Nanowires for Nanosystems Technology

    E-Print Network [OSTI]

    Doerk, Gregory Stephen

    2010-01-01

    Total migration length dependence on primary NW diameter.seeded by Au migration of the primary NW catalyst. Chapter 3on AuSi surface migration from the primary NW tip under

  1. Pump and Fan Technology Characterization and R&D Assessment ...

    Office of Environmental Management (EM)

    Standard for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment; Notice of Proposed Rulemaking and Public Meeting Motor...

  2. RadBall Technology For Hot Cell Characterization

    Broader source: Energy.gov [DOE]

    A new, non-electrical, remote radiation mapping device known as RadBall has been developed by the National Nuclear Laboratory (NNL) in the United Kingdom.

  3. Hydrogeologic characterization report for the Rocky Flats environmental technology site

    SciTech Connect (OSTI)

    Reeder, D.C.; Burcar, S.; Smith, R.

    1996-12-31

    The Denver groundwater basin encompasses approximately 6,700 square miles, extending east from the Front Range of the Rocky Mountains. This structural basin contains four Cretaceous bedrock aquifers overlain by a regional Quaternary alluvial aquifer. The Rocky Flats Site is located on the northwest margin of the basin. The shallow groundwater system at the Rocky Flats Site is divided into upper and lower hydrostratigraphic units (UHSU and LHSU, respectively). The UHSU at the Rocky Flats site comprises Quaternary alluvium, colluvium, valley-fill alluvium, artificial fill, weathered bedrock of the undifferentiated Arapahoe and Laramie formations and all sandstones that are hydraulically connected with overlying surficial groundwater. The LHSU comprises unweathered claystone with interbedded siltstones and sandstones of the undifferentiated Arapahoe and Laramie formations. The contact separating the UHSU and LHSU is identified as the base of the weathered zone. The separation of hydrostratigraphic units is supported by the contrasting permeabilities of the units comprising the UHSU and LHSU, well hydrograph data indicating that the units respond differently to seasonal recharge events, and geochemical data reflecting distinct major ion chemistries in the groundwaters of the UHSU and LHSU. Surface-water/groundwater interactions at the Rocky Flats site generally respond to seasonal fluctuations in precipitation, recharge, groundwater storage, and stream and ditch flow. Effluent conditions are dominant in the spring along western stream segments and influent conditions are common in the late summer and fall along most stream reaches.

  4. Oil & Natural Gas Technology Temporal Characterization of Hydrates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    controlled by both deep and near- surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures,...

  5. Field-Based Site Characterization Technologies Short Course ...

    Office of Environmental Management (EM)

    U.S. EPA Superfund Remedial Program's Approach for Risk Harmonization when addressing Chemical and Radioactive Contamination Stuart Walker U.S. Environmental Protection Agency...

  6. Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|BilayerBiomimeticBooks Are Fun book fairContamination

  7. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs | DepartmentDepartmentChallenge #March389Department of

  8. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs | DepartmentDepartmentChallenge #March389Department

  9. Characterization Of Geothermal Resources Using New Geophysical Technology |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient HolesCentral,Chandler HillsOpen Energy

  10. Sandia Energy - Characterizing Scaled Wind Farm Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia CRADA OpensInflow

  11. Supplemental report to Congress on Emerging Clean Coal Technologies

    SciTech Connect (OSTI)

    Not Available

    1985-08-01

    On May 1, 1985, the Secretary of Energy submitted a Report to Congress on Emerging Clean Coal Technologies which in part assessed the usefulness of the emerging coal technologies under development by DOE. On May 8, 1985 in testimony before the House Committee on Science and Technology Subcommittee on Energy Development and Applications, the Department of Energy committed to a follow-on report aimed at further characterizing these emerging clean coal technologies. This report has been prepared in response to that commitment. The characterizations consist of an evaluation of the technologies against four measures including environmental performance, technical maturity, applicability, and cost effectiveness. The technology categories addressed in this report are those encompassed by the previous Report to Congress. In some technology categories, more than one individual technology is assessed. In turn, each technology may encompass several different processes. In addition, most of the technologies are, in fact, subsystems in various large energy systems. Generally, the clean coal technologies can be divided into three broad groups according to primary function: fuel production, energy production, and environmental emissions reduction. Fuel production technologies convert coal into a more useful form such as fuel gas, hydrocarbon liquids, or coal-water mixtures. Energy production technologies convert coal into electric power and/or steam for industrial process use. Environmental emission-reducing technologies mitigate the emissions of SO/sub x/, NO/sub x/, and particulate emissions caused by, for example, coal burning in a boiler. The descriptions and ratings of technologies in this report against various appropriate measures will allow the reader to gain a sense for the relative performance of each technology for each evaluation measure.

  12. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    SciTech Connect (OSTI)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  13. Company Name Company Website Area of Expertise AMEC Environment & Infrastructure www.amec.com Environmental consulting and engineering

    E-Print Network [OSTI]

    Eberhard, Marc O.

    .amec.com Environmental consulting and engineering American Construction Company www.americanconstco.com Construction.brownandcaldwell.com Environmental Engineering Catena Consulting Engineers www.catenaengineers.com Structural Engineering CEE Science and Technology Golder Associates www.golder.com Environmental/Civil/Geotech Engineering Services

  14. Akhil Mathur Contact E-mail: akhilmathurs@gmail.com Website: http://www.dgp.toronto.edu/akhil

    E-Print Network [OSTI]

    Toronto, University of

    ) [P3] Kam M., Agarwal A., Kumar A., Lal S., Mathur A., Tewari A., Canny J. Designing E-Learning Games on Designing Interactive Systems (DIS '08) [P2] Kam M., Bhagwani S., Kumar A., Lal S., Mathur A., Tewari A and Communication Technologies and Development (ICTD '07) [P1] Tewari A., Kumar A., Mathur A., Lal S., Kam M., Canny

  15. TOKYO INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    TOKYO INSTITUTE OF TECHNOLOGY 2005 TOKYO INSTITUTE OF TECHNOLOGY 152-8550 2 12 1 E3-3 2005 8 TEL. 03 5734 2975 URL. http://www.titech.ac.jp/ PROFILE #12;TOKYO INSTITUTE OF TECHNOLOGY 0201 CONTENTS 03 06 06 08 09 10 15 17 25 31 33 37 41 0201 #12;TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE

  16. Predictive Maintenance Technologies

    Broader source: Energy.gov [DOE]

    Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

  17. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  18. Northwest Regional Technology Center

    E-Print Network [OSTI]

    management and public safety professionals to define and prioritize technology needs. Coordinate and leadNorthwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate

  19. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY

  20. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  1. GLOVEBOX GLOVE CHARACTERIZATION SUMMARY

    SciTech Connect (OSTI)

    Korinko, P.

    2012-05-14

    A task was undertaken to determine primarily the permeation behavior of various glove compounds from four manufacturers. As part of the basic characterization task, the opportunity to obtain additional mechanical and thermal properties presented itself. Consequently, a total of fifteen gloves were characterized for permeation, Thermogravimetric Analysis, Puncture Resistance, Tensile Properties and Dynamic Mechanical Analysis. Detailed reports were written for each characterization technique used. This report contains the summary of the results.

  2. ORISE: Characterization surveys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objective characterization surveys to define the extent of radiological contamination at sites scheduled for decontamination and decommissioning (D&D). A fundamental...

  3. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  4. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  5. High-speed SiGe BiCMOS technologies for Ethernet communications

    E-Print Network [OSTI]

    Weinreb, Sander

    High-speed SiGe BiCMOS technologies for Ethernet communications from 10Gb/s to 100Gb/s Pascal Characterization, Modeling, Design, ... involved in the development of High-Speed BiCMOS technologies Thanks-offs 43 · Reliability 46 Technology of high-speed HBTs · Architectures 50 · Competitors 66 · Device

  6. Technological problems associated with subsea development of high pressure and high temperature hydrocarbon reservoirs

    SciTech Connect (OSTI)

    Grillo, P.; Natarajan, S.

    1996-12-31

    The paper analyzes the implications in design of subsea completion for exploitation of HP/HT hydrocarbon reservoirs. The paper characterizes limitations associated with current subsea technology for HP/HT applications and outlines the engineering and technological development considered necessary to demonstrate the viability of subsea production technology for the exploitation of HP/HT reservoirs.

  7. FY 1992 Measurements and Characterization Branch annual report

    SciTech Connect (OSTI)

    Dippo, P.C

    1993-03-01

    The Measurements and Characterization Branch actively supports the advancement of DOE/NREL goals for the development and implementation of the solar photovoltaic (PV) technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility that Is capable of providing information on the full range of PV components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of Pv technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. The Measurements and Characterization Branch encompasses seven coordinated research groups, providing integrated research and development that covers all aspects of photovoltaic materials/devices characterization.

  8. Companies List Career Connection November 2014 No CompanyName Website MajorSeek TypeOfApp Citizen Degreelevel

    E-Print Network [OSTI]

    Heller, Barbara

    ://www.excelitas.com MFG, ME FT US BS 36 Sterling Engineering http://www.sterling- engineering.com CE, CIS, CS, EE, ITM, ME://admiralheating.com CM FT, PT, FTC, FTI PR BS 11 Terra Engineering LTD. http://www.terraengineering.com CE FT, PT, FTC Engineering Inc. http://www.patrickengineering.co m/ EE FT US, PR BS 18 Ageatia Technology http

  9. Assessing Software Engineering Technology Transfer

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    , and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

  10. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  11. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  12. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    SciTech Connect (OSTI)

    Evans, Meredydd; Runci, Paul; Meier, Alan

    2008-08-01

    This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

  13. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  14. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

  15. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    SciTech Connect (OSTI)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.

  16. Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

  17. NREL Develops OpenEI.org, a Public Website Where Energy Data can be Generated, Shared, and Compared (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    The National Renewable Energy Laboratory (NREL) has developed OpenEI.org, a public, open, data-sharing platform where consumers, analysts, industry experts, and energy decision makers can go to boost their energy IQs, search for energy data, share data, and get access to energy applications. The free site blends elements of social media, linked open-data practices, and MediaWiki-based technology to build a collaborative environment for creating and sharing energy data with the world. The result is a powerful platform that is helping government and industry leaders around the world define policy options, make informed investment decisions, and create new businesses.

  18. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  19. Massachusetts Institute of Technology

    E-Print Network [OSTI]

    ChemE Massachusetts Institute of Technology Department of Chemical Engineering Undergraduate technology, chemical engineers play a role in almost every industry and they collaborate with all types, creating and improving pharmaceuticals, fuels, polymers, plastics, cosmetics, cereals and more." Klavs

  20. SIMULATING EVOLUTION OF TECHNOLOGY

    E-Print Network [OSTI]

    SIMULATING EVOLUTION OF TECHNOLOGY: AN AID TO ENERGY POLICY ANALYSIS A CASE STUDY OF STRATEGIES Approval Name: John Nyboer Degree: Doctor of Philosophy Title of Thesis: Simulating Evolution of Technology

  1. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  2. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  3. Utilities Inspection Technologies 

    E-Print Network [OSTI]

    Messock, R. K.

    1993-01-01

    Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been...

  4. Technology Business Incubation Programme

    E-Print Network [OSTI]

    1 Technology Business Incubation Programme Ms. Kimmie Wong Assistant Manager Incubation Admission and organization. Industry Technology Biotechnology Clusters IT & Telecomm. Pharmaceutical Precision Engg. Chinese Lab Premises Technical Support Facilities Technical and Management Assistance Management and Technical

  5. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  6. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  8. States & Emerging Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  9. Technology in water conservation 

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01

    ?? percent to ?? percent. Water reuse systems treat wastewater by various technologies including ?ltering, bioremediation and ozone exposure. ?ese technologies can involve billions of gallons of wastewater ? such as in a municipal recycling e... Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a behavioral exercise and urge...

  10. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  11. Do New Technologies Matter?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out a few stories of companies who have taken a breakthrough energy technology and run with it.

  12. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Energy Savers [EERE]

    (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

  14. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...

  15. EM Engineering & Technology Roadmap and Major Technology Demonstration...

    Office of Environmental Management (EM)

    Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction Progress made in EM cleanup...

  16. Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report The Fuel & Lubricant...

  17. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01

    Policy Brief No. 4 September 2010 Does Doctrine DriveTechnology or Does Technology Drive Doctrine? Dennis Blaskoone way. However, technology does not determine strat- egy.

  18. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  19. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    OSU Project(s) where this technology is utilized *MHK ProjectsOSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point...

  20. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...