National Library of Energy BETA

Sample records for technology capital planning

  1. 2016-2020 Strategic Human Capital Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Chief Human Capital Officer 2016-2020 Strategic Human Capital Plan Cover Photo Description Beyond Double-Pane Windows While the invention of double-pane windows dates back to 1935, a true turning point in the technology came in the 1980s with a collaboration between the Department of Energy, private industry, and Lawrence Berkeley National Lab. Initial research and development by Berkeley Lab and a start-up company, Suntek Research Associates (now called Southwall Technologies), led to the

  2. Sustainable Technology Capital, LP | Open Energy Information

    Open Energy Info (EERE)

    Capital, LP Jump to: navigation, search Logo: Sustainable Technology Capital, LP Name: Sustainable Technology Capital, LP Address: 625 Liberty Ave., Suite 3200 Place: Pittsburgh,...

  3. IT Capital Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IT Capital Planning IT Capital Planning IT7 (003).jpg What is Capital Planning? The Office of Management and Budget (OMB) Circular A-11, defines capital planning as "a decision-making process for ensuring IT investments integrate strategic planning, budgeting, procurement, and IT management in support of agency missions and business needs." Who's Responsible for DOE Capital Planning? The Office of the Chief Information Officer (OCIO) oversees the DOE IT portfolio, while the Information

  4. DOE Strategic Human Capital Plan (FY 2011 - 2015) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Human Capital Plan (FY 2011 - 2015) DOE Strategic Human Capital Plan (FY 2011 - 2015) The Strategic Human Capital Plan sets forth the framework for managing the ...

  5. DOE Strategic Human Capital Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The current Strategic Human Capital Plan (SHCP) sets forth the framework for managing the Department of Energy's (DOE) human capital system through 2020. This Plan, which replaces ...

  6. 2011-2015 Human Capital Management Plan

    Broader source: Energy.gov [DOE]

    The Office of Legacy Management (LM) needs skilled and engaged staff to accomplish our mission and carry out our responsibilities to the American people. This Human Capital Management Plan (HCMP or...

  7. Guide to IT Capital Planning and Investment Control

    Energy Savers [EERE]

    Guide to IT Capital Planning and Investment Control April 2014 i TABLE OF CONTENTS TABLE OF CONTENTS ......

  8. Acro Energy Technologies formerly Lonestar Capital | Open Energy...

    Open Energy Info (EERE)

    Energy Technologies formerly Lonestar Capital Jump to: navigation, search Name: Acro Energy Technologies (formerly Lonestar Capital) Place: Oakdale, California Zip: 95361 Sector:...

  9. Microsoft Word - IT Capital Planning Blue Cover Report 9-24-10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department's Information Technology Capital Planning and Investment Control Activities DOE/IG-0841 September 2010 Department of Energy Washington, DC 20585 September 30, 2010 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department's Information Technology Capital Planning and Investment Control Activities" BACKGROUND The Department of Energy spends approximately $2.2 billion annually on information technology (IT)

  10. NREL Technology Transfer: Facilitating Capital Investment in Clean Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Facilitating Capital Investment in Clean Energy Technology Tom A. Williams Director, Technology Transfer Office National Renewable Energy Laboratory We Are Unique * Only national laboratory dedicated to renewable energy and energy efficiency R&D * Research spans fundamental science to technology solutions * Collaboration with industry, university and international partners is a hallmark * Research is market relevant because of a systems focus and global perspective and

  11. DOE Guide to IT Capital Planning and Investment Control BY 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to IT Capital Planning and Investment Control BY 2016 DOE Guide to IT Capital Planning and Investment Control BY 2016 DOE Guide to IT Capital Planning and Investment Control...

  12. Microsoft Word - DOE Human Capital Strategic Plan 2011-2015.docx

    Broader source: Energy.gov (indexed) [DOE]

    DOE HUMAN CAPITAL STRATEGIC PLAN FY 2011 - FY 2015 DOE HUMAN CAPITAL STRATEGIC PLAN FY 2011 - FY 2015 TABLE OF CONTENTS EXECUTIVE SUMMARY ......

  13. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2014 CARBON STORAGE U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER ... within the context of an integrated system of capture, transport, and storage ...

  14. MicroPlanet Technology Corp formerly HF Capital Corp | Open Energy...

    Open Energy Info (EERE)

    Technology Corp formerly HF Capital Corp Jump to: navigation, search Name: MicroPlanet Technology Corp (formerly HF Capital Corp) Place: Seattle, Washington Zip: 98104 Sector:...

  15. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMBUSTION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  16. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CARBON CAPTURE U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  17. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  18. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TURBINES U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  19. EM Capital and Major Operating Project Standard Review Plan Edition Two

    Broader source: Energy.gov [DOE]

    This memorandum introduces the Second Edition of the Capital and Major Operations Projects Standard Review Plan (SRP).

  20. Capital Planning for DOE O 413.3B, Chicago | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital Planning for DOE O 413.3B, Chicago Capital Planning for DOE O 413.3B, Chicago March 30, 2016 8:00AM EDT to March 31, 2016 5:00PM EDT Capital Planning for DOE O 413.3B ...

  1. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical nuclear grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  2. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This ...

  3. DOE Guide to IT Capital Planning and Investment Control BY 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Guide to IT Capital Planning and Investment Control BY 2016 DOE Guide to IT Capital Planning and Investment Control BY 2016 DOE Guide to IT Capital Planning and Investment Control BY 2016 BY16 DOE IT CPIC Guide_Final.pdf (905.81 KB) More Documents & Publications BY16 DOE IT CPIC Guide_Final Audit Report: IG-0841 IT Reporting Format and Requirements for the BY 2017 Budget Submission

  4. Program and Project Management Policy for the Planning, Programming, Budgeting, and Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-10

    To establish Department of Energy (DOE) program and project management policy for the planning, programming, budgeting, and acquisition of capital assets consistent with the following Office of Management and Budget (OMB) circulars: OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, and the supplement to Part 3, Capital Programming Guide; OMB Circular A-123; OMB Circular A-127; and OMB Circular A-130. Does not cancel other directives. Canceled by DOE N 251.99

  5. Technology Transfer Plan

    SciTech Connect (OSTI)

    1998-12-31

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  6. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Guide | Department of Energy Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide (1.19 MB) More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange Technology

  7. Technology Maturation Plans (TMPs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste and Waste Processing » Technology Maturation Plans (TMPs) Technology Maturation Plans (TMPs) Documents Available for Download November 1, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. November 1,

  8. NREL: Technology Deployment - Climate Action Planning Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Technology Deployment Climate Action Planning Tool Technology Deployment - Climate Action Planning Tool NREL's Climate Action Planning Tool provides a quick, basic estimate of how various technology options can contribute to an overall climate action plan for your research campus. Use the tool to identify which options will lead to the most significant reductions in consumption of fossil fuels and in turn meet greenhouse gas reduction goals. Follow these four steps: Gather baseline energy

  9. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank 48H Treatment Project (TTP) | Department of Energy Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO)

  10. Office Technology RD&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology RD&D Plan 2-1 Last revised: March 2015 Section 2: Office Technology Research, Development, and Demonstration Plan The Bioenergy Technologies Office's research, development, and demonstration efforts are organized around three key technical and three key crosscutting elements (see Figure 2-1). The first two technical elements-Feedstock Supply and Logistics R&D and Conversion R&D- primarily focus on research and development (R&D). The third technical element-

  11. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Multi-Year Research, Development and Demonstration Plan Page ES - 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the laboratory and into commercial markets. A tremendous opportunity exists for the United States to capitalize on this leadership role and apply these technologies to reducing greenhouse gas emissions, reducing our dependence on oil, and

  12. Building Technologies Program Planning Summary

    Energy Savers [EERE]

    of commercially available but underutilized technologies, lighting controls, expert lighting design, and integrated systems. * Through the EnergySmart Schools subprogram, BTP...

  13. Technology choice in a least-cost expansion analysis framework: Effects of gas price, planning period, and system characteristics

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.; Bhatarakamol, S.; Poch, L.A.

    1990-04-01

    The current outlook for new capacity additions by electric utilities is uncertain and tenuous. The fundamental question about the additional capacity requirements center on technology choice and the factors influencing the decision process. Instead of building capital-intensive power plants, utilities have begun relying on natural gas technologies, which permit rapid construction and deployment and low capital investment. Of concern to policymakers and utility planners are the following questions: (1) What is the impact of alternative gas price projections on technology choice (2) What influence does the planning horizon have on technology choice (3) How important are existing system characteristics on technology choice (4) What effect does capital cost, when combined with other technology characteristics in a capacity expansion framework, have on technology choice In this study Argonne National Laboratory examined the impact of these concerns on technology choices in 10 representative power pools with a dynamic optimization expansion model, the Wien Automatic System Planning Package (WASP). At least-cost expansion plan was determined for each power pool with three candidate technologies--natural gas combustion turbine technology (GT), natural gas combined-cycle technology (NGCC), and integrated gasification combined-cycle technology (IGCC)--three alternative fuel price tracks, and two planning periods (10-yr versus 30-yr optimization) between the years 1995 and 2025. The three fuel price tracks represented scenarios for low, medium, and high gas prices. Sensitivity analyses were conducted on IGCC capital cost and unserved energy costs. 21 refs., 79 figs., 21 tabs.

  14. Memo Issuance of EM Capital and Major Operating Project Standard Review Plan Edition Two

    Office of Environmental Management (EM)

    MAR 2 4 201011 MEMORANDUM FOR DISTRIBUTION FROM: DR. STEVEN L. KRAHN DEPUTY ASSISTANT SAFETY AND SECU EIVVIROIVMENTAL MANAGEMENT SUBJECT: Issuance of Environmental Management Capital and Major Operating Project Standard Review Plan Edition Two The Office of Environmental Management (EM) is responsible for managing the design, construction, operation, and eventual disposition of mission critical projects/facilities. Effective management of these projects requires multiple disciplines to be

  15. Business Plan Competitions and Technology Transfer

    SciTech Connect (OSTI)

    Worley, C.M.; Perry, T.D., IV

    2012-09-01

    An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

  16. National Security Technology Incubation Project Continuation Plan

    SciTech Connect (OSTI)

    2008-09-30

    This document contains a project continuation plan for the National Security Technology Incubator (NSTI). The plan was developed as part of the National Security Preparedness Project (NSPP) funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This continuation plan describes the current status of NSTI (staffing and clients), long-term goals, strategies, and long-term financial solvency goals.The Arrowhead Center of New Mexico State University (NMSU) is the operator and manager of the NSTI. To realize the NSTI, Arrowhead Center must meet several performance objectives related to planning, development, execution, evaluation, and sustainability. This continuation plan is critical to the success of NSTI in its mission of incubating businesses with security technology products and services.

  17. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  18. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Broader source: Energy.gov (indexed) [DOE]

    Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. ... More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: July ...

  19. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Office of Environmental Management (EM)

    Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies ...

  20. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: March 2016 Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update Bioenergy ...

  1. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Environmental Management (EM)

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies ...

  2. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update -- Sections This ...

  3. SWAMI II technology transfer plan

    SciTech Connect (OSTI)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  4. Hanford Waste Vitrification Plant applied technology plan

    SciTech Connect (OSTI)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  5. National Security Technology Incubator Operations Plan

    SciTech Connect (OSTI)

    2008-04-30

    This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

  6. National Security Technology Incubator Business Plan

    SciTech Connect (OSTI)

    None

    2007-12-31

    This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

  7. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect (OSTI)

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  8. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Presentation from the 34th Tritium Focus Group Meeting held in ...

  9. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research Presentation from the 35th Tritium Focus Group Meeting held in ...

  10. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Office of Environmental Management (EM)

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy ...

  11. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Office of Environmental Management (EM)

    Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy ...

  12. Greener Capital | Open Energy Information

    Open Energy Info (EERE)

    Greener Capital Jump to: navigation, search Name: Greener Capital Place: San Francisco, California Product: San Francisco-based clean technology VC. References: Greener Capital1...

  13. 2011 Annual Planning Summary for National Energy Technology Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Technology Laboratory (See Fossil Energy). PDF icon 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) More Documents & Publications 2011 ...

  14. Building Technologies Program: Planned Program Activities for 2008-2012

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Complete Multi-Year Program Plan 2008 includes all sections - overview, research and development, standards, technology validation, portfolio management, appendices.

  15. 2012 Annual Planning Summary for EM Energy Technology Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Energy Technology Engineering Center 2012 Annual Planning Summary for EM Energy Technology Engineering Center The ongoing and projected Environmental Assessments and ...

  16. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: March 2016 This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It ...

  17. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Office of Environmental Management (EM)

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. ...

  18. Fuel Cell Technologies Office: Plans, Implementation, and Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans,...

  19. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming...

    Office of Environmental Management (EM)

    ... design work for FBSR remote operations currently ... Industrial Association Systems Engineering Conference, October 20, 2003. Technology Maturation Plan (TMP) ...

  20. Building Technologies Program: Planned Activities for 2007-2012

    SciTech Connect (OSTI)

    None, None

    2007-01-01

    The multi-year program plan for the Building Technologies Program, for the years between 2007 and 2012.

  1. Information Technology Standards Program management plan

    SciTech Connect (OSTI)

    1998-05-01

    This document presents a logical and realistic plan to implement the Information Technology (IT) Standards Program throughout the Department of Energy (DOE). It was developed by DOE Chief Information Officer (CIO) staff, with participation from many other individuals throughout the DOE complex. The DOE IT Standards Program coordinates IT standards activities Department-wide, including implementation of standards to support the DOE Information Architecture. The Program is voluntary, participatory, and consensus-based. The intent is to enable accomplishment of the DOE mission, and the Program is applicable to all DOE elements, both Federal and contractor. The purpose of this document is to describe the key elements of the DOE IT Standards Program.

  2. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  3. Vehicle Technologies Office: Plans, Implementation and Results | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Plans, Implementation and Results Vehicle Technologies Office: Plans, Implementation and Results The Vehicle Technologies Office releases a variety of reports and publications to describe the results of its research and development, summarize data collected, and educate the public about advanced and alternative fuel vehicle technologies. Annual Merit Review Report: Summarizes the results of the Annual Merit

  4. Chemical sensors technology development planning workshop

    SciTech Connect (OSTI)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  5. Building Technologies Program Planning Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Planning Summary Building Technologies Program Planning Summary This is a summary of the U.S. Department of Energy Building Technologies Program plans for conducting research and development of energy-efficient buildings in the United States. btp_planning.pdf (362.6 KB) More Documents & Publications Before the Senate Energy and Natural Resources Committee Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Before the House Transportation and

  6. Vehicle Technologies Office: Plans and Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plans and Roadmaps Vehicle Technologies Office: Plans and Roadmaps These comprehensive documents provide in-depth descriptions of the plans for various Office of Energy Efficiency and Renewable Energy (EERE) programs, partnerships, and technologies. U.S. DRIVE Plans and Roadmaps (covers 12 technical teams) National Hydrogen Energy Roadmap A National Vision of America's Transition to a Hydrogen Economy-To 2030 and Beyond Roadmap and Technical White Papers as well as Appendix of Supporting

  7. 2013 Annual Planning Summary for the National Energy Technology...

    Broader source: Energy.gov (indexed) [DOE]

    The National Energy Technology Laboratory's APS was consolidated within the Office of Fossils Energy APS available here More Documents & Publications 2013 Annual Planning Summary ...

  8. Office of Building Technology, State and Community Programs Strategic Plan

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This is the strategic plan for the Building Technology Program in 1998. This describes trends in the BTP program and projects goals for the future.

  9. Advanced Technology Planning for Federal Energy Savings Performance Contracts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program helps agencies to identify and plan opportunities to deploy advanced technologies through federal energy savings performance contracts (ESPCs).

  10. PNNL Technology Planning and Deployment Group | Open Energy Informatio...

    Open Energy Info (EERE)

    decisions Life-Cycle Analysis - energy costs and consumption, economic options and new technology impacts Marketing Definition, outreach plans and materials Next generation...

  11. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Tank 48H Treatment Project (TTP) | Department of Energy Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System.

  12. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  13. Report, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are

  14. Three State Capitals to Receive Green Design Assistance from EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) on January 9 announced urban planning design assistance to help the capital cities of Michigan, Washington, and Wisconsin develop greener designs, including the use of renewable energy technologies.

  15. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARKET TRANSFORMATION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.9 - 1 3.9 Market Transformation The Market Transformation sub-program is conducting activities to help implement and promote commercial and pre-commercial hydrogen and fuel cell systems in real world operating environments. These activities also provide feedback to research programs, U.S. industry manufacturers, and potential technology users. Currently, the capital and installation costs of early

  16. NREL: Technology Deployment - REopt Renewable Energy Planning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... To learn more about using the REopt renewable energy planning and optimization platform for your project, contact Kate Anderson. If you have an agreement with NREL or FEMP to ...

  17. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  18. National Clean Energy Business Plan Competition: Living Ink Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wins CU Clean Energy Competition Regional Championship | Department of Energy Living Ink Technologies Wins CU Clean Energy Competition Regional Championship National Clean Energy Business Plan Competition: Living Ink Technologies Wins CU Clean Energy Competition Regional Championship May 4, 2015 - 2:51pm Addthis Living Ink Technologies has developed a patent-pending technology that uses algae to transform carbon dioxide into ink that is cheaper, healthier, and more environmentally

  19. Summary, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary, Long-Term Nuclear Technology Research and Development Plan Summary, Long-Term Nuclear Technology Research and Development Plan In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on the broad range of non-defense DOE nuclear technology programs. The NERAC recommended development of a long-range R&D program. This R&D

  20. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  1. Security Technology Demonstration and Validation Sustainability Plan

    SciTech Connect (OSTI)

    2008-08-31

    This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

  2. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  3. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  4. Tank farm waste characterization Technology Program Plan

    SciTech Connect (OSTI)

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved.

  5. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect (OSTI)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  6. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratorys Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  7. Human Capital Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    human capital requires comprehensive planning and analysis in order to develop, implement, and evaluate programs that support every facet of employee work life. DOE human capital ...

  8. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    SciTech Connect (OSTI)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  9. Study plan for critical renewable energy storage technology (CREST)

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Now is the time to plan to integrate significant quantities of distributed renewable energy into the electricity grid. Concerns about climate change, the adoption of state-level renewable portfolio standards and incentives, and accelerated cost reductions are driving steep growth in U.S. renewable energy technologies. The number of distributed solar photovoltaic (PV) installations and wind farms are growing rapidly. The potential for concentrated solar power (CSP) also continues to grow. As renewable energy technologies mature, they can provide a significant share of our nations electricity requirements.

  10. Marketing Plan for the National Security Technology Incubator

    SciTech Connect (OSTI)

    2008-03-31

    This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubator program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.

  11. Office of Building Technologies evaluation and planning report

    SciTech Connect (OSTI)

    Pierce, B.

    1994-06-01

    The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

  12. Digital Power Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Capital LLC Jump to: navigation, search Name: Digital Power Capital LLC Place: Greenwich, Connecticut Zip: 6830 Product: A private equity firm focused on new technologies that...

  13. High-level waste management technology program plan

    SciTech Connect (OSTI)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  14. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

  15. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  16. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  17. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  18. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  19. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  20. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  1. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  2. New EM Plan Calls for Research, Technology to Help Fight Mercury...

    Office of Environmental Management (EM)

    EM Plan Calls for Research, Technology to Help Fight Mercury Contamination New EM Plan ... WASHINGTON, D.C. - EM has released a new plan to address mercury contamination that ...

  3. Technology Plan to Address the EM Mercury Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan to Address the EM Mercury Challenge Technology Plan to Address the EM Mercury Challenge EM's Technology Plan to Address the EM Mercury Challenge addresses mercury contamination, and advocates for research and technology development to resolve key technical uncertainties with the pollutant in environmental remediation, facility deactivation and decommissioning, and tank waste processing. Technology Plan to Address the EM Mercury Challenge (5.55 MB) More Documents & Publications

  4. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  5. TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED...

    Office of Scientific and Technical Information (OSTI)

    AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS The displacement or deferral of substation...

  6. Bioenergy Technologies Office Multi-Year Program Plan: March 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  7. Vehicle Technologies Office Merit Review 2014: Alternative Fueling Diversity in the Energy Capital of the World

    Broader source: Energy.gov [DOE]

    Presentation given by City of Houston-Galveston Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative...

  8. EXPERT ELICITATION OF ACROSS-TECHNOLOGY CORRELATIONS FOR REACTOR CAPITAL COSTS

    SciTech Connect (OSTI)

    Brent Dixon; Various

    2014-06-01

    Calculations of the uncertainty in the Levelized Cost at Equilibrium (LCAE) of generating nuclear electricity typically assume that the costs of the system component, notably reactors, are uncorrelated. Partial cancellation of independent errors thus gives rise to unrealistically small cost uncertainties for fuel cycles that incorporate multiple reactor technologies. This summary describes an expert elicitation of correlations between overnight reactor construction costs. It also defines a method for combining the elicitations into a single, consistent correlation matrix suitable for use in Monte Carlo LCAE calculations. Both the elicitation and uncertainty propagation methods are demonstrated through a pilot study where cost correlations between eight reactor technologies were elicited from experts in the US DOE Fuel Cycle Research

  9. NEAC Nuclear Reactor Technology (NRT) Subcommittee On the Planning...

    Energy Savers [EERE]

    On the Planning Study of Future TestDemonstration Reactors March 2, 2015 Final Given ... a planning study for an advanced testdemonstration reactor in the United States. ...

  10. High Impact Technology Hub- Resources for Evaluators- General Measurement and Verification Plans

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  11. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  12. 2013 Annual Planning Summary for the National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the National Energy Technology Laboratory. The National Energy Technology Laboratory...

  13. Deputy Director, Science and Technology, Strategic Plans and Programs

    Broader source: Energy.gov [DOE]

    National Energy Technology Laboratory (NETL), is DOE's National Laboratory responsible for basic and applied research, and exploratory technology development and deployment, to assure sustainable...

  14. U.S. Department of Energy Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-10-12

    This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

  15. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    This document was developed to assist individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the Department of Energy (DOE) capital acquisition assets subjects to DOE O 413.3B.

  16. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  17. Bioenergy Technologies Office Multi-Year Program Plan, March...

    Broader source: Energy.gov (indexed) [DOE]

    ... Project Management Center PMP - project management plan PNNL - Pacific Northwest National Laboratory Psia - pounds per square inch absolute R&D - research and development RD&D - ...

  18. Rocky Flats Environmental Technology Site Treatment Plan Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Agreement addressing compliance with the Hazardous and Solid Waste Amendments of 1984 to RCRA. ESTABLISHING MILESTONES * The Site Treatment Plan provides for a three-year...

  19. 2012 Annual Planning Summary for EM Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within EM Energy Technology Engineering Center.

  20. 2013 Annual Planning Summary for the Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Energy Technology Engineering Center.

  1. PNNL Technology Planning and Deployment Group | Open Energy Informatio...

    Open Energy Info (EERE)

    in delivering projects ranging from research and development to field deployment Renewable energy assessments, impacts, and feasibility analyses Technology Adaptation,...

  2. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGY VALIDATION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real- world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D

  3. Fuel Cycle Technologies Near Term Planning for Storage and Transporta...

    Office of Environmental Management (EM)

    Secretary plans to transport spent nuclear fuel or high-level radioactive waste to an ... for the transportation of used nuclear fuel and high-level radioactive waste. 6 ...

  4. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. National Clean Energy Business Plan Competition: Living Ink Technologi...

    Energy Savers [EERE]

    ... After winning the CU Clean Energy Competition Regional Championship, Living Ink Technologies will now join FGC Plasma Solutions, winner of the Clean Energy Challenge, and Hyliion, ...

  6. Five-Year Technology Development Strategic Plan Targets EM's...

    Broader source: Energy.gov (indexed) [DOE]

    and discussed current technology development and ... to help them learn about commercially available remote systems. ... Management 2015 Conference with FIU ARC Director Dr. ...

  7. 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the National Energy Technology Laboratory (See Fossil Energy).

  8. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Broader source: Energy.gov (indexed) [DOE]

    ... The Office focuses on reducing technology risks from ... with coal-fired power maintaining a dominant role. ... Various methods of processing oil shale to remove the ...

  9. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Energy Savers [EERE]

    ... Bioenergy Technologies Office Overview with coal-fired power maintaining a dominant role. ... Growth in the biofuels industry creates jobs through plant construction, operation, ...

  10. Electric power substation capital costs (Technical Report) |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Subject: 24 POWER TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS Word Cloud More Like This ...

  11. Building Technologies Program Multi-Year Program Plan Program Portfolio Management 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for program portfolio management, including the program portfolio management process, program analysis, performance assessment, stakeholder interactions, and cross-cutting issues.

  12. Building Technologies Program Multi-Year Program Plan Program Overview 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan Program Overview 2008, including market overview and federal role, program vision, mission, design and structure, and goals and multi-year targets.

  13. Technology Implimentation Plan - ATF FeCrAl Cladding for LWR Application

    SciTech Connect (OSTI)

    Snead, Mary A.; Snead, Lance; Terrani, Kurt A.; Field, Kevin G.; Worrall, Andrew; Robb, Kevin R.; Yamamoto, Yukinori; Powers, Jeffrey J.; Dryepondt, Sebastien N.; Pint, Bruce A.; Hu, Xunxiang

    2015-06-01

    Technology implimentation plan for FeCrAl development under the FCRD Advanced Fuel program. The document describes the activities required to get FeCrAl clad ready for LTR testing

  14. Advanced Technology Planning for Federal Energy Savings Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and a U.S. Department of Energy national laboratory team to identify the economic feasibility of combined heat and power and renewable energy technologies that can be considered...

  15. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for

  16. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sections | Department of Energy Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  17. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Update Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an

  18. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is

  19. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    SciTech Connect (OSTI)

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  20. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  1. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  2. Foundation Capital

    Broader source: Energy.gov (indexed) [DOE]

    FC, ORNL, MB Confidential 3 Foundation Capital Confidential Distribution of 1,500 reviewed ORNL IP Out of 3,000 Total Disclosures Filed Over 25 yrs FC, ORNL, MB Confidential Many ...

  3. National Ignition Facility quality assurance plan for laser materials and optical technology

    SciTech Connect (OSTI)

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  4. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  5. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's multi-year program plan FY 2011-2015, outlines the scientific research and technology developments for the five-year timeframe (beyond the FY 2010 base year) that need to be undertaken to help meet the Administration'?s goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy.

  6. FY 1991--FY 1995 Information Technology Resources Long-Range Plan

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

  7. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  8. Expansion Capital Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Area Product: Venture capital firm that invests in expansion-stage, clean technology enterprises Year Founded: 2001 Phone Number: (415) 788-8802 Website: www.expansioncapital.com...

  9. Access to Capital

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IPR 2008 Capital Investment Review CIR 2012 Quarterly Business Review Focus 2028 2011 Strategic Capital Discussions Access to Capital Debt Optimization Asset Management Cost...

  10. 2011 Strategic Capital Discussions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IPR 2008 Capital Investment Review CIR 2012 Quarterly Business Review Focus 2028 2011 Strategic Capital Discussions Access to Capital Debt Optimization Asset Management Cost...

  11. US country studies program: Support for climate change studies, national plans, and technology assessments

    SciTech Connect (OSTI)

    1996-12-31

    This paper describes the objectives of the next phase of the U.S. Country Studies Program which was launched in support of the Framework Convention on Climate Change (FCCC). The next phases of this program aim to: assist countries in preparing Climate Change Action plans; support technology assessments and development of technology initiatives; enhance exchange of information and expertise in support of FCCC. The program offers support for these processes in the form of handbooks which have been published to aid in preparing action plans, and to provide information on methane, forestry, and energy technologies. In addition an array of training workshops have been and are scheduled to offer hands on instruction to participants, expert advice is available from trained personnel, and modeling tools are available to aid in development of action plans.

  12. Current status and future plan of uranium enrichment technology

    SciTech Connect (OSTI)

    Yonekawa, S.; Yamamoto, F.; Yato, Y.; Kishimoto, Y.

    1994-12-31

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been conducting extensive research and development (R&D) on the centrifuge process for more than a quarter of a century. This development program, designated as a national project in 1972, has resulted in the construction and operation of a pilot plant with a capacity of 50 t separative work unit (SWU) per year as well as a demonstration plant with a capacity of 200 t SWU/yr. Under the basic agreement of cooperation concluded in 1985, the technology developed in this program has been transferred to Japan Nuclear Fuel Limited (JNFL), which is now constructing and operating the commercial plant with a capacity of 1500 t SWU/yr at Rokkasho, Aomori. This paper describes the operational experiences of the demonstration plant, the status of a new material centrifuge, which will be introduced at a later stage of construction of the commercial plant, the development of an advanced centrifuge as a next-generation machine, and the research of a superadvanced centrifuge.

  13. Technology development: HEPA filter service life test plan

    SciTech Connect (OSTI)

    Kirchner, K.N.; Cummings, K.G.; Leck, W.C.; Fretthold, J.K.

    1995-05-31

    Rocky Flats Environmental Technology Site (the Site) has approximately 10,000 High Efficiency Particulate Air (HEPA) Filters installed in a variety of filter plenums. These ventilation/filtration plenum systems are used to control the release of airborne particulate contaminates to the environment during normal operations and also during potential design-based accidents. The operational integrity of the HEPA filter plenums is essential to maintaining the margins of safety as required by building specific Final Safety Analysis Reports (FSARS) for protection of the public and environment. An Unreviewed Safety Question Determination (USQD), USDQ-RFP94.0615-ARS, was conducted in 1994 addressing the potential inadequacy of the safety envelope for Protected Area building HEPA plenums. While conducting this USQD, questions were raised concerning the maximum service life criteria for HEPA filters. Accident scenarios in existing FSARs identify conditions that could potentially cause plugging or damage of down stream HEPA filters as a result of impaction from failed filters. Additionally, available data indicates that HEPA filters experience structural degradation due to the effects of age. The Unresolved Safety Question (USQ) compensatory measures thus require testing and analysis of used HEPA filters in order to determine and implement service life criteria.

  14. Vice President Biden Announces Plan to Put One Million Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles on the Road by 2015 | Department of Energy Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 January 26, 2011 - 12:00am Addthis Washington, D.C. - Today, Vice President Biden, Chair of the Middle Class Task Force, took the "White House to Main Street Tour" to Greenfield, Indiana, where he visited leading manufacturer Ener1, Inc., which produces

  15. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  16. Section 2, Bioenergy Technologies Office Multi-Year Program Plan, March 2016

    Broader source: Energy.gov (indexed) [DOE]

    2-1 Last revised: March 2016 Section 2: Office Technology Research, Development, and Demonstration Plan The Bioenergy Technologies Office's research, development, and demonstration efforts are organized around four key technical and three key crosscutting program areas (see Figure 2-1). The first three technical program areas-Terrestrial Feedstock Supply and Logistics R&D, Advanced Algal Systems R&D, and Conversion R&D-focus on research and development (R&D). The fourth

  17. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    SciTech Connect (OSTI)

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  18. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    SciTech Connect (OSTI)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  19. National technology needs assessment for the preparation and implementation of climate change action plans

    SciTech Connect (OSTI)

    Berkel, C.W.M. van; Blonk, T.J.; Westra, C.A.

    1996-12-31

    In the United National Framework Convention on Climate Change (FCCC) it is recognised that developed countries have a responsibility in assisting developing countries and countries in economic transition in building a national capacity for the development, acquisition and transfer of Climate-related Technologies (CTs). Such assistance is most likely to be successful once it is tailored to the results of a sound assessment of the country`s development needs and once the results of this assessment have been endorsed by the most important stakeholders in the country. Recent insight in the opportunities and constraints for National (technology) Needs Assessments (NNAs) as planning tool for both capacity building and technology transfer regarding Environmentally Sound Technologies (ESTs) is applied here to propose a participatory Climate Change Action Planning (CCAP) process. This participatory planning process is thought to serve the dual objective of defining a national Climate Change Action Plan (CCAP) while at the same time contributing to the creation of a broad supportive basis for its acceptance and implementation among stakeholders in the developing country.

  20. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  1. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  2. Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update

    Broader source: Energy.gov [DOE]

    This is the May 2013 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  3. U.S. Department of Energy Selects Venture Capital Firms to Accelerate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venture Capital Firms to Accelerate Adoption of Advanced Energy Technologies U.S. Department of Energy Selects Venture Capital Firms to Accelerate Adoption of Advanced Energy ...

  4. Sustainable Investments Capital SI Capital | Open Energy Information

    Open Energy Info (EERE)

    Investments Capital SI Capital Jump to: navigation, search Name: Sustainable Investments Capital (SI Capital) Place: Barcelona, Spain Zip: 8021 Sector: Renewable Energy, Services...

  5. Office of Renewable Energy Technology Geothermal and Hydropower Technologies Division, FY 1983 Annual Operating Plan

    SciTech Connect (OSTI)

    1983-01-01

    There are between 700 and 3400 guads of recoverable geothermal energy in the US. Hydrothermal, geopressure and hot dry rock are the three principal types of geothermal resources (in order of technological readiness) which can supply large amounts of energy for electric power production and direct heat applications. Hydrothermal resources include water and steam trapped in fractured or porous rocks. A hydrothermal system is classified as either hot-water or vapor-dominated (steam), according to the principal physical state of the fluid. Geopressured resources consist of water at moderately high temperatures at pressures higher than normal hydrostatic pressure. This water contains dissolved methane. Geopressured sources in sedimentary formations along the Texas and Louisiana Gulf Coast are believed to be quite large. Geopressured formations also exist in sedimentary basins elsewhere in the US. Hot dry rock resources consist of relatively unfractured and unusually hot rocks at accessible depths that contain little or no water. To extract usable power from hot dry rock, the rock must be fractured and a confined fluid circulation system created. A heat transfer fluid is introduced, circulated, and withdrawn. The overall goal of the Geothermal Program is to build a technology base that will be used by the private sector to exploit geothermal resources which can supply large amounts of energy for electric power production and direct-heat applications.

  6. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program 2009-2015 with program activities to 2025 Multi-Year Research, Development and Demonstration Plan Draft Clean, domestic, ubiquitous, renewable, baseload energy Cover Photo is Calpine's Sonoma Geothermal Plant at The Geysers feld in Northern California NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

  7. Mexico-Capital Markets Climate Initiative | Open Energy Information

    Open Energy Info (EERE)

    Low emission development planning, -LEDS Website http:www.decc.gov.ukencont Country Mexico Central America References CMCI1 World Economic Forum2 The Capital Markets...

  8. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA on 242015 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  9. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA on 622014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  10. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 1142014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  11. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 2112014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  12. Foundation Capital

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy The Department of Energy's Office of Fossil Energy today announced the appointment of David Mohler as Deputy Assistant Secretary for Clean Coal and Carbon Management. Mohler will bring to the Department extensive operational experience in nuclear and fossil energy power generation. He most recently served as senior vice president and chief technology officer for Duke Energy. In 2006, he led the creation of Duke Energy's technology office. From 1997 to 2006, he served as

  13. A technology transfer plan for the US Department of Energy's Electric Energy Systems Program

    SciTech Connect (OSTI)

    Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

    1986-11-01

    The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

  14. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update-- Sections

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  15. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update-- Sections

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  16. Bioenergy Technologies Office Multi-Year Program Plan: March 2016—Sections

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  17. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning Elaine Hale, Brady Stoll, and Trieu Mai National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65726 May 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  18. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  19. TECHNOLOGY MATURATION PLAN FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    SciTech Connect (OSTI)

    SAMS TL; GUILLOT S

    2011-01-27

    This Technology Maturation Plan schedules the development process that will bring the Lithium Hydrotalcite waste pretreatment process from its current estimated Technology Readiness Level of 3, to a level of 6. This maturation approach involves chemical and engineering research and development work, from laboratory scale to pilot scale testing, to incrementally make the process progress towards its integration in a fully qualified industrial system.

  20. Transition Plan for the K-1203 Sewage Treatment Plant, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Hoffmeister J.

    2008-10-05

    The K-1203 Sewage Treatment Plant (STP) was previously used to treat and process all sanitary sewage waste from the East Tennessee Technology Park (ETTP). The plant was shut down on May 29, 2008 as a result of the transition of sewage treatment for ETTP to the City of Oak Ridge. The City of Oak Ridge expanded the Rarity Ridge Sewage Treatment Plant (RRSTP) to include capacity to treat the waste from the ETTP and the Community Reuse Organization of East Tennessee (CROET) constructed a new ETTP lift station and force main to RRSTP. In preparation for the shutdown of K-1203, the US Department of Energy (DOE) in conjunction with Operation Management International (OMI) developed a shut down plan to outline actions that need to occur prior to the transition of the facility to Bechtel Jacob Company, LLC (BJC) for decontamination and demolition (D and D). This plan outlines the actions, roles, and responsibilities for BJC in order to support the transition of the K-1203 STP from OMI to the BJC Surveillance and Maintenance (S and M) and D and D programs. The D and D of the K-1203 Facilities is planned under the Comprehensive Environmental Response, Compensation, and Liability Act Remaining Facilities D and D Action Memorandum in the Balance of Site-Utilities D and D Subproject in fiscal year (FY) 2014.

  1. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  2. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Multi-Year Research, Development and Demonstration Plan Page 3.1 - 1 3.1 Hydrogen Production Hydrogen can be produced from diverse energy resources, using a variety of process technologies. Energy resource options include fossil, nuclear, and renewables. Examples of process technologies include thermochemical, biological, electrolytic, and photolytic. 3.1.1 Technical Goal and Objectives Goal Research and develop technologies for low-cost, highly efficient hydrogen production from

  3. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRODUCTION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.1 - 1 3.1 Hydrogen Production Hydrogen can be produced from diverse energy resources, using a variety of process technologies. Energy resource options include fossil, nuclear, and renewables. Examples of process technologies include thermochemical, biological, electrolytic, and photolytic. 3.1.1 Technical Goal and Objectives Goal Research and develop technologies for low-cost, highly efficient hydrogen production

  4. Greenworld Capital | Open Energy Information

    Open Energy Info (EERE)

    Greenworld Capital Jump to: navigation, search Name: Greenworld Capital Place: Pennsylvania Zip: 10000 Sector: Services Product: GreenWorld Capital provides investment banking...

  5. Greencore Capital | Open Energy Information

    Open Energy Info (EERE)

    Greencore Capital Jump to: navigation, search Name: Greencore Capital Place: San Diego, California Zip: 92121 Sector: Services Product: String representation "GreenCore Capit ... s...

  6. Yellowstone Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Logo: Yellowstone Capital Name: Yellowstone Capital Address: 5555 San Felipe, Suite 1650 Place: Houston, Texas Zip: 77056 Region: Texas Area...

  7. Nite Capital | Open Energy Information

    Open Energy Info (EERE)

    Nite Capital Jump to: navigation, search Name: Nite Capital Place: Libertyville, Illinois Zip: 60048 Product: Nite Capital provides private financing for small-cap and micro-cap...

  8. GGV Capital | Open Energy Information

    Open Energy Info (EERE)

    GGV Capital Jump to: navigation, search Name: GGV Capital Place: Menlo Park, California Zip: 94025 Product: String representation "GGV Capital" ... U.S. and China." is too...

  9. CMEA Capital | Open Energy Information

    Open Energy Info (EERE)

    CMEA Capital Jump to: navigation, search Logo: CMEA Capital Name: CMEA Capital Address: 1 Embarcadero Center Place: San Francisco, California Zip: 94111 Region: Bay Area Number of...

  10. Clarey Capital | Open Energy Information

    Open Energy Info (EERE)

    Clarey Capital Jump to: navigation, search Name: Clarey Capital Place: Irvine, California Zip: 92617 Sector: Renewable Energy Product: String representation "Clarey Capital ... of...

  11. BEV Capital | Open Energy Information

    Open Energy Info (EERE)

    BEV Capital Jump to: navigation, search Logo: BEV Capital Name: BEV Capital Address: 263 Tresser Blvd., 9th Floor Place: Stamford, Connecticut Zip: 06901 Region: Northeast - NY NJ...

  12. Infield Capital | Open Energy Information

    Open Energy Info (EERE)

    Infield Capital Jump to: navigation, search Name: Infield Capital Place: Boulder, Colorado Product: Infield Capital was founded in 2008, and is focused on investment in early-stage...

  13. Greenview Capital | Open Energy Information

    Open Energy Info (EERE)

    Greenview Capital Jump to: navigation, search Name: Greenview Capital Place: Libertyville, Illinois Zip: 60048 Product: Greenview Capital is a U.S. based consulting firm and...

  14. Earthrise Capital | Open Energy Information

    Open Energy Info (EERE)

    Earthrise Capital Jump to: navigation, search Logo: Earthrise Capital Name: Earthrise Capital Address: 45 Rockefeller Plaza, 20th Floor Place: New York, New York Zip: 10111 Region:...

  15. Atrium Capital | Open Energy Information

    Open Energy Info (EERE)

    Atrium Capital Jump to: navigation, search Logo: Atrium Capital Name: Atrium Capital Address: 3000 Sand Hill Road, Building 2, Suite 240 Place: Menlo Park, California Zip: 94025...

  16. Commons Capital | Open Energy Information

    Open Energy Info (EERE)

    Commons Capital Jump to: navigation, search Logo: Commons Capital Name: Commons Capital Address: 320 Washington Street, 4th floor Place: Brookline, Massachusetts Zip: 02445 Region:...

  17. Report: EM Human Capital Initiatives

    Office of Environmental Management (EM)

    HUMAN CAPITAL September 25, 2008 Submitted by the EMAB Human Capital Subcommittee Background: The enhancement of the Office of Environmental Management's (EM) human capital has ...

  18. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    SciTech Connect (OSTI)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  19. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    Capital Reporting Company Quadrennial Energy Review Meeting No. 4 06-19-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ...

  20. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    SciTech Connect (OSTI)

    Richard P. Wells

    2007-03-23

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

  1. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C.

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  2. Workforce Plans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Workforce Planning is an integral part of the human capital planning process. The intent ... The purpose of the workforce Plan is to provide focus and direction to Human Resources ...

  3. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Multi-Year Research, Development and Demonstration Plan Page 3.3 - 1 3.3 Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including stationary power, portable power, and transportation. Also, hydrogen can be used as a medium to store energy created by intermittent renewable power sources (e.g., wind and solar) during periods of high availability and low demand,

  4. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STORAGE SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.3 - 1 3.3 Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including stationary power, portable power, and transportation. Also, hydrogen can be used as a medium to store energy created by intermittent renewable power sources (e.g., wind and solar) during periods of high availability and low

  5. Office of the Chief Human Capital Officer | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Human Capital Officer Search Search form Search Office of the Chief Human Capital Officer Office of the Chief Human Capital Officer Services Services Home Benefits Benefits Home DOE Workers' Compensation Program Insurance Military/Reservist Retirement Telework Thrift Savings Plan (TSP) Wellness Programs Executive Resources Learning and Workforce Development New Employee Orientation Policy and Guidance Policy and Guidance Home Compensation Employment/Staffing Employment/Staffing Home Recruitment

  6. Capital Project Prioritization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capital-Project-Prioritization Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  7. CAPITAL PROJECT PROPOSAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Discretionary, please provide explanation: 07 Approval for: Ongoing Program 08 Investment Type: Capital Replacement 09 Emergency? YES NO 09A If "YES", please provide...

  8. Marshall Plan productivity assistance: A unique program of mass technology transfer and a precedent for the former Soviet Union

    SciTech Connect (OSTI)

    Silberman, J.M.; Weiss, C. Jr.; Dutz, M.

    1996-12-31

    The Productivity Program of the Marshall Plan made a major contribution to the increase in Western European productivity in the 1950s, well before there was significant policy liberalization, competition, or foreign investment in these countries. Prior to the program, European manufacturing and management practice was a generation behind the US, and productivity was one-third of US levels. The cost of this program over ten years was $300 million, or only 1.5% of Marshall Plan capital assistance. Its 1500 study tours brought tens of thousands of people from European and Asian countries to the United States to observe management and production. On returning home, tour members vigorously spread new ideas throughout their countries, which also received a wide variety of follow-up technical services. Europe`s leaders supported national productivity drives out of fear of communism and social unrest, not in response to competitive market forces. The drives helped firms achieve almost immediate productivity gains with little new investment. This relatively inexpensive idea could increase incomes and improve the supply and variety of consumer goods in present-day Eastern Europe and the former Soviet Union. 17 refs., 3 tabs.

  9. Human Capital - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Capital by Website Administrator Back

  10. Project Management for the Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-03-28

    The purpose of this Manual is to provide requirements and guidance to Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees on the planning and acquisition of capital assets. Does not cancel other directives.

  11. BG Capital | Open Energy Information

    Open Energy Info (EERE)

    BG Capital Jump to: navigation, search Name: BG-Capital Place: Spain Zip: 8860 Product: BG-capital designs, installs and invests in PV medium scale (100-500kW) systems,...

  12. Hazel Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Hazel Capital Place: London, England, United Kingdom Zip: WC2A 1AL Sector: Efficiency, Renewable Energy Product: Hazel Capital is an asset...

  13. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  14. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    SciTech Connect (OSTI)

    none,

    2009-02-01

    This 2008 Multi-Year Research, Development, and Demonstration Program Plan covers the 2009-2015 period with program activities to 2025.

  15. Hydrogen, Fuel Cells and Infrastructure Technologies Program: Multiyear Research, Development and Demonstration Plan

    SciTech Connect (OSTI)

    Milliken, J.

    2007-10-01

    This plan includes goals, objectives, technical targets, tasks, and schedules for Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen Program.

  16. Gaian Capital | Open Energy Information

    Open Energy Info (EERE)

    Gaian Capital Jump to: navigation, search Name: Gaian Capital Place: Greater London, United Kingdom Product: London-based privately held firm aimed at assisting climate change...

  17. Arborview Capital | Open Energy Information

    Open Energy Info (EERE)

    Arborview Capital Jump to: navigation, search Name: Arborview Capital Place: Chevy Chase, Maryland Zip: 20815 Product: Maryland-based private equity firm that provides growth...

  18. Greenrock Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Greenrock Capital Place: San Francisco, California Zip: 94111 Sector: Renewable Energy Product: San Francisco-based, investment firm....

  19. Dragonfly Capital | Open Energy Information

    Open Energy Info (EERE)

    Dragonfly Capital Jump to: navigation, search Name: Dragonfly Capital Place: Charlotte, North Carolina Zip: 28203 Sector: Renewable Energy, Services Product: Charlotte-based...

  20. Renewable Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Renewable Capital Place: Las Vegas, Nevada Zip: 89109 Sector: Solar Product: Investment vehicle of Ed Stevenson, founder of Solar...

  1. Cascadia Capital | Open Energy Information

    Open Energy Info (EERE)

    Cascadia Capital Jump to: navigation, search Name: Cascadia Capital Address: 701 Fifth Avenue Place: Seattle, Washington Zip: 98104 Region: Pacific Northwest Area Product:...

  2. Capital Connections | Open Energy Information

    Open Energy Info (EERE)

    Connections Jump to: navigation, search Name: Capital Connections Place: United Kingdom Product: Supplies fuel cell systems. References: Capital Connections1 This article is a...

  3. Peony Capital | Open Energy Information

    Open Energy Info (EERE)

    Peony Capital Jump to: navigation, search Name: Peony Capital Place: Dongcheng District Beijing, Beijing Municipality, China Zip: 100027 Product: Manages a fund dedicated to...

  4. Capital Point | Open Energy Information

    Open Energy Info (EERE)

    Point Jump to: navigation, search Name: Capital Point Place: Israel Sector: Services Product: General Financial & Legal Services ( Joint Venture Consortium ) References: Capital...

  5. Carbon Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Capital Place: United Kingdom Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon...

  6. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANALYSIS SECTION Multi-Year Research, Development, and Demonstration Plan Page 4.0 - 1 4.0 Systems Analysis The Fuel Cell Technologies Office (The Office) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the Office's decision-making process by evaluating

  7. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 2.0: Program Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Multi-Year Research, Development and Demonstration Plan Page 2 - 1 2.0 Program Benefits Fuel cells provide power and heat cleanly and efficiently, using diverse domestic fuels, including hydrogen produced from renewable resources and biomass-based fuels. Fuel cells can be used in a wide range of stationary, transportation, and portable-power applications. Hydrogen can also function as an energy storage medium for renewable electricity. Hydrogen and fuel cell technologies are being

  8. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.8 Education and Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Outreach Multi-Year Research, Development and Demonstration Plan Page 3.8 - 1 3.8 Education and Outreach Expanding the role of hydrogen and fuel cell technologies as an integral part of the Nation's energy portfolio requires sustained education and outreach efforts. Increased efforts are required to facilitate near-term demonstration projects and early market fuel cell and hydrogen infrastructure installations, to increase public awareness and understanding, and to lower barriers

  9. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 6.0 Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Multi-Year Research, Development and Demonstration Plan Page 6 - 1 6.0 Program Management and Operations The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program (the Program) is composed of activities within the Offices of Energy Efficiency and Renewable Energy (EERE); Fossil Energy (FE); Nuclear Energy (NE); and Science (SC). EERE's Fuel Cell Technologies Program (FCT Program) represents the major component of this effort. The FCT Program Manager manages the

  10. Technology choice in a least-cost expansion analysis framework: The impact of gas prices, planning horizon, and system characteristics

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.

    1990-01-01

    The current outlook for new capacity addition by electric utilities is uncertain and tenuous. Regardless of the amount, it is inevitable that new capacity will be needed in the 1990s and beyond. The fundamental question about the addition capacity requirements centers on technology choice and the factors influencing the decision process. We examined technology choices in 10 representative power pools with a dynamic optimization expansion model, the Wien Automatic System Planning (WASP) Package. These 10 power pools were determined to be representative on the basis of a cluster analysis conducted on all 26 power pools in the United States. A least-cost expansion plan was determined for each power pool with three candidate technologies--natural gas combustion turbine (CT), natural gas combined cycle (NGCC), and integrated gasification combined cycle (IGCC)--three alternative gas price tracks, and two planning horizons between the years 1995 and 2020. This paper summarizes the analysis framework and presents results for Power Pool 1, the American Electric Power (AEP) service territory. 7 refs., 9 figs., 1 tab.

  11. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This action plan presents an agenda for GTO's Low-Temperature and Coproduced Resources Program to efficiently and effectively leverage its resources in support of the geothermal communitys goals and priorities.

  12. Capital Reporting Company Quadrennial ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The war on poverty, which was 20 initiated with very dramatics walks from 21 Appalachia ... 07-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 44 1 poverty there. ...

  13. Capital Reporting Company Quadrennial ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...CapitalReportingCompany.com 2014 120 1 how to adapt to the new oil which is, in New 2 Mexico, a sweet API 40, essentially similar to the 3 North Dakota oil. We have a sweet oil. ...

  14. Capital Project Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This policy applies to capital projects in these asset categories: 1. Transmission investment in assets owned or leased by BPA, whether funded by bonds issued to the U.S....

  15. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010

    Broader source: Energy.gov (indexed) [DOE]

    of Energy The Geothermal Technology Program (GTP) low-temperature subprogram aims to provide the global geothermal community with the means to achieve development and widespread deployment of economically viable, innovative, and scalable technologies-including those involving coproducts-that will capture a significant portion of the low-temperature geothermal resource base over the next two decades. To that end, GTP held a Technology Roadmapping Workshop on July 13-14, 2010 in Golden,

  16. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  17. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    Power systems of the future are likely to require additional flexibility due to the operating characteristics of many clean energy technologies, particularly those relying on renewable energy...

  18. Carbon sequestration technology roadmap and program plan: ensuring the fossil energy systems through the successful deployment of carbon capture and storage technologies

    SciTech Connect (OSTI)

    2007-04-15

    The overall goal of the Carbon Sequestration Program is to develop, by 2012, fossil fuel conversion systems that achieve 90 percent CO{sub 2} capture with 99 percent storage permanence at less than a 10 percent increase in the cost of energy services. This document describes the Technology Roadmap and Program Plan that will guide the Carbon Sequestration Program in 2007 and beyond. An overview of the Program and the key accomplishments in its 10-year history are presented as well as the challenges confronting deployment and successful commercialization of carbon sequestration technologies. The research pathways that will be used to achieve Program goals and information on key contacts and web links related to the Program are included. 23 figs., 2 tabs.

  19. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  20. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  1. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  2. Section 3, Bioenergy Technologies Office Multi-Year Program Plan, March 2016

    Broader source: Energy.gov (indexed) [DOE]

    Portfolio Management 3-1 Last revised: March 2016 Section 3: Office Portfolio Management This section describes how the U.S. Department of Energy's (DOE's) Bioenergy Technologies Office develops and manages its portfolio of research, development, and demonstration (RD&D) activities. It identifies and relates different types of portfolio management activities, including portfolio decision-making, analysis, and performance assessment. Overview The Bioenergy Technologies Office manages a

  3. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D.; Phillips, E.

    2008-07-01

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray

  4. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test

  5. Parties interested in BPA's Financial Plan update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project and identified four major areas to be addressed: access to capital, financial risk metrics, cost recovery policy, and planning for good and bad years. BPA will host...

  6. Hiring Reform Memoranda and Action Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CAPITAL c* SUBJECT: IMPROVING DOE RECRUITMENT AND HIRING PROCESSES This is a ... Plan developed to improve the recruitment and hiring processes throughout the Department. ...

  7. EERE Technology Commercialization and Deployment Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fulfill its mission Licensing Intellectual Property build constituencies ... sector engagement, including venture capital firms Technology Transfer Working ...

  8. Walnut Capital Acquisitions | Open Energy Information

    Open Energy Info (EERE)

    Walnut Capital Acquisitions Jump to: navigation, search Name: Walnut Capital Acquisitions Place: Pittsburgh, Pennsylvania Zip: 15232 Product: Walnut Capital Acquisitions is the...

  9. American Wind Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: American Wind Capital Place: Essex, Connecticut Zip: 64260 Sector: Wind energy Product: Connecticut-based American Wind Capital buys wind...

  10. Long Branch Capital | Open Energy Information

    Open Energy Info (EERE)

    Branch Capital Jump to: navigation, search Name: Long Branch Capital Place: Austin, Texas Zip: 78744 Sector: Efficiency, Renewable Energy Product: Long Branch Capital makes...