National Library of Energy BETA

Sample records for technology characterizations resource

  1. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect (OSTI)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  3. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  4. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  5. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  6. Information technology resources assessment

    SciTech Connect (OSTI)

    Loken, S.C.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  7. Unconventional Resources Technology Advisory Committee | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE ...

  8. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  9. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  10. General Renewable Energy Technology Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Renewable Energy Technology Resources General Renewable Energy Technology Resources Below are general resources for Tribes on renewable energy technologies. Developing ...

  11. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  12. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  13. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  14. Unconventional Resources Technology Advisory Committee

    Energy Savers [EERE]

    1 Unconventional Resources Technology Advisory Committee Comments and Recommendations 2014 Annual Plan November 2013 Attachment 3 2 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................3 2.0 EXECUTIVE SUMMARY AND RECOMMENDATION HIGHLIGHTS .................5 3.0 TOPICAL REPORTS .......................................................................................................7 3.1 POLICY FINDINGS AND

  15. Unconventional Resources Technology Advisory Committee

    Energy Savers [EERE]

    1 Unconventional Resources Technology Advisory Committee Comments and Recommendations 2014 Annual Plan December 2013 2 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................3 2.0 EXECUTIVE SUMMARY AND RECOMMENDATION HIGHLIGHTS .................5 3.0 TOPICAL REPORTS .......................................................................................................7 3.1 POLICY FINDINGS AND

  16. Unconventional Resources Technology Advisory Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of

  17. Fuel Cell Technologies Office Information Resources | Department...

    Energy Savers [EERE]

    Information Resources Fuel Cell Technologies Office Information Resources Learn about hydrogen and fuel cells, find publications and technical information, view and download...

  18. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  19. U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization

    SciTech Connect (OSTI)

    Schreck, S.; Lundquist, J.; Shaw, W.

    2008-06-01

    This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

  20. NREL: Geothermal Technologies - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include geothermal resource maps, models and tools, and photos used and produced by NREL. These resources are available for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help industry, policymakers, and researchers evaluate the number, location, and possibilities for geothermal resources throughout the United States. View

  1. NREL: Water Power Research - Resource Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Projects The objective of NREL's resource characterization work is to characterize U.S. marine and hydrokinetic energy resources and quantify the amounts of energy that could feasibly be extracted. This information will allow both DOE and various stakeholders to prioritize the level of investment and research by resource type and assess the potential contribution to the U.S. renewable energy portfolio. Examples of NREL's resource characterization activities include: Work with

  2. Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation

    Broader source: Energy.gov [DOE]

    This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

  3. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization; ...

  4. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  5. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  6. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  7. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  8. Challenges and Opportunities of Unconventional Resources Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I

  9. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  10. Specialized Technology Resources Inc STR Holding Inc | Open Energy...

    Open Energy Info (EERE)

    Technology Resources Inc STR Holding Inc Jump to: navigation, search Name: Specialized Technology Resources Inc (STR Holding Inc) Place: Enfield, Connecticut Zip: 6082 Product:...

  11. NREL: Water Power Research - Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Characterization Building on its success in wind resource characterization and assessment, the National Renewable Energy Laboratory (NREL) has extended its capabilities to the field of water power. NREL's team of scientists, engineers and computer experts has broad experience in physical oceanography, meteorology, modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate

  12. Summary of New Generation Technologies and Resources

    SciTech Connect (OSTI)

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  13. Characterizing wind power resource reliability in southern Africa...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Characterizing wind power resource reliability in southern Africa Title: Characterizing wind power resource reliability in southern...

  14. Vehicle Technologies Office: Resources for Sustainability Managers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability Managers Vehicle Technologies Office: Resources for Sustainability Managers Transforming the transportation system requires bringing research from the laboratory out onto the road. Sustainability managers, such as those in local and state governments, private companies, and non-profit organizations, are essential to this effort. The Vehicle Technologies Office supports programs that empower sustainability managers to reduce the use of petroleum in

  15. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  16. Clean Energy Manufacturing Resources - Technology Full-Scale Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  17. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  18. Wind Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Resource Assessment and Characterization Wind Resource Assessment and Characterization A crucial factor in the development, siting, and operation of a wind farm is the ability to assess and characterize available wind resources. The Wind Program supports efforts to accurately define, measure, and forecast the nation's land-based and offshore wind resources. More accurate prediction and measurement of wind speed and direction allow wind farms to supply clean,

  19. Fuel Cell Technologies Office Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Information Resources Fuel Cell Technologies Office Information Resources Learn about hydrogen and fuel cells, find publications and technical information, view and download multimedia, read presentation materials from government leaders and experts, link to organizations advancing hydrogen and fuel cell technology, and find definitions for related terminology. Program publications-Publications describing program plans, annual progress, and national-level roadmaps.

  20. Property:Technology Resource | Open Energy Information

    Open Energy Info (EERE)

    CurrentTidal MHK TechnologiesDeep Water Pipelines + Ocean Thermal Energy Conversion (OTEC) MHK TechnologiesDeltaStream + CurrentTidal MHK TechnologiesDenniss Auld Turbine +...

  1. New Wind Technology Resource Center Launched | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The U.S. Department of Energy (DOE) recently announced the launch of its new, user-friendly online information resources portal, the Wind Technology Resource Center (WTRC). ...

  2. Microearthquake Technology for EGS Fracture Characterization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Microearthquake Technology for EGS Fracture Characterization Microearthquake Technology for EGS Fracture Characterization Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks. PDF icon seismic_foulger_microearthquake.pdf More Documents & Publications Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Newberry EGS

  3. Resources for Information on New and Emerging Technologies

    Broader source: Energy.gov [DOE]

    Presentation covers resources for new and emerging technologies and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  4. Intrepid Technology and Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    specialises in development of biomassbiofuel plants, primarily biogas projects(methane from processing animal waste). References: Intrepid Technology and Resources Inc1...

  5. Vehicle Technologies Office: Resources for Fleet Managers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fleet Managers Vehicle Technologies Office: Resources for Fleet Managers Fleet managers will benefit from the lower fuel costs, more reliable fuel prices, and lower emissions that come from using alternative fuels and advanced technologies made possible through the work of the Vehicle Technologies Office (VTO). VTO provides a variety of resources - including more than 100 Clean Cities coalitions nationwide - to help fleet managers find the right technology that meets their needs. In

  6. Distributed Energy Resources Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-11-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  7. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  8. Articles about Resource Assessment and Characterization | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Assessment and Characterization Articles about Resource Assessment and Characterization RSS Below are stories about resource assessment and characterization featured by the U.S. Department of Energy (DOE) Wind Program. April 11, 2016 Project team members from WFIP 2 meet at the Biglow Canyon Wind Farm, a data-collection site in Sherman County, Oregon. Photo courtesy: Justin Sharp/Vaisala Testing the Wind in the Columbia River Gorge Deep in the heart of the Columbia River

  9. Wave Energy Resource Characterization at US Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Characterization at US Test Sites - Sandia Energy Energy Search Icon Sandia Home ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  10. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect (OSTI)

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  11. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  12. Vehicle Technologies Office: Resources for Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers Vehicle Technologies Office: Resources for Consumers As technologies supported by the Vehicle Technologies Office (VTO) come on to the market, regular drivers will benefit from lower fuel costs and less time spent at the gas station. Through FuelEconomy.gov and the Alternative Fuels Data Center, VTO provides a variety of resources to help drivers choose the most efficient vehicle that meets their needs and get the most out of the vehicle they have now. Green Racing highlights the

  13. Vehicle Technologies Office: Resources for Researchers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Researchers Vehicle Technologies Office: Resources for Researchers The Vehicle Technologies Office conducts research and development across a number of technologies, from combustion engines to batteries for all-electric vehicles. VTO provides financial and non-financial resources to researchers at universities, national laboratories, and private companies. Funding and Tools for Researchers VTO's Funding page lists active financial solicitations related to transportation that are open

  14. Pump and Fan Technology Characterization and R&D Assessment ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump and Fan Technology Characterization and R&D Assessment Pump and Fan Technology Characterization and R&D Assessment This report provides the Building Technologies Office (BTO) ...

  15. DEPARTMENT OF ENERGY CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under Section 999 of the Energy Policy Act of 2005, Publi I No. 109-58, related to unconventional natural gas and other petroleum resources and (B) provide to the ...

  16. High Impact Technology Hub Resources for Evaluators

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following...

  17. Transactions, Technology & Contractor Human Resources | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Panel Technician | Credit: DOE Archives Solar Panel Technician | Credit: DOE Archives Offices of the Deputy General Counsel for Transactions, Technology, & Contractor Human...

  18. Hydropower Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Hydropower Resource Assessment and Characterization Hydropower Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the total technically recoverable energy available in the nation's powered dams, non-powered dams, and untapped stream-reaches. These resource assessments are pivotal to understanding hydropower's potential for future electricity production. Hydropower already provides 6-8% of the nation's electricity, but more potential

  19. Final Technical Report: Characterizing Emerging Technologies.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua; Riley, Daniel; Gonzalez, Sigifredo

    2015-12-01

    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  20. Technology Resources | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Technology Development OE supports a portfolio of technology development and deployment programs that will modernize our Nation's electric delivery system. To be successful, it is essential that key stakeholders be involved in this enterprise, including federal and state government agencies, electric power companies, equipment manufacturers, systems developers, and consumers, and work together toward a shared vision of the future, with full understanding of each other's respective

  1. Innovative Technology Improves Upgrading Process for Unconventional Oil Resources

    Broader source: Energy.gov [DOE]

    An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy-funded project.

  2. Characterization Of Geothermal Resources Using New Geophysical...

    Open Energy Info (EERE)

    in the preparation of the final report submitted to Amp Resources Authors Jerry Montgomery, Roger L. Bowers and Val Kofoed Published GRC, 2005 DOI Not Provided Check for DOI...

  3. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time-series and stage vs. cross-section area rating relationship.

  4. Offshore Wind Resource Characterization Buoy “Open-Hatch” Exposition

    Broader source: Energy.gov [DOE]

    Please join the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy for an “Open-Hatch” as one of the nation’s most advanced offshore wind resource characterization buoys...

  5. High Impact Technology HQ - Resources for Evaluators - General Templates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Templates High Impact Technology HQ - Resources for Evaluators - General Templates The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Templates were developed in collaboration with third party evaluators, the Energy Department, and technology providers as a part of recent demonstration projects. PDF icon GSA Green Proving Ground

  6. High Impact Technology HQ - Resources for Evaluators - General Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Verification Plans | Department of Energy Measurement and Verification Plans High Impact Technology HQ - Resources for Evaluators - General Measurement and Verification Plans The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Plans were developed in collaboration with third party evaluators, the Energy Department and

  7. The directory of US coal and technology export resources

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  8. Characterization, monitoring, and sensor technology catalogue

    SciTech Connect (OSTI)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  9. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect (OSTI)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  10. Expedited site characterization. Innovative technology summary report

    SciTech Connect (OSTI)

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  11. Energy resources and technologies for rural third world countries

    SciTech Connect (OSTI)

    Parate, N.S.

    1983-12-01

    This paper examines the various energy sources, renewable and nonrenewable, in the context of developing and industrialised countries. Particular experiences and technical data are mentioned regarding the United States' experience in this area and the Public Utilities Commissions of various states. The author has gathered various technical information on energy generation and public policies on energy issues while associated with the Public Utility Commission as a staff member and having testified as expert witness in a number of electric energy rate cases in Pennsylvania, North Carolina and West Virginia. This paper surveys the available alternate energy technologies to meet the energe needs at the village level, with particular reference to their application in Pakistan. This paper concludes after analysing the various energy choices as to the resources, policies and energy education development. The author has proposed small workshops at the high school level for students and teachers, based on the same concepts developed by the Department of Energy. Development of advanced research and cooperation in ''renewable energy resources'' through A.I.D. programs is recommended.

  12. RadBall Technology For Hot Cell Characterization

    Office of Environmental Management (EM)

    South Carolina RadBall Technology For Hot Cell Characterization Challenge Operations at ... the extent and distribution of gamma radiation in a given hot cell, glovebox or room. ...

  13. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  14. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  15. Technologies for water resources management: an integrated approach to manage global and regional water resources

    SciTech Connect (OSTI)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the global business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.

  16. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  17. Distributed Energy Technology Characterization (Desiccant Technologies), January 2004

    Broader source: Energy.gov [DOE]

    Desiccant technology and applications, and designing them for utilization of available thermal energy in a combined heat and power (CHP) system.

  18. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Projects | Department of Energy Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014. PDF icon Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  19. Characterization and Development of Advanced Heat Transfer Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_11_kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Air Cooling Technology for Power Electronic Thermal Control

  20. Federal Information Technology Acquisition Reform Act (FITARA) Data Resources

    Broader source: Energy.gov [DOE]

    Contains links to the following data resources: DOE IT Policy Archive, IT Leadership Directory, CIO Governance Board Membership

  1. Preservation technologies; tools for enhanced cultural resource management

    SciTech Connect (OSTI)

    Culbertson, J.D.

    1995-12-01

    Legislation enacted since the mid sixties has defined requirements for cultural resource management. This is an important area of environmental management that has received only limited attention. Cultural resources are integral to environmental systems; they need to be considered in any resource management activities. They also provide important information about long term changes in environmental systems and the effects of human activity.

  2. Characterizing Scaled Wind Farm Technology Facility Inflow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology Facility Inflow - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  3. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid Development of Geothermal Resources (DE-FOA-0000522)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (the Program) presented a webinar on Thursday, June 23, about its newly released funding opportunity announcement (FOA), Geothermal Technology Advancement for Rapid Development of Resources in the United States.

  4. High Impact Technology HQ - Resources for Evaluators - General...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ - Resources for Evaluators - General Measurement and Verification Plans High Impact ... Microsoft Office document icon Advanced Lighting Controls More Documents & Publications ...

  5. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  6. Expert system technology for natural gas resource development

    SciTech Connect (OSTI)

    Munro, R.G.

    1997-12-31

    Materials data are used in all aspects of the development of natural gas resources. Unconventional gas resources require special attention in their development and may benefit from heuristic assessments of the materials data, geological site conditions, and the knowledge base accumulated from previous unconventional site developments. Opportunities for using expert systems in the development of unconventional natural gas resources are discussed. A brief introduction to expert systems is provided in a context that emphasizes the practical nature of their service. The discussion then focuses on the development of unconventional gas reserves. Whenever possible, the likelihood of success in constructing useful expert systems for gas resource development is indicated by comparisons to existing expert systems that perform comparable functions in other industries. Significant opportunities are found for applications to site assessment, the interpretation of well log data, and the monitoring and optimization of gas processing in small-scale recovery operations.

  7. Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contamination - Energy Innovation Portal Geothermal Geothermal Energy Analysis Energy Analysis Find More Like This Return to Search Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and Contamination Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryBore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and

  8. Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Final Technical Report Project Period: October 1, 2012 - January 31, 2015 Submitted by: Carol Blanton Lutken, Leonardo Macelloni, Marco D'Emidio, John Dunbar, Paul Higley August, 2015 DOE Award No.: DE- FE0010141 The University of Mississippi Mississippi Mineral Resources

  9. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  10. High Impact Technology HQ – Resources for Evaluators

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following...

  11. High Impact Technology Hub- Resources for Evaluators- Site Evaluation Checklists

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  12. High Impact Technology HQ- Resources for Evaluators- Site Evaluation Checklists

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  13. High Impact Technology Hub- Resources for Evaluators- General Templates

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Templates were developed in collaboration with third party evaluators, the Energy Department, and technology providers as a part of recent demonstration projects.

  14. Technologies for the new millennium: Photovoltaics as a distributed resource

    SciTech Connect (OSTI)

    Kroposki, B.; DeBlasio, R.

    2000-03-22

    Photovoltaics (PV) is emerging as an important distributed resource. PV gives both the benefits of a distributed resource and a clean power source. Because PV can be installed at both residential and commercial locations, it can be used to reduce peak demand when its output is properly matched with power demand. It can also improve asset utilization by requiring less large capital generation spending and delaying some equipment replacement. With the price of some grid-connected PV systems expected to reach $3/W in the next 5 years, PV will become an economical option for distributed power generation. One of the most important aspects of establishing PV as a distributed resource is standardizing the requirements for grid connection. IEEE Standards Coordinating Committee (SCC) 21 has recently published IEEE Std 929 ''Recommend Practice for Utility Interface of Photovoltaic Systems.'' This recommended practice details power quality, safety, and protection requirements for connection to the utility grid. This paper describes what types of PV systems are available, what the benefits are for PV systems, and what the interconnection issues and solutions are for using PV as a distributed resource.

  15. Human choice and climate change. Volume 2: Resources and technology

    SciTech Connect (OSTI)

    Rayner, S.; Malone, E.L.

    1997-12-31

    Foreward: Preface; Introduction; The natural science of global climate change; Land and water use; Coastal zones and oceans; Energy and industry; Energy and social systems; Technological change; and Sponsoring organizations, International Advisory Board, and project participants.

  16. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  17. Technologies to characterize natural gas emissions tested in field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiments Natural gas emissions tested in field experiments Technologies to characterize natural gas emissions tested in field experiments A new collaborative science program is pioneering the development of ultra-sensitive methane-sensing technology. October 28, 2013 The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production. The Rocky Mountain Oilfield Test Center, RMOTC, which includes a small areas with active oil and gas production.

  18. NREL: Technology Deployment - Resource Maps for Taller Towers Reveal New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Areas for Wind Project Development Resource Maps for Taller Towers Reveal New Areas for Wind Project Development News Mapping the Frontier of New Wind Power Potential Publications Southeastern Wind Coalition fact sheets Southeast Wind Energy Fact Sheet Enabling Wind Power Nationwide Wind Vision: A New Era for Wind Power in the United States Sponsors AWS Truepower Southeastern Wind Coalition Key Partners U.S. Department of Energy Contact Ian Baring-Gould, 303-384-7021 A picture of a tall wind

  19. Recent Wind Resource Characterization Activities at the National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREUCP-440-23095 * UC Category: 1210 Recent Wind Reso Characterization A at the National Ren Energy Labora Dennis L. Elliott Marc N. Schwartz Presented at Windpower '97 Austin,...

  20. High Performance Commercial Buildings Technology Roadmap | Open...

    Open Energy Info (EERE)

    Company Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset...

  1. Scrap tires: a resource and technology evaluation of tire pyrolysis and other selected alternate technologies

    SciTech Connect (OSTI)

    Dodds, J.; Domenico, W.F.; Evans, D.R.; Fish, L.W.; Lassahn, P.L.; Toth, W.J.

    1983-11-01

    The results of a technical and economic evaluation of scrap tire pyrolysis are presented and some other alternative uses for scrap tires are discussed. A scrap tire, by definition in this report, is one for which there is no economic end use. Information is presented on the scrap tire resource, pyrolysis processes, pyrolysis products (char, oil, and gas), markets for these products, and the economics of tire pyrolysis. A discussion is presented on alternative ideas for using scrap tires as an energy resource.

  2. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  3. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  4. EECBG Success Story: Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits

    Broader source: Energy.gov [DOE]

    As one of the windiest states in the country, Kansas is a great place to harness wind and solar power. Through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the Resourceful Kansas team is teaching the rest of the state about all the technologies that are out there. Learn more.

  5. Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits

    Broader source: Energy.gov [DOE]

    As one of the windiest states in the country, Kansas is a great place to harness wind and solar power. And through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the Resourceful Kansas team is teaching the rest of the state about all the technologies that are out there.

  6. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  7. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect (OSTI)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  8. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  9. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature Stories Videos Contact Calendar Health and

  10. Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  11. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect (OSTI)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  12. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  13. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  14. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies close Los Alamos physicist wins 2016 Joseph F. Keithley Award Honors to Albert Migliori, developer of resonant ultrasound spectroscopy. READ MORE Los Alamos National...

  15. Relating to fossil energy resource characterization, research, technology development, and technology transfer

    SciTech Connect (OSTI)

    Poston, S.W.; Berg, R.R.; Friedman, M.M.; Gangi, A.F.; Wu, C.H.

    1993-12-01

    Geological, geophysical and petroleum engineering aspects of oil recovery from low-permeability reservoirs have been studied over the past three years. Significant advances were made in using Formation Microscanner Surveys (FMS) data to extrapolate fracture orientation, abundance, and spacing from the outcrop to the subsurface. Highly fractured zones within the reservoir can be detected, thus the fracture stratigraphy defined. Multi-component,vertical-seismic profile (VSP), shear wave data were used to improve the detection of fractures. A balancing scheme was developed to improve the geophysical detection of fractures based on balanced source magnitudes and geophone couplings. Resistivity logs can be used to identify the zone of immature organic material, the zone of storage where oil is generated but held in the matrix and the zone of migration whee oil is expelled from the rock to fractures. Natural fractures can be detected in many wells by the response of density logs in combination with gamma-ray, resistivity, and sonic logs. Theoretical studies and analysis of daily production data, from field case histories, have shown the utility of the Chef Type Curves to derive reservoir character from production test data. This information is ordinarily determined from transient pressure data. Laboratory displacement as well as MI and CT studies show that the carbonated water imbibition oil displacement process significantly accelerates and increases recovery from saturated, low-permeability core material. The created gas drive, combined with oil shrinkage significantly increased oil recovery. A cyclic-carbonated-water-imbibition process improves oil recovery. A semi-analytical model (MOD) and a 3-dimensional, 3-phase, dual-porosity, compositional simulator (COMAS) were developed to describe the imbibition carbonated waterflood performance. MOD model is capable of computing the oil recovery and saturation profiles for oil/water viscosity ratios other than one.

  16. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.; Brown, T.

    2001-07-16

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  17. Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011

    Broader source: Energy.gov [DOE]

    Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

  18. DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

  19. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  20. Oswer source book. Volume 2. Training and technology transfer resources, 1994-1995

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

  1. Oswer source book, Volume 2. Training and technology transfer resources, 1994-1995

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

  2. Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about catalyst characterization.

  3. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  4. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  5. ORNL/TM-2011/360 Reference Inflow Characterization for River Resource Reference Model:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    999/264 Environmental Sciences Division Bamboo: an overlooked biomass resource? J. M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6407 U.S.A. D. C. Dayton and B. Hames National Renewable Energy Laboratory 1617 Cole Boulevard, MS 3311 Golden, CO 80401 U.S.A. Environmental Sciences Division Publication No. 4963 Date Published: January 2000 Prepared for the U.S. DEPARTMENT OF ENERGY Office of Transportation Technologies EB 52 03 00 0

  6. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Office of Environmental Management (EM)

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, ...

  8. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  9. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. Characterization and Development of Advanced Heat Transfer Technologies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  11. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  12. Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery...

  13. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  15. Window Industry Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide...

  16. International Partnership for Geothermal Technology - 2012 Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS) Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

  17. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    SciTech Connect (OSTI)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  18. Pump and Fan Technology Characterization and R&D Assessment

    Broader source: Energy.gov [DOE]

    This report provides the Building Technologies Office (BTO) and the research and development (R&D) community with a technical and market analysis of pumps and fans as they pertain to commercial and residential buildings as well as key conclusions regarding the R&D opportunities that can help achieve BTO’s energy savings goals.

  19. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect (OSTI)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site`s 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE`s Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  20. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect (OSTI)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  1. Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S.

    Broader source: Energy.gov [DOE]

    Amendment No. 004 to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S.

  2. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)

    Broader source: Energy.gov [DOE]

    This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

  3. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

  4. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part A, Characterization, decontamination, dismantlement

    SciTech Connect (OSTI)

    Fellows, R.L.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This report is part A of Volume 3 concerning characterization, decontamination, and dismantlement.

  5. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  6. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

  7. Clean Energy Manufacturing Federal Resource Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Federal Resource Guide Clean Energy Manufacturing Federal Resource Guide Find federal resources to help you design, scale up, and commercialize your technology with this guide. Technology Feasibility Evaluate your idea U.S. Department of Energy priorities R&D funding Business creation and development Licensing technologies Strategic partnerships Technology Prototyping Materials characterization Modeling and tools Intellectual property protection Product testing and

  8. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.

  9. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  10. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  11. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  12. Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

    2011-12-09

    Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

  13. DOE Announces Webinars on High Impact Building Technologies, a New Better Buildings Resource, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce.

  14. High Impact Technology Hub- Resources for Evaluators- General Measurement and Verification Plans

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  15. Vehicle Technologies Office Merit Review 2015: Clean Cities Coordinator Resource Building and National Networking Activities

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Clean...

  16. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  17. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  18. LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANAI HIGH-DENSITY IRRADIANCE SENSOR NETWORK FOR CHARACTERIZING SOLAR RESOURCE VARIABILITY OF MW-SCALE PV SYSTEM Scott Kuszamaul 1 , Abraham Ellis 1 , Joshua Stein 1 , and Lars Johnson 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 SunPower Corporation, Richmond, CA, USA ABSTRACT Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery

  19. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Geology Characterizing geology-rock types, structures, faults, and temperatures- is a fundamental step in discovering new geo- thermal resources. This information comes from a ...

  20. International Symposium on Site Characterization for CO2Geological...

    Office of Scientific and Technical Information (OSTI)

    International Symposium on Site Characterization for CO2Geological Storage Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Characterization and Recovery of Rare Earths from Coal and By...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characterization and Recovery of Rare Earths from Coal and By-Products ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  2. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    SciTech Connect (OSTI)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-06-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration.

  3. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    SciTech Connect (OSTI)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-01-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration.

  4. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    SciTech Connect (OSTI)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented.

  5. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  6. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  7. Environmental control technology for mining and milling low-grade uranium resources

    SciTech Connect (OSTI)

    Weakley, S.A.; Blahnik, D.E.; Long, L.W.; Bloomster, C.H.

    1981-04-01

    This study examined the type and level of wastes that would be generated in the mining and milling of U/sub 3/O/sub 8/ from four potential domestic sources of uranium. The estimated costs of the technology to control these wastes to different degrees of stringency are presented.

  8. Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S.

    Broader source: Energy.gov [DOE]

    In early June 2011, the U.S. Department of Energy's Geothermal Technologies Program (GTP) intends to issue a Funding Opportunity Announcement to expand its partnership with the geothermal community on geothermal systems research and development throughout the United States in order to support GTP's goal of lowering the cost of geothermal energy to 6 ¢/kWh.

  9. New Project To Improve Characterization of U.S. Gas Hydrate Resources

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate‐bearing sediments for the purpose of methane hydrate resource appraisal.

  10. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-01-01

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  11. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect (OSTI)

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  12. Minneapolis, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    formerly Romuld Wind Consulting Natural Resource Group Navitas Energy Inc Project Resources Corporation Sunnyside Technologies Inc Superior Process Technology Inc...

  13. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  14. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect (OSTI)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  15. U.S. OpenLabs - Technology Data | Open Energy Information

    Open Energy Info (EERE)

    search Where can I find cost and performance characterizations of clean energy technologies? There are a number of data resources available from the US National Labs which can...

  16. Improved recovery from Gulf of Mexico reservoirs. Volume III (of 4): Characterization and simulation of representative resources. Final report, February 14, 1995--October 13, 1996

    SciTech Connect (OSTI)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    Significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. In an effort to illustrate the impact that these new technologies and sources of information can have upon the estimates of recoverable oil in the Gulf of Mexico, additional and detailed data was collected for two previously studied reservoirs: a South March Island reservoir operated by Taylor Energy and Gulf of Mexico reservoir operated by Mobil, whose exact location has been blind-coded at their request, and an additional third representative reservoir in the Gulf of Mexico, the KEKF-1 reservoir in West Delta Block 84 Field. The new data includes reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data was used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation also provided additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressures, and water compatibility. Geologic investigations were also conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. These results were also used, in part, to assist in the recharacterization of these reservoirs.

  17. Innovative Direct Push Technologies for Characterization of the 216-Z-9 Trench at DOE's Hanford Site

    SciTech Connect (OSTI)

    Bratton, W.; Moser, K.; Holm, R. [Vista Engineering Technologies, LLC, Washington (United States); Morse, J.; Tortoso, A. [US Department of Energy - Richland Operations Office, Washington (United States)

    2008-07-01

    Because of the significant radiological and chemical hazards present at the 216-Z-9 Trench at the US Department of Energy Hanford Site, the only practical subsurface characterization methods are those that minimize or control airborne vapors and particles. This study evaluates and compares the performance of two Direct Push Technologies (Hydraulic Hammer Rig (HHR) and Cone Penetrometer Testing (CPT)) with traditional cable tool drilling in similar difficult geologic conditions. The performance was based on the depth of penetration, the ability to collect representative vadose zone soil samples, the penetration rate, and the relative cost. The HHR achieved deeper penetration depths and faster penetration rates than CPT techniques, while still maintaining the waste minimization benefits of direct push technologies. Although cable tool drilling achieved the deepest penetration, the safety and disposal concerns due to the soil cuttings that were generated made this drilling approach both slow and costly compared to the direct push techniques. (authors)

  18. Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"

    SciTech Connect (OSTI)

    2009-05-01

    The American Recovery and Reinvestment Act of 2009 emphasizes energy efficiency and conservation as critical to the Nation's economic vitality; its goal of reducing dependence on foreign energy sources; and, related efforts to improve the environment. The Act highlights the significant use of various forms of energy in the Federal sector and promotes efforts to improve the energy efficiency of Federal operations. One specific area of interest is the increasing demand for Federal sector computing resources and the corresponding increase in energy use, with both cost and environmental implications. The U.S. Environmental Protection Agency reported that, without aggressive conservation measures, data center energy consumption alone is expected to double over the next five years. In our report on Management of the Department's Data Centers at Contractor Sites (DOE/IG-0803, October 2008) we concluded that the Department of Energy had not always improved the efficiency of its contractor data centers even when such modifications were possible and practical. Despite its recognized energy conservation leadership role, the Department had not always taken advantage of opportunities to reduce energy consumption associated with its information technology resources. Nor, had it ensured that resources were managed in a way that minimized impact on the environment. In particular: (1) The seven Federal and contractor sites included in our review had not fully reduced energy consumption through implementation of power management settings on their desktop and laptop computers; and, as a consequence, spent $1.6 million more on energy costs than necessary in Fiscal Year 2008; (2) None of the sites reviewed had taken advantage of opportunities to reduce energy consumption, enhance cyber security, and reduce costs available through the use of techniques, such as 'thin-client computing' in their unclassified environments; and, (3) Sites had not always taken the necessary steps to reduce energy consumption and resource usage of their data centers, such as identifying and monitoring the amount of energy used at their facilities. We concluded that Headquarters programs offices (which are part of the Department of Energy's Common Operating Environment) as well as field sites had not developed and/or implemented policies and procedures necessary to ensure that information technology equipment and supporting infrastructure was operated in an energy-efficient manner and in a way that minimized impact on the environment. For example, although required by the Department, sites had not enabled computer equipment power management features designed to reduce energy consumption. In addition, officials within Headquarters programs and at the sites reviewed had not effectively monitored performance or taken steps to fully evaluate available reductions in energy usage at their facilities. Without improvements, the Department will not be able to take advantage of opportunities to reduce energy consumption and realize cost savings of nearly $23 million over the next five years at just the seven sites reviewed. We noted that the potential for reduced energy consumption at these sites alone was equivalent to the annual power requirements of over 2,400 homes or, alternatively, removing about 3,000 cars from the road each year. Many of the available energy reduction strategies, such as fully utilizing energy-efficient settings on the many computers used by the Department and its contractors, are 'low hanging fruit' in that they will provide immediate tangible energy savings at little or no cost. Others, such as a shift to thin-client computing, an environment that transfers the processing capabilities from an individual's desk to a shared server environment, will require some level of investment which can, based on available literature, be successfully recovered through reduced acquisition and support costs. In our judgment, given its highly visible leadership in energy issues, aggressive action should be taken to make the Department's information technology operati

  19. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  20. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  1. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  2. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    SciTech Connect (OSTI)

    Shi Xiaoliang Wang Sheng; Yang Hua; Duan Xinglong; Dong Xuebin

    2008-09-15

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm ({lambda}{sub ex}=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 {mu}m in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale.

  3. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect (OSTI)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy; Kuuskraa, Vello; Billingsley, Randy

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAMs databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The models databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated technically-recoverable by the USGS roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  4. Sandia Energy - Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  5. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    SciTech Connect (OSTI)

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

  6. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  7. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  8. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology

    SciTech Connect (OSTI)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Nitrosi, Andrea; Burani, Aldo

    2013-10-15

    Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results: At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.

  9. Wood fuel technologies and group-oriented Timber Stand Improvement Program: model for waste wood utilization and resource renewal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress is reported on the following: educating and assisting landowners in the most efficient and profitable use of wood resources; developing local timber resources as energy alternatives by representing collective interests to Consumers Power, the woodchip industry, firewood retailers, country residents, and woodlot owners; and providing public information on the economics and methods of wood heat as a supplemental energy source. (MHR)

  10. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  11. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources Information Resources Photo of NREL employee Michael Deru using a desktop computer. The Geothermal Technologies Office is a source of current, relevant information about enhanced geothermal systems (EGS) technologies and other geothermal technologies and applications. On these pages you'll find helpful publications, software, and websites for the geothermal community and stakeholders. Geothermal information resources: Publications Technical Roadmaps

  12. Geothermal Technologies Office Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September

    Broader source: Energy.gov [DOE]

    GTO Director Doug Hollett took the stage this week at the Geothermal Resources Council industry meeting in Portland, Oregon to address barriers to geothermal development and how the office is...

  13. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  14. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  15. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  16. Biomass Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  17. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  19. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  20. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    SciTech Connect (OSTI)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ``ideal system,`` could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  1. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    SciTech Connect (OSTI)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ideal system,'' could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  2. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  3. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The links in this tab connect visitors with the numerous elements and resources that play a role in transitioning ideas into commercialized, impactful technologies. One of the best ...

  4. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  5. Quality characterization of western Cretaceous coal from the Colorado Plateau as part of the U.S. Geological Survey's National Coal Resource Assessment Program

    SciTech Connect (OSTI)

    Affolter, R.H.; Brownfield, M.E.

    1999-07-01

    The goal of the Colorado Plateau Coal Assessment program is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau. This assessment, which is part of the US Geological Survey's National Coal Resource Assessment Program, is different from previous coal assessments in that the major emphasis is placed on coals that are most likely to provide energy over the next few decades. The data is also being collected and stored in digital format that can be updated as new information becomes available. Environmental factors may eventually control how coal will be mined, and determine to what extent measures will be implemented to reduce trace element emissions. In the future, increased emphasis will also be placed on coal combustion products and the challenges of waste product disposal or utilization. Therefore, coal quality characterization is an important aspect of the coal assessment program in that it provides important data that will influence future utilization of this resource. The Colorado Plateau study is being completed in cooperation with the US Bureau of Land Management, US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey. Restrictions on coal thickness and overburden will be applied to the resource calculations and the resources will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis is being placed on areas where the coal is controlled by the Federal Government.

  6. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  7. Identification and preliminary characterization of global water resource issues which may be affected by CO/sub 2/-induced climate change

    SciTech Connect (OSTI)

    Callaway, J.M.; Cohen, M.L.; Currie, J.W.

    1984-04-01

    The objectives were to: (1) identify, characterize, and define existing or projected regional and global water resource management issues which may be affected by CO/sub 2/-induced climate changes; and (2) develop research priorities for acquiring additional information about the potential effects of a CO/sub 2/-induced climate change on the availability and allocation of freshwater supplies. The research was broken into four work elements: (1) identification of water resource management issues on a global and regional basis; (2) identification of a subset of generic CO/sub 2/-related water resource management issues believed to have the highest probability of being affected, beneficially or adversely, by a CO/sub 2/-induced climate change; (3) selection of specific sites for examining the potential effect of a CO/sub 2/-induced climate change on these issues; and (4) conducting detailed case studies at these sites, the results from which will be used to identify future research and data needs in the area of water resources. This report summarizes the research related to the first three work elements. 6 figures, 9 tables.

  8. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Analysis Methodologies Resource Analysis ...

  9. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D.; Phillips, E.

    2008-07-01

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

  10. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  11. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  13. Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0

    SciTech Connect (OSTI)

    Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H.

    1994-02-01

    This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

  14. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  15. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

  16. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: Energy.gov [DOE]

    In this report, we introduce a new transparent regional capacity expansion model with high spatio-temporal resolution and detailed representation of dispatch. The development of this model, referred to as the Resource Planning Model (RPM), is motivated by the lack of a tool in the public domain that can be used to characterize optimal regional deployment of resources with detailed dispatch modeling. In particular, RPM is designed to evaluate scenarios of renewable technology deployment to meet renewable portfolio standard (RPS) and emission-reduction goals, and to project possible deployment levels for various projections of future technology and fuel prices.

  17. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    SciTech Connect (OSTI)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  18. Biomass Resource Demand Characterization Study: Cooperative Research and Development Final Report, CRADA Number CRD-11-436

    SciTech Connect (OSTI)

    Mann, M.

    2015-02-01

    Competing demands for U.S. biomass resources and resulting impacts on regional feedstock availability could have a significant impact on the ability of the biofuels industry to transition to lower cost feedstocks, such as wood, agricultural residues, and energy crops, as well as on the ability of U.S. electric utilities and consumers to meet Renewable Portfolio Standards (RPS) and transition to lower carbon-footprint sources of electricity. Promulgation of regulations that place a cost on CO2 emissions from fossil fuels will also impact this situation as biomass to power applications become increasingly cost competitive. This increased competition for biomass feedstocks could create technical and economic risks for the Government, industry, and investors, and has the potential to impede commercialization of bio-energy in the U.S. at a meaningful scale.

  19. Pipe Crawler{reg_sign} internal piping characterization system - deactivation and decommissioning focus area. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-02-01

    Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, and intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.

  20. Energy technology scenarios for use in water resources assessments under Section 13a of the Federal Nonnuclear Energy Research and Development Act

    SciTech Connect (OSTI)

    1980-10-01

    This document presents two estimates of future growth of emerging energy technology in the years 1985, 1990, and 2000 to be used as a basis for conducting Water Resources Council assessments as required by the Nonnuclear Energy Research and Development Act of 1974. The two scenarios are called the high world oil price (HWOP) and low world oil price (LWOP) cases. A national-level summary of the ASA tabulations is shown in Appendix A; the scenarios are presented at the ASA level of detail in Appendix B. The two scenarios were generally derived from assumptions of the Second National Energy Plant (NEP II), including estimates of high and low world oil price cases, growth rate of GNP, and related economic parameters. The overall national energy growth inherent in these assumptions was expressed as a detailed projection of various energy fuel cycles through use of the Fossil-2 model and regionalized through use of the Strategic Environmental Assessment System (SEAS). These scenarios are for the use of regional analysts in examining the availability of water for and the potential impacts of future growth of emerging energy technology in selected river basins of the Nation, as required by Section 13(a).

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  4. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  5. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  6. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  7. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  8. Reno, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Technical Partners Gradient Resources Kodali Inc NV Energy Sierra Pacific Resources NV Energy formerly Sierra Pacific Power Newcore Energy Inc Ormat Technologies...

  9. Slang characterization and removal using pulse detonation technology during coal gasification

    SciTech Connect (OSTI)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

    1997-03-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

  10. NREL: Concentrating Solar Power Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for ...

  11. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page. For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection. NREL Publications Database For a comprehensive list of other NREL geothermal resource publications, explore NREL's Publications Database. When searching the database, search on "geothermal resources". Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information

  12. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's resource assessment and forecasting research supports industry, government, and academia by providing renewable energy resource measurements, models, maps, and support services. These resources are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research: Capabilities Facilities Research staff Data and resources. Resource assessment and forecasting research is primarily performed at

  13. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources We've organized links and information on solar energy technologies and the SunShot Initiative to make it easier for you to find what you're looking for. Solar Energy Technologies Office Newsletters Solar-focused newsletters highlight the key activities, events, funding opportunities, and publications that the SunShot Initiative supports. Solar Energy Resource Center Resources include articles, case studies, fact sheets, how-to guides, model rules and

  14. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II

    SciTech Connect (OSTI)

    Hickman, T. Scott; Justice, James J.; Egg, Rebecca

    2001-08-07

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

  15. Unconventional Resources Technology Advisory Committee

    Energy Savers [EERE]

    ... that would further increase the benefits of our natural gas, help reduce imports of oil from other external sources, and job creation. 1 EnergyFromShale.org Attachment 3 12 ...

  16. Unconventional Resources Technology Advisory Committee

    Energy Savers [EERE]

    the 2005 Energy Policy Act (EPACT). The Committee consists of: A majority of members who are employees or representatives of Independent Producers of natural gas and other ...

  17. Biomass Resources and Technology Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Steam & Acid Liquor Solids Lime Gypsum 2 nd Stage PT Fermentation Distillation & Ethanol ... Liquid & Solid Fertilizer Co- products Animal, Industrial, Municipal Residues Complete mix ...

  18. Unconventional Resources Technology Advisory Committee

    Energy Savers [EERE]

    of members who are employees or representatives of Independent Producers of natural gas and other petroleum, including small producers; Individuals with extensive research...

  19. WINDExchange: Information Resources

    Wind Powering America (EERE)

    Information Resources A range of WINDExchange resources are available, including links to relevant publications, podcasts, and webinars about wind energy topics. Annual Reports Cover of the 2013 Wind Technologies Market Report. 2014 Wind Technologies Market Report The report provides a comprehensive overview of 2014 trends in the U.S. wind industry and wind power market. DOE's Lawrence Berkeley National Laboratory draws from a variety of data sources and covers a broad range of topics. Cover of

  20. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative assessment of geothermal potential for the U.S. using Enhanced Geothermal Systems (EGS) and based on the levelized cost of electricity, and the Texas Geopressured Geothermal Resource Estimate. Geothermal data sites Data related to geothermal technology and energy

  1. K-12 Education Resources - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-12 Education Resources Science, Technology, Engineering and Mathematics (STEM) skills ... Ruth Patrick Science Education Center Experience the power of science and mathematics ...

  2. Resource development peer review report

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The Geothermal Program goal is to improve technology performance and reduce market entry costs of geothermal energy to competitive levels, making large geothermal resource available to the Nation

  3. Reclaim Resources | Open Energy Information

    Open Energy Info (EERE)

    Product: Reclaim Resources have developed a technology which provides a solution to recycling household waste, offering greater protection to the environment and more cost...

  4. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  5. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  6. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam Bratis, Ph.D. NREL Energy Efficiency & Renewable Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics  growth, harvesting, delivery Analysis  economic, life-cycle, resource assessment Catalysis  design, characterization, testing Separations  contaminant removal, product recovery Dr. Adam Bratis Biomass Program Manager National Renewable Energy Laboratory

  7. Southeast Electronic Book of Industrial Resources

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  8. Testimony Before the Senate Energy and Natural Resources Committee

    Broader source: Energy.gov [DOE]

    Subject: Energy Development and Water Resources Carl Bauer, Director, National Energy Technology Laboratory

  9. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  10. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  12. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources Many resources are available from AMO to help manufacturers improve energy efficiency. Access our free online publications, databases, program highlights, webcasts, workshop results, and energy analysis. 2014_all_manufacturing_energy_carbon_footprint_Page_1.png Publications Search the AMO Publication and Product Library by technology area, category, or key word. Highlights Read about projects that lead to new technologies, improve existing

  13. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources The Information Resources section of this website contains a range of introductory and in-depth materials to provide further information about Bioenergy Technologies Office (BETO) activities, research, publications, tools, and terminology. Use the links below or left navigation menu options to find the information you need. Note: This Web page has been recently updated. The following sections have been moved: Bioenergy Technologies Blog, Newsletter,

  14. Additional Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additional Resources Additional Resources Additional Resources Energy Assurance Planning The Local Government Energy Assurance Planning (LEAP) program, developed by the Public Technology Institute and the U.S. Department of Energy, offers resources to help local governments of all sizes in developing energy assurance plans for their communities. U.S. Department of Energy, State and Local Energy Assurance Planning The National Association of State Energy Officials (NASEO) The National Association

  15. NREL: Energy Analysis: Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment NREL has developed maps and tools to conduct renewable energy resource assessments at the state, national and international level. Around the world, interest is growing in renewable energy as a strategy to mitigate greenhouse gas emissions and increase energy security. The starting point for new renewable energy projects is a characterization of the renewable resources available across a region, a resource assessment. NREL uses geospatial data sets to identify regions that

  16. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  17. Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

  18. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  5. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil fuels used in power production.The United States is endowed with an abundance of natural gas resources, so increasing use of natural gas power can help strengthen domestic energy security. NETL research efforts enhance technologies that reduce the cost, increase the efficiency, and reduce the environmental risk of

  6. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  7. Environmental resource document for the Idaho National Engineering Laboratory. Volume 1

    SciTech Connect (OSTI)

    Irving, J.S.

    1993-07-01

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  8. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  9. Fuel Cell Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office EERE Fuel Cell Technologies Office Share this resource Publications Advanced Search Browse by Topic Mail Requests Help Feature featured product...

  10. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  11. MHK Technologies/Atlantisstrom | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Atlantisstrom Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description Five drop shaped...

  12. MHK Technologies/Hydroair | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage Hydroair.jpg Technology Profile Primary Organization Dresser Rand Technology Resource Click here Wave Technology Type Click here Oscillating Water...

  13. MHK Technologies/Enermar | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description The Enermar Kobold turbine is a unidirectional vertical axis...

  14. MHK Technologies/Grampus | Open Energy Information

    Open Energy Info (EERE)

    MHK database homepage Grampus.jpg Technology Profile Primary Organization Offshore Wave Energy Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave...

  15. MHK Technologies/OTEC | Open Energy Information

    Open Energy Info (EERE)

    Center Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Readiness Level Click here TRL 56: System...

  16. MHK Technologies/TUVALU | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage TUVALU.jpg Technology Profile Primary Organization Arlas Invest Technology Resource Click here Wave Technology Description The chain or cable coils in...

  17. Water Power Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database on OpenEI The DOE Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy. Read more The following resources about water power technologies

  18. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  19. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  20. Resources - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  1. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources Teacher Resources The Bradbury Science Museum offers teacher resources for your visit. Scavenger Hunts Scavenger Hunt (pdf) Scavenger Hunt Key (pdf) Bradbury Science Museum newsletter The current issue can be found at the Newsletter page. Los Alamos Teachers' Resource Book Informal educators throughout the Los Alamos School District gather periodically to share ideas and collaborate. We have assembled a collection of flyers about our programs that serve classroom teachers into

  2. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  4. MHK Technologies/Sea Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating...

  5. MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology...

  6. MHK Technologies/Trondheim Point Absorber | Open Energy Information

    Open Energy Info (EERE)

    Point Absorber.jpg Technology Profile Primary Organization Norwegian University of Science and Technology CONWEC AS Technology Resource Click here Wave Technology Description...

  7. MHK Technologies/Canal Power | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description...

  8. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    WAVE ENERGY CONVERTER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Wave Technology Type...

  9. MHK Technologies/WET NZ | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology...

  10. MHK Technologies/C Wave | Open Energy Information

    Open Energy Info (EERE)

    homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The C Wave...

  11. MHK Technologies/Wave Rotor | Open Energy Information

    Open Energy Info (EERE)

    Project(s) where this technology is utilized *MHK ProjectsC Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level...

  12. U.S. Open Labs - Exploring Resources | Open Energy Information

    Open Energy Info (EERE)

    describes the technology and includes a list of less-developed countries with access to OTEC resources. International Wind Resource Maps The National Renewable Energy Laboratory...

  13. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  14. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  15. Resource Center

    Broader source: Energy.gov [DOE]

    Welcome! The Building Technologies Office (BTO) carries out technology research, development, market stimulation, and regulatory activities through an ongoing process of planning and analysis,...

  16. Western Resource Adequacy: Challenges - Approaches - Metrics | Department

    Energy Savers [EERE]

    of Energy Resource Adequacy: Challenges - Approaches - Metrics Western Resource Adequacy: Challenges - Approaches - Metrics West-Wide Resource Assessment Team. Committee on Regional Electric Power Cooperation. March 25, 2004 San Francisco, California PDF icon Western Resource Adequacy: Challenges - Approaches - Metrics More Documents & Publications Eastern Wind Integration and Transmission Study (EWITS) (Revised) Estimating the Benefits and Costs of Distributed Energy Technologies

  17. NREL's Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at the National Renewable Energy Laboratory (NREL) developed a controllable grid interface (CGI) test system that can significantly reduce certification testing time and costs. The CGI also provides system engineers with a better understanding of how wind turbines, photovoltaic (PV) inverters, and energy storage systems interact with the grid and react to grid disturbances. For the energy industry, this will save time and resources while minimizing integration issues, improve

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  20. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  1. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  2. Geothermal Technologies Office April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report Geothermal Technologies Office April 2016 1 2015 Annual Report | Geothermal Technologies Office Director's Message Geothermal Technologies Office FY 2016 Budget at a Glance Enhanced Geothermal Systems Hydrothermal Program Low-Temperature and Coproduced Resources Systems Analysis Events and Highlights People Acronyms Resources Table of Contents 2 2 3 7 13 17 19 23 26 28 2015 Achievements Geothermal Technologies Office Steam, West Flank of Coso, NV The 2015 Annual Report of the

  3. NREL: Renewable Resource Data Center - Geothermal Resource Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Comprehensive geothermal resource information is also available from the following sources: U.S. Department of Energy Geothermal Technologies Office. National Geothermal Data System A portal to geothermal data. Southern Methodist University Geothermal Laboratory The Laboratory supplies vital information on the renewable energy source tapped from the Earth's internal heat. Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Geothermal Data

  4. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  5. Unconventional Energy Resources: 2015 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  6. Stephen Nalley Assistant Administrator for Resource

    Gasoline and Diesel Fuel Update (EIA)

    Nalley Assistant Administrator for Resource and Technology Management Duties Stephen Nalley is the Assistant Administrator (AA) for Resource and Technology Management and is responsible for leading and directing all of EIA's mission support functions, including workforce recruitment and development, IT infrastructure and security, financial and contract admin- istration, and a range of logistical support activities. The AA for Resource and Technology Management also integrates EIA's long-term

  7. Legal Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legal Resources Legal Resources The Office of the General Counsel provides legal advice, counsel, and support to the Secretary, the Deputy Secretary, and program offices throughout DOE to further the Department's mission of advancing the national, economic, and energy security of the United States through scientific and technological innovation and the environmental cleanup of the national nuclear weapons complex. A collection of relevant legal resources can be found below. Relevant Laws:

  8. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources Information Resources Fact Sheets Enhanced Geothermal Systems Fact Sheet Enhanced Geothermal Systems Infographic FORGE Informational Flyer Multimedia View and download recent infographics and additional visuals created through FORGE. Final-FORGE-Flyer_830x1868.jpg FORGE_Phase_Infograhic_070114_withOutBlueBox-01.png References Greenhouse Gas Emissions from a Typical Passenger Vehicle - EPA-420-F-14-040a Reports Geothermal Energy Technologies Office 2015

  9. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  10. Office of Information Resources | Department of Energy

    Energy Savers [EERE]

    Documents & Publications CERTIFICATE OF AUTHENTICITY Office of Information Resources U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for...

  11. NREL: TroughNet - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and ...

  12. NREL: Learning - Student Resources on Geothermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy The following resources can provide you with more information on geothermal energy. Geothermal Technologies Program U.S. Department of Energy's Office of Energy...

  13. Ivory Coast: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    and Wind Energy Resource Atlas for Ivory Coast. 4 Programs Ivory Coast-UNEP Risoe Technology Needs Assessment Program African Biofuel & Renewable Energy Fund (ABREF) USAID West...

  14. Netherlands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    and Wind Energy Resource Atlas for Netherlands. 3 Programs IEA Renewable Energy Technology Deployment ECN-NREL Collaboration Action Plan for Forest Law Enforcement Governance...

  15. Wind Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    Databases Global Renewable Energy Database Power Technologies Energy Data Book Solar and Wind Energy Resource Assessment (SWERA) System Advisor Model (SAM) Transparent Cost...

  16. Cambridge, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems MIT- Center for 21st Century Energy MIT- Center for Transportation and Logistics MIT- Deshpande Center for Technological Innovation MIT- Earth Resources Laboratory...

  17. Allied Resource Corporation | Open Energy Information

    Open Energy Info (EERE)

    Allied Resource Corporation Place: Wayne, Pennsylvania Product: Pennsylvania-based global climate technology group operating and servicing energy related businesses worldwide....

  18. Low-Temperature and Co-Produced Resources Fact Sheet

    SciTech Connect (OSTI)

    Geothermal Technologies Office, U.S. Department of Energy

    2013-02-01

    This two-page Geothermal Technologies Office fact sheet provides an overview of low-temperature and co-produced resources. It includes technology benefits and project highlights.

  19. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  20. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  1. Energy Efficiency as a Resource Regional Reports Introduction

    SciTech Connect (OSTI)

    None

    2010-06-25

    This is an introduction to the Energy Efficiency as a Resource Regional Reports produced by the DOE Industrial Technologies Program.

  2. Before the House Natural Resources Subcommittee on Energy and Mineral

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Energy and Mineral Resources Before the House Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Subcommittee on Energy and Mineral Resources By: Dr. Ray Boswell, Senior Management and Technology Advisor, National Energy Technology Laboratory Subject: Unconventional Fuels, Part II: The Promise of Methane Hydrates PDF icon 7-30-09_Final_Testimony_(Boswell).pdf More Documents & Publications Methane Hydrate

  3. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    SciTech Connect (OSTI)

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy`s (DOE) request for demonstration, testing and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000.

  4. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  5. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the "science of

  6. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  7. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  8. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  9. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  10. Technology and energy supply

    U.S. Energy Information Administration (EIA) Indexed Site

    Donald L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future

  11. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Funding Opportunity Announcements: Small Business Innovation Research/Small Business Technology Transfer (SBIR/SBTT) SBIR/SBTT list of open/future funding opportunities Specific funding opportunity: SBIR/STTR Topics FY14 (Nov. 6, 2013) Department of Energy: doing business with small business Office of Energy Efficiency & Renewable Energy (EERE) Notice of intent to issue FOA (December 2013) Energy Department Announces $3 Million to Lower Cost of Geothermal Energy and Boost U.S.

  12. Lignocellulosic feedstock resource assessment

    SciTech Connect (OSTI)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  13. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect (OSTI)

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  14. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  15. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  16. Sandia National Laboratories: Working with Sandia: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gain access to Sandia's research facilities, capabilities, and resources. CRF Sandia Science & Technology Park Become part of Albuquerque's science and technology community,...

  17. Chapter 39 - Acquisition of Information Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    39 - Acquisition of Information Technology Chapter 39 - Acquisition of Information Technology PDF icon 39.1AcquisitionofInformationResources0.pdf PDF icon ...

  18. MHK Technologies/UFCAP | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization RDZ Renewables Technology Resource Click here Wave Technology Description The UFCAP system uses the low pressure zones against the high...

  19. Vehicle Technologies Office: Education and Workforce Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Workforce Development Vehicle Technologies Office: Education and Workforce Development The Vehicle Technologies Office (VTO) offers a variety of resources and ...

  20. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for ...

  1. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  2. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  3. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2002-01-09

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  4. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Info (EERE)

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  5. MHK Technologies/Platform generators | Open Energy Information

    Open Energy Info (EERE)

    homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating...

  6. MHK Technologies/Pulse-Stream 120 | Open Energy Information

    Open Energy Info (EERE)

    << Return to the MHK database homepage Technology Profile Primary Organization Pulse Tidal Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave...

  7. MHK Technologies/Current Catcher | Open Energy Information

    Open Energy Info (EERE)

    Primary Organization Offshore Islands Ltd Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Description The Current...

  8. MHK Technologies/Turbines OWC | Open Energy Information

    Open Energy Info (EERE)

    Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Description The patent pending Neo Aerodynamic turbine invented by Phi...

  9. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  10. MHK Technologies/Evopod E35 | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 78: Open Water System Testing &...

  11. MHK Technologies/SeaWEED | Open Energy Information

    Open Energy Info (EERE)

    Return to the MHK database homepage SeaWEED.jpg Technology Profile Primary Organization Grey Island Energy Inc Technology Resource Click here Wave Technology Description The Sea...

  12. MHK Technologies/DeltaStream | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition ...

  13. MHK Technologies/Floating absorber | Open Energy Information

    Open Energy Info (EERE)

    database homepage Floating absorber.jpg Technology Profile Primary Organization Euro Wave Energy Technology Resource Click here Wave Technology Description The main module consists...

  14. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  15. MHK Technologies/Lever Operated Pivoting Float | Open Energy...

    Open Energy Info (EERE)

    Swell Fuel Technology Resource Click here Wave Technology Description Ocean wave energy converter buoys in a farm They are also called a point absorber Technology...

  16. MHK Technologies/Swell Fuel | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search << Return to the MHK database homepage Swell Fuel.jpg Technology Profile Primary Organization Swell Fuel Technology Resource Click here...

  17. MHK Technologies/C5 | Open Energy Information

    Open Energy Info (EERE)

    Return to the MHK database homepage C5.jpg Technology Profile Primary Organization Wave Star Energy Technology Resource Click here Wave Technology Description The C5 is anchored...

  18. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  19. MHK Technologies/WaveSurfer | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here...

  20. MHK Technologies/In stream River Hydrokinetics | Open Energy...

    Open Energy Info (EERE)

    homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing...

  1. MHK Technologies/Uppsala Seabased AB Wave Energy Converter |...

    Open Energy Info (EERE)

    Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Description The system consists of a...

  2. Updated U.S. Geothermal Supply Characterization

    SciTech Connect (OSTI)

    Petty, S.; Porro, G.

    2007-03-01

    This paper documents the approach taken to characterize and represent an updated assessment of U.S. geothermal supply for use in forecasting the penetration of geothermal electrical generation in the National Energy Modeling System (NEMS). This work is motivated by several factors: The supply characterization used as the basis of several recent U.S. Department of Energy (DOE) forecasts of geothermal capacity is outdated; additional geothermal resource assessments have been published; and a new costing tool that incorporates current technology, engineering practices, and associated costs has been released.

  3. NREL: Energy Analysis - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include procedures, databases, maps, and tools produced by NREL. These resources are available to assess, analyze, and optimize renewable energy and energy efficiency technologies for your project. Annual Technology Baseline and Standard Scenarios This study provides an annual process designed to ensure consistent application of a realistic and timely set of input assumptions and consider a diverse set of potential futures. Building Energy Data

  4. NREL: Renewable Resource Data Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive collection of renewable energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations throughout the United States can be found through the RReDC. Almost every area of the country can take advantage of renewable energy technologies, but some technologies are better suited for particular areas than others. Knowing

  5. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOEs market stimulation and tech to market activities.

  6. Hydrothermal Resources

    Broader source: Energy.gov [DOE]

    The development of advanced exploration tools and technologies will accelerate the discovery and utilization of the U.S. Geological Survey's estimated 30,000 MWe of undiscovered hydrothermal...

  7. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  8. Overview of wind technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  9. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  10. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. Improved Tools for Wind Resource Assessment with Remote Sensing Sodar Device: Cooperative Research and Development Final Report, CRADA Number: CRD-09-363

    SciTech Connect (OSTI)

    Clifton, A.

    2015-02-01

    Under this Agreement, NREL will work with the Participant to characterize wind resource assessment measurement systems needed for the design, construction, and integration of wind energy conversion systems to produce electricity for utility grid applications. This work includes, but is not limited to, research and development of hardware and software systems needed to advance wind energy resource assessment technology at speed and scale for use by electric utilities and wind power system integrators.

  12. CSP Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  13. Human Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources The mission of the Human Resource Department is to support the goals of The Ames Laboratory by providing support services which promote a work environmnent characterized by a fair treatment of staff, open communications, personal accountability, trust and mutual respect. We will seek and provide practical services and solutions to workplace issues that enhance the overall mission of the Ames Laboratory in support of science to address the nation's future energy needs. Image New

  14. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    SciTech Connect (OSTI)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  15. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Resources Resources Filter by Agency Filter by Audience Filter by Resource Type description partner_agency resource_type stakeholder_group publication_date node_url link

  16. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect (OSTI)

    2009-06-15

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  17. Robert Jilek: Pellion Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  18. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    SciTech Connect (OSTI)

    Griffin, John

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  19. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

    SciTech Connect (OSTI)

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-09-15

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  20. Characterizations of Hydrogen Energy Technologies

    SciTech Connect (OSTI)

    Energetics Inc

    2003-04-01

    In 1996, Dr. Ed Skolnik of Energetics, Incorporated, began a series of visits to the locations of various projects that were part of the DOE Hydrogen Program. The site visits/evaluations were initiated to help the DOE Program Management, which had limited time and limited travel budgets, to get a detailed snapshot of each project. The evaluations were soon found to have other uses as well: they provided reviewers on the annual Hydrogen Program Peer Review Team with an in-depth look at a project--something that is lacking in a short presentation--and also provided a means for hydrogen stakeholders to learn about the R&D that the Hydrogen Program is sponsoring. The visits were conducted under several different contract mechanisms, at project locations specified by DOE Headquarters Program Management, Golden Field Office Contract Managers, or Energetics, Inc., or through discussion by some or all of the above. The methodology for these site-visit-evaluations changed slightly over the years, but was fundamentally as follows: Contact the Principal Investigator (PI) and arrange a time for the visit; Conduct a literature review. This would include a review of the last two or three years of Annual Operating Plan submittals, monthly reports, the paper submitted with the last two or three Annual Peer Review, published reviewers' consensus comments from the past few years, publications in journals, and journal publications on the same or similar topics by other researchers; Send the PI a list of questions/topics about a week ahead of time, which we would discuss during the visit. The types of questions vary depending on the project, but include some detailed technical questions that delve into some fundamental scientific and engineering issues, and also include some economic and goal-oriented topics; Conduct the site-visit itself including--Presentations by the PI and/or his staff. This would be formal in some cases, informal in others, and merely a ''sit around the table'' discussion in others; The format was left to the discretion of the PI; A tour of the facility featuring, whenever possible, a demonstration of the process in operation; Detailed discussions of the questions sent to the PI and other topics; and Writing a report on the visit. This compilation presents the reports for all the site-visits held between February 1996 and July 2001, each written shortly after the visit. While nothing has been changed in the actual content of any of the reports, reformatting for uniformity did occur. In each report, where the questions and their respective answers are discussed, the questions are shown in bold. In several cases, the PI chose to answer these questions in writing. When this occurs, the PI's answers are produced ''verbatim, in quotes, using a different font.'' Discussion of the questions, tour/demonstration, and anything else raised during the visit is presented in normal type. Comments that represent the opinion of Dr. Skolnik, including those added during the writing of the report are shown in italics. The reports compiled here, as stated, covers a period through July 2001. Since then, site-visits to various project locations and the accompanying evaluations have continued. Thus, a second compilation volume should follow in the fall of 2003. Following the compilation of reports, is an afterward that briefly discusses what has happened to some of the projects or project personnel since that particular report was written.

  1. NREL: Geothermal Technologies - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  2. Small Business Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources in Your Community Presented by: UMKC Missouri Small Business & Technology Development Center Kansas City, MO 2 A B est P rac+ce i s a ... Technique Method Process Ac2vity Incen2ve Reward ... that i s m ore e ffec+ve d elivering a par+cular outcome. 3 Best P rac+ce i s D efined a s... * the m ost e fficient (least a mount o f e ffort), * and m ost e ffec2ve (best r esults) ...method t o a ccomplish a t ask b ased o n... * repeatable p rocedures * proven p rocedures * over 2 me * for

  3. Marine and Hydrokinetic Technology Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tethys Environmental Impacts Knowledge Management System The U.S. Department of Energy partnered with the International Energy Agency's Ocean Energy Systems initiative to create ...

  4. Thermally Activated Technologies Technology Roadmap, May 2003 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America's wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover

  5. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  6. LANSCE | User Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE provides its users with resources critical to their experiements and their experience. Lujan Resources WNR Resources Submit a proposal for beam time Visit...

  7. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  8. Webinar: National Hydrogen Safety Training Resource for Emergency Responders

    Broader source: Energy.gov [DOE]

    The Energy Department's Fuel Cell Technologies Office announces the launch of a new, free, online national hydrogen safety training resource for emergency responders. This webinar will provide additional details about the emergency response hydrogen training resource.

  9. Gasification: A Cornerstone Technology

    ScienceCinema (OSTI)

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  10. Gasification: A Cornerstone Technology

    SciTech Connect (OSTI)

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  11. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  12. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    419 Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual September 2011 Prepared by Vincent S. Neary, Ph.D., P.E. 1 Budi Gunawan, Ph.D. 1 Marshall C. Richmond, Ph.D. P.E. 2 Vibhav Durgesh, Ph.D. 2 Brian Polagye, Ph.D. 3 Jim Thomson, Ph.D. 3 Marian Muste, Ph.D. 4 Arnie Fontaine, Ph.D. 5 1 Oak Ridge National Laboratory 2 Pacific Northwest National Laboratory 3 Northwest National Marine Renewable Energy Center, University of Washington 4

  13. Articles about Resource Assessment and Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    map of these projects and learn about a new tool that will help America get offshore wind farms up and running.

    Wed, 30 Apr 2014 19:47:00 +0000 907171 at...

  14. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Iowa 5 Applied Research Laboratory, Penn State University DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the...

  15. Articles about Resource Assessment and Characterization | Department...

    Broader source: Energy.gov (indexed) [DOE]

    map of these projects and learn about a new tool that will help America get offshore wind farms up and running. March 31, 2014 U.S. Department of Energy Initiates New Outreach...

  16. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  17. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  18. Resource Management at Exascale: The Argo Project and Beyond | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Center Resource Center Welcome! The Building Technologies Office (BTO) carries out technology research, development, market stimulation, and regulatory activities through an ongoing process of planning and analysis, implementation, and review. The BTO Resource Center includes links to documents and solution centers that guide the program management process and illustrate associated results and public benefits. Please email btoweb@ee.doe.gov with any questions. Emerging Technologies

  19. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  20. NREL: Wind Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources Small wind turbine in a field at sunset with three buffalo in the foreground. Photo by Northwest Seed For more than 35 years, NREL researchers have spent countless hours building world-class research facilities and unparalleled expertise in renewable energy technologies while supporting the vision that wind and water can create clean, reliable, and cost-effective electricity. The National Wind Technology Center at NREL strives to be a central location for data and resources as

  1. Hydrothermal Resources Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Resources Fact Sheet Hydrothermal Resources Fact Sheet Overview of hydrothermal resources PDF icon Hydrothermal Fact Sheet.pdf More Documents & Publications U.S. Department of Energy progress in geothermal energy deployment was addressed at the State of the Industry Geothermal Briefing in Washington, DC on February 24, 2015. Eric Hass, hydrothermal program manager for the Geothermal Technologies Office presented. Exploration drilling in the Wind River Valley basin validates the

  2. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  3. Taxonomy for Modeling Demand Response Resources

    SciTech Connect (OSTI)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  4. Recovery Act:Direct Confirmation of Commercial Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Confirm heat flow potential with on-site surveys to drill deep resource wells Pilgrim Hot Springs, Alaska El Paso County Geothermal Project: Innovative Research Technologies ...

  5. Webinar: National Hydrogen Safety Training Resource for Emergency Responders

    Broader source: Energy.gov [DOE]

    Text version and video recording of the Fuel Cell Technologies Office webinar titled "National Hydrogen Safety Training Resource for Emergency Responders," originally presented on March 24, 2015.

  6. Florida's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Ecowind Freedom Wind Energy LLC Fuel Cells Technology Transit Idea One Inc Institute for Business and Home Safety (IBHS) Invenergy Services LLC Renewable Energy Resources Inc...

  7. National Hydrogen Safety Training Resource for Emergency Responders Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar "National Hydrogen Safety Training Resource for Emergency Responders" held on March 24, 2015.

  8. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Broader source: Energy.gov [DOE]

    Project objective: Develop equipment that generates electricity from low temperature geothermal resources at a cost at least 20% below that of the currently available technology.

  9. Texas's 28th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Companies in Texas's 28th congressional district GCK Technology Inc Green Energy Resources Inc formerly New York International Log Lumber Company Imagine Homes...

  10. Advances In Geothermal Resource Exploration Circa 2007 | Open...

    Open Energy Info (EERE)

    that will indicate the presence of geothermal resources before drilling. Advances in computer technology have propelled geothermal exploration forward, but can only go so far. New...

  11. Idaho Falls, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Idaho Falls, Idaho ALDACOR Intrepid Technology and Resources Inc References US Census Bureau Incorporated place and minor civil division...

  12. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  13. MycoCosm, an Integrated Fungal Genomics Resource (Conference...

    Office of Scientific and Technical Information (OSTI)

    service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from...

  14. Land and Resource Management Issues Relevant to Deploying In-Situ Thermal

    Office of Scientific and Technical Information (OSTI)

    Technologies (Technical Report) | SciTech Connect Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies Citation Details In-Document Search Title: Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation's richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources

  15. Before the Subcommittee on Energy and Environment- House Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Subject: Unconventional Oil and Natural Gas Resources By: Anthony V. Cugini, Director National Energy Technology Laboratory

  16. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Characterization Phase II MagiQ Technologies Seismic Sensor Physical Optics Corporation Fiber Optic High Temperature Seismic Sensor Phase III Composite Technology Development, Inc. ...

  17. Attendee Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendee Resources Attendee Resources Venue Information The Technology Forum (exhibits and poster displays) will be open during hours listed below. May 19 4:00 to 7:00 p.m. May 20 4:00 to 7:00 p.m. May 21 4:00 to 7:00 p.m. Students at the Summit The SunShot Grand Challenge Summit will bring together more than 800 members of the solar community to review the progress made toward the SunShot goal and discuss the challenges ahead to make solar energy more affordable and widespread across America.

  18. Application experiences with distributed resources in the Midwest

    SciTech Connect (OSTI)

    O`Sullivan, J.B.; Jacobs, K.; Guzy, L.

    1998-12-31

    Distributed generation consists of the use of integrated or stand-alone natural gas or liquid fueled power generation equipment. These distributed resources (DR) may provide power in the 5-kW to 50-MW range and can provide power directly to the customer, thereby potentially deferring additional transmission and distribution systems upgrades by the utility and improving power quality and reliability for the customer. Compact, technically advanced units in a variety of technologies presently available include diesel engines, lean burning gas fired internal combustion engine generator sets, cogeneration packages, small microturbines, and fuel cells. This class of resources has the potential to provide a cost effective, reliable, addition to a utility`s generating resource mix and is once again gaining favor in era characterized both by uncertainty and opportunity. Strategic deployment of these resources can also eliminate or delay expensive central plant capacity additions. Installations may be tailored to meet customer technical and financial requirements with projects being developed by utilities on customer sites as well as by Independent Power Producers and others. Economic constraints as well as key environmental and operating issues must be understood and clarified for those seeking to capitalize on this approach. As the first phase of a project with the objective of developing a best practices approach to implementing DR, EPRI`s project Application Experiences with Distributed Resources in the Midwest examined these issues. This report contains the results of an in-depth technical survey, which was given to distributed resource sites throughout the Midwest. Aspects of DR projects involving electrical interconnection, siting and permitting, operations and maintenance and various operating practices are examined.

  19. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Title: Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. MHK Technologies/eelGrass | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization AeroVironment Inc Technology Resource Click here Wave Technology Description AV has developed an innovative device for harnessing the ocean s energy...

  1. Fuel Cell Technologies Office Publication and Product Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies Office Publication & Product Library Fuel Cell Technologies Office Home Publication and Product Library Share this resource Publications Advanced Search ...

  2. MHK Technologies/Kinetic Hydropower System KHPS | Open Energy...

    Open Energy Info (EERE)

    Project(s) where this technology is utilized *MHK ProjectsRoosevelt Island Tidal Energy RITE *MHK ProjectsCornwall Ontario River Energy CORE Technology Resource Click here...

  3. Characterization Plan for Soils Around Drain Line PLA-100115

    SciTech Connect (OSTI)

    D. Shanklin

    2006-05-24

    This Characterization Plan supports the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) closure of soils that may have been contaminated by releases from drain line PLA-100115, located within the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The requirements to address the closure of soils contaminated by a potential release from this line in a characterization plan was identified in the "HWMA/RCRA Less Than 90-day Generator Closure Report for the VES-SFE-126."

  4. MHK Technologies/Small power take off module | Open Energy Information

    Open Energy Info (EERE)

    module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Description The 18...

  5. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  6. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (355) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  7. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events Contact Us

  8. NREL: Geothermal Technologies - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Office website or search the NREL Publications Database. Learn more about how research at NREL is accelerating

  9. Deep Water Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deepwater Technology Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industry's most advanced engineering accomplishments. NETL funds research to catalyze further advances that can help Gulf of Mexico

  10. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

  11. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  12. ARM - Other Science Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesOther Science Resources Outreach Home Room News Publications Traditional Knowledge ... Teachers Teachers' Toolbox Lesson Plans Other Science Resources AIMS Education Foundation ...

  13. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  14. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Chemical Industry Vision 2020. Annual Report 2004 Citation Details In-Document Search Title: Chemical Industry Vision 2020. Annual Report 2004 This publication is an annual report on the activities of the Chemical Industry Vision 2020 Technology Partnership. Authors: None, None Publication Date: 2005-06-01 OSTI Identifier: 1218618 Resource Type: Technical Report Research Org: EERE Publication and Product Library Sponsoring Org: USDOE Office of Energy Efficiency and Renewable

  15. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies Measurement and Characterization ...

  16. Plant Phenotype Characterization System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Phenotype Characterization System Plant Phenotype Characterization System New X-Ray Technology Accelerates Plant Research The ability to analyze plant root structure and...

  17. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Wind Data Models & Tools Publications...

  18. NREL: Renewable Resource Data Center - Biomass Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  19. NREL: Technology Deployment - Strategy and Implementation Group...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical knowledge across multiple renewable energy and energy efficiency technologies, a ... Resources; masters work in Environmental Law and Policy Back to Top Photo of Katie ...

  20. Federal Renewable Energy Projects and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides resources and tools that help federal agencies implement renewable energy projects and technologies to meet federal laws and requirements.

  1. Asian Institute of Technology | Open Energy Information

    Open Energy Info (EERE)

    Technology (SET), the School of Environment, Resources & Development, and the School of Management. The fourth unit, AIT Extension, brings together the wide-ranging expertise of...

  2. MHK Technologies/NAREC | Open Energy Information

    Open Energy Info (EERE)

    Resource Click here Wave Technology Description The in house engineering and prototype testing capabilities of Narec are assisting wave and tidal stream marine developers...

  3. Geothermal Technologies Office Director Doug Hollett Keynotes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September Geothermal Technologies Office Director Doug Hollett Keynotes at ...

  4. Check Heat Transfer Services; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... your chemical additives. Resources U.S. Department of Energy- For additional information on process heating ... Technologies Program Industries of the Future strategy, ...

  5. The Southern California Conversion Technology Demonstration Project...

    Open Energy Info (EERE)

    Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website...

  6. Stanford Geothermal Workshop - Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - New Staff: Josh Mengers (PMF); Dan King (AAAS); Chris Richards; Jodi Deprizio; ... Inc. 2011. Technology advances from King, 2012 (SPE 152596) Developed Resource 18 ...

  7. Resource Recovery Opportunities at America’s Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at America’s Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  8. NWTC Helps Chart the World's Wind Resource Potential

    SciTech Connect (OSTI)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  9. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  10. Fermilab Office of General Counsel - Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Links Documents

  11. Source characterization and control technology assessment of methylene chloride emissions from Eastman Kodak Company, Rochester, NY. Final report, July 1988-April 1989

    SciTech Connect (OSTI)

    Walata, S.A.; Rehm, R.M.

    1989-07-01

    This report gives results of an assessment of potential control technologies for methylene chloride (also known as dichloromethane or DCM) emission sources at Eastman Kodak Company's Kodak Park facility in Rochester, NY. DCM is a solvent used by Kodak in the manufacture of cellulose triacetate film support. Work has involved: a plant visit where major DCM emission sources were inspected, and evaluation of current and potential control technologies for the DCM emission sources. The report contains information gathered during the plant visit to the Kodak Park facility. Included are emission estimates determined by Kodak of all emission points greater than 8000 lb (3600 kg)/yr DCM, as well as a description of each point observed during the visit. Also included are results of an evaluation of control technologies that might be applied to the major emission sources. A cost analysis of different add-on control devices is provided for four of the uncontrolled emission points.

  12. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  13. Intergovernmental & External Affairs Resources

    Broader source: Energy.gov [DOE]

    Funding and financing resources for state, local and tribal governments and private and public stakeholders.

  14. Natural resources law handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers legal topics ranging from ownership-related issues (including disposition, use and management of privately and publicly-owned lands, resources, minerals and waters) to the protection and maintenance of our nation's natural resources. It contains chapters on oil and gas resources, coal resources, and minerals and mining.

  15. Career Map: Resource Scientist

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Resource Scientist positions.

  16. Additional Funding & Financing Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additional Funding & Financing Resources Additional Funding & Financing Resources Workers use a giant crane to lift the blade assembly on a wind turbine at NREL's National Wind Technology Center. | Photo by Dennis Schroeder. Workers use a giant crane to lift the blade assembly on a wind turbine at NREL's National Wind Technology Center. | Photo by Dennis Schroeder. Want to know more about funding and financing for energy projects and businesses? Check out general resources at the Energy

  17. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    II Oil Shale Resources Technology and Economics Office of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of Energy Washington, D.C. March 2004 Strategic Significance of America's Oil Shale Resource Volume II Oil Shale Resources, Technology and Economics March 2004 Final Report Prepared for: Office of Deputy Assistant Secretary for Petroleum Reserves The Office of Strategic Petroleum Reserves U.S. Department of Energy Work

  18. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  19. Chapter 39 - Acquisition of Information Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 - Acquisition of Information Technology Chapter 39 - Acquisition of Information Technology PDF icon 39.1AcquisitionofInformationResources0.pdf PDF icon 39.2GuidanceonElec...

  20. National incinerator testing and evaluation program: The environmental characterization of refuse-derived fuel (RDF) Combustion Technology, Mid-Connecticut Facility, Hartford, Connecticut. Final report, June 1987-March 1993

    SciTech Connect (OSTI)

    Finklestein, A.; Klicius, R.D.

    1994-12-01

    The report gives results of an environmental characterization of refuse-derived (RDF) semi-suspension burning technology at a facility in Hartford, Connecticut, that represents state-of-the-art technology, including a spray dryer/fabric filter flue-gas cleaning (FGC) system for each unit. Results were obtained for a variety of steam production rates, combustion conditions, flue gas temperatures, and acid gas removal efficiencies. All incoming wastes and residue streams were weighed, sampled, and analyzed. Key combustor and FGC system operating variables were monitored on a real time basis. A wide range of analyses for acid gases, trace organics, and heavy metals was carried out on gas emissions and all ash residue discharges.

  1. ORISE Resources: Consumer Health Resource Information Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CHRIS) guide Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was developed by the Oak Ridge Institute for Science and Education (ORISE) for those who would like to initiate a CHRIS program in their community or worship center. The tool kit-a companion piece for the guide-contains valuable online resources and copies of the letters, forms and other related materials used in

  2. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  3. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home » Information Resources » Publications » Technology Roadmaps Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans outlining solid-state lighting goals, research and development initiatives aimed at accelerating technology advances and market penetration of solid-state lighting, and recent achievements. The following documents are available as Adobe Acrobat PDFs. OLED Stakeholder Meeting Report Summary of a September meeting open to members of the

  4. Energy Efficiency Resource Standards Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EERS resources below. Coordination of Energy Efficiency and Demand Response ACEEE Database of State EERS Center for Climate and Energy Solutions: Energy Efficiency Standards ...

  5. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education & Training » Energy Resource Library Energy Resource Library The U.S. Department of Energy (DOE) Office of Indian Energy resource library provides links to helpful resources for tribes on energy project development and financing on tribal lands. The library includes links to topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The resources are specifically focused on energy topics that help promote tribal

  6. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  7. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    of Energy Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development PDF icon Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development More Documents & Publications Oil Shale RD&D Leases in the United States National Strategic Unconventional Resource Model Oil Shale

  8. Characterization of Fractures in Geothermal Reservoirs Using...

    Open Energy Info (EERE)

    Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly...

  9. John Angelis named Manager, Information Resource Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Names John S. Angelis Manager of Information Resource Management CARLSBAD, N.M., March 22, 2000 - The Westinghouse Waste Isolation Division (WID) has named John S. Angelis of Carlsbad as Manager of Information Resource Management at the Waste Isolation Pilot Plant (WIPP). "John's extensive computer technology and telecommunications experience, combined with his progressive attitude, make him an ideal choice for this increasingly important position," said WID General Manager Joe

  10. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    SciTech Connect (OSTI)

    Husillos Rodriguez, N.; Martinez Ramirez, S.; Blanco Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J.

    2010-05-15

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

  11. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  12. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  13. Contacts for the Deputy General Counsel for Transactions, Technology, &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Human Resources (GC-60) | Department of Energy Transactions, Technology, & Contractor Human Resources (GC-60) Contacts for the Deputy General Counsel for Transactions, Technology, & Contractor Human Resources (GC-60) Gena E. Cadieux, Deputy General Counsel for Transactions, Technology, & Contractor Human Resources 202-586-3426 gena.cadieux@hq.doe.gov Lisa N. Brown, Administrative Staff 202-586-5246 202-586-0325 (fax)

  14. MHK Technologies/Open HydroTurbine | Open Energy Information

    Open Energy Info (EERE)

    CrestEnergy Project(s) where this technology is utilized *MHK ProjectsPaimpol Brehat tidal farm Technology Resource Click here CurrentTidal Technology Description See Open...

  15. MHK Technologies/Sabella River Generator | Open Energy Information

    Open Energy Info (EERE)

    Organization Sabella Energy Project(s) where this technology is utilized *MHK ProjectsSR 01 Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow...

  16. High Impact Technology HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology Catalyst » High Impact Technology HQ High Impact Technology HQ High Impact Technology HQ Home Resources for Evaluators -- Site Evaluation Checklists, General M&V Plans, General Templates Host a Site -- Current Opportunities for Owners and Operators Provide Information About Technologies -- Open Opportunities, Upcoming Events, Prioritization Tool Input Form Results -- Technology Highlights, Case Studies, Final Technical Reports, Market Stimulation Activities The High Impact

  17. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    SciTech Connect (OSTI)

    Phillips, Benjamin R.; Ziagos, John; Thorsteinsson, Hildigunnur; Hass, Eric

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energy’s Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  18. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced

  19. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  20. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  1. Outdoor Lighting Resources

    Broader source: Energy.gov [DOE]

    DOE offers a variety of resources to guide municipalities, utilities, and others in their evaluation of LED street lighting products.

  2. Hydrothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-08-31

    This two-page fact sheet provides an overview of hydrothermal resources and hydrothermal reservoir creation and operation.

  3. Business Planning Resources

    Broader source: Energy.gov [DOE]

    Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  4. Characterization of solid waste conversion and cogeneration systems

    SciTech Connect (OSTI)

    1980-09-01

    The primary objective of the TASE program is to determine the probable consequences to the environment and to public health and safety resulting from widespread implementation of major solar and renewable resource technologies. The specific principal Phase I objective is to determine the levels of residuals most likely to result throughout the complete energy cycle from the utilization of each of the solar and renewable resource technologies. Three basic technologies for recovering energy from M SW are considered in this study. These are: (1) direct combustion using a waterwall incinerator in which the heat from burning refuse is converted to steam by circulating water in steel tubes jacketing the interior of the incinerator; (2) manufacture of a relatively uniform shredded, pulverized or pelleted refuse-derived fuel (RDF) for supplemental firing in a utility boiler; and (3) pyrolysis or destructive distillation of MSW to extract a low-Btu fuel gas. While resource recovery and energy recovery systems can be installed independently, the processes described here include both energy and resource recovery systems as well as necessary pollution control equipment for gaseous emissions. To meet the Phase I objective, LBL staff have characterized the individual application associated with each general technology; calculated operational residuals generated by each application; determined the input capital requirements and, when possible, annual operating input requirements; and have identified the technical and institutional constraints for the widespread implementation of each application. A description is presented of the energy and material development cycle required for the implementation of each technology. The capital requirements are compiled and presented in a SEAS system format.

  5. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, P.

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  6. Final Report: DoE SBIR Phase 2 Low-Cost Small Diameter NMR Technologies for In-Situ Subsurface Characterization and Monitoring

    SciTech Connect (OSTI)

    Walsh, David Oliver

    2010-09-03

    In this Phase 2 SBIR program, Vista Clara successfully developed and field-tested small diameter NNR logging tools for subsurface characterization and monitoring. This effort involved the design and development surface electronics, a winch with 470ft cable, and three interchangeable downhole probes: a 3.5? diameter borehole NMR probe, a 1.67? diameter borehole NMR probe, and a 2.5? diameter NMR probe that can be deployed using a Geoprobe direct push machine. The 3.5? probe was tested extensively over a 6 week period including 4? to 8? boreholes in Washington, Idaho, Nebraska, Colorado, Kansas, Connecticut and Massachusetts. The field test campaign was highly successful. The 1.67? probe was assembled, tested and calibrated in the laboratory. The 2.5? Geoprobe probe is in final assembly and testing at the time of this report. The completed Phase 2 R&D program has resulted in the first NMR logging tool that can be deployed in boreholes of 4? diameter, the first NMR logging tool that can be deployed in boreholes on 2? diameter, and the first NMR logging tool that can be deployed by a direct push machine. These small diameter tools make NMR logging technically and economically feasible, for the first time. Previously available NMR logging tools were developed for oilfield applications and are prohibitively large and expensive for the majority of near surface groundwater characterization problems.

  7. Ecological Resources and Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Resources and Systems Argonne develops and applies innovative approaches and tools to integrate environmental compliance and environmental performance into an organization's structure in a cost-effective manner. Argonne knows that our world exists in a delicate balance with technology. Our research focuses on measuring advanced energy and technology's effects on the world's ecological systems, creating preventive strategies to protect the Earth from harm and inventing new ways to

  8. NREL: Learning - Student Resources on Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy The following resources can provide you with more information on solar energy. Solar Energy Technology Basics U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Sunshot Initiative U.S. Department of Energy Office of Energy Efficiency & Renewable Energy U.S. Department of Energy Solar Decathlon Photovoltaic Technology Basics U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Concentrating Solar Power U.S. Department of Energy

  9. Proceedings of the fuels technology contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.

    1993-11-01

    The Fuels Technology Contractors Review Meeting was held November 16-18, 1993, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. This meeting was sponsored and hosted by METC, the Office of Fossil Energy, U.S. Department of Energy (DOE). METC periodically provides an opportunity to bring together all of the R&D participants in a DOE-sponsored contractors review meeting to present key results of their research and to provide technology transfer to the active research community and to the interested public. This meeting was previously called the Natural Gas Technology Contractors Review Meeting. This year it was expanded to include DOE-sponsored research on oil shale and tar sands and so was retitled the Fuels Technology Contractors Review Meeting. Current research activities include efforts in both natural gas and liquid fuels. The natural gas portion of the meeting included discussions of results summarizing work being conducted in fracture systems, both natural and induced; drilling, completion, and stimulation research; resource characterization; delivery and storage; gas to liquids research; and environmental issues. The meeting also included project and technology summaries on research in oil shale, tar sands, and mild coal gasification, and summaries of work in natural-gas fuel cells and natural-gas turbines. The format included oral and poster session presentations. Individual papers have been processed separately for inclusion in the Energy Science and Technology database.

  10. NREL: Renewable Resource Data Center - Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following solar resource data collections can be found in the Renewable Resource Data Center (RReDC). Cooperative Networks for Renewable Resource Measurements (CONFRRM)...

  11. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  12. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  13. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  14. Orchestrating Distributed Resource Ensembles for Petascale Science

    SciTech Connect (OSTI)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul; Yufeng, Xin

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstract API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.

  15. Gradient Resources | Open Energy Information

    Open Energy Info (EERE)

    Gradient Resources Jump to: navigation, search Logo: Gradient Resources Name: Gradient Resources Address: 9670 Gateway Drive, Suite 200 Place: Reno, Nevada Zip: 89521 Region:...

  16. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement best management practices for energy efficient management of electronic equipment and computing resources. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  17. Federal Energy Resources Modernization Coordinating Committee. Semiannual Report, October 1, 1991 Through March 31, 1992

    SciTech Connect (OSTI)

    Parker, G.B.

    1992-07-01

    This report summarizes the broad range of activities supported by Federal Energy Management Program (FEMP) and other federal agencies focused on meeting the President`s Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the FERM Coordinating Committee, and as such include activities undertaken from October 1, 1991, through March 31, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for the federal energy manager to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems modernization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities.

  18. Technology & Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand...

  19. DOE Launches Emergency Response Hydrogen Training Resource

    Broader source: Energy.gov [DOE]

    The Energy Department's Fuel Cell Technologies Office announces the launch of a new, free, online national hydrogen safety training resource for emergency responders that provides a single repository of credible and reliable information related to hydrogen and fuel cells that is current and accurate and eliminates duplicative efforts among various training programs.

  20. Hydropower Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development Hydropower Technology Development Hydropower Technology Development Hydroelectric power is the largest source of renewable electricity in the United States, producing about 6.3% of the nation's total electricity throughout the last decade. Even after a century of proven experience with this reliable renewable resource, significant opportunities still exist to expand the nation's hydropower resources through non-powered dams, water conveyance systems, pumped storage