National Library of Energy BETA

Sample records for technology application readiness

  1. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  2. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  3. Sample Application Letter Ready Reference F-5

    E-Print Network [OSTI]

    Sample Application Letter Ready Reference F-5 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  4. Technology Readiness and the Smart Grid

    SciTech Connect (OSTI)

    Kirkham, Harold; Marinovici, Maria C.

    2013-02-27

    Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

  5. Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    of management decisions by identifying key technologies that have been demonstrated to work or by highlighting immature or unproven technologies that might result in increased...

  6. EM Performs Tenth Technology Readiness Assessment

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006.

  7. Technology Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    August 1, 2013 Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing...

  8. TECHNOLOGY READINESS LEVELS A White Paper

    E-Print Network [OSTI]

    Rhoads, James

    028 TECHNOLOGY READINESS LEVELS A White Paper April 6, 1995 John C. Mankins Advanced Concepts Office Office of Space Access and Technology NASA Introduction Technology Readiness Levels (TRLs) are a systematic metric/measurement system that supports assessments of the maturity of a particular technology

  9. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Energy Savers [EERE]

    (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

  10. Preliminary Technology Readiness Assessment (TRA) for the Calcine...

    Office of Environmental Management (EM)

    Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition...

  11. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

  12. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  13. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  14. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young...

  15. Modeling and simulation technology readiness levels.

    SciTech Connect (OSTI)

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to examine how this would work in practice. The results varied substantially, but did indicate that establishing the capability dependencies and making the TRL assignments was manageable and not particularly time consuming. The key differences arose in perceptions of how this information might be used, and what value it would have (opinions ranged from negative to positive value). The use cases and field trial results are included in this report. Taken together, the results suggest that we can make reasonably reliable TRL assignments, but that using those without the context of the information that led to those results (i.e., examining the measures suggested by the PCMM table, and extended for ModSim TRL purposes) produces an oversimplified result--that is, you cannot really boil things down to just a scalar value without losing critical information.

  16. U.S. Department of Energy Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-10-12

    This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

  17. Uranium Downblending and Disposition Project Technology Readiness...

    Office of Environmental Management (EM)

    to EM in several areas including the evaluation of HLW vitrification technologies at Hanford and pretreatment and separation technologies at Savannah River. He has also been a...

  18. CCSI Technology Readiness Levels Likelihood Model (TRL-LM) User’s Guide

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2013-03-26

    This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

  19. Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm

    E-Print Network [OSTI]

    1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants ­ Options, Technologies and Costs by Mark C. Bohm of a plant. Power plant owners and policymakers are interested in capture-ready plants because they may offer

  20. NGNP Risk Management through Assessing Technology Readiness

    SciTech Connect (OSTI)

    John W. Collins

    2010-08-01

    Throughout the Next Generation Nuclear Plant (NGNP) project life cycle, technical risks are identified, analyzed, and mitigated and decisions are made regarding the design and selection of plant and sub-system configurations, components and their fabrication materials, and operating conditions. Risk resolution and decision making are key elements that help achieve project completion within budget and schedule constraints and desired plant availability. To achieve this objective, a formal decision-making and risk management process was developed for NGNP, based on proven systems engineering principles that have guided aerospace and military applications.

  1. New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247

    SciTech Connect (OSTI)

    Krahn, Steven; Sutter, Herbert; Johnson, Hoyt

    2013-07-01

    A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In March 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)

  2. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  3. ApplicationReadinessLunchNP.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicant IApplication

  4. Capture-ready power plants : options, technologies and economics

    E-Print Network [OSTI]

    Bohm, Mark (Mark C.)

    2006-01-01

    A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

  5. AN EVALUATION OF FUSION ENERGY R&D GAPS USING TECHNOLOGY READINESS LEVELS M. S. Tillack1

    E-Print Network [OSTI]

    Raffray, A. René

    in the science and technology, or "laboratory" environment almost invariably leads to cost and schedule overAN EVALUATION OF FUSION ENERGY R&D GAPS USING TECHNOLOGY READINESS LEVELS M. S. Tillack1 , A. D and remaining R&D needs, we adopted a methodology called "Technology Readiness Levels". We defined

  6. Are Wireless Sensors and Controls Ready for the Building Automation Industry? Selected Case Studies and Technology Development Activities

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Brambley, Michael R.

    2006-09-13

    This paper discusses whether or not today’s wireless sensors are ready for building controls and energy efficiency monitoring applications.

  7. Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1

    E-Print Network [OSTI]

    1 Capture-Ready Coal Plants - Options, Technologies and Economics Mark C. Bohm1 , Howard J. Herzog1 be employed during the initial design and construction of a both pulverized coal and integrated gasification the Internet in the summer of 2006 [7]. Introduction Interest in the construction of coal-fired power

  8. An evaluation of fusion energy R&D gaps using Technology Readiness Levels

    E-Print Network [OSTI]

    An evaluation of fusion energy R&D gaps using Technology Readiness Levels M. S. Tillack for prioritization. #12;The topic of fusion energy R&D gaps is receiving increased attention page 2 of 16 In EU&D needs that is widely recognized and utilized outside of the fusion community. Initial efforts

  9. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  10. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  11. Thermal oxidation technology ready for tougher paint finishing regs

    SciTech Connect (OSTI)

    Brooks, J.

    1995-04-01

    There is good news and bad news in the air for commercial paint finishers. The bad news is that future local and federal clean-air regulations are almost certain to require control of volatile organic compound emissions from spray booths and drying ovens. The good news is that one of the most effective systems for meeting such requirements also can help cut operations and maintenance costs. There are as many solutions to VOC emissions problems in paint finishing as there are types of paint-spraying facilities. However, despite the range of choices, regenerative thermal oxidation systems are gaining favor among plant managers, for whom performance and maximum application flexibility are key considerations. Compared to other VOC-destruction approaches, RTO systems are more forgiving and reliable. Although RTO systems involve somewhat higher capital investments than alternative approaches, such costs typically are offset by lower long-term fuel and maintenance requirements. In addition, RTO systems can convert pollutants into usable energy sources, helping minimize operating costs of abatement equipment.

  12. TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer

    E-Print Network [OSTI]

    Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements for such intellectual property with companies for commercial applications of ORNL-developed technologies. Such licenses

  13. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Desk-book. The TRA consists of three parts: - Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. - Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. - Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy. (authors)

  14. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energy’s (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents – approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes – are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC’s ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates – WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: • Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. • Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. • Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  15. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: (1) Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. (2) Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. (3) Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  16. OLCF Selects Application Readiness Projects to Prepare for Next...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy mission, advancing knowledge in areas critical to government, academia and industry. The CAAR program is focused on optimizing application codes for Summit's hybrid...

  17. Are PHP Applications Ready for Hack? Laleh Eshkevari, Fabien Dos Santos, James R. Cordy, and Giuliano Antoniol

    E-Print Network [OSTI]

    Cordy, James R.

    Are PHP Applications Ready for Hack? Laleh Eshkevari, Fabien Dos Santos, James R. Cordy be more difficult to understand and the source of many bugs. Hack, a new PHP variant endorsed by Facebook the constraints of Hack's static typing. We report evidence that dynamic typing is actually a relatively uncommon

  18. System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)

    SciTech Connect (OSTI)

    Emmanuel Ohene Opare, Jr.; Charles V. Park

    2011-06-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.

  19. TECHNOLOGICAL APPLICATIONS OF NANOPARTICLESOF NANOPARTICLES

    E-Print Network [OSTI]

    Sandini, Giulio

    TECHNOLOGICAL APPLICATIONS OF NANOPARTICLESOF NANOPARTICLES Monica Distaso #12;Optical transitions;#12;H2 gas at 1 atm. DOE Target (by 2010) 6.5 wt.% 62 kg/m3 CDC for H2 Storage A hydrogen fuel cell IN DEVELOPING COUNTRIES? #12;TOP 10 APPLICATIONS OF NANOTECHNOLOGY FOR DEVELOPING COUNTRIES #12;AGRICULTURAL

  20. Ultrasonics: Fundamentals, Technologies, and Applications

    SciTech Connect (OSTI)

    Ensminger, Dale; Bond, Leonard J.

    2011-09-17

    This is a new edition of a bestselling industry reference. Discusses the science, technology, and applications of low and high power ultrasonics, including industrial implementations and medical uses. Reviews the basic equations of acoustics, starting from basic wave equations and their applications. New material on property determination, inspection of metals (NDT) and non-metals, imaging, process monitoring and control. Expanded discussion of transducers, transducer wave-fields, scattering, attenuation and measurement systems and models. New material that discusses high power ultrasonics - in particular using mechanical effects and sonochemistry, including applications to nano-materials. Examines diagnosis, therapy, and surgery from a technology and medical physics perspective.

  1. Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084

    SciTech Connect (OSTI)

    Senor, David J.

    2013-10-30

    Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

  2. Application of the cumulative risk model in predicting school readiness in Head Start children 

    E-Print Network [OSTI]

    Rodriguez-Escobar, Olga Lydia

    2009-05-15

    This study investigates the degree to which the cumulative risk index predicted school readiness in a Head Start population. In general, the reviewed studies indicated the cumulative risk model was efficacious in predicting adverse developmental...

  3. `Capture ready' regulation of fossil fuel power plants Betting the UK's carbon emissions on promises of future technology

    E-Print Network [OSTI]

    Haszeldine, Stuart

    power stations licensed in 2009 have had to set off land adjacent to the power plant as a capture ready`Capture ready' regulation of fossil fuel power plants ­ Betting the UK's carbon emissions interest in investing in new fossil fuelled power plants. The question is whether capture ready policy can

  4. Quantum technology and its applications

    SciTech Connect (OSTI)

    Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil

    2010-12-10

    Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants considered the physics and engineering of quantum and conventional technologies, and how quantum techniques could (or could not) overcome limitations of conventional systems. They identified several auxiliary technologies that needed to be further developed in order to make quantum technology more accessible. Much of the discussion also focused on specific applications of quantum technology and how to push the technology into broader communities, which would in turn identify new uses of the technology. Since our main interest is practical improvement of devices and techniques, we take a liberal definition of 'quantum technology': a system that utilizes preparation and measurement of a well-defined coherent quantum state. This nomenclature encompasses features broader than entanglement, squeezing or quantum correlations, which are often more difficult to utilize outside of a laboratory environment. Still, some applications discussed in the workshop do take advantage of these 'quantum-enhanced' features. They build on the more established quantum technologies that are amenable to manipulation at the quantum level, such as atom magnetometers and atomic clocks. Understanding and developing those technologies through traditional engineering will clarify where quantum-enhanced features can be used most effectively, in addition to providing end users with improved devices in the near-term.

  5. Mission and Readiness Assessment for Fusion Nuclear Facilities

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory 20th ANS Topical Meeting on the Technology of Fusion Energy Nashville, TN U.S.A. 28 August 2012 #12;Background and Motivation 2 · Increased attention to DEMO planning") ­ ReNeW 2009 ­ Technology Readiness Levels application (Tillack, et al., FS&T 2009) ­ FNS Pathways

  6. In 2006, the Alliance of Coastal Technology (ACT) evaluated the performance of five commercial-ready, in situ turbidity sensors at

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    ABSTRACT In 2006, the Alliance of Coastal Technology (ACT) evaluated the performance of five commercial-ready, in situ turbidity sensors at eight test sites located throughout North America (Fig. 1, and a freshwater lake (Fig. 1) . The sensors used in this study consisted of: A backscatter Turbidity Probe ( =660

  7. Internship Checklist Ready Reference C-3

    E-Print Network [OSTI]

    Internship Checklist Ready Reference C-3 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  8. Cover Letter Formula Ready Reference F-3

    E-Print Network [OSTI]

    Cover Letter Formula Ready Reference F-3 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  9. Letter of Refusal Ready Reference F-8

    E-Print Network [OSTI]

    Letter of Refusal Ready Reference F-8 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology Career

  10. Sample Withdrawal Letter Ready Reference F-11

    E-Print Network [OSTI]

    Sample Withdrawal Letter Ready Reference F-11 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  11. Sample Networking Letter Ready Reference F-6

    E-Print Network [OSTI]

    Sample Networking Letter Ready Reference F-6 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  12. Sample Acceptance Letter Ready Reference F-10

    E-Print Network [OSTI]

    Sample Acceptance Letter Ready Reference F-10 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  13. Job Search Steps Ready Reference D-1

    E-Print Network [OSTI]

    Job Search Steps Ready Reference D-1 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  14. Preparing A Vita Ready Reference E-13

    E-Print Network [OSTI]

    Preparing A Vita Ready Reference E-13 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  15. Technology Application Centers: Facilitating Technology Transfer 

    E-Print Network [OSTI]

    Kuhel, G. J.

    1994-01-01

    Industrial DSM programs cannot succeed unless customers learn about and implement new technologies in a timely manner. Why? Because this expeditious transfer of new technologies represents the key challenge for the 1990s. This paper explores...

  16. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    SciTech Connect (OSTI)

    George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

    2001-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.

  17. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    SciTech Connect (OSTI)

    George Rizeq; Parag Kulkarni; Wei Wei; Arnaldo Frydman; Thomas McNulty; Roger Shisler

    2005-11-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.

  18. Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment

    SciTech Connect (OSTI)

    Vishik, Claire; Sheldon, Frederick T; Ott, David

    2013-01-01

    Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

  19. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  20. Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergy Small Column Ion Exchange

  1. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CoalTek, Inc., project will demonstrate the use of a microwave process that combines coal and biomass to produce a suitable single-stream feedstock pellet for co-gasification....

  2. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Fuels) Advanced H 2 Membranes 2 11 13 Coal-Biomass to Liquids 1 15 16 Solid Oxide Fuel Cells Anode Electrolyte Cathode (AEC) Development 10 10 Atmospheric Pressure Systems...

  3. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable LandmimicDECEMBER 2014 CARBONASSESSMENT

  4. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable LandmimicDECEMBER 2014

  5. Ten Steps for Career Success Ready Reference A-4

    E-Print Network [OSTI]

    Ten Steps for Career Success Ready Reference A-4 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career

  6. Sample Letter of Inquiry Ready Reference F-4

    E-Print Network [OSTI]

    Sample Letter of Inquiry Ready Reference F-4 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career

  7. First Impressions on Job Interviews Ready Reference G-2

    E-Print Network [OSTI]

    & Technology Career Services Oklahoma State University College of Engineering, Architecture & TechnologyFirst Impressions on Job Interviews Ready Reference G-2 College of Engineering, Architecture

  8. Sample Status Inquiry Letter Ready Reference F-9

    E-Print Network [OSTI]

    Sample Status Inquiry Letter Ready Reference F-9 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  9. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  10. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries Larry Atkins Exide Technologies June 7, 2010 Project ID ARRAVT004 This...

  11. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  12. Status of the Application of Thermoelectric Technology in Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Application of Thermoelectric Technology in Vehicles Status of the Application of Thermoelectric Technology in Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  13. Writing Career Objectives Ready Reference E-5

    E-Print Network [OSTI]

    Writing Career Objectives Ready Reference E-5 College of Engineering, Architecture & Technology in pharmaceutical research" #12;Oklahoma State University College of Engineering, Architecture & Technology Career your practical skills. Examples: -"A position in a large, high tech organization requiring network

  14. Text-Alternative Version: LED Essentials- Technology, Applications, Advantages, Disadvantages

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text-alternative version of the LED Essentials - Technology, Applications, Advantages, Disadvantages webcast.

  15. Readiness Review Training- Member

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides used for November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team member.

  16. Contextual role of TRLs and MRLs in technology management.

    SciTech Connect (OSTI)

    Fernandez, Joseph A.

    2010-11-01

    Technology Readiness Levels (TRLs) have been used extensively from the 1970s, especially in the National Aeronautics and Space Administration (NASA). Their application was recommended by the General Accounting Office in 1999 to be used for major Department of Defense acquisition projects. Manufacturing Readiness Levels (MRLs) have been proposed for improving the way manufacturing risks and readiness are identified; they were introduced to the defense community in 2005, but have not been used as broadly as TRLs. Originally TRLs were used to assess the readiness of a single technology. With the emergence of more complex systems and system of systems, it has been increasingly recognized that TRLs have limitations, especially when considering integration of complex systems. Therefore, it is important to use TRLs in the correct context. Details on TRLs and MRLs are reported in this paper. More recent indices to establish a better understanding of the integrated readiness state of systems are presented. Newer readiness indices, System Readiness Levels (SRLs) and Integration Readiness Levels, are discussed and their limitations and advantages are presented, along with an example of computing SRLs. It is proposed that a modified SRL be considered that explicitly includes the MRLs and a modification of the TRLs to include the Integrated Technology Index (ITI) and/or the Advancement Degree of Difficulty index proposed by NASA. Finally, the use of indices to perform technology assessments are placed into the overall context of technology management, recognizing that factors to transition and manage technology include cost, schedule, manufacturability, integration readiness, and technology maturity.

  17. LASER SCANNING TECHNOLOGY FOR ROCK ENGINEERING APPLICATIONS

    E-Print Network [OSTI]

    LASER SCANNING TECHNOLOGY FOR ROCK ENGINEERING APPLICATIONS Thorsten Schulz Institute of Geodesy or on the excavation surface. The use of laser scanners enables one to cope with practical constraints encountered surfaces regardless of the lighting conditions. Therefore, laser scanners have the potential to be employed

  18. Technology Implimentation Plan - ATF FeCrAl Cladding for LWR Application

    SciTech Connect (OSTI)

    Snead, Mary A.; Snead, Lance; Terrani, Kurt A.; Field, Kevin G.; Worrall, Andrew; Robb, Kevin R.; Yamamoto, Yukinori; Powers, Jeffrey J.; Dryepondt, Sebastien N.; Pint, Bruce A.; Hu, Xunxiang

    2015-06-01

    Technology implimentation plan for FeCrAl development under the FCRD Advanced Fuel program. The document describes the activities required to get FeCrAl clad ready for LTR testing

  19. Ready, set...go!

    SciTech Connect (OSTI)

    Alexandre, Melanie

    2010-06-16

    The objectives of this paper are: (1) Discuss organizational readiness for changes in an ergonomics program or intervention; (2) Assessing organizational readiness; (3) Benefits and challenges of change; and (4) Case studies of ergonomic programs that were 'not ready' and 'ready'.

  20. EV Community Readiness projects: Center for the Commercialization of Electric Technologies (TX); City of Austin, Austin Energy (TX)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Application of Synergistic Technologies to Achieve High Levels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed...

  2. Student ENG 505 - Energy Technologies Systems and Applications...

    Office of Scientific and Technical Information (OSTI)

    Student ENG 505 - Energy Technologies Systems and Applications: Shale Gas Production Curve. Citation Details In-Document Search Title: Student ENG 505 - Energy Technologies Systems...

  3. Salary Negotiation Ready ReferenceH-3

    E-Print Network [OSTI]

    Salary Negotiation Ready ReferenceH-3 College of Engineering, Architecture & Technology Career" salary on the top end of your range. Although this range may appear high because it is created from

  4. Modeling Renewable Energy Readiness: The UAE Context

    E-Print Network [OSTI]

    Choucri, Nazli

    Modeling technology policy is becoming an increasingly important capability to steer states and societies toward sustainability. This paper presents a simulation-modeling approach to evaluate renewable energy readiness, ...

  5. How do I Apply for Graduate School...? Ready Reference D-18

    E-Print Network [OSTI]

    & Technology Career Services Oklahoma State University College of Engineering, Architecture & TechnologyHow do I Apply for Graduate School...? Ready Reference D-18 College of Engineering, Architecture

  6. Diverse Applications of Pinch Technology Within the Process Industries 

    E-Print Network [OSTI]

    Spriggs, H. D.; Ashton, G.

    1986-01-01

    OF PINCH TECHNOLOGY WITHIN THE PROCESS INDUSTRIES H. P. Spriggs and Greg Ashton Linnhoff March Charleston, WV ABSTRACT PINCH ANALYSIS Within the past few years, pinch technology has revolutionised the way engineers design and retrofit... processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report the use of pinch technology...

  7. Information Technology Specialist (SystemsAnalysis/Applications Software)

    Broader source: Energy.gov [DOE]

    This position is located in Asset Management and Engineering Applications (JST), Software Development Operations (JS), Information Technology (J), Bonneville Power Administration (BPA). Asset...

  8. Student ENG 505 - Energy Technologies Systems and Applications...

    Office of Scientific and Technical Information (OSTI)

    505 - Energy Technologies Systems and Applications: Plasma Gasification for Energy Production and Material Reclamation. Citation Details In-Document Search Title: Student ENG 505...

  9. Professional References Ready Reference E-11

    E-Print Network [OSTI]

    Professional References Ready Reference E-11 College of Engineering, Architecture & Technology College of Engineering, Architecture & Technology Career Services Office ATRC 109E Stillwater, OK 74078 requested to do so. Create a separate sheet entitled "References." Print it on the same high quality papers

  10. The Behavioral Interview Ready Reference G-7

    E-Print Network [OSTI]

    The Behavioral Interview Ready Reference G-7 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology in technical and high tech industries within the last 10 years. Behavioral interviews are designed to focus

  11. Questioning Yourself Ready Reference B-2

    E-Print Network [OSTI]

    Questioning Yourself Ready Reference B-2 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office set my own hours? Do I thrive in a high-stress atmosphere, or would I prefer something a bit more

  12. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    SciTech Connect (OSTI)

    George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

    2002-04-30

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applications and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.

  13. Readiness Review RM

    Office of Environmental Management (EM)

    the progress of tasks needed to attain operational readiness, conducting practice drills and evolutions, maintaining and reviewing evidence files, reviewing corrective...

  14. Stationary Applications of Energy Storage Technologies for Transit Systems

    E-Print Network [OSTI]

    Shu, Lily H.

    Stationary Applications of Energy Storage Technologies for Transit Systems Paul Radcliffe, James S, Ontario, Canada paul.radcliffe@utoronto.ca Abstract ­ Stationary energy storage technologies can improve the efficiency of transit systems. In this paper, three different demonstrations of energy storage technologies

  15. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  16. LED Essentials- Technology, Applications, Advantages, Disadvantages

    Broader source: Energy.gov [DOE]

    On October 11, 2007, Kevin Dowling, VP of Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages...

  17. TECHNOLOGY READINESS ASSESSMENT-OVERVIEW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion 2 2 Advanced Concepts 0 Gasification Systems Feed Systems 2 2 4 Gasifier Optimization and Plant Supporting Systems 2 3 1 6 Syngas Processing 2 2 3 4 11 Advanced...

  18. TECHNOLOGY READINESS ASSESSMENT-OVERVIEW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable LandmimicDECEMBER 2014ASSESSMENT-OVERVIEW

  19. Transitioning Multiagent Technology to UAV Applications Paul Scerri1

    E-Print Network [OSTI]

    Scerri, Paul

    Transitioning Multiagent Technology to UAV Applications Paul Scerri1 , Tracy Von Gonten2 , Gerald for UAV coordination to an in- dustrially developed application. The specific application is the use of lightweight UAVs with small Received Signal Strength Indicator sensors to cooperatively locate targets

  20. Microsoft Word - Applications of HVDC Technologies - Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grids; this capability may have more value in the future with greater numbers of microgrids. HVDC technologies can also provide extremely rapid stability control, power flow...

  1. Efficient Technologies and Products for Federal Applications

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program provides a one-stop shop for finding energy- and water-efficient technologies and products to meet federal laws and requirements.

  2. Applications of Solar Technology for Catastrophe Response,

    SciTech Connect (OSTI)

    A. Deering; J.P. Thornton.

    1999-02-17

    This report presents the issues of solar technology as it relates to preparing for and recovering from disasters, including suggestions on how to collaborate with the utility industry and how to develop educational programs for businesses and consumers. The document emphasizes pre-disaster planning and mitigation alternatives and discusses how energy efficiency and renewable technologies can contribute to reducing insurance losses.

  3. INFORMATION ENGINEERING Principles, Technologies, Networks, and Applications

    E-Print Network [OSTI]

    Huang, Jianwei

    AccessApplications Smartgrids,GreenCommunications TelecommunicationSwitching Peer-to-PeerSystems OnlineSocialNetworks Internet

  4. 1052 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 53, NO. 4, JULY 2004 Real-Time Nonintrusive Monitoring

    E-Print Network [OSTI]

    categories [21]. · Readiness-to-perform and fitness-for-duty technologies: These technologies [10] attempt

  5. Application of Innovative Technologies During Continuous Commissioning 

    E-Print Network [OSTI]

    Joo, I. S.; Liu, M.; Wang, J.; Hansen, K.

    2003-01-01

    ,436 square feet was used as a case study building. The new technologies are a variable speed drive volumetric tracking method for building pressure control, a recently developed fan airflow measurement method for duct static pressure reset, and a new...

  6. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation vss063bazzi2011o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  7. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  8. Search for Efficient Technologies and Products for Federal Applications

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program provides information and resources about energy- and water-efficient technologies and products that are well suited for federal applications and can help agencies meet federal laws and requirements.

  9. Emerging technologies and their application in construction engineering 

    E-Print Network [OSTI]

    Franken Vecchio, Eduardo Anthony

    1999-01-01

    This thesis presents the potential applications and benefits that construction engineering could achieve through the implementation of information management technologies. Regarding construction engineering, the area of interest is materials...

  10. Emergency Readiness Assurance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-02-27

    To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

  11. Optical Packet Switching Routers and Networks: Technologies, Architectures, and Applications

    E-Print Network [OSTI]

    Kolner, Brian H.

    Optical Packet Switching Routers and Networks: Technologies, Architectures, and Applications S. J 95616, U. S. A. yoo@ece.ucdavis.edu, Abstract: This paper covers new optical packet switching router technologies, system architectures, and the future photonic Internet. In particular, we will discuss all-optical

  12. Successful application of promis-ing new technologies is predicated

    E-Print Network [OSTI]

    34 Successful application of promis- ing new technologies is predicated on understanding Fisheries Service, NOAA. Abstract--New technologies can be riddled with unforeseen sources of error and controlling sources of errors. The need to identify sources of error with the development of new fisheries

  13. Application of Hydrogen Storage Technologies for Use in Fueling

    E-Print Network [OSTI]

    Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles This report describes the design, commissioning, and operation of a mobile hydrogen delivery and storage of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

  14. Recent Advances in Java Technology Theory, Application, Implementation

    E-Print Network [OSTI]

    Power, James

    Recent Advances in Java Technology Theory, Application, Implementation James F. Power John T: Theory, Application, Implementation James F. Power and John T. Waldron (Eds.) First Edition, 2002 trademarks of Sun Microsystems, Inc. in the U.S. and other countries. This work is independent of Sun

  15. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  16. Readiness Review Training- Team Leader

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides used for November 10, 2010 Readiness Review Team Leader Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team leader.

  17. Hypervelocity impact technology and applications: 2007.

    SciTech Connect (OSTI)

    Reinhart, William Dodd; Chhabildas, Lalit C.

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  18. Ready, set, go . . . well maybe

    SciTech Connect (OSTI)

    Alexandre, Melanie M; Bartolome, Terri-Lynn C

    2011-02-28

    The agenda for this presentation is: (1) understand organizational readiness for changes; (2) review benefits and challenges of change; (3) share case studies of ergonomic programs that were 'not ready' and some that were 'ready'; and (4) provide some ideas for facilitating change.

  19. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  20. Research and Application of RCF Technology in Public Building 

    E-Print Network [OSTI]

    Yan, J.; Pan, D.

    2014-01-01

    , Beijing, China, September 14-17, 2014 Research and Application of RCF Technology in Public Buildings ? “a” start-up moment ? TP = 293T ? Envelope surface TS = 301 with ?T = 8T ? Ceiling load Qa ? “b” state, about 20mins after start-up ? TP = 293T... of RCF Technology in Public Buildings 6. CONCLUSION OF RCF APPLICATION 6.1 Purpose of the RCF Study ? Regulate human comfort level by thermal radiation ? Advance indoor air quality by deeply dehumidified fresh air and discharge of CO2 without...

  1. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  2. Distributed Temperature Sensing: Review of Technology and Applications

    E-Print Network [OSTI]

    Ukil, A; Krippner, P

    2015-01-01

    Distributed temperature sensors (DTS) measure temperatures by means of optical fibers. Those optoelectronic devices provide a continuous profile of the temperature distribution along the cable. Initiated in the 1980s, DTS systems have undergone significant improvements in the technology and the application scenario over the last decades. The main measuring principles are based on detecting the back-scattering of light, e.g., detecting via Rayleigh, Raman, Brillouin principles. The application domains span from traditional applications in the distributed temperature or strain sensing in the cables, to the latest smart grid initiative in the power systems, etc. In this paper, we present comparative reviews of the different DTS technologies, different applications, standard and upcoming, different manufacturers.

  3. Plan for advanced microelectronics processing technology application

    SciTech Connect (OSTI)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  4. NERSC application readiness case studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a critical need in materials design for more efficient and cost-effective solar light-harvesting and energy conversion. GW calculations within BerkeleyGW occur across two...

  5. NERSC application readiness case studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BerkeleyGW occur across two executables. The first depends heavily on dense linear algebra and FFT math libraries, while the second depends on custom code that expresses large...

  6. NERSC application readiness case studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within BerkeleyGW occur across two executables. The first depends heavily on dense linear algebra and FFT math libraries, while the second depends on custom code that expresses...

  7. Application Readiness Across DOE Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someone by AllocationAnnualAppliancesHome

  8. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Solar Hot Water-Ready Checklist (Encouraged) DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist....

  9. On Building Parallel & Grid Applications: Component Technology and Distributed Services

    E-Print Network [OSTI]

    Krishnan, Sriram

    of Science of the U.S. Department of Energy and it has grown to be a consortium of researchers from about 15 Frameworks are well known in the commercial business application world and now this technology is being to work in large teams of specialists. Though slower to change than the rest of the software world

  10. Persuasive Technologies: A Systematic Literature Review and Application to PISA

    E-Print Network [OSTI]

    Wieringa, Roel

    Persuasive Technologies: A Systematic Literature Review and Application to PISA Roeland H.P. Kegel are performed using this model. The case used for these context analyses is the PISA tool. Finally, we consider the PSD model to PISA 17 5.1 Classification of PSD context content . . . . . . . . . . . . . . . . . 17 5

  11. Portal: Applications of New Technology to Transportation Data Archiving

    E-Print Network [OSTI]

    Bertini, Robert L.

    + Portal: Applications of New Technology to Transportation Data Archiving Kristin Tufte & the Portal Team NATMEC, July 1, 2014, Chicago, IL #12;+ Who is Kristin? ! 20 years Data Management System (1996-2014) ! S-Store ­ Streams + OLTP (2013-...) ! 10 years Transportation Data Management ! Portal

  12. Special Seminar in Bioengineering: "Microliver Technologies: Design and Application of

    E-Print Network [OSTI]

    Special Seminar in Bioengineering: "Microliver Technologies: Design and Application of Metabolic Programming" Yaakov Nahmias, Ph.D. Director, Center for Bioengineering The Hebrew University of Jerusalem of the Methods in Bioengineering conference series. His work is published in the leading journals of the field

  13. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect (OSTI)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  14. Alternative applications of atomic vapor laser isotope separation technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of {sup 157}Gd as burnable poison in the nuclear fuel cycle, the use {sup 12}C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation.

  15. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect (OSTI)

    Sinor, J.E. Consultants, Inc., Niwot, CO )

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  16. Ready, set, go . . . well maybe

    E-Print Network [OSTI]

    Alexandre, Melanie M

    2011-01-01

    at the 2011 Applied Ergonomics Conference By Melaniesustainable? Case study of ergonomics program that was ‘ notwas not! Case study of ergonomics program that was ‘ready

  17. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  18. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  19. Industrial applications' simulation technologies in virtual environments Part 1: Virtual Prototyping

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    1 Industrial applications' simulation technologies in virtual environments Part 1: Virtual and Environment Technological Educational Institute of Crete Chania, Crete, 73133, GREECE antoniadis the subject and the potentials of the technology as a simulation tool in industrial environments. Keywords

  20. ARM - Ingest Readiness Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENAField ParticipantsFieldFormsIngest Readiness Form Ingest Ingest

  1. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  2. Technology application analyses at five Department of Energy Sites

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Lockheed Martin Energy Systems, Inc., managing contractor for the Department of Energy (DOE) facilities in Oak Ridge, Tennessee, was tasked by the United States Air Force (USAF) through an Interagency Agreement between DOE and the USAF, to provide five Technology Application Analysis Reports to the USAF. These reports were to provide information about DOE sites that have volatile organic compounds contaminating soil or ground water and how the sites have been remediated. The sites were using either a pump-and-treat technology or an alternative to pump-and-treat. The USAF was looking at the DOE sites for lessons learned that could be applied to Department of Defense (DoD) problems in an effort to communicate throughout the government system. The five reports were part of a larger project undertaken by the USAF to look at over 30 sites. Many of the sites were DoD sites, but some were in the private sector. The five DOE projects selected to be reviewed came from three sites: the Savannah River Site (SRS), the Kansas City Site, and Lawrence Livermore National Laboratory (LLNL). SRS and LLNL provided two projects each. Both provided a standard pump-and-treat application as well as an innovative technology that is an alternative to pump-and-treat. The five reports on these sites have previously been published separately. This volume combines them to give the reader an overview of the whole project.

  3. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

    2006-09-15

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  4. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

  5. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect (OSTI)

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  6. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M; Jubin, Robert Thomas; Patton, Bradley D; Sullivan, Nicholas M; Bugbee, Kathy P

    2009-09-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

  7. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  8. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  9. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  10. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect (OSTI)

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  11. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  12. Creating a Professional Portfolio Ready ReferenceE-12

    E-Print Network [OSTI]

    Creating a Professional Portfolio Ready ReferenceE-12 College of Engineering, Architecture & Technology Career Services Portfolios aren't just for artists anymore. Long regarded as an essential job effort and time. The Low and High Tech Alternatives You may design a high tech or low tech portfolio

  13. Researching a Company Online Ready Reference D-13

    E-Print Network [OSTI]

    Researching a Company Online Ready Reference D-13 College of Engineering, Architecture & Technology information on over 50,000 public and private companies (www.hoovers.com). · CorpTech Database of High and private high-tech organizations (www.corptech.com). · Companies Online from Dun & Bradstreet and Lycos

  14. Wafer-Level Packaging Technology for RF Applications Based on a Rigid Low-Loss Spacer

    E-Print Network [OSTI]

    Technische Universiteit Delft

    Wafer-Level Packaging Technology for RF Applications Based on a Rigid Low-Loss Spacer Substrate Alexander Polyakov #12;#12;Wafer-Level Packaging Technology for RF Applications Based on a Rigid Low ICs...............................................13 1.4. Wafer-level packaging for RF applications

  15. Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    categories, according to the subject and the technology that is required: · Virtual Manufacturing1 Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly Bilalis Nikolaos Associate Professor Department of Production and Engineering

  16. Control of coupled oscillator networks with application to microgrid technologies

    E-Print Network [OSTI]

    Per Sebastian Skardal; Alex Arenas

    2015-07-09

    The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by recent research into smart grid technologies we study here control of synchronization and consider the important case of networks of coupled phase oscillators with nonlinear interactions--a paradigmatic example that has guided our understanding of self-organization for decades. We develop a method for control based on identifying and stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable synchronized state. Interestingly, the amount of control, i.e., number of oscillators, required to stabilize the network is primarily dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on the structural heterogeneity of the network itself.

  17. Internet of Things: Applications and Challenges in Technology and Standardization

    E-Print Network [OSTI]

    Bandyopadhyay, Debasis

    2011-01-01

    The phrase Internet of Things (IoT) heralds a vision of the future Internet where connecting physical things, from banknotes to bicycles, through a network will let them take an active part in the Internet, exchanging information about themselves and their surroundings. This will give immediate access to information about the physical world and the objects in it leading to innovative services and increase in efficiency and productivity. This paper studies the state-of-the-art of IoT and presents the key technological drivers,potential applications, challenges and future research areas in the domain of IoT. IoT definitions from different perspective in academic and industry communities are also discussed and compared. Finally some major issues of future research in IoT are identified and discussed briefly.

  18. DOE Zero Energy Ready Home: Durable Energy Builders, Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas This DOE Zero Energy Ready Home features...

  19. Mission and Readiness Assessment for Fusion Nuclear Facilities

    SciTech Connect (OSTI)

    G.H. Neilson, et. al.

    2012-12-12

    Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

  20. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  1. Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications

    E-Print Network [OSTI]

    Khandan, Omid

    2015-01-01

    The use of microelectromechanical systems (MEMS) technologyof microelectromechanical systems (MEMS) technology hasMEMS technology have emerged, and include biomedical microelectromechanical

  2. White House Office of Science and Technology Policy Summer 2014 Internship Program Application Period

    Broader source: Energy.gov [DOE]

    The White House Office of Science and Technology Policy is currently accepting applications for its Summer 2014 Internship Program.  The application deadline is 11:59pm Friday, March 7.  Students...

  3. EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014

    SciTech Connect (OSTI)

    Bush, Shane

    2014-09-01

    This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

  4. Technology Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency Maine BusinessSmall BusinessDepartment is aDocuments

  5. Technology Readiness Assessment Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »Tankless WaterEnergyJanuary28-982 DOEReadiness Assessment

  6. Uranium Downblending and Disposition Project Technology Readiness

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear EnergyPotomac RiverUpper EastMaterial

  7. Vehicle Technologies Office Merit Review 2015: Technology Requirements for High Power Applications of Wireless Power Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technology...

  8. Early Childhood Education and School Readiness: Conceptual

    E-Print Network [OSTI]

    Rau, Don C.

    Early Childhood Education and School Readiness: Conceptual Models, Constructs, and Measures and Evaluation. #12;Early Childhood Education and School Readiness Workshop, June 17-18, 2002 TABLE OF CONTENTS .................................................................................................................................................13 Language and Early Literacy

  9. Zero Energy Ready Home | Department of Energy

    Office of Environmental Management (EM)

    Home Zero Energy Ready Home Look for the Label Look for the Label The DOE Zero Energy Ready Home label is a symbol of excellence. Learn what's behind this new level of performance....

  10. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  11. Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative

    E-Print Network [OSTI]

    = mg/s #12;Microbial Fuel Cell technology Zielke 1 1 Introduction Renewable energy is an increasing need in our society. Microbial fuel cell (MFC) technology represents a new form of renewable energyApplication of Microbial Fuel Cell technology for a Waste Water Treatment Alternative Eric A

  12. Solar Ready: An Overview of Implementation Practices

    SciTech Connect (OSTI)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  13. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  14. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01

    costs and energy savings potential of emerging technologies applicable to Californiacosts and energy savings potential of emerging technologies applicable to Californiaof cost- and energy-efficient installations. California has

  15. Microfabricated thin-film batteries : technology and potential applications

    E-Print Network [OSTI]

    Greiner, Julia

    2006-01-01

    High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

  16. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  17. Sustainability, arid grasslands and grazing: New applications for technology

    SciTech Connect (OSTI)

    Pregenzer, A.L.; Parmenter, R.; Passell, H.D.; Budge, T.; Vande Caste, J.

    1999-12-08

    The study of ecology is taking on increasing global importance as the value of well-functioning ecosystems to human well-being becomes better understood. However, the use of technological systems for the study of ecology lags behind the use of technologies in the study of other disciplines important to human well-being, such as medicine, chemistry and physics. The authors outline four different kinds of large-scale data needs required by land managers for the development of sustainable land use strategies, and which can be obtained with current or future technological systems. They then outline a hypothetical resource management scenario in which data on all those needs are collected using remote and in situ technologies, transmitted to a central location, analyzed, and then disseminated for regional use in maintaining sustainable grazing systems. They conclude by highlighting various data-collection systems and data-sharing networks already in operation.

  18. Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities 

    E-Print Network [OSTI]

    Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

    2009-01-01

    % of the electrical power in Northern and Central California. Activated sludge is the most common method for wastewater treatment, and at the same time the most energy intensive process. New energy efficient technologies can help reduce energy consumption...

  19. Potential of Development and Application of Wave Energy Conversion Technology in the Gulf of Mexico 

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01

    This paper focuses on the potential and application of developing wave energy technology in the Gulf of Mexico (GOM). The conditions (weather, wave climate, activity of the oil industry, etc.) in the GOM are assessed and the attributes of wave...

  20. Passive and active circuits in cmos technology for rf, microwave and millimeter wave applications 

    E-Print Network [OSTI]

    Chirala, Mohan Krishna

    2009-05-15

    The permeation of CMOS technology to radio frequencies and beyond has fuelled an urgent need for a diverse array of passive and active circuits that address the challenges of rapidly emerging wireless applications. While ...

  1. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-Ultracapacitors in Hybrid- electric Vehicle Applications.

  2. SCRT Technology for Retrofit of Heavy-Duty Diesel Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications The Development and On-Road Performance and Durability of the Four-Way Emission Control SCRTTM System Application Experience with a Combined SCR and DPF...

  3. Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications

    E-Print Network [OSTI]

    Khandan, Omid

    2015-01-01

    and D Tryk. 2008. “TiO2 Photocatalysis and Related SurfaceGünter Kreisel. 2004. “Photocatalysis in Microreactors. ”microfluidic devices for photocatalysis applications. As for

  4. OTM and UTARI personnel will perform Technology

    E-Print Network [OSTI]

    Huang, Haiying

    to interested 3 rd party, who develops & commercializes the technology; Licensee pays patent costs; UTAOTM and UTARI personnel will perform Technology Readiness (TRL) & Manufacturing Readiness (MRL to the Office of Technology Management via the OTM webpage OTM and UTARI personnel will review the IPD and meet

  5. 1990 Integrated Device Technology, Inc. 2/90 by J. Scott Gardner, Field Applications Engineer

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    FIFO is a new architecture designed to support high-speed systems. THE EVOLUTION OF FIFO ARCHITECTURES Technology, Inc. Figure 1. Register-Based FIFO Architecture--First Generation 64 x 4 REGISTERS DATA ININPUT9.9 1 © 1990 Integrated Device Technology, Inc. 2/90 by J. Scott Gardner, Field Applications

  6. Bachelor of Science in Information Sciences and Technology Integration and Application Option

    E-Print Network [OSTI]

    Squicciarini, Anna Cinzia

    Bachelor of Science in Information Sciences and Technology Integration and Application Option The 125-credit Bachelor of Science in Information Sciences and Technology (IST) online degree of Science in Security and Risk Analysis Information Cyber Security Option The 120-credit Bachelor of Science

  7. APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* , Chunguang Suo, email: lxw@hit.edu.cn) ABSTRACT In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (DMFC). Using the MEMS technology we have successfully made

  8. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect (OSTI)

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  9. Questions to Ask During Employer Research Ready ReferenceD-14

    E-Print Network [OSTI]

    & Technology Career Services Oklahoma State University College of Engineering, Architecture & TechnologyQuestions to Ask During Employer Research Ready ReferenceD-14 College of Engineering, Architecture the organization offer its employees? · How high is the employee turnover rate for the organization? · What

  10. Readiness review plan for the in situ vitrification demonstration of Seepage Pit 1 in Waste Area Grouping 7

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    A treatability study is planned that encompasses the application of in situ vitrification (ISV) to at least two segments of the Oak Ridge National Laboratory Seepage Pit I during the third quarter of fiscal year 1995. Before the treatability study can be initiated, the proposed activity must be subjected to an Operational Readiness Review (ORR). ORR is a structured methodology of determining readiness to proceed as outlined in Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration Waste Management Procedure ER/C-P1610, which provides Energy Systems organizations assurance that the work to be performed is consistent with management`s expectations and that the subject activity is ready to proceed safely. The readiness review plan provides details of the review plan overview and the scope of work to be performed. The plan also identifies individuals and position responsibilities for implementing the activity. The management appointed Readiness Review Board (RRB) has been identified. A Field Readiness Review Team (FRT), a management appointed multidisciplinary group, has been established (1) to evaluate the ISV treatability study, (2) to identify and assemble supporting objective evidences of the readiness to proceed, and (3) to assist the team leader in presenting the evidences to the RRB. A major component of RRB is the formulation of readiness review criteria months before the operation. A comprehensive readiness review tree (a positive logic tree) is included, which identifies the activities required for the development of the readiness criteria. The readiness review tree serves as a tool to prevent the omission of an item that could affect system performance. All deficiencies identified in the review will be determined as prestart findings and must be resolved before the project is permitted to proceed. The final approval of the readiness to proceed will be the decision of RRB.

  11. Technology Assessment Tool - An Application of Systems Engineering to USDOE Technology Proposals

    SciTech Connect (OSTI)

    Rynearson, Michael Ardel

    1999-06-01

    This paper discusses the system design for a Technology Assessment (TA) tool that can be used to quantitatively evaluate new and advanced technologies, products, or processes. Key features of the tool include organization of information in an indentured hierarchy; questions and categories derived from the decomposition of technology performance; segregation of life-cycle issues into six assessment categories; and scoring, relative impact, and sensitivity analysis capability. An advantage of the tool's use is its ability to provide decision analysis data, based on incomplete or complete data.

  12. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY

  13. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  14. Community Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Community Readiness Assessments, Call Slides and Discussion Summary, December 5, 2013. Call Slides and Discussion Summary More Documents & Publications Focus Series: Program Finds...

  15. Organizational Readiness in Specialty Mental Health Care

    E-Print Network [OSTI]

    Hamilton, Alison B.; Cohen, Amy N.; Young, Alexander S.

    2010-01-01

    readiness for change (ORC) measure, and key stake- holders43 clinical staff completed the ORC, and 38 key stakeholdersdeviations (SDs) of the ORC scores are also illuminating in

  16. ORISE: Asset Readiness Management System (ARMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asset Readiness Management System (ARMS) Database tracks emergency response exercises and equipment to help DOE asses emergency preparedness Developed by the Oak Ridge Institute...

  17. Automated audiometry using Apple iOS-based application technology

    E-Print Network [OSTI]

    Foulad, A; Bui, P; Djalilian, H

    2013-01-01

    Automated Audiometry Using Apple iOS-Based ApplicationAutomated Audiometry Using Apple iOS-Based Applicationthe feasibility of an Apple iOS-based automated hearing

  18. Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications

    E-Print Network [OSTI]

    Khandan, Omid

    2015-01-01

    Etching of Bulk Titanium for MEMS Applications. ” Journal ofMeng. 2012. “An Implantable MEMS Micropump System for Drugand Ellis Meng. 2009. “A Passive MEMS Drug Delivery Pump for

  19. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  20. Building a Weather-Ready Nation noaa.gov/wrn Weather-Ready Nation &

    E-Print Network [OSTI]

    Building a Weather-Ready Nation noaa.gov/wrn Welcome Weather-Ready Nation & America's PrepareAthon! Webinar April 1, 2015 "Whole Community Approach to Building National Resilience " #12;Building a Weather-Ready Nation A word from... noaa.gov/wrn Dr. Kathryn Sullivan NOAA Administrator #12;Building a Weather

  1. Novel Energy Harvesting Technologies for ICT Applications Manos M. Tentzeris1

    E-Print Network [OSTI]

    Tentzeris, Manos

    Novel Energy Harvesting Technologies for ICT Applications Manos M. Tentzeris1 and Yoshihiro networks and mobile devices. Still, the use of batteries has two disadvantages: (1) the lifetime autonomous ICT applications will be discussed and evaluated in terms of efficiency, integrability, cost

  2. LALP-07-085 Fall 2007 Nanowire technologies for radiation detection applications

    E-Print Network [OSTI]

    LALP-07-085 Fall 2007 Nanowire technologies for radiation detection applications Materials in nanowire form can be developed for radiation detection applications. Properties such as widely tunable and approaches for radiation detection. Focus Three teams at LANL have been developing independent approaches

  3. Technological and economic comparison of battery technologies for U.S.A electric grid stabilization applications

    E-Print Network [OSTI]

    Fernandez, Ted (Ted A.)

    2010-01-01

    Energy storage can provide many benefits to the electric grid of the United States of America. With recent pushes to stabilize renewable energy and implement a Smart Grid, battery technology can play a pivotal role in the ...

  4. Vehicle Technologies Office Merit Review 2015: Green Racing Protocols & Technology Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Green Racing...

  5. Next generation sequencing (NGS)technologies and applications

    SciTech Connect (OSTI)

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  6. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    SciTech Connect (OSTI)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each specific need. There are products on the market for smart meters, industrial lighting control and home automation that can be applied to the Back End Fuel Cycle. With a little integration and innovation a cost effective solution is achievable.

  7. Technological Education Applicant Information Sheet Broad-based Technology areas are listed on our website: http://educ.queensu.ca/tech

    E-Print Network [OSTI]

    Fletcher, Robin

    Technological Education Applicant Information Sheet Broad-based Technology areas are listed on our Program Program Description Diploma Granted Three Year College Technology Program Program Description information collected on this form is collected under the legal authority of the Royal Charter of 1841

  8. ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools and Resources that Work ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools and Resources that Work...

  9. Designing and Building Houses that are Solar Ready | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after initial construction is completed can save time and money by following new house Solar Ready design guidelines. Solar Ready houses are designed and built with integrated...

  10. DOE Zero Energy Ready Home National Program Requirements (Rev...

    Broader source: Energy.gov (indexed) [DOE]

    4) DOE Zero Energy Ready Home National Program Requirements Rev04.pdf More Documents & Publications DOE Zero Energy Ready Home National Program Requirements (Rev. 05) California...

  11. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Energy Savers [EERE]

    Zero Energy Ready Home Case Study: Greenhill Contracting, Green Acres 20, 26, 28, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Green Acres 20,...

  12. Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program...

  13. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Energy Savers [EERE]

    Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

  14. Energy Department Emergency Response Team Ready to Respond to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Response Team Ready to Respond to Hurricane Irene Energy Department Emergency Response Team Ready to Respond to Hurricane Irene August 26, 2011 - 12:15pm Addthis...

  15. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority J-I- 1May 20062012Department ofProcess Guide |

  16. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  17. An Application of Phase Change Technology in a Greenhouse 

    E-Print Network [OSTI]

    Liu, Y.; Chen, C.; Guo, H.; Yue, H.

    2006-01-01

    problems in the greenhouse. Acta Energiae Solaris ICEBO2006, Shenzhen, China Envelope Technologies for Building Energy Efficiency Vol.II-2-5 Sinica,1994,15, 1(1): 25-35. (In Chinese) [3] Chen Wei,Liu Wei,Hua Ben. Numerical analysis... of convection heat transfer in passive solar heating room with greenhouse and heat storage. Acta Energiae Solaris Sinica, 2003,24,6(12): 789-794. (In Chinese) [4] J.G.Pieters, J.M.Deltour. Modelling solar energy input in greenhouses. Solar Energy,1999...

  18. Advanced Mechanical Heat Pump Technologies for Industrial Applications 

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01

    seven fins per inch are used. The excijangers utilize modular cores consisting/of thirty 5/8-in.-diameter x 48-in.!10n g tubes per row, eight rows deep. Oucting walls, which contain the air/sol ent mixture, are stainless steel. A rofin... HEAT PUMP TECHNOLOGIES FOR INDUSTRIAL APPLICATIONsa James I. Mills D. S. Plaster EG&G Idaho, Inc. Idaho National Engineering Laboratory Idaho Falls, 10 83415 ABSTRACT The Department of Energy (DOE), Office of Industrial Programs (OIP...

  19. Virtual environmental applications for buried waste characterization technology evaluation report

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  20. Early Market Applications for Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPress Releases EMMarket Applications for Fuel

  1. Microsoft Word - Applications of HVDC Technologies - Summary FINAL

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof MethaneMillionMicrosoftMicrosoftStrategicApplications of

  2. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  3. NASA's progress in nuclear electric propulsion technology

    SciTech Connect (OSTI)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs.

  4. NASA's progress in nuclear electric propulsion technology

    SciTech Connect (OSTI)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-06-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  5. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  6. Lightning Arrestor Connectors Production Readiness

    SciTech Connect (OSTI)

    Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

    2008-10-20

    The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

  7. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  8. Plan for advanced microelectronics processing technology application. Final report

    SciTech Connect (OSTI)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  9. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect (OSTI)

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  10. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    SciTech Connect (OSTI)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

  11. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    SciTech Connect (OSTI)

    Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.

  12. Hydrogen storage for vehicular applications: Technology status and key development areas

    SciTech Connect (OSTI)

    Robinson, S.L.; Handrock, J.L.

    1994-04-01

    The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

  13. 2013 Annual Merit Review Results Report - Technology Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Results Report - Technology Integration EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT,...

  14. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C....

  15. The Tubercles on Humpback Whales' Flippers: Application of Bio-Inspired Technology

    E-Print Network [OSTI]

    Fish, Frank

    SYMPOSIUM The Tubercles on Humpback Whales' Flippers: Application of Bio-Inspired Technology Frank complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting, skeletal mechanics involved an understanding of architecture, material science and beam theory, while

  16. The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask$

    E-Print Network [OSTI]

    Lin, Liwei

    The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask wiring is not pre- ferred. A comprehensive review on laser welding was given in [6]. The laser welding of laser welding is to create the liquid pool by absorption of incident radiation, allow it to grow

  17. Application of sexed semen technology to in vitro embryo production in cattle

    E-Print Network [OSTI]

    Beebe, David J.

    Application of sexed semen technology to in vitro embryo production in cattle Matthew B. Wheeler a transferred either as single or bilateral twin embryos into beef cattle recipients, demonstrating of offspring for their herds. For dairy cattle, this means heifer calves. According to the Livestock Reporter

  18. Some Applications of Isotope - Based technologies: Human Health and Quantum Information

    E-Print Network [OSTI]

    Vladimir G. Plekhanov

    2010-08-17

    Technology is the sum of the information, knowledge and agency. This takes energy and information as fundamental concepts. In this paper I'll try to describe very briefly in popular form of some applications of radioactive and stable isotopes in medicine and quantum information, respectively.

  19. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    E-Print Network [OSTI]

    Dutta, Prabir K.

    01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

  20. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Overview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B energy sources (RES). The extensive use of such energy sources in today's electricity networks can

  1. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  2. Superconducting Partnership with Readiness Review Update

    E-Print Network [OSTI]

    1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

  3. Zero Energy Ready Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House Standards with 5.5-in. ZERH Events ZERH Webinar: Selling Zero Energy Ready Homes...

  4. Application of organosilicon pre-sic polymer technology to optimize rapid prototyping of ceramic components

    SciTech Connect (OSTI)

    Saha, C.K.; Zank, G. [Dow Corning Corporation, Midland, MI (United States); Ghosh, A. [Philips Display Components Co., Ann Arbor, MI (United States)

    1995-12-01

    Developments of applications of advanced ceramics e.g., SiC, Si{sub 3}N{sub 4}, CMCs need to be on a faster track than what the current processing technologies can afford. Rapid reduction in time to market of new and complex products can be achieved by using Rapid Prototyping and Manufacturing Technologies (RP&M) e.g., 3D-printing, selective laser sintering, stereolithography etc. These technologies will help advanced ceramics meet the performance challenges at an affordable price with reliable manufacturing technologies. The key variables of the RP&M technologies for ceramics are the nature of the polymer carrier and/or the binder, and the powder. Selection and/or the production of a proper class of polymer carrier/binder, understanding their impact on the processing of ceramics such as polymer-powder interaction, speed of hardening the green body in a controlled manner, ability to retain shape during forming and consolidation, delivering desirable properties at the end, are crucial to develop the low cost, high quality ceramic products. Organosilicon pre-SiC polymer technology route to advanced ceramics is currently being commercialized by Dow Corning. Methods to use this class of polymer as a processing aid in developing potentially better RP&M technologies to make better ceramics have been proposed in this work.

  5. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  6. A wide variety of injection molding technologies is now applicable to small series and mass production

    SciTech Connect (OSTI)

    Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Löser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  7. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  8. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Stout, Tyson E.; Dirks, James A.; Fernandez, Nicholas

    2012-12-01

    This article identifies and describes five alternative cooling technologies (magnetic, thermionic, thermoacoustic, thermoelectric, and thermotunnel) and qualitatively assesses the prospects of each technology relative to vapor compression for space cooling and food refrigeration applications. Assessment of the alternatives was based on the theoretical maximum % of Carnot efficiency, the current state of development, the best % of Carnot efficiency currently achieved, developmental barriers, and the extent of development activity. The prospect for each alternative was assigned an overall qualitative rating based on the subjective, composite view of the five characteristics.

  9. Microwave technology for waste management applications including disposition of electronic circuitry

    SciTech Connect (OSTI)

    Wicks, G.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Clark, D.E.; Schulz, R.L.; Folz, D.C. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01

    Microwave technology is being developed nationally and internationally for a variety of environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of selected components. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from undesirable consequences of hazardous materials. Applications of microwave energy for environmental remediation will be discussed. Emphasized will be a newly developed microwave process designed to treat discarded electronic circuitry and reclaim the precious metals within for reuse.

  10. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  11. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  12. Applications of Solar Technology for Catastrophe Response, Claims Management, and Loss Prevention

    SciTech Connect (OSTI)

    Deering, A.; Thornton, J.P.

    1999-02-17

    Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. In June of 1998, the National Renewable Energy Laboratory (NREL) and the National Association of Independent Insurers (NAII) sponsored a seminar titled, ''Solar Technology and the Insurance Industry.'' Presentations were made by insurance company representatives, insurance trade groups, government and state emergency management organizations, and technology specialists. The meeting was attended by insurers, brokers, emergency managers, and consultants from more than 25 US companies. Leading insurers from the personal line and commercial carriers were shown how solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. Attendees requested a follow-up report on solar technology, cost, and applications in disasters, including suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers. This report will address these issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses.

  13. Comparison of CNG and LNG technologies for transportation applications. Final subcontract report, June 1991--December 1991

    SciTech Connect (OSTI)

    Sinor, J.E.

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  14. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  15. Is RPL Ready for Actuation? A Comparative Evaluation in a Smart City Scenario

    E-Print Network [OSTI]

    Picco, Gian Pietro

    Is RPL Ready for Actuation? A Comparative Evaluation in a Smart City Scenario Timofei Istomin1 of a large-scale infrastructure for smart city applications, which directly informs our evaluation, where we infrastructure of 860+ IEEE 802.15.4 nodes, for monitoring and control of public lighting and other "smart city

  16. The integration of surface micromachined devices with optoelectronics: Technology and applications

    SciTech Connect (OSTI)

    Warren, M.E.; Blum, O.; Sullivan, C.T.; Shul, R.J.; Rodgers, M.S.; Sniegowski, J.J.

    1998-04-01

    Sandia National Laboratories has a substantial effort in development of microelectromechanical system (MEMS) technologies. This miniaturization capability can lead to low-cost, small, high-performance systems-on-a-chip, and have many applications ranging from advanced military systems to large-volume commercial markets like automobiles, rf or land-based communications networks and equipment, or commercial electronics. One of the key challenges in realization of the microsystem is integration of several technologies including digital electronics; analog and rf electronics, optoelectronics, sensors and actuators, and advanced packaging technologies. In this work they describe efforts in integrating MEMS and optoelectronic or photonic functions and the fabrication constraints on both system components. the MEMS technology used in this work are silicon surface-machined systems fabricated using the SUMMiT (Sandia Ultraplanar Multilevel MEMS Technology) process developed at Sandia. This process includes chemical-mechanical polishing as an intermediate planarization step to allow the use of 4 or 5 levels of polysilicon.

  17. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    SciTech Connect (OSTI)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  18. Market Concepts, Competing Technologies and Cost Challenges for Automotive and Stationary Applications

    E-Print Network [OSTI]

    Lipman, Todd; Sperling, Daniel

    2003-01-01

    concepts, competing technologies and cost challenges forconcepts, competing technologies and cost challenges forconcepts, competing technologies and cost challenges 1319

  19. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  20. DOE Announces Webinars on Zero Energy Ready Homes, Wide Bandgap...

    Broader source: Energy.gov (indexed) [DOE]

    on Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar Sponsor: Fuel Cell Technologies Office The Energy...

  1. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  2. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  3. Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    E-Print Network [OSTI]

    Pellegrini, G; Carulla, M; Fadeyev, V; Fernandez-Martinez, P; Fernandez-Garcia, M; Flores, D; Galloway, Z; Gallrapp, C; Hidalgo, S; Liang, Z; Merlos, A; Moll, M; Quirion, D; Sadrozinski, H; Stricker, M; Vila, I

    2015-01-01

    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  4. Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    E-Print Network [OSTI]

    G. Pellegrini; M. Baselga; M. Carulla; V. Fadeyev; P. Fernandez-Martinez; M. Fernandez-Garcia; D. Flores; Z. Galloway; C. Gallrapp; S. Hidalgo; Z. Liang; A. Merlos; M. Moll; D. Quirion; H. Sadrozinski; M. Stricker; I. Vila

    2015-11-23

    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  5. DOE Zero Energy Ready Home Newsletter February 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Newsletter February 2015 DOE Zero Energy Ready Home Newsletter February 2015 Table of Contents A note from Sam Rashkin: "If you don't tell your story, you...

  6. ZERH Webinar: Sales and Value Recognition of Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes December 18, 2014 12:00PM to 1:15PM EST...

  7. Solar Ready Vets: Preparing Our Veterans to Join the Growing...

    Office of Environmental Management (EM)

    Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce April 6, 2015 - 2:27pm...

  8. An assessment of the value of retail ready packaging

    E-Print Network [OSTI]

    Jackson, Kathleen Anne

    2008-01-01

    Use of retail-ready packaging reduces the costs of replenishing store shelves by eliminating the labor of removing packaging materials and stocking individual items on shelves. While reducing costs for retailers, retail-ready ...

  9. University of Michigan Gets Offshore Wind Ready for Winter on...

    Office of Environmental Management (EM)

    University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am...

  10. Building America Top Innovations 2013 Profile - Zero Energy-Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many...

  11. Building America Top Innovations 2013 Profile - Zero Energy-Ready...

    Energy Savers [EERE]

    Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many Building America...

  12. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Energy Savers [EERE]

    Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case...

  13. Building America Zero Energy Ready Home Case Study: Imery Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Building America Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Case...

  14. Energy Efficiency First, Zero Energy Ready Homes, and Solar PV...

    Office of Environmental Management (EM)

    Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates April 29, 2015 11:00AM to 12:30PM MDT...

  15. DOE Zero Energy Ready Home Partner Central | Department of Energy

    Office of Environmental Management (EM)

    Central DOE Zero Energy Ready Home Partner Central The DOE Zero Energy Ready Home label is the symbol of excellence for new homes. Join the ranks of leading edge builders who...

  16. ENERGY STAR Webinar: Zero Energy Ready Home Program

    Broader source: Energy.gov [DOE]

    Once a home is as good as ENERGY STAR, the modest added “lift” to bring a home up to DOE’s Zero Energy Ready specs unleashes a wave of powerful value messages.  DOE Zero Energy Ready Homes live...

  17. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect (OSTI)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  18. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  19. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    SciTech Connect (OSTI)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

  20. Fast Track Troubleshooting Using the SMART BoardTM 600 Series Interactive Whiteboard's Ready Light

    E-Print Network [OSTI]

    Matrajt, Graciela

    Fast Track Troubleshooting Using the SMART BoardTM 600 Series Interactive Whiteboard's Ready Light Start Is the Ready light on? Is the Ready light red or alternating red/green? Is the Ready light flashing green? Is the Ready light solid green? Is the Ready light amber? No Yes No No No Go to Flowchart 2

  1. Polymer filtration: An emerging technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.

    1995-12-31

    A new technology is under development to selectively recover regulated metal ions from electroplating rinse waters. The electroplating metal ions are recovered in a concentrated form with the appropriate counter ions ready for return to the original electroplating bath. The technology is based on the use of specially designed water-soluble polymers that selectively bind with the metal ions in the rinse bath. The polymers have such a large molecular weight that they can be physically separated using available ultrafiltration technology. The advantages of this technology are high metal selectivity with no sludge formation, rapid processing, low energy, low capital costs, and small size. We have tested and demonstrated the recovery of zinc and nickel (a new alloy electroplating bath designed to replace cadmium) from rinse waters. The metal-ion concentrate was returned to the original electroplating bath. Applications of this technology include waste treatment for textile, paint and dye production, chemical manufacturing, and nuclear reactor and reprocessing operations.

  2. Application of Remote Sensing Technology and Ecological Modeling of Forest Carbon Stocks in Mt. Apo Natural Park, Philippines 

    E-Print Network [OSTI]

    Leal, Ligaya Rubas

    2015-01-23

    This dissertation work explored the application of remote sensing technology for the assessment of forest carbon storage in Mt. Apo Natural Park. Biomass estimation is traditionally conducted using destructive sampling with high levels...

  3. Building a Weather-Ready Nation Fall Weather Safety

    E-Print Network [OSTI]

    Building a Weather-Ready Nation Fall Weather Safety www.weather.gov/safety Wildfire ­ Drought ­ Hurricanes ­ Wind ­ Early Season Winter ­ Flood #12;Building a Weather-Ready Nation Wildfire Safety smoking materials. weather.gov/wildfire www.weather.gov/safety #12;Building a Weather-Ready Nation

  4. Scientometric methods for identifying emerging technologies

    DOE Patents [OSTI]

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2015-11-03

    Provided is a method of generating a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain.

  5. Technology Assessment TECHNOLOGY ASSESSMENT

    E-Print Network [OSTI]

    Rock, Chris

    Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications

  6. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  7. CSP 545: Wireless Networking Technologies and Applications Yi-Bing Lin, Imrich Chlamtac, Wireless and Mobile Network Architectures.

    E-Print Network [OSTI]

    Heller, Barbara

    CSP 545: Wireless Networking Technologies and Applications Texts Yi-Bing Lin, Imrich Chlamtac, Wireless and Mobile Network Architectures. Reference: Theodore S. Rappaport, Theodore Rappaport, Wireless local area network technologies including 802.11b (wireless Ethernet) and Bluetooth, and third

  8. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  9. Human Resources Organizational Readiness Project: An Overview

    E-Print Network [OSTI]

    Finzi, Adrien

    and easily interface with SAP software Managed by a special Human Resources project team Will be undertaken in close coordination with the BUworks program team HR Organizational Readiness Project BUworks / SAP of SAP Enhanced data security within the new system Current job "system" is 30 years old ­ it must

  10. CRAD, Facility Safety- Readiness Review Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Readiness Review Program.

  11. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect (OSTI)

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O. [Korea Hydro and Nuclear Power Company Central Research Institue, 70, 1312 -gil Yuseong-daero Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  12. Operational Readiness Team: OPERATIONAL READINESS REVIEW PLAN FOR THE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996Technologies /JuneOperating Oakoak ridge 12 ......

  13. 1987 Overview of the free-piston Stirling technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.; Alger, D.L.

    1994-09-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, NASA Lewis serves as the project office to manage the newly initiated NASA SP-100 Advanced Technology Program. This 5-yr program provides the technology thrust for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable growth candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are comparisons between predicted and experimental engine performance, enhanced performance resulting from regenerator modification, increased operating stroke brought about by isolating the gas bearing flow between the displacer and power piston, identifying excessive energy losses and recommending corrective action, and a better understanding of linear alternator design and operation. Technology work is also conducted on heat exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance performance. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  14. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. TechnologyDOEPart

  15. Advanced Technology R&D | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    advancing certain concepts or technologies in order to demonstrate their feasibility and engineering readiness for use in future projects. Long-term, proposal-driven research...

  16. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  17. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  18. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    SciTech Connect (OSTI)

    Dutta, Prabir

    2008-12-31

    Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2} and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.

  19. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  20. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  1. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  2. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  3. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  4. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  5. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  6. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-12-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between October 1st and December 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  7. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  8. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  10. ScratchJr: Computer programming in early childhood education as a pathway to academic readiness and success

    E-Print Network [OSTI]

    Resnick, Mitchel

    1 ScratchJr: Computer programming in early childhood education as a pathway to academic readiness specifically for early childhood education (K-2). This is an educational segment where there are few powerful project will build on the PI's research on technologies in early childhood education, and on the work

  11. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  12. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  13. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  14. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  15. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    SciTech Connect (OSTI)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  16. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  17. APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Patrick Gonzalez; Brad Kreps; Gilberto Tiepolo

    2003-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  18. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  19. Marketing and Sales Solutions for Zero Energy Ready Homes Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Below is the text version of the webinar, Marketing and Sales Solutions for Zero Energy Ready Homes, presented in June 2014. Lindsay Parker: ... the Department of Energy Zero...

  20. DOE Zero Energy Ready Home Second Production Builder Round Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solidify the Zero Energy Ready definition DOE will continue participating in the Net-Zero Energy coalition to secure a definition with all stakeholders. Expand DOE Challenge...

  1. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Energy Savers [EERE]

    Webinar: Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014...

  2. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter...

  3. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power Research Institute Brian Seal, Tom Key, Aminul Huque, Lindsey Rogers Technical Contact Brian...

  4. Module Embedded Microninverter Smart Grid Ready Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including VoltVAR support Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System RUI ZHOU GE GLOBAL RESEARCH Develop and demonstrate power electronics...

  5. DOE Zero Energy Ready Home: Lighting Efficiency Webinar (Text...

    Broader source: Energy.gov (indexed) [DOE]

    webinar, DOE Zero Energy Ready Home: Lighting Efficiency, presented in May 2015. Alex Krowka: Presentation cover slide: ... join us today for this session on LED lighting design...

  6. Readiness Review Training- Development of Criteria And Review Approach Documents

    Broader source: Energy.gov [DOE]

    Slides used for November 8-9, 2010 Readiness Review Training - Development of Criteria And Review Approach Documents at the Idaho National Laboratory.

  7. DOE Zero Energy Ready Home National Program Requirements (Rev...

    Broader source: Energy.gov (indexed) [DOE]

    5), May, 11, 2015. DOE Zero Energy Ready Home National Program Requirements Rev05 - Final.pdf More Documents & Publications California DOE ZERH Program Requiremets DOE Zero Energy...

  8. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER APRIL 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Awards: Lasting Legacies ZERH Update July 2015.pdf More Documents & Publications DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MAY 2015 Building America Building Science Translator...

  9. DOE Zero Energy Ready Home Case Study: Transformation Inc., Production...

    Energy Savers [EERE]

    spray foam on basement walls, triple-pane windows, and one mini-split ductless heat pump. BAZeroEnergyReadyTransformationProduction062414.pdf More Documents &...

  10. ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools...

    Broader source: Energy.gov (indexed) [DOE]

    been watching closely, the Zero Energy Ready Home now has an impressive array of tools that can help builder partners effectively communicate the value of their certified...

  11. DOE Zero Energy Ready Home Resources | Department of Energy

    Office of Environmental Management (EM)

    look up their case studies in the Building America Program Publication and Product Library, or search the Building America Solution Center. DOE Zero Energy Ready Home Sales and...

  12. Independent Oversight Review of the NNSA Production Office Readiness...

    Energy Savers [EERE]

    Independent Oversight Review of the NNSA Production Office Readiness Review Program February 2014 Office of Safety and Emergency Management Evaluations Office of Enforcement and...

  13. Preliminary Technology Readiness Assessment (TRA) for the Calcine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other systems that have been tested and deployed elsewhere that include lessons learned from real operational environments of systems developed to retrieve waste. 3.3...

  14. Preliminary Technology Readiness Assessment (TRA) for the Calcine...

    Office of Environmental Management (EM)

    system and subsystem parameters are understood at engineering scale allowing processdesign variations and tradeoffs to be evaluated. The Mixer is widely available...

  15. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Energy Savers [EERE]

    Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy...

  16. Small Column Ion Exchange at Savannah River Site Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment of Energy Changes Help Long Island

  17. Property:Technology Readiness Level | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump

  18. Marine and Hydrokinetic Technology Readiness Level | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformationMarietta, Georgia:Marine MammalMarine

  19. Technology Readiness Assessment Guide - DOE Directives, Delegations, and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter andPagesKey toRequirements

  20. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIXAllegations Related toSRS

  1. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary

  2. Preliminary Technology Readiness Assessment (TRA) for the Calcine

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartmentNEA-2011-03 |Disposition Project Volume 1

  3. Preliminary Technology Readiness Assessment (TRA) for the Calcine

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartmentNEA-2011-03 |Disposition Project Volume

  4. Building Technologies Office: DOE Zero Energy Ready Home Partner Locator

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | Department of Energy St.EnergySkip to

  5. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethods forNuclearFuelDepartment of

  6. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect (OSTI)

    Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Reisman, A. [Brookhaven National Lab., Upton, NY (United States); Turpen, E. [Aquila Technologies Group, Inc., Cambridge, MA (United States)

    1996-10-01

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  7. Saving energy and improving IAQ through application of advanced air cleaning technologies

    E-Print Network [OSTI]

    Fisk, W.J

    2012-01-01

    Efficiency and Renewable Energy, Building TechnologiesGolden, CO, National Renewable Energy Laboratory. Fisk, W.Efficiency and Renewable Energy, Building Technologies

  8. Demonstration of Innovative Applications of Technology for the CT-121 FGD Process. Project Performance Summary, Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    None, None

    2002-08-01

    This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advanced coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of sixteen selected from 55 proposals submitted in 1988 and 1989 in response to the CCTDP second solicitation.

  9. Using ReadyTalk Teleconference Service (Audio and Web) Summary: Learn how to sign up for ReadyTalk teleconference service and how to set up a

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    Using ReadyTalk Teleconference Service (Audio and Web) Summary: Learn how to sign up for Ready guides. Services tab: #12; Brief descriptions of ReadyTalk's services. Note that prices on the Web siteTalk teleconference service and how to set up a conference call using ReadyTalk. Note: UC has signed a system

  10. Community Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercial Grade DedicationaOfficeto theifReadiness

  11. Readiness Review RM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||Department ofRequest7ofPlanEO-05-01:NationalReadiness

  12. ORISE: Asset Readiness Management System (ARMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHowAsset Readiness Management

  13. Semantic web technologies for smart oil field applications Ramakrishna Soma1

    E-Print Network [OSTI]

    Hwang, Kai

    for Interactive Smart Oilfield Technologies at the University of Southern California, Los Angeles[17

  14. A Study of Scientometric Methods to Identify Emerging Technologies

    SciTech Connect (OSTI)

    Abercrombie, Robert K [ORNL] [ORNL; Udoeyop, Akaninyene W [ORNL] [ORNL

    2011-01-01

    This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

  15. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  16. Building a Weather-Ready Nation Winter Weather Safety

    E-Print Network [OSTI]

    Building a Weather-Ready Nation Winter Weather Safety NOAA/NWS Winter Weather Safety Seasonal Campaign www.weather.gov #12;Building a Weather-Ready Nation Winter Weather Hazards Winter Weather Safety www.weather.gov · Snow/Ice · Blizzards · Flooding · Cold Temperatures #12;Building a Weather

  17. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  18. Overview of free-piston Stirling engine technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Technology work is also conducted on heat-exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. Projections are made for future space-power requirements over the next few decades along with a recommendation to consider the use of dynamic power-conversion systems - either solar or nuclear. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kWe power range is presented.

  19. Development and application of a framework for technology and model selection under uncertainty

    E-Print Network [OSTI]

    Berkelmans, Ingrid (Ingrid M.)

    2010-01-01

    Technology selection is a complex decision problem that is often faced in process engineering. This has been a particularly important problem recently in the energy field, in which many new technologies have been proposed. ...

  20. An analytical framework for long term policy for commercial deployment and innovation in carbon capture and sequestration technology in the United States

    E-Print Network [OSTI]

    Hamilton, Michael Roberts

    2010-01-01

    Carbon capture and sequestration (CCS) technology has the potential to be a key CO2 emissions mitigation technology for the United States. Several CCS technology options are ready for immediate commercial-scale demonstration, ...

  1. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    New York DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY Building America Technology Solutions for New and Existing Homes:Hydronic Systems Designing for Setback...

  2. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect (OSTI)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  3. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  4. Using ISMS Principles and Functions in Developing an ARRA Readiness Review Process

    Broader source: Energy.gov [DOE]

    Presenter: Linda K. Rogers, Assessments & Readiness Programs Manager, Bechtel Jacobs Company, LLC Track 8-8

  5. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    SciTech Connect (OSTI)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  6. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    SciTech Connect (OSTI)

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  7. Vehicle Technologies Office Merit Review 2015: Understanding Protective Film Formation by Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  8. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01

    Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

  9. Vehicle Technologies Office Merit Review 2015: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-strength...

  10. Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing

    Broader source: Energy.gov [DOE]

    Discussed technologies applied in highly downsized efficient gasoline engine concept such as multiple injection, advanced boosting, cooled exhaust gas recirculation, and electrical supercharger

  11. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  12. Turning Back Time: The Application of Predictive Technology to Big Data 1 Turning Back Time: The Application of Predictive

    E-Print Network [OSTI]

    Oard, Doug

    discovery process. The conventional use case applies `predictive coding' during document review ­ near the end of the process.. This paper proposes a model, technology-assisted linguistic analytics, that is applied earlier in the discovery process to address the rapidly growing size of data collections

  13. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A. Ross, T.L.

    1998-01-01

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  14. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  15. Designing customizable end user applications using semantic technologies to improve information management

    E-Print Network [OSTI]

    Watugala, Sumudu Weerakoon

    2006-01-01

    Personalization capabilities in computer applications attempt to better meet the needs of individuals. The more traditional and widespread paradigm in application design is that the user should adapt to the available ...

  16. Schedule and Information for Small Business Innovation Research and Small Business Technology Transfer Program Applicants

    Broader source: Energy.gov [DOE]

    The funding and award schedule for upcoming Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants is provided below. The grants follow a funding ladder similar to that of clean energy technology investors.

  17. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  18. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  19. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  20. DOE Zero Energy Ready Home Webinar: Ducts in Conditioned Space

    Broader source: Energy.gov [DOE]

    DOE Challenge Home is a blueprint for zero energy ready homes.  When we make that statement – it’s impossible to justify huge thermal losses from ducts in unconditioned spaces.  That’s why one of...

  1. DOE Challenge Home (Now Zero Energy Ready Home) - Building America...

    Broader source: Energy.gov (indexed) [DOE]

    a much more rigorous set of guidelines that establish a national definition for Zero Net-Energy Ready performance. Read about this Top Innovation. See an example of a DOE...

  2. DOE Zero Energy Ready Home Ducts in Conditioned Space Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    is design strategies for locating the ductwork within the conditioned envelope of the building. And this is sort of a must-have for zero energy ready homes, because if these homes...

  3. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed...

  4. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ready Home in Downers Grove, IL, that scored HERS 35 without PV. This 3,600-square-foot custom home has advanced framed walls with R-23 dense-packed fiberglass plus R-13...

  5. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a sealed attic with open-cell spray foam, a pier foundation, and 95% efficient gas furnace. BAZeroEnergyReadyWeissCustom062414.pdf More Documents & Publications DOE Zero...

  6. Smart Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full...

  7. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Energy Savers [EERE]

    vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders,...

  8. DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates...

    Office of Environmental Management (EM)

    8.25" SIP roof; uninsulated slab foundation; fresh air intake; SEER 16 ducted air source heat pump. DOE Zero Energy Ready Home Case Study: Sunroc Builders, Lakeland, FL More...

  9. DOE Zero Energy Ready Home Case Study: Manatee County Habitat...

    Energy Savers [EERE]

    has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump. BAZeroEnergyReadyManateeHabitatForHumanity062414.pdf More Documents &...

  10. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Energy Savers [EERE]

    under slab; a vented attic with R-100 blown cellulose; 95% AFUE furnace, 14 SEER AC, ERV; heat pump water heater. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

  11. DOE Zero Energy Ready Home Case Study: High Performance Homes...

    Energy Savers [EERE]

    R-15 unfaced batt on walls, sealed attic with R-49 ocsf under roof deck; ground source heat pump COP 4.4. DOE Zero Energy Ready Home Case Study: High Performance Homes,...

  12. DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers...

    Energy Savers [EERE]

    and around slab, a vented attic with with 2" ccsf plus R-15 blown cellulose, a central heat pump and HRV. DOE Zero Energy Ready Home Case Study: Amaris Homes, Vadnais Heights,...

  13. DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith...

    Energy Savers [EERE]

    unvented attic with 5" ccsf and 6.5" blown fiberglass under the roof deck; ground source heat pump COP 4.4. DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, South...

  14. DOE Zero Energy Ready Home Case Study: Heirloom Design Build...

    Energy Savers [EERE]

    rigid foam under slab; sealed attic with R-28 ocsf under roof deck; 22.8 SEER; 12.5 HSPF heat pump. DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Atlanta, GA More...

  15. DOE Zero Energy Ready Home Case Study: Addison Homes, Cobbler...

    Energy Savers [EERE]

    on inside with 2 inches poly iso, a vented attic with R-38 blown fiberglass, a central heat pump with fresh air intake. DOE Zero Energy Ready Home Case Study: Addison Homes,...

  16. EV Community Readiness projects: New York City and Lower Hudson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

  17. DOE Zero Energy Ready Home Case Study: Preferred Builders, Old...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-13 closed-cell spray foam under the slab and on basement walls, an ERV, and a gas boiler for forced air and radiant floor heat. BAZeroEnergyReadyPreferredBuilders062414.pdf...

  18. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  19. DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland...

    Energy Savers [EERE]

    Case study of a DOE Zero Energy Ready home in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy...

  20. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom...

    Energy Savers [EERE]

    Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  1. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Energy Savers [EERE]

    Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side testing with an identical manufactured home...

  2. DOE Zero Energy Ready Home Case Study: Brookside Development...

    Broader source: Energy.gov (indexed) [DOE]

    of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS 26 with PV. The production home is one of a development of 7 two-story,...

  3. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Energy Savers [EERE]

    of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam...

  4. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

  5. Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application

    SciTech Connect (OSTI)

    Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

    2010-12-06

    The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

  6. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Technology Transfer" award from the Federal Laboratory Consortium. Application of this technology reduces the costs and energy associated with more conventional scrubbing...

  8. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  9. Technological assessment of silicon on lattice engineered substrate (SOLES) for optical applications

    E-Print Network [OSTI]

    Leung, Man Yin

    2008-01-01

    Over the past decade, much effort had been placed to integrate optoelectronic and electronic devices. Silicon on lattice engineered substrate (SOLES) had been developed for such purpose. As SOLES technology mature, a ...

  10. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  11. Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes

    E-Print Network [OSTI]

    Gong, Bo, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

  12. Monolithic Paper-Based & Inkjet-Printed Technology for Conformal Stepped-FMCW GPR Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    in `rugged' platforms, such as oil exploration drills. This provides a functional advantage for radars profile antennas to be used. In addition to mechanical advantages, this technology will reduce the cost

  13. Application of the technology neutral framework to sodium cooled fast reactors

    E-Print Network [OSTI]

    Johnson, Brian C. (Brian Carl)

    2010-01-01

    Sodium cooled fast reactors (SFRs) are considered as a novel example to exercise the Technology Neutral Framework (TNF) proposed in NUREG- 1860. One reason for considering SFRs is that they have historically had a licensing ...

  14. Application of the Technology Neutral Framework to Sodium-­Cooled Fast Reactors

    E-Print Network [OSTI]

    Johnson, Brian C.

    Sodium cooled fast reactors (SFRs) are considered as a novel example to exercise the Technology Neutral Framework (TNF) proposed in NUREG-1860. One reason for considering SFRs is that they have historically had a licensing ...

  15. Application of microfluidic emulsion technology to biochemistry, drug delivery and Lab-on-a-Chip programmability

    E-Print Network [OSTI]

    Urbanski, John Paul

    2005-01-01

    This research applies microfluidic emulsion technology to three diverse problems; biochemistry, drug delivery and lab-on-a-chip programmability. These subjects represent distinct research programs, but the underlying physics ...

  16. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect (OSTI)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  17. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction 

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  18. Vehicle Technologies Office Merit Review 2015: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high-energy...

  19. Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

  20. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  1. Valuing innovative technology R&D as a real option : application to fuel cell vehicles

    E-Print Network [OSTI]

    Tsui, Maggie

    2005-01-01

    This thesis aims to elucidate real option thinking and real option valuation techniques for innovative technology investment. Treating the fuel cell R&D investment as a real option for General Motor's light passenger vehicle ...

  2. NERSC Hosts Application Readiness and Portability Meeting with OLCF and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Basic Energy Sciences (BES)HonorsALCF

  3. Submitted to RAeS Rotorcraft Conference: The Future Rotorcraft Enabling Capability Through the Application of Technology, London, UK, 15 16th June 2011.

    E-Print Network [OSTI]

    ­ Enabling Capability Through the Application of Technology, London, UK, 15 ­ 16th June 2011. University.buelthoff@tuebingen.mpg.de, +49-7071-601-601 ) 1 myCopter: Enabling Technologies for Personal Air Transport Systems1 M. Jump, G at an early stage so the paper starts with the current transportation issues faced by developed countries

  4. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 3, MAY/JUNE 2004 629 The Application of MEMS Technology for

    E-Print Network [OSTI]

    The Application of MEMS Technology for Adaptive Optics in Vision Science Nathan Doble and David R. Williams using microelectromechanical systems (MEMS) has been actively pursued. This paper explains the chal- lenges in high-resolution imaging of the human eye and details how MEMS technology has been used

  5. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    SciTech Connect (OSTI)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  6. Multi-Level Micromachined Systems-on-a-Chip: Technology and Applications

    SciTech Connect (OSTI)

    Allen, J.J.; Krygowski, T.W.; Miller, S.L.; Montague, S.; Rodgers, M.S.; Smith, J.H.; Sniegowski, J.J.

    1998-10-27

    Researchers at Sandia have recently designed and built several research prototypes, which demonstrate that truly complex mechanical systems can now be realized in a surface micromachined technology. These MicroElectro- Mechanical Systems (MEMS) include advanced actuators, torque multiplying gear tmins, rack and pinion assemblies, positionable mirrors, and mechanical discriminators. All of tile mechanical components are batch fabricated on a single chip of silicon using the infrastructure origimdly developed to support today's highly reliabk; and robust microelectronics industry. Sand ia is also developing the technology 10 integrate microelectronic circuits onto the s,ime piece of silicon that is used to fabricate the MEMS devices. This significantly increases sensitivity and reliability, while fhrther reducing package size and fabrication costs. A review of the MEMS technology and capabilities available at Sandia National Laboratories is presented.

  7. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  8. Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-19

    The Notice establishes DOE policy requirements and responsibilities for remote connections to DOE and contractor information technology systems. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, to protect DOE information and information technology systems commensurate with the risk and magnitude of harm that could result from their unauthorized access, use, disclosure, modification or destruction. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06. No cancellations.

  9. A Study of Scientometric Methods to Identify Emerging Technologies via Modeling of Milestones

    SciTech Connect (OSTI)

    Abercrombie, Robert K [ORNL; Udoeyop, Akaninyene W [ORNL; Schlicher, Bob G [ORNL

    2012-01-01

    This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, patents, news archives, and online mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

  10. An Approach to Technology Risk Management Ricardo Valerdi

    E-Print Network [OSTI]

    de Weck, Olivier L.

    in parametric cost estimation models. Introduction The rapid change of Information Technology has madeAn Approach to Technology Risk Management Ricardo Valerdi USC Center for Software Engineering 941 W Symposium MIT, Cambridge, MA, March 29-31, 2004 ABSTRACT NASA's Technology Readiness Levels (TRL) approach

  11. Towards More Adaptive End-to-End Applications Helsinki University of Technology (TKK)

    E-Print Network [OSTI]

    Ott, Jörg

    adaptation (e.g., TCP's RTO) to cope with varying delays across different networks, which may span more than fragmentation of application data units and their mapping onto packets [CT90] as is common for real-time media

  12. Implementation plan for WRAP Module 1 operational readiness review

    SciTech Connect (OSTI)

    Irons, L.G.

    1994-11-04

    The Waste Receiving and Processing Module 1 (WRAP 1) will be used to receive, sample, treat, and ship contact-handled (CH) transuranic (TRU), low-level waste (LLW), and low-level mixed waste (LLMW) to storage and disposal sites both on the Hanford site and off-site. The primary mission of WRAP 1 is to characterize and certify CH waste in 55-gallon and 85-gallon drums; and its secondary function is to certify CH waste standard waste boxes (SWB) and boxes of similar size for disposal. The WRAP 1 will provide the capability for examination (including x-ray, visual, and contents sampling), limited treatment, repackaging, and certification of CH suspect-TRU waste in 55-gallon drums retrieved from storage, as well as newly generated CH LLW and CH TRU waste drums. The WRAP 1 will also provide examination (X-ray and visual only) and certification of CH LLW and CH TRU waste in small boxes. The decision to perform an Operational Readiness Review (ORR) was made in accordance with WHC-CM-5-34, Solid Waste Disposal Operations Administration, Section 1.4, Operational Readiness Activities. The ORR will ensure plant and equipment readiness, management and personnel readiness, and management programs readiness for the initial startup of the facility. This implementation plan is provided for defining the conduct of the WHC ORR.

  13. Drivers and Applications of Optical Technologies for Internet Data Center Networks

    E-Print Network [OSTI]

    Cortes, Corinna

    options and discusses technology building blocks for scaling inter-Datacenter connectivity. OCIS codes for scaling the inter-datacenter connectivity n a cost-effective and operationally streamlined manner. 2. Long Haul Networks for Datacenter Operators Figure 1 below shows a high-leveloverview of the network

  14. Accelerating Corporate Research in the Development, Application and Deployment of Human Language Technologies

    E-Print Network [OSTI]

    and technology transfer. 1 Architecture Goals In six major labs spread out over the globe, IBM Re- search has and their applica- tions. The high-level objectives of IBM's Unstructured In- formation Management Architecture. The canonical ex- ample is a natural language document. #12;The UIMA high-level architecture, illustrated

  15. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect (OSTI)

    Patton, Bruce; Sorensen, Kirk [Propulsion Research Center, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  16. IntegratedEnergySysteminRemoteCo-opApplication (GasTechnologyInstitute)

    E-Print Network [OSTI]

    Pennycook, Steve

    , will partner with Basin Electric to utilize waste heat from an existing pipeline compressor station's gas of the combined technologies into a prototype, with a real-time, web- based monitoring and control system, which into the overall system to produce firm power at a competitive rate. Leverage economy of scale by standardizing

  17. Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems

    E-Print Network [OSTI]

    Yee, Gaymond; Webster, Tom

    2003-01-01

    pdf Trends in Energy Management TechnologyTrends in Energy Management Technology Fault Detection andTrends in Energy Management Technology FEMP/NTDP Technical

  18. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01

    energy savings, technology costs, market potential, andenergy savings, technology costs, market potential, andin this study. Normally, technology cost is quantified using

  19. Cooperative Monitoring Center Occasional Paper/16: The Potential of Technology for the Control of Small Weapons: Applications in Developing Countries

    SciTech Connect (OSTI)

    ALTMANN, JURGEN

    2000-07-01

    For improving the control of small arms, technology provides many possibilities. Present and future technical means are described in several areas. With the help of sensors deployed on the ground or on board aircraft, larger areas can be monitored. Using tags, seals, and locks, important objects and installations can be safeguarded better. With modern data processing and communication systems, more information can be available, and it can be more speedily processed. Together with navigation and transport equipment, action can be taken faster and at greater range. Particular considerations are presented for cargo control at roads, seaports, and airports, for monitoring designated lines, and for the control of legal arms. By starting at a modest level, costs can be kept low, which would aid developing countries. From the menu of technologies available, systems need to be designed for the intended application and with an understanding of the local conditions. It is recommended that states start with short-term steps, such as acquiring more and better radio transceivers, vehicles, small aircraft, and personal computers. For the medium term, states should begin with experiments and field testing of technologies such as tags, sensors, and digital communication equipment.

  20. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    SciTech Connect (OSTI)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2006-06-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

  1. Microwave technology for waste management applications: Treatment of discarded electronic circuitry

    SciTech Connect (OSTI)

    Wicks, G.G. [Westinghouse Savannah River Technology Center, Aiken, SC (United States); Clark, D.E.; Schulz, R.L. [Univ. of Florida, Gainesville, FL (United States)

    1997-01-01

    Significant quantities of hazardous wastes are generated from a multitude of processes and products in today`s society. This waste inventory is not only very large and diverse, but is also growing at an alarming rate. In order to minimize the dangers presented by constituents in these wastes, microwave technologies are being investigated to render harmless the hazardous components and ultimately, to minimize their impact to individuals and the surrounding environment.

  2. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01

    AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows in an indus trial process.... First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert heat to shaft power...

  3. Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.; Dabo, M.

    2009-05-01

    The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

  4. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    SciTech Connect (OSTI)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  5. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs- Rev05

    Broader source: Energy.gov [DOE]

    TitleUpdates to the DOE Zero Energy Ready Home Specs - Rev05DescriptionIn the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and...

  6. Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES "The...

  7. Computer vs. Video Game System: Ready to Rumble in the #EnergyFaceoff...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle November 4, 2014 - 10:20am...

  8. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero...

  9. DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L...

    Energy Savers [EERE]

    Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C.Green Extreme Homes, CDC, McKinley Project, Garland TX DOE Zero Energy Ready Home Case Study: Carl Franklin Homes,...

  10. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...

    Energy Savers [EERE]

    BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case...

  11. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Energy Savers [EERE]

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

  12. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  13. DOE Zero Energy Ready Home Case Study: Shore Road Project- Old Greenwich, Connecticut

    Broader source: Energy.gov [DOE]

    This case study describes the builder Murphy Brothers' first DOE Zero Energy Ready Home in Old Greenwich, CT.

  14. Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text-alternative version of the ENERGY STAR® for SSL: Getting Ready for September 30 webcast.

  15. NASA's nuclear electric propulsion technology project

    SciTech Connect (OSTI)

    Stone, J.R.; Sovey, J.S. (NASA, Lewis Research Center, Cleveland, OH (United States))

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs.

  16. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  17. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  18. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  19. Plasma technology for textile finishing applications gets a boost from LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi DayPlasma technology for textile

  20. Technologies de base Architectures

    E-Print Network [OSTI]

    Grigoras, .Romulus

    Technologies de base Architectures Cinquième partie Technologies Web Intergiciels et applications communicantes 1 / 38 #12;Technologies de base Architectures Client-serveur HTTP Présentation Plan 1 Technologies Contenu dynamique 2-tier 3-tier V ­ Technologies Web 2 / 38 #12;Technologies de base Architectures Client

  1. Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations

    SciTech Connect (OSTI)

    Sabnani, L.; Skumanich, A.; Ryabova, E.; Noufi, R.

    2011-01-01

    There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics, and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.

  2. Application of Annular Linear Induction Pumps Technology for Waste Heat Rejection and Power Conversion

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2005-03-16

    The U.S.-sponsored Jupiter Icy Moons Orbiter (JIMO) program will require a light weight, efficient, and reliable power generation system capable of a 20+ year lifespan. This requirement has renewed interest in orbiter technological development. Sub-components of the orbiter system are the primary and secondary power conversion/heat rejection systems for both the proposed nuclear reactors and Brayton cycle heat engines. Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. The conversion/rejection systems for these components typically utilize pumped molten metal as the heat transfer medium. Electromagnetic (EM) Annular Linear Induction Pumps (ALIPs) are ideal for this purpose as they can operate at moderate to high efficiency, at elevated temperature, do not involve moving parts (solid-state; long life), and require no bearings or seals. A parametric study was performed to develop a suite of ALIP preliminary designs capable of providing specified pressure and mass flow rate ranges for the proposed NaK(78) Brayton-cycle heat rejection loop. A limited study was also performed for the proposed lithium-cooled nuclear reactor heat transport loops; however, the design of these units is still in its infancy. Both studies were conducted by Pacific Northwest National Laboratory (PNNL) with the MHD Systems’ ALIP Design Code. The studies focused on designing ALIPs that displayed reasonably high efficiency and low source voltages as well as low mass and smallest geometric envelope.

  3. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  4. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  5. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  6. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect (OSTI)

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

  7. FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83

    E-Print Network [OSTI]

    Tullos, Desiree

    - rupted--electricity, telephone, natural gas, gasoline pumps, cash registers, ATM machines, and internetFEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83 National Security Emergencies I n addition to the natural and tech- nological hazards described in this publication, Americans face threats posed by hostile

  8. TECHNICAL POLLUTION PREVENTION GUIDE FOR READY-MIXED CONCRETE OPERATIONS

    E-Print Network [OSTI]

    #12;TECHNICAL POLLUTION PREVENTION GUIDE FOR READY-MIXED CONCRETE OPERATIONS IN THE LOWER FRASER BASIN DOE FRAP 1997-13 Prepared for: Environment Canada Environmental Protection Fraser Pollution Action Plan through its Fraser Pollution Abatement Office. Environment Canada is not responsible

  9. Ready to eat breakfast cereals from food-grade sorghums 

    E-Print Network [OSTI]

    Cruz y Celis Ehlinger, Laura Penelope

    1993-01-01

    Two food-grade sorghum hybrids, ATx63 I *Tx436 (non waxy), and B.BON 34, (waxy), were micronized and evaluated for their potential use in ready to eat breakfast cereals (RTE-BC). Whole and decorticated grains were exposed to infra-red burners...

  10. IBM Watson Group Recruiting Event Ready to Work with Watson?

    E-Print Network [OSTI]

    IBM Watson Group Recruiting Event Ready to Work with Watson? Attend this session to learn about Watson opportunities INTERESTED YET? IBM is leading the real-world success of cognitive systems. Together and resources of IBM. Gates & Hillman 6115 LOCATION February, 18 2014 DATE 4PM - 7PM TIME WHO SHOULD ATTEND? 4

  11. Richard C. Ready Department of Agricultural Economics and Economics

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Richard C. Ready Department of Agricultural Economics and Economics Montana State University, University of Wisconsin, Madison: Agricultural Economics Major Field: Environmental and Resource Economics 2. M.A. - 1985, University of Wisconsin, Madison: Agricultural Economics 3. B.S - 1981, Cornell

  12. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  13. Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles

    E-Print Network [OSTI]

    ]. The limited range of EVs implicates a new importance of information about stored energy, estimated rangeEnergy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound compared to a conventional car with a combustion engine. Most EVs provide a visual feedback about

  14. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Adm Chg 1, dated 4-2-13, supersedes DOE O 425.1D.

  15. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  16. NOAA's National Weather Service Building a Weather-Ready Nation

    E-Print Network [OSTI]

    NOAA's National Weather Service Building a Weather-Ready Nation For more information, please visit: www.noaa.gov and www.nws.noaa.gov NOAA's National Weather Service (NWS) is the Nation's official source for weather and water data, forecasts, and warnings. From information accessed on your smartphone

  17. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Broader source: Energy.gov (indexed) [DOE]

    a DOE Zero Energy Ready home in New Paltz, NY, that achieved a HERS score of 37 without PV or 7 with 7.5-kW PV. The two-story 2,288-ft2 home is one of 9 certified homes. All of...

  18. DOE Zero Energy Ready Home Case Study: John Hubert Associates...

    Broader source: Energy.gov (indexed) [DOE]

    of a DOE Zero Energy Ready home in North Cape May, NJ, that scored a HERS 46 without PV or HERS 9 with 6.5 kW of PV. The two-story, 1,871-ft2 home has advanced-framed...

  19. Key Facts About Hurricane Readiness Preparing for a Hurricane

    E-Print Network [OSTI]

    HURRICANES Key Facts About Hurricane Readiness Preparing for a Hurricane If you are under a hurricane watch or warning, here are some basic steps to take to prepare for the storm: · Learn about your. · Identify potential home hazards and know how to secure or protect them before the hurricane strikes

  20. Technology Solutions Case Study: Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York

    SciTech Connect (OSTI)

    2013-11-01

    Condensing boiler technology has been around for many years and has proven to be a durable, reliable method of heating. Based on previous research efforts, however, it is apparent that these types of systems are not designed and installed to achieve maximum efficiency. For example, in order to protect their equipment in the field, manufacturers of low-mass condensing boilers typically recommend design strategies and components that ensure steady, high flow rates through the heat exchangers, such as primary-secondary piping, which ultimately result in decreased efficiency. There is also a significant lack of information for contractors on how to configure these systems to optimize overall efficiency. In response to these findings, researchers from Building America team Consortium for Advanced Residential Buildings worked with industry partners to develop hydronic system designs that would address these issues and result in higher overall system efficiencies and improved response times.

  1. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect (OSTI)

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  2. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a depth of 45 feet. TCE in the test sites. Based on the successful field tests (Phases I and IIa), the ROD was prepared and the Lasagna{trademark} alternative was selected for remediation of TCE contaminated soils at the cylinder testing site Solid Waste Management Unit 91(SWMU 91). Bechtel Jacobs Company LLC contracted CDM to construct and operate a full-scale Lasagna{trademark} remediation system at the site (Phase IIb). Construction began in August 1999 and the operational phase was initiated in December 1999. The Lasagna{trademark} system was operated for two years and reduced the average concentration of TCE in SWMU 91 soil from 84 ppm to less than 5.6 ppm. Verification sampling was conducted during May, 2002. Results of the verification sampling indicated the average concentration of TCE in SWMU 91 soil was 0.38 ppm with a high concentration of 4.5 ppm.

  3. Tahoe subsea completion -- A successful application of existing and new technologies

    SciTech Connect (OSTI)

    Clegg, W.K.; Orr, K.

    1995-12-31

    The Tahoe subsea satellite tieback (VK783) demonstrates how existing and new subsea technologies can be combined to achieve a cost effective yet technically significant subsea project. A used Green Canyon 29 subsea Xmas tree was refurbished and modified to implement more recent first-end layaway techniques for both the flowline and umbilical. The diverless completion was made in 1,500 ft. of water and tied back approximately 12 miles to a platform in 275 feet of water (Main Pass 252). The flowline system consisted of dual nominal 4-in. lines comprising both flexible and rigid pipes. The control system was multiplexed electrohydraulic with signal-on power umbilical transmission. Both downhole and Xmas tree temperature and pressure measurements were employed. The techniques used in the Tahoe subsea system can be applied to other projects to help improve cost, schedule, and reliability of subsea tiebacks.

  4. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  5. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    SciTech Connect (OSTI)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  6. Status review of the science and technology of Ultrananoscrystalline Diamond (UNCD (sup {trademark}) films and application to multifunctional devices.

    SciTech Connect (OSTI)

    Auciello, O.; Sumant, A. V.

    2010-07-01

    This review focuses on a status report on the science and technology of ultrananocrystalline diamond (UNCD) films developed and patented at Argonne National Laboratory. The UNCD material has been developed in thin film form and exhibit multifunctionalities applicable to a broad range of macro to nanoscale multifunctional devices. UNCD thin films are grown by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD) using new patented Ar-rich/CH4 or H2/CH4 plasma chemistries. UNCD films exhibit a unique nanostructure with 2-5 nm grain size (thus the trade name UNCD) and grain boundaries of 0.4-0.6 nm for plain films, and grain sizes of 7-10 nm and grain boundaries of 2-4 nm when grown with nitrogen introduced in the Ar-rich/CH4 chemistry, to produce UNCD films incorporated with nitrogen, which exhibit electrical conductivity up to semi-metallic level. This review provides a status report on the synthesis of UNCD films via MPCVD and integration with dissimilar materials like oxides for piezoactuated MEMS/NEMS, metal films for contacts, and biological matter for a new generation of biomedical devices and biosensors. A broad range of applications from macro to nanoscale multifunctional devices is reviewed, such as coatings for mechanical pumps seals, field-emission cold cathodes, RF MEMS/NEMS resonators and switches for wireless communications and radar systems, NEMS devices, biomedical devices, biosensors, and UNCD as a platform for developmental biology, involving biological cells growth on the surface. Comparisons with nanocrystalline diamond films and technology are made when appropriate.

  7. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  8. Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2009-04-15

    The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

  9. Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 6, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The project`s objective is to demonstrate innovative applications of technology for cost reduction for the Chiyoda Thoroughbred-121 (CT-121) process. The CT-121 process is a wet FGD process that removes SO{sub 2}, can achieve simultaneous particulate control, and can produce a salable by-product gypsum thereby reducing or even eliminating solid waste disposal problems. Figure 1 shows a flow schematic of the process. CT-121 removes SO{sub 2} and particulate matter in a unique limestone-based scrubber called the Jet Bubbling Reactor (JBR). IN the JBR, flue gas bubbles beneath the slurry, SO{sub 2} is absorbed, and particulate matter is removed from the gas. The agitator circulates limestone slurry to ensure that fresh reactant is always available in the bubbling or froth zone sot that SO{sub 2} removal can proceed at a rapid rate. Air is introduced into the bottom of the JBR to oxidize the absorbed SO{sub 2} to sulfate, and limestone is added continuously to neutralize the acid slurry and form gypsum. The JBR is designed to allow ample time for complete oxidation of the SO{sub 2}, for complete reaction of the limestone, and for growth of large gypsum crystals. The gypsum slurry is continuously withdrawn from the JBR and is to be dewatered in a gypsum stack. The stacking technique involves filing a diked area with gypsum slurry, allowing the gypsum solids to settle, and removing clear liquid from the top of the stack for recycle back to the process.

  10. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect (OSTI)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  11. DOE Zero Energy Ready Home Case Study: Southern Energy Homes — First DOE Zero Energy Ready Manufactured Home, Russellville, AL

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This home is the first manufactured home built to the DOE Zero Energy Ready Home standard and won an Affordable Builder award in the 2014 Housing Innovations Awards. This manufactured home achieved a HERS score of 57 without photovoltaics and includes superior insulation and air sealing.

  12. Application of coiled-tubing-drilling technology on a deep underpressured gas reservoir

    SciTech Connect (OSTI)

    1997-06-01

    The Upper-Mississippian Elkton formation is a dolomitized shallow-water carbonate consisting of dense limestones and porous dolomites. The Elkton was deposited in an open-shelf environment as crinoid grainstones, coral packstones, and lime muds. Deposition of impermeable shales and siltstones of the Lower Cretaceous created the lateral and updip seals. Reservoir thickness can be up to 20 m, with porosities reaching 20% and averaging 10%. The reservoir gas contains approximately 0.5% hydrogen sulfide. Well 11-18 was to be completed in the Harmatten Elkton pool. The pool went on production in 1967 at an initial pressure of 23,500 kPa. At the current pressure of 16,800 kPa, the remaining reserves are underpressured at 6.5 kPa/m, and underbalanced horizontal drilling was selected as the most suitable technique for exploiting remaining reserves. Coiled-tubing (CT) technology was selected to ensure continuous underbalanced conditions and maintain proper well control while drilling. The paper describes the equipment, CT drilling summary, and drilling issues.

  13. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  14. Application of the Sorption-Membrane Technologies for Liquid Radioactive Waste Processing at Kursk NPP

    SciTech Connect (OSTI)

    Slepokon, Y.I. [Kursk NPP, Kurchatov City (Russian Federation); Milyutin, V.V.; Kozlitin, E.A.; Gelis, V.M. [Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow (Russian Federation); Cherkasov, A.P. [CJSC 'SPA Energokhimproekt', 5/1 Posledniy Side-street, 103045 Moscow (Russian Federation)

    2006-07-01

    Experimental tests of the technology for NPP wastewater processing were conducted in the beginning of 2005. Wastewater effluents contained anion-active surface-active substances (SAS) in the concentration of 5-10 mg/L; total salt bearing of the effluents was about 0.8 g/L; specific activity of the {sup 95}Zr, {sup 95}Nb, {sup 60}Co, {sup 59}Fe, {sup 54}Mn, {sup 51}Cr, and {sup 137}Cs was within the range of 50-200 Bq/L; gross specific activity amounted 700-800 Bq/L. The experimental facility for wastewater processing consists of the following modules and units: - ozonizing module; - micro-filtration module based on a cross-flow filtering unit equipped with the metal-ceramic Trumem membranes; - sorption end-polishing unit loaded with the cesium-selective sorbent and conventional cation and anion exchange resins. After all SAS and other organic contaminants were destroyed at the ozonizing stage, all radionuclides except {sup 137}Cs were retained at the micro-filtration stage. The end-polishing selective sorption unit provided further removal of {sup 137}Cs radionuclide to the level of 2-3 Bq/L. Total volume of various wastewater effluents processed at the experimental facility amounted 670 L. The volume of the secondary waste concentrate was 0.3% of the feed, i.e. the waste concentrating factor reached 350. (authors)

  15. Chickamauga Hydro Unit 3: History of problems, application of new technology and corrective actions

    SciTech Connect (OSTI)

    Miller, L.J. III; Thompson, D.W.

    1995-12-31

    Chickamauga Unit 3 was placed in commercial operation in 1940 and has been in operation for over fifty years. During the history of the dam, concrete growth has been the source of alignment problems with all of the turbines and generators. This problem has resulted in difficulty in the maintenance of the minimum clearance between the rotating and stationary components of the unit. Disassembly of the units has been necessary to restore these minimum clearances. Over the years several potentially damaging problems have plagued this unit. In November of 1992 a Rotor Mounted Scanner (RMS) manufactured by MCM Enterprise Limited of Bellevue, Washington was installed on this unit. The use of state of the art technology has provided information which allowed operators to prevent an in-service failure when the air gap became dangerously small. Adjustments were made in the operation of the unit to minimize the temperature cycles. This change allowed the continued operation of the unit for an additional seven months to a planned outage. The turbine was scheduled to be replaced due to worn bushings in the trunion of the Kaplan type turbine. The information from the RMS was also used to formulate corrective actions that were taken during the planned outage. The findings made during the outage and corrective actions for continued dependable service will be discussed.

  16. Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems

    E-Print Network [OSTI]

    Yee, Gaymond; Webster, Tom

    2003-01-01

    of Practice of Energy Management, Control, and Informationpdf Trends in Energy Management TechnologyAlgorithms Trends in Energy Management Technology Fault

  17. Project Get Ready | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliamDRAFT REPORT -ProgressiveFrog

  18. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  19. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    SciTech Connect (OSTI)

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-15

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

  20. Application of European Large Component Technology in the United States - 12561

    SciTech Connect (OSTI)

    Williams, Perry [Studsvik Processing Facility Memphis, Memphis, TN, 38113 (United States)

    2012-07-01

    The European nuclear community currently has safer, more environmentally-friendly disposal options for large component disposal than the United States. The technology and innovation that makes these options viable will soon be available stateside. The removal and replacement of steam generators is a large and complicated task making volume reduction a vital service for the nuclear power industry. As plants age, the replacement of certain components is required in order to maintain plant efficiency and public safety. Currently in the United States, there are 3 options for the disposal of these items including: on-site storage, direct-disposal at a licensed (low-level radioactive waste) LLWR site, and volume reduction prior to disposal. If today's nuclear plants are to be used by future generations, waste stored on-site will eventually have to be disposed of to make room for newer, more advanced technology. Also, the space at LLWR disposal sites is finite, so all waste sent for disposal should be minimized whenever possible. Reducing the volume of decommissioned steam generators prior to final disposal shows the public that the nuclear industry is doing everything that it can to minimize its waste and conserve the environment. Additionally, many steam generators are massive and are not easily transported to a disposal site. When there is no practical transportation route, the size and weight of the component must be reduced. For various reasons including public safety, cost, and technical expertise, size reduction cannot be practically performed at the site of generation. However, since most facilities have some kind of access to a waterway, the components can be safely transported to another facility with barge access for size reduction. The size reduction process for steam generators has evolved over the past 5 years. Because of reductions to the amount of final waste, the dose to personnel, and the processing time, it is now an environmentally and economically friendly alternative to on-site storage and direct disposal. The major operations of this process include: - removal of the carbon steel steam generator dome; - removal of the channel head and majority of tube sheet to free the tubes from the tube sheet and gain access to all of the tubes for grit blasting; - grit blast decontamination of the steam generator tubes to allow disassembly; - removal of the U-Bend Section of the tubes to allow for tube pulling - tube pulling operations; - disassembly of the remainder of the steam generator shell and tube support assemblies; - size reduction of the steam generator resultant materials. All of the equipment for the American market is based on previous designs but has been adapted to meet the size requirements for processing of larger steam generators. This includes a large horizontal band saw, a tube pulling machine, tube blasting equipment, and a diamond wire saw frame. (authors)