National Library of Energy BETA

Sample records for technologies solar wind

  1. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  2. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  3. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  4. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  5. Solar technology assessment project. Volume VIII. Wind energy

    SciTech Connect (OSTI)

    Hughes, W.L.; Ramakumar, R.G.; Lingelbach, D.D.

    1981-04-01

    This paper first gives a brief historical perspective of wind energy utilization followed by a discussion of the potential uses (promises) of wind and the economic costs and technical difficulties (problems) of using it. A discussion of the statistical characteristics of the wind follows for a moderate to high wind area in the United States (actually, Oklahoma City data was used). Information on average available energy on an annual basis is presented, along with approximately monthly variations. There are an extensive variety of types of windmills in existance, and a sampling of these varieties is discussed briefly. Data on efficiencies and power coefficients for a variety of turbines is then presented. The remainder of the report generally is divided into a discussion of small (less than 100 kW) and large (larger than 100 kW) systems. Small systems and applications are discussed in some detail along with economic analyses.

  6. Lotus Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Lotus Solar Technologies Place: Cairo, Egypt Sector: Solar, Wind energy Product: Solar and wind energy consultants and contractors. Coordinates:...

  7. Characterizing Scaled Wind Farm Technology Facility Inflow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology Facility Inflow - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  8. DOE Wind and Water Power Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  9. Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  10. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  11. Atlantic Wind Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Atlantic Wind & Solar Inc. Place: Coconut Groove, Florida Zip: 33133 Sector: Solar, Wind energy Product: Florida-based installer of distributed wind and solar systems...

  12. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  13. Wind Energy Technology Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

  14. Edison Solar & Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Ltd Jump to: navigation, search Name: Edison Solar & Wind Ltd Address: 11 E. Church St, 57 Place: Milan, Ohio Zip: 44846 Sector: Geothermal energy, Solar, Wind energy...

  15. Nebraska Wind and Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Jump to: navigation, search Logo: Nebraska Wind and Solar Name: Nebraska Wind and Solar Address: 2026 East 29th Street Place: Scottsbluff, Nebraska Zip: 69361 Region: Rockies...

  16. Beijing Solar Fengli Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Fengli Technology Ltd Place: Beijing Municipality, China Zip: 100083 Sector: Efficiency, Solar, Wind energy Product: A company engaged in manufacturing Solar PV power,...

  17. Solar wind samples give insight into birth of solar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar wind samples Solar wind samples give insight into birth of solar system Most of the Genesis payload consisted of fragile solar-wind collectors, which had been exposed to the ...

  18. Ion-driven instabilities in the solar wind: Wind observations...

    Office of Scientific and Technical Information (OSTI)

    Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005 Citation Details In-Document Search Title: Ion-driven instabilities in the solar wind: Wind ...

  19. Overview of wind technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. Denver Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Solar and Wind Jump to: navigation, search Logo: Denver Solar and Wind Name: Denver Solar and Wind Address: 12445 E. 39th Ave, Suite 310 Denver, Colorado 80239 Place: Denver,...

  1. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  2. Solar and wind power advancing

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information Administration expects wind-powered generation to grow by 19 percent this year and rise another 8 percent in 2014. Congress's extension in January of a tax credit for electricity producers that use renewables is behind the wind power boost. Solar generation in the electric power sector is expected to grow even more, rising

  3. Solar, Wind, Hydropower: Home Renewable Energy Installations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built

  4. SciTech Connect: "solar plasma wind"

    Office of Scientific and Technical Information (OSTI)

    solar plasma wind" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "solar plasma wind" Semantic Semantic Term Title: Full Text: Bibliographic...

  5. Solar and Wind Easements

    Broader source: Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  6. Wind and Solar Curtailment: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  7. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  8. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  9. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  10. Solar & Wind Equipment Certification

    Broader source: Energy.gov [DOE]

    With the exception of solar energy systems designed or installed by the final owner, systems sold or installed in Arizona must be installed by licensed solar contractors and must comply with any...

  11. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  12. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatchability | Department of Energy Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to

  13. Solar and Wind Rights

    Broader source: Energy.gov [DOE]

    The law stipulates that associations must adopt an energy policy statement specifying details such as location, design, and architectural requirements of the solar energy systems within 120 days...

  14. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect (OSTI)

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  15. Solar and Wind Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name...

  16. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  17. ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS

    SciTech Connect (OSTI)

    Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2012-08-20

    The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

  18. Solar Wind Europe SL | Open Energy Information

    Open Energy Info (EERE)

    Europe SL Jump to: navigation, search Name: Solar Wind Europe SL Place: Madrid, Spain Zip: 28028 Product: Spain-based distributor of Russia-made PV modules. References: Solar Wind...

  19. Solar and Wind Easements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Easements Solar and Wind Easements < Back Eligibility Commercial Construction Industrial Local Government Nonprofit Residential Schools State Government Federal Government...

  20. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    GE Energy

    2010-05-01

    This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

  1. Final Solar and Wind H2 Report EPAct 812.doc

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report to Congress (ESECS EE-3060) in response to section 812(e) of the Energy Policy Act of 2005 summarizing technology roadmaps for solar- and wind-based hydrogen production.

  2. Guidelines for Solar and Wind Local Ordinances | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State Virginia Program Type SolarWind Permitting Standards Summary In March 2011, the Virginia...

  3. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  4. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    Maglev Wind Turbine Technologies Jump to: navigation, search Name: Maglev Wind Turbine Technologies Place: Sierra Vista, Arizona Zip: 85635 Sector: Wind energy Product: The new...

  5. Solar Photovoltaic Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (132) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  6. DOE/Sandia Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  7. Wind Energy Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Marketing Summaries (20) Partners (27) Visual Patent Search Success Stories Browse Wind Energy Marketing Summaries Wind

  8. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  9. Solar, Wind, and Energy Efficiency Easements and Rights Laws...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, and Energy Efficiency Easements and Rights Laws Solar, Wind, and Energy Efficiency Easements and Rights Laws < Back Eligibility Residential Savings Category Solar -...

  10. Power House Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Solar and Wind Jump to: navigation, search Name: Power House Solar and Wind Address: 1504 Woodlawn Ave Place: Canon City, Colorado Zip: 81212 Region: Rockies Area Sector: Solar...

  11. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  12. Solar/Wind Access Policy | Open Energy Information

    Open Energy Info (EERE)

    SolarWind Access Policy < Solar Jump to: navigation, search Solar and wind access laws are designed to establish a right to install and operate a solar or wind energy system at a...

  13. Ener Solar Technology srl | Open Energy Information

    Open Energy Info (EERE)

    Ener Solar Technology srl Jump to: navigation, search Name: Ener Solar Technology srl Place: Italy Sector: Solar Product: Solar project developer. References: Ener Solar Technology...

  14. Technology Overview Fundamentals of Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Butterfield, S.

    2005-05-01

    A presentation that describes the technology, costs and trends, and future development of wind energy technologies.

  15. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is

  16. Solar and Wind Energy Resource Assessment (SWERA)

    Open Energy Info (EERE)

    Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.....

  17. Large Distributed Solar and Wind Grant Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois.

  18. Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Dubai, United Arab Emirates Sector: Solar Product: Dubai-based solar photovoltaic module manufacturing company. References: Solar Technologies1 This article is a...

  19. Solar Manufacturing Technology | Department of Energy

    Energy Savers [EERE]

    Technology to Market Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of ...

  20. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  1. DOE Announces Webinars on Solar Thermochemical Reaction Systems, Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Recycling and Repowering, and More | Department of Energy Solar Thermochemical Reaction Systems, Wind Turbine Recycling and Repowering, and More DOE Announces Webinars on Solar Thermochemical Reaction Systems, Wind Turbine Recycling and Repowering, and More January 8, 2015 - 8:41am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are

  2. Solar wind thermal electron distributions

    SciTech Connect (OSTI)

    Phillips, J.L.; Gosling, J.T.

    1991-01-01

    Solar wind thermal electron distributions exhibit distinctive trends which suggest Coulomb collisions and geometric expansion in the interplanetary magnetic field play keys roles in electron transport. We introduce a simple numerical model incorporating these mechanisms, discuss the ramifications of model results, and assess the validity of the model in terms of ISEE-3 and Ulysses observations. Although the model duplicates the shape of the electron distributions, and explains certain other observational features, observed gradients in total electron temperature indicate the importance of additional heating mechanisms. 5 refs., 7 figs.

  3. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  4. NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind technology Center (NWTC) at the U.S. Department ...

  5. Gold SolarWind GmbH | Open Energy Information

    Open Energy Info (EERE)

    SolarWind GmbH Jump to: navigation, search Name: Gold SolarWind GmbH Place: Aiterhofen, Germany Zip: 94330 Sector: Wind energy Product: German project developer of PV and wind...

  6. Village WInd Technology Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In traveling, I have observed, that in those parts where the inhabitants can have neither ... Walls 17% Floor 32% Wind Heat for Homes Benefits: * Lower heating costs * Scale * ...

  7. Biogas, Solar, and Wind Energy Equipment Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas, Solar, and Wind Energy Equipment Exemption Biogas, Solar, and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Agricultural Multifamily...

  8. Solar and Wind Permitting Standards | Open Energy Information

    Open Energy Info (EERE)

    Residential Residential Schools State Government Wind Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  9. Solar/Wind Permitting Standards | Open Energy Information

    Open Energy Info (EERE)

    Residential Residential Schools State Government Wind Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  10. New England Breeze Solar and Wind Installers | Open Energy Information

    Open Energy Info (EERE)

    Greater Boston Area Sector: Renewable energy, Services, Solar, Wind energy Product: Solar Panel and Wind Turbine Installation Year Founded: 2006 Phone Number: 978-567-9463...

  11. Transport of transient solar wind particles in Earth's cusps...

    Office of Scientific and Technical Information (OSTI)

    Transport of transient solar wind particles in Earth's cusps Citation Details In-Document Search Title: Transport of transient solar wind particles in Earth's cusps An important ...

  12. Nonlinear Development of Shocklike Structure in the Solar Wind...

    Office of Scientific and Technical Information (OSTI)

    Nonlinear Development of Shocklike Structure in the Solar Wind Citation Details In-Document Search Title: Nonlinear Development of Shocklike Structure in the Solar Wind We report ...

  13. Global Atlas for Solar and Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Atlas for Solar and Wind Energy Jump to: navigation, search Tool Summary Name: Global Atlas for Solar and Wind Energy AgencyCompany Organization: International Renewable Energy...

  14. Supercomputing Model Provides Insights from Higher Wind and Solar...

    Energy Savers [EERE]

    Supercomputing Model Provides Insights from Higher Wind and Solar Generation in the Eastern Power Grid Supercomputing Model Provides Insights from Higher Wind and Solar Generation ...

  15. Western Wind and Solar Integration Study: Executive Summary,...

    Broader source: Energy.gov (indexed) [DOE]

    GE Energy MAY 2010 WESTERN WIND AND SOLAR INTEGRATION STUDY: EXECUTIVE SUMMARY NOTICE This ... 20% postconsumer waste WESTERN WIND AND SOLAR INTEGRATION STUDY: EXECUTIVE SUMMARY May ...

  16. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT (Technical...

    Office of Scientific and Technical Information (OSTI)

    grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. ...

  17. 2013 Wind Technologies Market Report Presentation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications 2012 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc....

  18. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding ...

  19. Solar energy system with wind vane

    SciTech Connect (OSTI)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  20. How do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study; Preprint

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-09-01

    This paper reviews the scope of the Western Wind and Solar Integration Study, the development of wind and solar datasets, and the results to date on three scenarios.

  1. Hawaii Solar and Wind Integration Studies | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the effects of high penetrations of solar and wind energy on the operations of the electric ... Development of Regional Wind Resource and Wind Plant Output Datasets for the ...

  2. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  3. Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name: Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place: Xuzhou, Jiangsu Province,...

  4. Shanghai Comtec Solar Technology Ltd aka Comtec Solar System...

    Open Energy Info (EERE)

    Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name: Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place:...

  5. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  6. Flexible Assembly Solar Technology

    Broader source: Energy.gov [DOE]

    The Flexible Assembly Solar Technology Fact Sheet explains a 2012 SunShot CSP R&D award project led by a team from BrightSource Industries. They will design and deploy a prototype of FAST, which is an automated collector-assembly platform that can be used for rapid assembly and installation of heliostats at a solar power tower plant. FAST has the potential to decrease costs related to permitting, construction, maintenance, operation, storage, and demolition of the heliostat assembly building, aiming to achieve SunShot Initiative’s target installed solar field cost of $75/m2.

  7. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  8. Solar Photovoltaic Technology Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  9. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL: National Wind Technology Center National Wind Technology Center The National Wind Technology Center (NWTC) at NREL is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power

  10. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  11. Solar and Wind Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The Department is no longer accepting applications for the FY 2015 Solar and Wind Rebate Program. The anticipated opening of the FY 2016 program is late this Summer. See website for highlights of...

  12. Free Consumer Workshops On Solar & Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., Dec. 9, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will host three free consumer workshops on solar and wind power for the ...

  13. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy ... he created tools to filter out the "noise" in the datasets. ...

  14. Solar and Wind Easements & Rights Laws

    Broader source: Energy.gov [DOE]

    Solar and wind systems are also protected from siting restrictions that would "significantly decrease the efficiency or performance of the system and not allow for the use of an alternative system...

  15. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Daghouth, Naim; Hoen, Ben; Mills, Andrew; Hamachi LaCommare, Kristina; Millstein, Dev; Hansen, Dana; Porter, Kevin; Widiss, Rebecca; Buckley, Michael; Oteri, Frank; Smith, Aaron; Tegen, Suzanne

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  16. Shock heating of the solar wind plasma

    SciTech Connect (OSTI)

    Whang, Y.C.; Liu, Shaoliang ); Burlaga, L.F. )

    1990-11-01

    The authors present a study of all shocks observed from Pioneers and Voyagers in 1973-1982. The average shock strength increases with the heliocentric distance outside 1 AU, reaches a maximum near 5 AU, and then decreases with the distance. The increase in the entropy of the solar wind protons across shocks also reaches a maximum near 5 AU. When an average shock propagates through the solar wind, the shock heating increases the entropy of the solar wind protons by approximately 0.8 {times} 10{sup {minus}23} J/K/proton. They also use plasma data from Voyagers and Pioneers between 1 and 30 AU and data from IMP at 1 AU to calculate the increase in the average entropy of solar wind protons with the heliocentric distance. When the distance increases by a factor of 10, the entropy increases by about 4 {times} 10{sup {minus}23} J/K/proton. In order to evaluate the role played by shocks for the heating of the solar wind, they use a MHD simulation model to calculate the entropy changes for the November, 1977 event. Shock heating is the only heating mechanism included in the model. The calculated entropy increase agrees reasonably well with that calculated from observational data. The simulation result suggests that shocks are chiefly responsible for the heating of the solar wind plasma between 1 and 15 AU.

  17. 2009 Wind Technologies Market Report Summary Presentation

    SciTech Connect (OSTI)

    Ryan Wiser, Mark Bolinger

    2010-08-01

    This is a Powerpoint presentation on the 2009 Wind Technologies Market Report, which covers the major developments in the U.S. wind energy market in 2009.

  18. 2012 Wind Technologies Market Report Presentation

    Broader source: Energy.gov [DOE]

    Presentation that summarizes the annual Wind Technologies Market Report, which summarizes key trends in the 2012 U.S. wind power market.

  19. Offshore Wind Technology Development Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Technology Development Projects The Wind Program invests in projects to develop the engineering modeling and analysis tools required to lower overall offshore ...

  20. 2009 Wind Technologies Market Report Executive Summary

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2010-08-01

    This is the executive summary for the 2009 Wind Technologies Market Report, which covers the major developments in the U.S. wind energy market in 2009.

  1. Technology solutions for wind integration in ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  2. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  3. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  4. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect (OSTI)

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  5. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Tegen, Suzanne

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  6. EPRI conference proceedings: solar and wind power - 1982 status and outlook

    SciTech Connect (OSTI)

    DeMeo, E.A.

    1983-02-01

    Separate abstracts were prepared for 18 papers in this proceedings. Not separately abstracted are speeches and presentations covering: past progress and future directions in solar and wind power research and development, new directions in Federal solar electric programs, Solar Energy Research Institute status and outlook, ARCO Solar Industries' involvement in the production of potential solar electric technologies, wind power status and outlook, utility requirements, roles and rewards, and a panel discussion on solar and wind power status and outlook as viewed from industrial, utility, financial, and government perspectives. (LEW)

  7. New Report Says Western Grid Can Weather Disturbances with High Wind, Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penetrations | Department of Energy Says Western Grid Can Weather Disturbances with High Wind, Solar Penetrations New Report Says Western Grid Can Weather Disturbances with High Wind, Solar Penetrations May 18, 2015 - 4:05pm Addthis A new report finds that with high penetrations of wind and solar on the grid, together with good system planning, sound engineering practices, and commercially available technologies, the Western Interconnection can withstand the crucial first minute after large

  8. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Map Explore the interactive graphic below to learn about the National Wind Technology Center's facilities and associated capabilities. Click on the numbered areas to discover photos and videos as well as brief descriptions and links to detailed specifications. Map of the National Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more difficult to

  9. Solar Energy Technologies Program: Photovoltaics

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  10. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M.; Loose, R.R.; Cadogon, J.B.

    1994-07-01

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  11. Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy...

    Open Energy Info (EERE)

    JC Solar Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place: Yixing, Jiangsu Province, China Zip: 214200 Sector: Solar Product: A Chinese...

  12. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments [OSTI]

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  13. EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open...

    Open Energy Info (EERE)

    Wales Ltd formerly ICP Solar Technologies Ltd Jump to: navigation, search Name: EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) Place: Mid Glamorgan, United Kingdom...

  14. Compound Solar Technology CompSolar | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology CompSolar Jump to: navigation, search Name: Compound Solar Technology (CompSolar) Place: Jhunan, Taiwan Zip: 350 Sector: Solar Product: Producer of glass-based...

  15. 2014 Wind Technologies Market Report Highlights

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report Highlights August 2015 Prepared for the U.S. Department of Energy Wind and Water Power Technologies Office Prepared by Lawrence Berkeley National Laboratory Berkeley, California 2014 WIND TECHNOLOGIES MARKET REPORT HIGHLIGHTS 2 Introduction The United States remains a top installer of wind energy capacity. Wind power additions rebounded in 2014, with 4,854 megawatts (MW) of new capacity added in the United States representing $8.3 billion in new investments. In

  16. Implementing Solar Technologies at Airports

    SciTech Connect (OSTI)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  17. Premier Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Premier Solar Technologies Name: Premier Solar Technologies Place: Dubai, United Arab Emirates Sector: Renewable Energy Product: Integrated Storage Collector Website:...

  18. Wind Issues in Solar Thermal Performance Ratings: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Casey, R.

    2009-04-01

    We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

  19. 2015 Wind Technologies Market Report: Summary

    Energy Savers [EERE]

    Laboratory August 2016 2 WIND POWER TECHNOLOGIES ... Available at: http:energy.goveerewind 3 WIND POWER TECHNOLOGIES ... 25,352 India 2,623 Spain 22,665 Canada 1,506 ...

  20. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  1. 2010 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  2. Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law

    Broader source: Energy.gov [DOE]

    Oregon's solar and wind easements provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Easements...

  3. Solar Photovoltaic Technology Basics | Department of Energy

    Energy Savers [EERE]

    Solar Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics August ... Photovoltaic (PV) materials and devices convert sunlight into electrical energy. A single ...

  4. Prism Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Prism Solar Technologies Inc Jump to: navigation, search Name: Prism Solar Technologies Inc Place: Stone Ridge, New York Zip: 12484 Sector: Solar Product: JV formed between Direct...

  5. Advancing Solar Through Photovoltaic Technology Innovations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar ...

  6. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and ...

  7. Wind Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  8. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, ...

  9. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  10. 2014 Wind Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2015 2014 Wind Technologies Market Report This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (public law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality guidelines or the Office of

  11. 2012 Wind Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 2012 WIND TECHNOLOGIES MARKET REPORT This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (public law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality guidelines or the Office of

  12. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  13. Excise Tax Exemption for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  14. COLLOQUIUM: On Tracing the Origins of the Solar Wind | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the two suggest different sources for the fast and slow solar wind. Using state of the art models and observations I find that the solar wind observations used to distinguish...

  15. Fact Sheet: Multilateral Solar and Wind Working Group | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar and Wind Working Group will focus its initial work on developing a Global Atlas for Solar and Wind Energy and a corresponding Long-Term Strategy on Joint Capacity ...

  16. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Wind Technologies Market Report 2012 Wind Technologies Market Report The 2012 Wind Technologies Market Report is a comprehensive analyses of the U.S. distributed wind energy market ever published, this report provides a detailed overview of developments and trends in the U.S. wind power market, focusing on 2012. 2012 Wind Technologies Market Report (3.4 MB) More Documents & Publications 2012 Wind Technologies Market Report 2013 Wind Technologies Market Report 2014 Wind Technologies Market

  17. Solar and Wind Contractor Licensing

    Broader source: Energy.gov [DOE]

    In June of 2014, SB 447 mandated that the Louisiana State Licencsing Board for Contractors develop new rules for solar contractors no later than January 1, 2015. Licensed contractors must be in c...

  18. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  19. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Wind Power Chapter 4: Technology Assessments NOTE: The 2015 U.S. Department of Energy

  20. Western Wind and Solar Integration Study | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we integrate large amounts of wind and solar energy into the electric power system of the ... Development of Regional Wind Resource and Wind Plant Output Datasets Phase 2 Research ...

  1. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of integrating up to 35% wind and solar energy in the WestConnect subregion and, more ... Development of Regional Wind Resource and Wind Plant Output Datasets This report ...

  2. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  3. SolarBridge Technologies: Helping Solar Modules Speak the Language...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid SolarBridge Technologies: Helping Solar Modules Speak the Language of the Energy Grid June 5, ...

  4. Chapter 4: Advancing Clean Electric Power Technologies | Solar Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Solar Power Technologies Chapter 4: Technology Assessments Introduction Solar energy

  5. Director, Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Solar Energy Technologies Office (SETO) is to provide the overall programmatic and technical oversight, policy, management, and strategic direction necessary for a balanced...

  6. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. Solar wind conditions for a quiet magnetosphere

    SciTech Connect (OSTI)

    Kerns, K.J.; Gussenhoven, M.S. )

    1990-12-01

    The conditions of the solar wind that lead to a quiet magnetosphere are determined under the assumption that the quiet or baseline magnetosphere can be identified by prolonged periods of low values of the am index. The authors analyzed solar wind data from 1978 to 1984 (7 years) during periods in which am {<=} 3 nT to identify those solar wind parameters that deviate significantly from average values. Parallel studies were also performed for prolonged periods of Kp = 0, 0+ and AE < 35 nT. They find that for quiet times the solar wind velocity (V), the interplanetary magnetic field magnitude (B), and the z component of the IMF (B{sub z}) show distinctive variations from average values. They independently varied these solar wind parameters and the length of time the conditions must persist to minimize am. This was done with the additional requirement that the conditions yield a reasonable number of occurrences (5% of the data set). The resulting baseline conditions are V {le} 390 km/s; 180{degree} - arctan {vert bar}B{sub y}/B{sub z}{vert bar} {le} 101{degree}, when b{sub z} {le} 0 (no restriction on B{sub z} positive); B {le} 6.5 nT; and persistence of these conditions for at least 5 hours. Minimizing the am index does not require a clear upper limit on the value of B{sub z} as might be anticipated from the work of Gussenhoven (1988) and Berthelier (1980). Apparently, this is a result of the requirement that the conditions must occur 5% of the time. When the requirement is lowered to 1% occurrence, an upper limit to B{sub z} emerges.

  8. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wende Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name: Beijing Wende Xingye Wind Power Technology Co Ltd Place: Beijing, China Sector: Wind energy Product:...

  9. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  10. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  11. Sustainable Technologies Museum Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Sustainable Technologies Museum Wind Farm Facility Sustainable Technologies Museum Sector Wind energy Facility Type Commercial Scale Wind...

  12. Vestas Wind Technology China Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vestas Wind Technology China Co Ltd Jump to: navigation, search Name: Vestas Wind Technology (China) Co Ltd Place: Tianjin Municipality, China Zip: 300462 Sector: Wind energy...

  13. Jiangsu JIXIN Wind Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    JIXIN Wind Energy Technology Co Ltd Jump to: navigation, search Name: Jiangsu JIXIN Wind Energy Technology Co Ltd Place: Jiangyin, Jiangsu Province, China Sector: Wind energy...

  14. The Genesis Mission: Solar Wind Conditions, and Implications for the FIP Fractionation of the Solar Wind.

    SciTech Connect (OSTI)

    Reisenfeld, D. B.; Wiens, R. C.; Barraclough, B. L.; Steinberg, J. T; Dekoning, C. A.; Zurbuchen, T. H.; Burnett, D. S.

    2005-01-01

    The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three

  15. Deepwater Offshore Wind Technology Research Requirements (Poster)

    SciTech Connect (OSTI)

    Musial, W.

    2005-05-01

    A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

  16. Technology assessment of wind energy conversion systems

    SciTech Connect (OSTI)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  17. Look to the Right, Kids: Five Solar/Wind Hybrids | Department...

    Broader source: Energy.gov (indexed) [DOE]

    about the technology and how to get a hybrid unit installed at their home, he adds. ... Vertical airfoils catch the wind, with several solar panels at the base to absorb sunrays. ...

  18. Wind and Solar Data Projections from the U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    and not representative of current market costs In an effort to improve EIA's approach to ... and of actual and projected technology costs for both wind and solar is provided in the ...

  19. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Wind Technologies Market Report 2012 Wind Technologies Market Report An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more. 2012_wind_technologies_market_report.pdf (3.4 MB) More Documents & Publications 2012 Wind Technologies Market Report 2013 Wind Technologies Market Report 2014

  20. WATER POWER SOLAR POWER WIND POWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation! YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. 2 The energy in wind can make electricity. We can make energy with moving water. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use energy from the earth to heat and cool our homes. Check out these cool websites to learn more about clean energy! Energy Information Administration

  1. Residential Solar and Wind Energy Systems Tax Credit

    Broader source: Energy.gov [DOE]

    Qualifying technologies include solar domestic water heating systems, solar swimming pool and spa heating systems, photovoltaic systems, photovoltaic phones and street lights, passive solar...

  2. Advanced Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment. References: Advanced Solar Technologies Inc1 This...

  3. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  4. 2009 Wind Technologies Market Report: Executive Summary

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01

    This is the Executive Summary of the full report entitled 2009 Wind Technologies Market Report (DOE/GO-102010-3107).

  5. Turbulence and waves in the solar wind

    SciTech Connect (OSTI)

    Roberts, D.A.; Goldstein, M.L. )

    1991-01-01

    Studies of turbulence and waves in the solar wind is discussed. Consideration is given to the observations and theory concerning the origin and evolution of interplanetary MHD fluctuations and to the observations, theory, and simulations of compressive fluctuations. Particular attention is given to extrapolations to near-sun and polar fields regions. Results obtained on turbulence at comets and magnetic turbulence of low-frequency waves excited by unstable distributions of ions are discussed. 230 refs.

  6. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  7. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  8. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  9. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  10. Wind Energy Systems Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    Technology LLC Jump to: navigation, search Logo: Wind Energy Systems Technology LLC Name: Wind Energy Systems Technology LLC Address: 17350 State Highway 249 Place: Houston, Texas...

  11. Modeling Solar Energy Technology Evolution breakout session ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the ...

  12. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  13. Industrial Solar Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology Corp Jump to: navigation, search Name: Industrial Solar Technology Corp Place: Golden, Colorado Zip: CO 80403-1 Product: IST designs, manufactures, installs and...

  14. Visible Light Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Solar Technologies Place: Albuquerque, New York Zip: 87113 Product: New Mexico-based LED lighting fixture maker. References: Visible Light Solar Technologies1 This article is...

  15. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    help OpenEI by expanding it. Thin Film Solar Technologies is a company located in South Africa . References "Thin Film Solar Technologies" Retrieved from "http:...

  16. Office of Wind and Hydropower Technologies Wind Energy Program...

    Broader source: Energy.gov (indexed) [DOE]

    This page intentionally left blank Wind and Water Power Program 2011 Water Power Technologies Peer Review Report November 2011 U.S. Department of Energy Office of Energy Efficiency ...

  17. Flexible Assembly Solar Technology

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. National Wind Technology Center: A Proven and Valued Wind Industry Partner (Fact Sheet), National Wind Technology Center (NWTC)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    The fact sheet gives an overview of the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory.

  19. 2013 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Wind Technologies Market Report 2013 Wind Technologies Market Report This report describes the status of the U.S. wind energy industry in 2013; its trends, performance, market drivers and future outlook. A thumbnail of the 2013 Wind Technologies Market Report Cover 2013 Wind Technologies Market Report.pdf (2.5 MB) More Documents & Publications 2014 Wind Technologies Market Report 2012 Wind Technologies Market Report 2012

  20. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2012-08-01

    An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more.

  1. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2013-08-01

    An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more.

  2. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    SciTech Connect (OSTI)

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wiens, Roger C.

    2012-11-10

    NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  3. Western Wind and Solar Integration Study | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Western Wind and Solar Integration Study Value of Wind Power Forecasting Impact of ... Phase 2 of WWSIS was initiated to determine the wear-and-tear costs and emissions impacts ...

  4. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Eagles are Making Wind Turbines Safer for Birds PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential Mitigating Wind-Radar ...

  5. Fulong Wind Technology Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Development Co Ltd Place: Heilongjiang Province, China Sector: Wind energy Product: A Chinese wind project developer and investor. References: Fulong Wind Technology Development...

  6. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  7. Solar Photovoltaic Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Photovoltaic Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (132) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar

  8. Solar Thermal Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Thermal Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Marketing Summaries (40) Success Stories (1) Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar Thermal

  9. Bibliography of Literature for Avian Issues in Solar and Wind...

    Office of Scientific and Technical Information (OSTI)

    Bibliography of Literature for Avian Issues in Solar and Wind Energy and Other Activities Citation Details In-Document Search Title: Bibliography of Literature for Avian Issues in ...

  10. Solar/Wind Construction Permitting Standards | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    to wind turbines in the code) 10 kilowatts or less: Licensing Requirements Any person bidding or contracting for the installation of a solar collector system must possess a...

  11. Clark County- Solar and Wind Building Permit Guides

    Broader source: Energy.gov [DOE]

    Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

  12. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy...

    Open Energy Info (EERE)

    Web Application Link: en.openei.orgappsSWERA OpenEI Keyword(s): Featured Language: English The Solar and Wind Energy Resource Assessment (SWERA) initiative brings together...

  13. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  14. Western Wind and Solar Integration Study: Executive Summary,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... benefit of integrating wind and solar forecasting into grid operations? * How can hydro ... different interstate transmission build-outs and in- cluded these costs in the scenarios. ...

  15. Property Tax Exemption for Wind, Solar, and Geothermal Energy Producers

    Broader source: Energy.gov [DOE]

    Under these policies, commercial wind, solar, and geothermal energy producers, excluding those regulated by the Idaho Public Utilities Commission, are exempt from paying taxes on real estate,...

  16. Wind and Solar-Electric (PV) Systems Exemption | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    taxation, but the real property (i.e., the land on which the solar energy generating system is located) is still subject to property tax. Wind and solar energy production...

  17. BLM - Solar and Wind Energy Applications - Pre-Application and...

    Open Energy Info (EERE)

    Solar and Wind Energy Applications - Pre-Application and Screening Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM - Solar and...

  18. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  19. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  20. ELECTRON TRANSPORT IN THE FAST SOLAR WIND

    SciTech Connect (OSTI)

    Smith, H. M.; Marsch, E. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Helander, P., E-mail: hakan.smith@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2012-07-01

    The electron velocity distribution function is studied in the extended solar corona above coronal holes (i.e., the inner part of the fast solar wind) from the highly collisional corona close to the Sun to the weakly collisional regions farther out. The electron kinetic equation is solved with a finite-element method in velocity space using a linearized Fokker-Planck collision operator. The ion density and temperature profiles are assumed to be known and the electric field and electron temperature are determined self-consistently. The results show quantitatively how much lower the electron heat flux and the thermal force are than predicted by high-collisionality theory. The sensitivity of the particle and heat fluxes to the assumed ion temperature profile and the applied boundary condition at the boundary far from the Sun is also studied.

  1. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2012-08-01

    This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

  2. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Fink, S.; Oteri, F.; Tegen, S.

    2013-08-01

    This report describes the status of the U.S. wind energy industry market in 2012; its trends, performance, market drivers and future outlook.

  3. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2011-06-01

    This report describes the status of the U.S. wind energy industry market in 2010; its trends, performance, market drivers and future outlook.

  4. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2014-08-15

    This report describes the status of the U.S. wind energy industry market in 2013; its trends, performance, market drivers and future outlook.

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  6. Solar Thermal Energy Technology; (USA)

    SciTech Connect (OSTI)

    Williams, L.E.; Hicks, S.C.

    1991-01-01

    Solar Thermal Energy Technology (STT) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy source. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in STT and other citations to information on solar thermal energy date back to 1974.

  7. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  8. Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name: Guangdong Mingyang Wind Power Technology Co Ltd Place: Zhongshan City, Guangdong Province, China Sector:...

  9. Shenyang Huaren Wind Power Technology Development Co Ltd | Open...

    Open Energy Info (EERE)

    Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name: Shenyang Huaren Wind Power Technology Development Co Ltd Place: Shenyang, Liaoning Province, China...

  10. International Energy Agency Technology Roadmap for Wind Energy...

    Open Energy Info (EERE)

    Agency Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy AgencyCompany Organization International...

  11. Wind Energy Systems Technologies LLC WEST | Open Energy Information

    Open Energy Info (EERE)

    Systems Technologies LLC WEST Jump to: navigation, search Name: Wind Energy Systems Technologies LLC (WEST) Place: New Iberia, Louisiana Sector: Wind energy Product: Wants to...

  12. Wuxi Qiaolian Wind Electricity Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Qiaolian Wind Electricity Technology Co Ltd Jump to: navigation, search Name: Wuxi Qiaolian Wind Electricity Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214187...

  13. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  14. Conventional Hydropower Technologies, Wind And Water Power Program...

    Energy Savers [EERE]

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US ...

  15. Upcoming Funding Opportunity for Technology Incubator for Wind...

    Office of Environmental Management (EM)

    Upcoming Funding Opportunity for Technology Incubator for Wind Energy Innovations Upcoming Funding Opportunity for Technology Incubator for Wind Energy Innovations March 12, 2014 - ...

  16. Roadmap Prioritizes Barriers to the Deployment of Wind Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built Environments Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built Environments ...

  17. Shunda SolarE Technologies | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: US-based JV with vertically integrated operations in the solar market. References: Shunda-SolarE Technologies1 This article is a stub. You can...

  18. Solar Technology Acceleration Centre SolarTAC | Open Energy Informatio...

    Open Energy Info (EERE)

    Acceleration Centre SolarTAC Jump to: navigation, search Name: Solar Technology Acceleration Centre (SolarTAC) Product: US-based JV formed with a consortium of six public and...

  19. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    none,

    2010-01-29

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts.

  20. Wind technology roadmap | OpenEI Community

    Open Energy Info (EERE)

    Wind technology roadmap Home GrandpasKnob's picture Submitted by GrandpasKnob(5) Member 13 August, 2013 - 12:58 I think it would be valuable for DOE to consider the creation of a...

  1. 2009 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  2. 2008 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  3. National Wind Technology Center - Local Information | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center - Local Information This page provides information for travelers visiting the National Wind Technology Center. Transportation There is no public transportation to the National Wind Technology Center. Please note that the NWTC is not located at the main NREL facility in Golden, Colorado; it is approximately 25 miles north of Golden. Visit the Denver International Airport site to find: Car rental agencies Shuttle services, and Ground transportation options, including shuttles, taxicabs, and

  4. Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd |...

    Open Energy Info (EERE)

    Sector: Solar Product: Mainly engages in the research, production, sale, installing, maintenance of solar technology and integration of energy-saving engineering. Coordinates:...

  5. TOPCAT Solar Cell Alignment & Energy Concentration Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This ...

  6. OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Arnold, L.; Li, G.; Li, X.; Yan, Y.

    2013-03-20

    Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.

  7. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  8. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  9. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    SciTech Connect (OSTI)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  10. Indian Centre for Wind Energy Technology C WET | Open Energy...

    Open Energy Info (EERE)

    Centre for Wind Energy Technology C WET Jump to: navigation, search Name: Indian Centre for Wind Energy Technology (C-WET) Place: Chennai, India Zip: 601 302 Sector: Wind energy...

  11. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, and path forward 20percent_summary_chap2.pdf (1.31 MB) More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain

  12. Solar energetic particle events in different types of solar wind

    SciTech Connect (OSTI)

    Kahler, S. W.; Vourlidas, A.

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  13. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  14. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  15. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect (OSTI)

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  16. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  17. NREL: Energy Analysis - Solar Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate

  18. Solar Energy Technologies Program: Systems Integration

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram

  19. Solar Energy Technologies Program: Market Transformation

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram

  20. Wind loading on solar concentrators: some general considerations

    SciTech Connect (OSTI)

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  1. 2015 Wind Technologies Market Report | Department of Energy

    Energy Savers [EERE]

    Wind Technologies Market Report 2015 Wind Technologies Market Report The cover to the 2015 Wind Technologies Market Report. This annual report-now in its tenth year-provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. 2015 Wind Technologies Market Report (2.05 MB) 2015 Wind Technologies Market Report: Summary Presentation (3.02 MB) 2015 Wind Technologies Market Report: Data Files (3.88 MB) More Documents & Publications 2014

  2. Solar Integrated Technologies SIT | Open Energy Information

    Open Energy Info (EERE)

    Integrated Technologies SIT Jump to: navigation, search Name: Solar Integrated Technologies (SIT) Place: Los Angeles, California Zip: 90058 Product: California-based manufacturer...

  3. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  4. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge...

  5. Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Technology Co Ltd Place: Baoding, Hebei Province, China Zip: 71051 Sector: Wind energy Product: A subsidary...

  6. Sandia Energy - Increasing the Scaled Wind Farm Technology Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Increasing the Scaled Wind Farm Technology...

  7. Sandia Energy - Scaled Wind Farm Technology Facility Baselining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accelerates Work Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Scaled Wind Farm Technology Facility Baselining...

  8. Wind Program Announces $2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies

    Broader source: Energy.gov [DOE]

    EERE's Wind Program announced $2 million in funding to advance technologies that address wind development’s potential impacts on wildlife.

  9. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May ...

  10. Local Option- Solar, Wind & Biomass Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Section 487 of the New York State Real Property Tax Law provides a 15-year real property tax exemption for solar, wind energy, and farm-waste energy systems constructed in New York State. As curr...

  11. The Western Wind and Solar Integration Study Phase 2

    Broader source: Energy.gov [DOE]

    Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

  12. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  13. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy...

    Open Energy Info (EERE)

    search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool...

  14. Excise Tax Deduction for Solar or Wind Powered Systems

    Broader source: Energy.gov [DOE]

    In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

  15. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  16. 10 Questions for a Wind & Solar Integration Analyst: Kirsten Orwig

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kirsten Orwig shares how her experiences in storm chasing led her to this position at National Renewable Energy Laboratory (NREL) and why understanding meteorology is important for advancing reliable solar and wind energy.

  17. NREL Supercomputing Model Provides Insights from Higher Wind and Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation in the Eastern Power Grid | Energy Systems Integration | NREL NREL Supercomputing Model Provides Insights from Higher Wind and Solar Generation in the Eastern Power Grid NREL opens data to help planners and regulators understand implications of higher wind and solar generation August 31, 2016 A new study from the United States Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) used high-performance computing capabilities and innovative visualization tools to

  18. NREL Supercomputing Model Provides Insights from Higher Wind and Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation in the Eastern Power Grid | Grid Modernization | NREL Supercomputing Model Provides Insights from Higher Wind and Solar Generation in the Eastern Power Grid NREL opens data to help planners and regulators understand implications of higher wind and solar generation August 31, 2016 A new study from the United States Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) used high-performance computing capabilities and innovative visualization tools to model, in

  19. NREL Supercomputing Model Provides Insights from Higher Wind and Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation in the Eastern Power Grid - News Releases | NREL Supercomputing Model Provides Insights from Higher Wind and Solar Generation in the Eastern Power Grid NREL opens data to help planners and regulators understand implications of higher wind and solar generation August 31, 2016 NREL's David Palchak, co-author of the Eastern Renewable Generation Integration Study, examines data visualizations developed with computing resources in NREL's Energy Systems Integration Facility. NREL's

  20. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect (OSTI)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  1. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect (OSTI)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  2. The dynamic character of the polar solar wind

    SciTech Connect (OSTI)

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P. E-mail: hsyu@ucsd.edu E-mail: pphick@ucsd.edu

    2014-09-20

    The Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph C2 and Solar Terrestrial Relations Observatory (STEREO) COR2A coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in places ordinarily thought of as 'quiet' solar wind above the poles in coronal hole regions. Instead of the static well-ordered flow and gradual acceleration normally expected, coronagraph images show outflow in polar coronal holes consisting of a mixture of intermittent slow and fast patches of material. We compare measurements of this highly variable solar wind from C2 and COR2A images and show that both coronagraphs measure essentially the same structures. Measurements of the mean velocity as a function of height of these structures are compared with mass flux determinations of the solar wind outflow in the large polar coronal hole regions and give similar results.

  3. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs;

  4. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Environmental Management (EM)

    Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American ...

  5. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  6. DOE/SNL Scaled Wind-Farm Technology facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  7. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

    2010-12-01

    This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

  8. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  9. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9

  10. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  11. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study Debra Lew National Renewable Energy Laboratory Dick Piwko, Nick Miller, Gary Jordan, Kara Clark, and Lavelle Freeman GE Energy Technical Report NREL/TP-5500-50057 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  12. Solar Two technology for Mexico

    SciTech Connect (OSTI)

    KOLB,GREGORY J.; STRACHAN,JOHN W.; GASCO,CLAUDIO ESTRADA

    2000-03-02

    Solar power towers, based on molten salt technology, have been the subject of extensive research and development since the late 1970s. In the mid 1980s, small experimental plants were successfully fielded in the USA and France that demonstrated the feasibility of the concept at a 1 to 2 MW{sub e} scale. Systems analyses indicate this technology will be cost competitive with coal-fired power plants after scaling-up plant size to the 100 to 200 MW{sub e} range. To help bridge the scale-up gap, a 10 MW{sub e} demonstration project known as Solar Two, was successfully operated in California, USA from 1996 to 1999. The next logical step could be to scale-up further and develop a 30 MW{sub e} project within the country of Mexico. The plant could be built by an IPP industrial consortium consisting of USA's Boeing and Bechtel Corporations, combined with Mexican industrial and financial partners. Plausible technical and financial characteristics of such a ``Solar-Two-type'' Mexican project are discussed in this paper.

  13. Dovetail Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Consulting; Engineeringarchitecturaldesign;Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone...

  14. Solar Energy Technologies Program Newsletter - July 2009

    SciTech Connect (OSTI)

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  15. Solar Energy Technologies Program Newsletter - September 2009

    SciTech Connect (OSTI)

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  16. Women's History Month: Ebony Vauss, Solar Energy Technologies...

    Office of Environmental Management (EM)

    Women's History Month: Ebony Vauss, Solar Energy Technologies Office Women's History Month: Ebony Vauss, Solar Energy Technologies Office March 25, 2016 - 10:03am Addthis Solar ...

  17. MAGI Solar Energy Technology Co | Open Energy Information

    Open Energy Info (EERE)

    MAGI Solar Energy Technology Co Jump to: navigation, search Name: MAGI Solar Energy Technology Co Place: Yixing, Jiangsu Province, China Zip: 214203 Sector: Solar Product: Chinese...

  18. U.S. Department of Energy Solar Energy Technologies Program ...

    Open Energy Info (EERE)

    Solar Energy Technologies Program Jump to: navigation, search Logo: U.S. Department of Energy Solar Energy Technologies Program Name U.S. Department of Energy Solar Energy...

  19. SSC HHV Solar Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    Technologies JV Place: Ontario, Canada Sector: Solar Product: Canada-based thin film solar panel manufacturing facility. References: SSC & HHV Solar Technologies JV1 This...

  20. Solar Environmental Technologies Tianjin Corp aka SETC Cenicom...

    Open Energy Info (EERE)

    Environmental Technologies Tianjin Corp aka SETC Cenicom Solar Etc Jump to: navigation, search Name: Solar & Environmental Technologies (Tianjin) Corp (aka SETC, Cenicom, Solar...

  1. China Energy Conservation Solar Energy Technologies CECS | Open...

    Open Energy Info (EERE)

    Conservation Solar Energy Technologies CECS Jump to: navigation, search Name: China Energy Conservation Solar Energy Technologies (CECS) Place: China Sector: Solar Product:...

  2. Phoenix American Rooftop Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    American Rooftop Solar Technologies Jump to: navigation, search Name: Phoenix American Rooftop Solar Technologies Place: Michigan Zip: 48168 Sector: Solar Product: Manufacturer of...

  3. Maharishi Solar Technology Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Maharishi Solar Technology Pvt Ltd Jump to: navigation, search Name: Maharishi Solar Technology Pvt Ltd Place: New Delhi, Andhra Pradesh, India Zip: 110044 Sector: Solar Product:...

  4. EERE Success Story-SolarBridge Technologies: Helping Solar Modules...

    Energy Savers [EERE]

    SolarBridge Technologies is collaborating with the University of Illinois at Urbana-Champaign to develop an innovative solution to make rooftop photovoltaic (PV) systems easier to ...

  5. DOE Releases 2010 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Wind Technologies Market Report DOE Releases 2010 Wind Technologies Market Report October 3, 2011 - 12:05pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. The Department of Energy released its 2010 Wind Technologies Market Report produced by Lawrence Berkeley National Laboratory (LBNL) in July. The report analyzes trends in capacity, manufacturing, performance, and costs. According to the report, wind power capacity grew by a healthy 15%

  6. Solar Smart Grid: 1663 Science and Technology Magazine | Los...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that gets a significant amount of power from a large solar photovoltaic (PV) array. ... Solar irradiance and wind are fluctuating sources, and their power output can drop ...

  7. The interaction of active comets with the solar wind

    SciTech Connect (OSTI)

    Neugebauer, M. )

    1990-11-01

    The interaction of the solar wind with active comets is investigated based on observations of cometary plasma processes and studies of comets using telescopes and photographic plates. Data were also collected when a spacecraft flew through the tail of Comet Giacobini-Zinner in 1985 and five spacecraft encountered Comet Halley in 1986. The solar wind is considered to be supersonic (thermal Mach number 2-10) and to carry a magnetic field twisted into an Archimedean spiral by the rotation of the sun. Since the wind can change its properties during the time a spacecraft is inside the ionosphere or magnetosphere of the body being studied, it is difficult to separate spatial from temporal effects. Photoionization results in addition of plasma to the solar wind. Between the outer and inner edges of the cometosheath, the increasing rate of ion pickup causes the flow to slow down until it stagnates, while the plasma density and the magnetic field strength increase.

  8. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  9. Technology Incubator for Wind Energy Innovations Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement | Department of Energy Technology Incubator for Wind Energy Innovations Funding Opportunity Announcement Technology Incubator for Wind Energy Innovations Funding Opportunity Announcement April 2, 2014 - 2:42pm Addthis On April 2, 2014 EERE's Wind Program announced a funding opportunity entitled "Technology Incubator for Wind Energy Innovations." This funding opportunity will fund R&D investments in technology approaches and solutions that are not currently

  10. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  11. Upcoming Funding Opportunity for Technology Incubator for Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovations | Department of Energy Technology Incubator for Wind Energy Innovations Upcoming Funding Opportunity for Technology Incubator for Wind Energy Innovations March 12, 2014 - 4:05pm Addthis On March 12, 2014 EERE's Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Technology Incubator for Wind Energy Innovations." This funding opportunity would seek to fund R&D investments in technology approaches and solutions that are not currently

  12. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  13. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technology at Florida Atlantic University, are ... Marine & Hydrokinetic Technologies WIND AND WATER POWER ... Renewable Power Company's Turbine Generator Unit, NRELPIX ...

  14. THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND DURING SOLAR MINIMUM

    SciTech Connect (OSTI)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A. E-mail: Charles.Smith@unh.edu E-mail: Joshua.Stawarz@Colorado.edu

    2012-08-01

    The recently protracted solar minimum provided years of interplanetary data that were largely absent in any association with observed large-scale transient behavior on the Sun. With large-scale shear at 1 AU generally isolated to corotating interaction regions, it is reasonable to ask whether the solar wind is significantly turbulent at this time. We perform a series of third-moment analyses using data from the Advanced Composition Explorer. We show that the solar wind at 1 AU is just as turbulent as at any other time in the solar cycle. Specifically, the turbulent cascade of energy scales in the same manner proportional to the product of wind speed and temperature. Energy cascade rates during solar minimum average a factor of 2-4 higher than during solar maximum, but we contend that this is likely the result of having a different admixture of high-latitude sources.

  15. Solar Technologies Installations Ltd | Open Energy Information

    Open Energy Info (EERE)

    Installations Ltd Jump to: navigation, search Name: Solar Technologies Installations Ltd Place: Hampshire, United Kingdom Zip: S051 OHR Sector: Renewable Energy Product: A UK-based...

  16. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  17. Recording of SERC Monitoring Technologies- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

  18. Telio Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    A CIGS start-up recently completed the construction of pilot line for manufacturing CIGS cell measuring 300 millimeters by 300. References: Telio Solar Technologies Inc1 This...

  19. Jiangsu Soudai Solar Technology | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Jiangsu Soudai Solar Technology Place: China Product: Chinese subsidiary of Japan's Soudai which will produce monocrystalline rods, grow...

  20. Weakest solar wind of the space age and the current 'MINI' solar maximum

    SciTech Connect (OSTI)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-12-10

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (?11%), temperature (?40%), thermal pressure (?55%), mass flux (?34%), momentum flux or dynamic pressure (?41%), energy flux (?48%), IMF magnitude (?31%), and radial component of the IMF (?38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ?1.4 nPa, compared to ?2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ?11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  1. NREL: Technology Deployment - Collegiate Wind Competition Prepares...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shown working on an engine atop a wind turbine with mountains and blue sky in the background. ... The Collegiate Wind Competition challenges undergraduate students to design a wind ...

  2. PROTON KINETIC EFFECTS IN VLASOV AND SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Servidio, S.; Valentini, F.; Perrone, D.; Veltri, P.; Osman, K. T.; Chapman, S.; Califano, F.; Matthaeus, W. H.

    2014-02-01

    Kinetic plasma processes are investigated in the framework of solar wind turbulence, employing hybrid Vlasov-Maxwell (HVM) simulations. Statistical analysis of spacecraft observation data relates proton temperature anisotropy T /T {sub ∥} and parallel plasma beta β{sub ∥}, where subscripts refer to the ambient magnetic field direction. Here, this relationship is recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T /T {sub ∥} and β{sub ∥}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.

  3. Simulation of period doubling of recurrent solar wind structures

    SciTech Connect (OSTI)

    Whang, Y.C. ); Burlaga, L.F. )

    1990-12-01

    In 1974, IMP, Pioneer 11 and Pioneer 10 observed a recurrent solar wind structure over five consecutive solar rotations at three different trajectories between 1 and 6 AU. Using MHD simulations and input functions generated from plasma and magnetic field data observed from Pioneer 11. The authors study the continuing evolution of this solar wind structure between 5 and 20 AU. This simulation uses the shock interactions model which treats MHD shocks as discontinuity surfaces with zero thickness and which uses the exact Rankine-Hugoniot relations to describe the jump conditions. The model can calculate the collision and merging of shocks and the dynamical evolution of the solar wind in the outer heliosphere. The simulation result shows that between 5 and 10 AU there is an evolution from two corotating interaction regions per solar rotation to one merged interaction region (MIR) per solar rotation near 10 AU, i.e., period doubling has occurred. Each MIR was bounded by a forward and a reverse shock and additional weaker shocks may exist inside the MIR. Between 10 and 20 AU the structure of one MIR per solar rotation appears as a very persistent structure.

  4. Solar and Wind Energy Credit (Personal)

    Broader source: Energy.gov [DOE]

    Originally enacted in 1976, the Hawaii Energy Tax Credits allow individuals or corporations to claim an income tax credit of 20% of the cost of equipment and installation of a wind system and 35%...

  5. Solar and Wind Energy Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Originally enacted in 1976, the Hawaii Energy Tax Credits allow individuals or corporations to claim an income tax credit of 20% of the cost of equipment and installation of a wind system and 35%...

  6. The turbulent cascade and proton heating in the solar wind during solar minimum

    SciTech Connect (OSTI)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-06-13

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  7. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  8. DOE Releases 2011 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Wind Technologies Market Report DOE Releases 2011 Wind Technologies Market Report October 1, 2012 - 11:27am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. According to the 2011 Wind Technologies Market Report released by the U.S. Department of Energy (DOE) in August, the United States remained one of the fastest-growing wind power markets in the world in 2011-second only to China. Roughly 6,800 megawatts (MW) of new wind power capacity

  9. NREL Hosts Free Workshops on Solar and Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops on Solar and Wind Energy For more information contact: e:mail: Public Affairs Golden, Colo., Dec. 15, 1999 - Engineers from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) next month will host three workshops on "Solar and Wind Power for Farms and Ranches" at the National Western Stock Show in Denver. The workshops will feature hands-on displays of clean, renewable energy systems that farmers and ranchers can use today. The consumer-oriented

  10. Understanding of solar wind structure might be wrong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar wind structure misunderstood Understanding of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a river-like stream. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  11. CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS

    SciTech Connect (OSTI)

    Pulupa, M. P.; Salem, C.; Phan, T. D.; Bale, S. D.; Gosling, J. T.

    2014-08-10

    We present observational evidence of core electron heating in solar wind reconnection exhausts. We show two example events, one which shows clear heating of the core electrons within the exhaust, and one which demonstrates no heating. The event with heating occurred during a period of high inflow Alfvn speed (V {sub AL}), while the event with no heating had a low V {sub AL}. This agrees with the results of a recent study of magnetopause exhausts, and suggests that similar core electron heating can occur in both symmetric (solar wind) and asymmetric (magnetopause) exhausts.

  12. CHARACTERIZATION OF TRANSITIONS IN THE SOLAR WIND PARAMETERS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-02-20

    The distinction between fast and slow solar wind streams and the dynamically evolved interaction regions is reflected in the characteristic fluctuations of both the solar wind and the embedded magnetic field. High-resolution magnetic field data from the Ulysses spacecraft have been analyzed. The observations show rapid variations in the magnetic field components and in the magnetic field strength, suggesting a structured nature of the solar wind at small scales. The typical sizes of fluctuations cover a broad range. If translated to the solar surface, the scales span from the size of granules ({approx}10{sup 3} km) and supergranules ({approx}10{sup 4} km) on the Sun down to {approx}10{sup 2} km and less. The properties of the short time structures change in the different types of solar wind. While fluctuations in fast streams are more homogeneous, slow streams present a bursty behavior in the magnetic field variances, and the regions of transition are characterized by high levels of power in narrow structures around the transitions. The probability density functions of the magnetic field increments at several scales reveal a higher level of intermittency in the mixed streams, which is related to the presence of well localized features. It is concluded that, apart from the differences in the nature of fluctuations in flows of different coronal origin, there is a small-scale structuring that depends on the origin of streams themselves but it is also related to a bursty generation of the fluctuations.

  13. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Did you know that the amount of sunlight that strikes the earth's surface in an hour and a half is enough to handle the entire world's energy consumption for a full year? Solar energy has amazing potential to power our daily lives thanks to constantly-improving technologies. Solar energy systems come in all shapes and sizes. Residential systems are found on rooftops across the

  14. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. This second round of SolarMat, announced on October 22, 2014, funds nine photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost

  15. NREL: Solar and Wind Could Provide up to 30% of Electricity on...

    Energy Savers [EERE]

    NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern Power Grid NREL: Solar and Wind Could Provide up to 30% of Electricity on Eastern Power Grid September 1, ...

  16. U.S. Virgin Islands- Solar and Wind Easements & Rights Laws

    Broader source: Energy.gov [DOE]

    In the U.S. Virgin Islands, the owner of a solar or wind-energy system is permitted to negotiate for assurance of continued access to the system’s energy source. "Solar or wind-energy system" is...

  17. 2014 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report 2014 Wind Technologies Market Report A photo of the cover of the 2014 Wind Technologies Market Report. According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of

  18. Exploratory Research for New Solar Electric Technologies

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2005-01-01

    We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

  19. Office of Wind and Hydropower Technologies Wind Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blank Wind and Water Power Program 2010 Peer Review Report October 2010 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program ...

  20. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director Steve Smiley, Principle Investigator Grand Traverse Resort, Cost Sharing Partner

    2008-12-31

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  1. Do You Wonder How Much Energy Your Home Could Get from Solar or Wind?

    Broader source: Energy.gov [DOE]

    Have you ever thought about installing wind or solar energy on your property? Learn more about it in this post.

  2. Western Wind and Solar Integration Study: Executive Summary, (WWSIS) May 2010

    SciTech Connect (OSTI)

    R. Piwko; K. Clark; L. Freeman; G. Jordan; N. Miller

    2010-05-01

    This report provides a summary of background, approach, and findings of the Western Wind and Solar Integration Study (WWSIS).

  3. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  4. SolarEdge Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: SolarEdge Technologies Inc Place: Hod Hasharon, Israel Zip: 45240 Sector: Solar Product: Israel-based startup developing a power control system for solar systems,...

  5. Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc...

    Open Energy Info (EERE)

    Developing PV encapsulates, next generation solar cells, solar power storage, and LED lightings. References: Sunovia Energy Technologies Inc (formerly Sun Energy Solar...

  6. Rising Solar Energy Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Place: Qinhuangdao, Hebei Province, China Zip: 66600 Sector: Solar Product: Chinese solar module laminator manufacturer...

  7. Property Tax Exemption for Solar and Wind Energy Systems

    Broader source: Energy.gov [DOE]

    In May 2009 the exemption was amended yet again by H.B. 1171 to add "residential wind energy equipment" as an eligible technology. In order to qualify, equipment must be sited on residential...

  8. The genesis solar-wind sample return mission

    SciTech Connect (OSTI)

    Wiens, Roger C

    2009-01-01

    The compositions of the Earth's crust and mantle, and those of the Moon and Mars, are relatively well known both isotopically and elementally. The same is true of our knowledge of the asteroid belt composition, based on meteorite analyses. Remote measurements of Venus, the Jovian atmosphere, and the outer planet moons, have provided some estimates of their compositions. The Sun constitutes a large majority, > 99%, of all the matter in the solar system. The elemental composition of the photosphere, the visible 'surface' of the Sun, is constrained by absorption lines produced by particles above the surface. Abundances for many elements are reported to the {+-}10 or 20% accuracy level. However, the abundances of other important elements, such as neon, cannot be determined in this way due to a relative lack of atomic states at low excitation energies. Additionally and most importantly, the isotopic composition of the Sun cannot be determined astronomically except for a few species which form molecules above sunspots, and estimates derived from these sources lack the accuracy desired for comparison with meteoritic and planetary surface samples measured on the Earth. The solar wind spreads a sample of solar particles throughout the heliosphere, though the sample is very rarified: collecting a nanogram of oxygen, the third most abundant element, in a square centimeter cross section at the Earth's distance from the Sun takes five years. Nevertheless, foil collectors exposed to the solar wind for periods of hours on the surface of the Moon during the Apollo missions were used to determine the helium and neon solar-wind compositions sufficiently to show that the Earth's atmospheric neon was significantly evolved relative to the Sun. Spacecraft instruments developed subsequently have provided many insights into the composition of the solar wind, mostly in terms of elemental composition. These instruments have the advantage of observing a number of parameters simultaneously

  9. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect (OSTI)

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  10. Western Wind and Solar Integration Study: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  11. Solar Energy Technologies FY'14 Budget At-a-Glance

    Broader source: Energy.gov (indexed) [DOE]

    SOLAR ENERGY TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Solar Energy Technologies supports the SunShot goal to make solar energy technologies cost-competitive with conventional energy ...

  12. Solar Energy Technologies Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY TECHNOLOGIES OFFICE SOLAR ENERGY TECHNOLOGIES OFFICE FY 2017 BUDGET AT-A-GLANCE The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar ...

  13. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized bymore » two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  14. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Technology In this section, you can select a concentrating solar power (CSP) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Parabolic Trough Systems-line-focus systems that use curved mirrors to focus sunlight on a receiver Linear Fresnel Reflector Systems-line-focus systems that use

  15. Shenzhen Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd...

    Open Energy Info (EERE)

    Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd Jump to: navigation, search Name: Shenzhen Xintian Solar Technology Co Ltd (Sun Tech Solar Co Ltd) Place: Shenzhen, Guangdong...

  16. Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technology Development cover photo is courtesy of the National Renewable Energy Laboratory (Michael J. Okoniewski). Maple Ridge Wind Farm. http://images.nrel.gov/viewphoto.php?imageId=6327868 Wind Market Acceleration & Deployment photo is courtesy of the National Renewable Energy Laboratory (Dennis Schroeder). Visitors get an opportunity to go inside the 2.75 GE drive train connected to the new dynamometer at Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC) as

  17. Surface Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Surface Power Technologies Place: Ireland Sector: Solar, Wind energy Product: An Irish company supplying solar and micro-wind energy systems and...

  18. Electron distributions and solar wind interaction with nonmagnetic planets

    SciTech Connect (OSTI)

    Lu Gan.

    1991-01-01

    A two-stream transport model for suprathermal electrons and a time-dependent energy equation for thermal electrons were used to find the electron distributions at the solar wind-planetary atmosphere boundary regions of comet Halley, Venus, and Titan. Results provided a clearer understanding of the electron distributions in these regions, and of the collisional processes that contribute to the energy dissipation and energy budget among atmospheric species. Application of the model equations to the inner coma of comet Halley has demonstrated the existence of a sharp transition boundary, called the thermal electron collisionopause. Application to Venus' dayside upper ionosphere and the mantle region has given suprathermal electron distributions as functions of altitude, solar zenith angle, and solar wind boundary conditions. Application to the interaction region between Saturn's magnetosphere and Titan's ionosphere leads to the conclusion that air-glow emission due to photoelectron impact is a much more important process than that produced by magnetospheric electron interactions.

  19. Hareon Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hareon Solar Technology Co Ltd Jump to: navigation, search Name: Hareon Solar Technology Co Ltd Place: Jiangyin, Jiangsu Province, China Zip: 214407 Product: A partially integrated...

  20. Beijing Sunda Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunda Solar Energy Technology Co Ltd Jump to: navigation, search Name: Beijing Sunda Solar Energy Technology Co Ltd Place: Beijing, Beijing Municipality, China Zip: 100083 Sector:...

  1. Dongguan Yecool Solar Energy Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongguan Yecool Solar Energy Technology Co Ltd Jump to: navigation, search Name: Dongguan Yecool Solar Energy Technology Co Ltd Place: Dongguan, Guangdong Province, China Zip:...

  2. Sunworld Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunworld Solar Energy Technology Co Ltd Jump to: navigation, search Name: Sunworld Solar Energy Technology Co Ltd Place: Shanghai, Shanghai Municipality, China Zip: RM1501 Sector:...

  3. Ningxia Ninghu Solar Energy Technology Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Ninghu Solar Energy Technology Co Ltd Jump to: navigation, search Name: Ningxia Ninghu Solar Energy Technology Co Ltd Place: Shi Zui Shan, Ningxia Autonomous Region, China Zip:...

  4. Jiangxi Risun Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Risun Solar Energy Technology Co Ltd Jump to: navigation, search Name: Jiangxi Risun Solar Energy Technology Co Ltd Place: Xinyu, Jiangxi Province, China Zip: 338000 Product: A PV...

  5. Regional Test Centers for Solar Technologies | Department of...

    Energy Savers [EERE]

    Systems Integration Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Text Alternative At the Regional Test Centers (RTCs) throughout the ...

  6. Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Beijing Four Seasons Solar Power Technology Co Ltd Jump to: navigation, search Name: Beijing Four Seasons Solar Power Technology Co Ltd Place: Beijing, Beijing Municipality, China...

  7. 2008 Solar Technologies Market Report | Open Energy Information

    Open Energy Info (EERE)

    08 Solar Technologies Market Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2008 Solar Technologies Market Report AgencyCompany Organization: United States...

  8. Assessment of Parabolic Trough and Power Tower Solar Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  9. Lien Ze day Solar Hunan Science and Technology | Open Energy...

    Open Energy Info (EERE)

    day Solar Hunan Science and Technology Jump to: navigation, search Name: Lien Ze-day Solar Hunan Science and Technology Place: Xiangtan, Hunan Province, China Product: PV cell...

  10. Sichuan Apollo Solar Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sichuan Apollo Solar Science Technology Co Ltd Jump to: navigation, search Name: Sichuan Apollo Solar Science & Technology Co Ltd Place: Chengdu, Sichuan Province, China Zip:...

  11. Shanghai Chaori Solar Energy Science Technology Development Co...

    Open Energy Info (EERE)

    Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name: Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place: Shanghai,...

  12. Zhangzhou Guolv Solar Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhangzhou Guolv Solar Science and Technology Co Ltd Jump to: navigation, search Name: Zhangzhou Guolv Solar Science and Technology Co Ltd Place: Fujian Province, China Zip: 363600...

  13. Wuxi Erquan Solar Energy Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Erquan Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Wuxi Erquan Solar Energy Science& Technology Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214128...

  14. Qinhuangdao Rising Solar Energy Science and Technology Co Ltd...

    Open Energy Info (EERE)

    Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Rising Solar Energy Science and Technology Co., Ltd Place: Qinhuadao, Hebei...

  15. Wuxi Shangpin Solar Energy Science Technology Co | Open Energy...

    Open Energy Info (EERE)

    Shangpin Solar Energy Science Technology Co Jump to: navigation, search Name: Wuxi Shangpin Solar Energy Science & Technology Co Place: Wuxi, Jiangsu Province, China Product:...

  16. Shanshan Ulica Solar Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name: Shanshan Ulica Solar Energy Science&Technology Co Ltd Place: Shanghai, Shanghai Municipality, China...

  17. Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar |...

    Open Energy Info (EERE)

    Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name: Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place: Shanghai Municipality,...

  18. Jiangsu Jiasheng Photovoltaic Technology Co Ltd aka JS Solar...

    Open Energy Info (EERE)

    Jiasheng Photovoltaic Technology Co Ltd aka JS Solar Ltd Jump to: navigation, search Name: Jiangsu Jiasheng Photovoltaic Technology Co Ltd (aka JS Solar Ltd) Place: Jiangsu...

  19. Jiangsu Huilun Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huilun Solar Technology Co Ltd Jump to: navigation, search Name: Jiangsu Huilun Solar Technology Co Ltd Place: Nanjing, Jiangsu Province, China Product: PV cell maker. Coordinates:...

  20. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  1. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology...

  2. NREL: Energy Analysis - Wind Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Operational Impact Analysis The wind program will address the variable, normally uncontrollable nature of wind power plant output, and the additional needs that its operation ...

  3. Wind Power Technologies Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGIES WIND POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation's electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80%

  4. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  5. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer April 7, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  6. Hybrid Solar-Wind Generates Savings for South Dakota City | Department...

    Broader source: Energy.gov (indexed) [DOE]

    An array of six solar panels, similar to the ones shown, will be installed at Colton, ... one small-scale solar and two solar-wind hybrid systems, and conducting energy retrofits. ...

  7. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  8. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  9. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND: ADVANCED TECHNOLOGY DEMONSTRATION PROJECTS + + + + + PUBLIC MEETING + + ... we are here 19 today to discuss our demonstration program, 20 which is the last and very ...

  10. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National...

    Office of Environmental Management (EM)

    For more information, visit: water.energy.gov DOEEE-1166 * January 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys: A Knowledge ...

  11. Technology Incubator for Wind Energy Innovations Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    This funding opportunity will fund R&D investments in technology approaches and solutions that are not currently represented in the Wind Program's existing project portfolio. As an ...

  12. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  13. Small solar wind transients: Stereo-A observations in 2009

    SciTech Connect (OSTI)

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Popecki, M. A.; Lugaz, N.; Kilpua, E. K. J.; Moestl, C.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-13

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s{sup -1}) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By 'small' we mean a duration from {approx}1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfven Mach number. We find 45 examples. The STs have an average duration of {approx}4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton {beta}= 0.18; (iii) proton thermal speed = 20.8 km s{sup -1}; and (iv) Alfven Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  14. Progress in thin film solar photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. )

    1991-01-01

    This paper focuses on the rapid recent advances made by thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, and cadmium telluride. It also indicates the several advantages of thin films. Various consumer products and power applications using thin film solar cells are also discussed. The increasing interest among the utilities for PV system applications is also elucidated.

  15. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  16. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  17. NREL: Technology Deployment - National Collegiate Wind Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Collegiate Wind Competition The National Collegiate Wind Competition, managed by NREL for the U.S. Department of Energy (DOE), is a forum for undergraduate college students of multiple disciplines to investigate innovative wind energy concepts; gain experience designing, building, and testing a wind turbine to perform according to a customized market data-derived business plan; and increase their knowledge of wind industry barriers. Successful teams will gain and then demonstrate

  18. Testimonials - Partnerships in Solar Technologies - SRI International |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solar Technologies - SRI International Testimonials - Partnerships in Solar Technologies - SRI International Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Curtis Carlson, Vice Chairman for Innovation, SRI International" and footage of a man. Curtis Carlson: Innovation is everything today. We're in the, I call it, the

  19. Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

  20. Concentrating Solar Power Tower Technology

    Broader source: Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  1. Solar Green Technology S p A SGT | Open Energy Information

    Open Energy Info (EERE)

    Green Technology S p A SGT Jump to: navigation, search Name: Solar Green Technology S.p.A. (SGT) Place: Italy Sector: Solar Product: Italy-based solar system integrator....

  2. Counterstreaming solar wind halo electron events on open field lines

    SciTech Connect (OSTI)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.

    1991-01-01

    Counterstreaming solar wind halo electron events have been identified as a common 1 AU signature of coronal mass ejection events, and have generally been interpreted as indicative of closed magnetic field topologies, i.e., magnetic loops or flux ropes rooted at both ends in the Sun, or detached plasmoids. In this paper we examine the possibility that these events may instead occur preferentially on open field lines, and that counterstreaming results from reflection or injection behind interplanetary shocks or from mirroring from regions of compressed magnetic field farther out in the heliosphere. We conclude the neither of these suggested sources of counterstreaming electron beams is viable and that the best interpretation of observed counterstreaming electron events in the solar wind remains that of passage of closed field structures. 4 refs., 4 figs.

  3. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Wind Turbine Technology Summary Slides Anatomy of a 1.5-MW wind turbine Nacelle enclosing: * Low-speed shaft * Gearbox * Generator, 1.5 MW * Electrical controls * Blade pitch controls Rotor Hub Tower, 80 m Minivan Rotor blades: * Shown feathered * Length, 37-m Larger and taller turbines are needed to capture optimal wind resources Wind power is competitive with wholesale prices Source: Wiser and Bolinger, 2009 Note: Wholesale price range reflects flat block of power across 23 pricing

  4. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  5. Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Petascale Simulations of Inhomogeneous Alfven Turbulence in the Solar Wind PI Name: Jean C Perez PI Email: jeanc.perez@unh.edu Institution: University of New Hampshire Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Physics This project's large-scale numerical simulations of Alfvén wave (AW) turbulence in the outermost atmosphere of the sun will lead to new insights into the basic properties of inhomogeneous

  6. NREL's National Wind Technology Center Director Named ASME Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Director Named ASME Fellow For more information contact: Terry Monrad, (303) 275-4096 Golden, Colo., January 25, 1996 -- Dr. Robert W. Thresher, director of the National Wind Technology Center (NWTC), will receive the grade of Fellow from the American Society of Mechanical Engineers (ASME) in ceremonies Jan. 29, 1996, in Houston, Texas. The NWTC, part of the Department of Energy's National Renewable Energy Laboratory (NREL), conducts research on advanced wind

  7. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  8. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. Conventional Hydropower Technologies (511.99 KB) More Documents & Publications Water Power for a Clean Energy

  9. Compressional instability in the solar wind driven by wave dissipation

    SciTech Connect (OSTI)

    Dougherty, M.K. ); McKenzie, J.F. )

    1991-01-01

    In this paper, the authors examine the stability of a steady solar wind dissipatively heated by Alfven waves whose relative amplitude is saturated at a given level by nonlinear processes. It is shown that long-wavelength compressional modes can be driven unstable by dissipative heating arising from short-wavelength saturated Alfven waves. Analytic expressions are derived for the marginal stability condition and the growth rates in the unstable region for the case of a moderate to low {beta} plasma. These are supplemented by a numerical solution of the full MHD dispersion equation, including dissipative Alfvenic effects, which confirms the approximate analysis. It is shown that the growth time of the instability can be of the order of 7 times the characteristic period of an Alfven wave for a wide range of parameters appropriate to the solar wind. The implication is that the compressional instability driven by dissipative Alfven waves could play a significant role in the large-scale heating and dynamics of the solar wind, particularly in the supersonic region.

  10. Applications of Solar Technology for Catastrophe Response,

    SciTech Connect (OSTI)

    A. Deering; J.P. Thornton.

    1999-02-17

    This report presents the issues of solar technology as it relates to preparing for and recovering from disasters, including suggestions on how to collaborate with the utility industry and how to develop educational programs for businesses and consumers. The document emphasizes pre-disaster planning and mitigation alternatives and discusses how energy efficiency and renewable technologies can contribute to reducing insurance losses.

  11. Building Design Guidelines for Solar Energy Technologies

    DOE R&D Accomplishments [OSTI]

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  12. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, recently acquired a significant piece of testing equipment needed to offer its industry partners a full state-of-the-art suite of wind turbine blade certification tests.

  13. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A prototype heliostat which could take solar technology a step into the future is being tested at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). It was developed by Science Applications International Corporations (SAIC) Golden office. The heliostat is a large tracking mirror for use in solar thermal power plants. SAIC's prototype heliostat incorporates a number of design and manufacturing modifications that could lead to significant cost reductions. The major

  14. Progress in thin film solar photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.

    1989-12-01

    This paper focuses on the rapid recent advances made by thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, and cadmium telluride. It also indicates the several advantages of thin films. Various consumer products and power applications using thin film solar cells are also discussed. The increasing interest among the utilities for PV system applications is also elucidated. 29 refs., 8 figs., 3 tabs.

  15. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments [OSTI]

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  16. Solar Technology Acceleration Center is Powering Up - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Acceleration Center is Powering Up October 21, 2009 Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to the point where members can now break ground for their planned solar technology

  17. 2008 Solar Technologies Market Report: January 2010

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

  18. Solar Technologies for Native America

    Energy Savers [EERE]

    Technologies for Native America November 20, 2003 Sandra Begay-Campbell Principal Member ... effort Contact Information Sandra Begay-Campbell Sandia National Laboratories (505) ...

  19. Wind Energy Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (i.e. coatings that repel water extremely efficiently), ... force loads with atmospheric wind conditions and ... electric motors (and generators) to control future costs. ...

  20. Using Solar Business Models to Expand the Distributed Wind Market (Presentation)

    SciTech Connect (OSTI)

    Savage, S.

    2013-05-01

    This presentation to attendees at Wind Powering America's All-States Summit in Chicago describes business models that were responsible for rapid growth in the solar industry and that may be applicable to the distributed wind industry as well.

  1. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  2. Geek-Up[3.25.2011]: Idaho Wind and Chlorosome-Inspired Solar...

    Energy Savers [EERE]

    Idaho Wind and Chlorosome-Inspired Solar Geek-Up3.25.2011: Idaho Wind and ... In the continental United States, around 500 power companies operate a massive, complex ...

  3. CEEG Shanghai Solar Science Technology | Open Energy Information

    Open Energy Info (EERE)

    integrates services including the research, development, production, sales of polysilicon solar panel References: CEEG (Shanghai) Solar Science & Technology1 This article is a...

  4. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  5. Trony Solar Corporation formerly Shenzhen Trony Science Technology...

    Open Energy Info (EERE)

    Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name: Trony Solar Corporation (formerly Shenzhen Trony Science &...

  6. NREL-Solar Technologies Market Report | Open Energy Information

    Open Energy Info (EERE)

    is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1...

  7. Breakthrough Cutting Technology Promises to Reduce Solar Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Silicon Genesis advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

  8. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  9. Solar and Wind Easements, Local Options, and Severability | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  10. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  11. TWISTED MAGNETIC FLUX TUBES IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito; Bruno, Roberto

    2014-03-01

    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted due to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through the observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of the isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70°, but the angle can further decrease due to the motion of the tube with respect to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably cannot reach 1 AU.

  12. New Battery Design Could Help Solar and Wind Power the Grid ...

    Broader source: Energy.gov (indexed) [DOE]

    New Battery Design Could Help Solar and Wind Power the Grid Argonne scientists Ira Bloom (front) and Javier Bareo prepare a sample of battery materials for Raman spectroscopy, ...

  13. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION...

    Office of Scientific and Technical Information (OSTI)

    corona and can be preserved as the solar wind escapes to space along open field lines. ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  14. The AMPTE program's contribution to studies of the solar wind-magnetosphere-ionosphere interaction

    SciTech Connect (OSTI)

    Sibeck, D.G. )

    1990-12-01

    The Active Magnetospheric Particle Tracer Explorers (AMPTE) program provided important information on the behavior of clouds of plasma artificially injected into the solar wind and the earth's magnetosphere. Now that the releases are over, data from the satellites are being analyzed to investigate the processes by which the ambient solar wind mass, momentum, and energy are transferred to the magnetosphere. Work in progress at APL indicates that the solar wind is much more inhomogeneous than previously believed, that the solar wind constantly buffets the magnetosphere, and that ground observers may remotely sense these interactions as geomagnetic pulsations. 8 refs.

  15. Ener-Gee Whiz Answers Your Questions: Wind vs. Solar | Department of Energy

    Energy Savers [EERE]

    Wind vs. Solar Ener-Gee Whiz Answers Your Questions: Wind vs. Solar August 11, 2009 - 12:48pm Addthis Amy Foster Parish Costa writes: Do you think using wind is better than using solar to generate electricity? Ener-Gee Whiz: If you're considering installing a renewable energy system and are having a hard time deciding between the wind turbines and solar panels, you might find that the right renewable energy system for you depends on a number of factors. The first and most obvious consideration

  16. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  17. Solar and Wind Resource Assessments for Afghanistan and Pakistan

    SciTech Connect (OSTI)

    Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

    2007-01-01

    The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

  18. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    SciTech Connect (OSTI)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.; Subramanian, P.; Ananthakrishnan, S.; Tokumaru, M.; Fujiki, K. E-mail: jerry@prl.res.in E-mail: p.subramanian@iiserpune.ac.in E-mail: tokumaru@stelab.nagoya-u.ac.jp

    2014-11-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ? {sub N} ? ?N/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ? {sub N} in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ?N have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advanced Composition Explorer. Our analysis reveals that 0.001 ? ? {sub N} ? 0.02 and does not vary appreciably with heliocentric distance. We also find that ? {sub N} declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.

  19. DOE Solar Energy Technologies Program: Overview and Highlights

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  20. Energizing American Competitiveness in Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session. Entitled "Energizing American Competitiveness in Solar Technologies," this presentation explains why grand challenges are needed and summarizes the goals of the SunShot program. It also identifies manufacturing as playing a key role in the attainment of a clean energy vision.

  1. Building design guidelines for solar energy technologies

    SciTech Connect (OSTI)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  2. SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L. E-mail: kandu@iucaa.ernet.in E-mail: melvyn.l.goldstein@nasa.gov

    2011-06-10

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k {approx} 2 AU{sup -1} (or frequency {nu} {approx} 2 {mu}Hz) at distances below 2.8 AU and at k {approx} 30 AU{sup -1} (or {nu} {approx} 25 {mu}Hz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10{sup 45} Mx{sup 2} cycle{sup -1} at large scales and to a three times lower value at smaller scales.

  3. Live Webcast on Recent Wind Energy Technology Advances

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “Recent Wind Technology Advances” on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  4. Wind Turbine Inspection Technology Reaches New Heights | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Inspection Technology Reaches New Heights Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  5. Strategies to Mitigate Declines in the Economic Value of Wind and Solar at High Penetration in California

    Broader source: Energy.gov [DOE]

    This resource evaluates several options to reduce and eliminate the decline in the value of wind and solar PV technology, as a previous study had quantified the decline as penetration levels increased. Researchers found that largest increase in the value of PV at high penetration levels comes from assuming that low-cost bulk power storage is an investment option. Other attractive options, particularly at more modest penetration levels, include real-time pricing and technology diversity.

  6. Visualizing Value: Game-Changing Solar Technologies for Homeowners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Visualizing Value: Game-Changing Solar Technologies for Homeowners Visualizing Value: Game-Changing Solar Technologies for Homeowners July 29, 2016 - 10:00am Addthis Sistine Solar’s completed SolarSkin installation on a Katahdin log cabin. The company’s SolarSkin panels seamlessly blend in with the cabin’s green roof. | Photo Courtesy of Sistine Solar Sistine Solar's completed SolarSkin installation on a Katahdin log cabin. The company's SolarSkin panels

  7. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect (OSTI)

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  8. 2014-2015 Offshore Wind Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2014-2015 Offshore Wind Technologies Market Report 2014-2015 Offshore Wind Technologies Market Report Aaron Smith, Tyler Stehly, and Walter Musial National Renewable Energy Laboratory Prepared under Task No. WE14.CG02 Link to Data Tables NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy,

  9. EERE Wind and Hydropower Technologies Program Technology Review (Deep Dive) for Under Secretaries Johnson and Koonin

    SciTech Connect (OSTI)

    McCluer, Megan

    2009-09-04

    September 4, 2009 presentation highlighting the Wind and Hydropower Program, addressing program goals and objectives, budgets, technology pathways, breakthroughs, and DOE solutions to market barriers.

  10. EERE Wind and Hydropower Technologies Program Technology Review (Deep Dive) for Under Secretaries Johnson and Koonin

    SciTech Connect (OSTI)

    2009-09-01

    September 4, 2009 presentation highlighting the Wind and Hydropower Program, addressing program goals and objectives, budgets, technology pathways, breakthroughs, and DOE solutions to market barriers.

  11. Energy Secretary Announces $13 Million to Expand Solar Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 3 Million to Expand Solar Energy Technologies Energy Secretary Announces $13 Million to Expand Solar Energy Technologies October 12, 2006 - 9:08am Addthis ST. LOUIS, MO - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced more than $13 million to fund new research in solar technologies. This funding, part of President Bush's $148 million Solar America Initiative, will support the development of more efficient solar panels, known as photovoltaic

  12. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012_distributed_wind_technologies_data.xls (129.5 KB) More Documents & Publications 2014 Distributed Wind Market Report 2013 Distributed Wind Market Report Data 2012 Market Report on U.S. Wind Technologies in Distributed Applications

  13. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  14. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  15. Predicted impacts of proton temperature anisotropy on solar wind turbulence

    SciTech Connect (OSTI)

    Klein, K. G.; Howes, G. G.

    2015-03-15

    Particle velocity distributions measured in the weakly collisional solar wind are frequently found to be non-Maxwellian, but how these non-Maxwellian distributions impact the physics of plasma turbulence in the solar wind remains unanswered. Using numerical solutions of the linear dispersion relation for a collisionless plasma with a bi-Maxwellian proton velocity distribution, we present a unified framework for the four proton temperature anisotropy instabilities, identifying the associated stable eigenmodes, highlighting the unstable region of wavevector space and presenting the properties of the growing eigenfunctions. Based on physical intuition gained from this framework, we address how the proton temperature anisotropy impacts the nonlinear dynamics of the Alfvénic fluctuations underlying the dominant cascade of energy from large to small scales and how the fluctuations driven by proton temperature anisotropy instabilities interact nonlinearly with each other and with the fluctuations of the large-scale cascade. We find that the nonlinear dynamics of the large-scale cascade is insensitive to the proton temperature anisotropy and that the instability-driven fluctuations are unlikely to cause significant nonlinear evolution of either the instability-driven fluctuations or the turbulent fluctuations of the large-scale cascade.

  16. Pathways to Solar Hydrogen Technologies Leiden, The Netherlands...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathways to Solar Hydrogen Technologies Leiden, The Netherlands) Pathways to Solar Hydrogen Technologies Leiden, The Netherlands) Mon, Jun 13, 2016 11:30am 11:30 Fri, Jun 17, 2016 ...

  17. Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2013-10-01

    This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

  18. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; et al

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  19. Energy Secretary Announces $170 Million Solicitation for Solar Energy Technologies

    Broader source: Energy.gov [DOE]

    Key Element of the Advanced Energy Initiative, seeks to make solar technology cost-competitive by 2015

  20. Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  1. Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

  2. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  3. The solar wind neon abundance observed with ACE/SWICS and ULYSSES/SWICS

    SciTech Connect (OSTI)

    Shearer, Paul; Raines, Jim M.; Lepri, Susan T.; Thomas, Jonathan W.; Gilbert, Jason A.; Landi, Enrico; Zurbuchen, Thomas H.; Von Steiger, Rudolf

    2014-07-01

    Using in situ ion spectrometry data from ACE/SWICS, we determine the solar wind Ne/O elemental abundance ratio and examine its dependence on wind speed and evolution with the solar cycle. We find that Ne/O is inversely correlated with wind speed, is nearly constant in the fast wind, and correlates strongly with solar activity in the slow wind. In fast wind streams with speeds above 600 km s{sup 1}, we find Ne/O = 0.10 0.02, in good agreement with the extensive polar observations by Ulysses/SWICS. In slow wind streams with speeds below 400 km s{sup 1}, Ne/O ranges from a low of 0.12 0.02 at solar maximum to a high of 0.17 0.03 at solar minimum. These measurements place new and significant empirical constraints on the fractionation mechanisms governing solar wind composition and have implications for the coronal and photospheric abundances of neon and oxygen. The results are made possible by a new data analysis method that robustly identifies rare elements in the measured ion spectra. The method is also applied to Ulysses/SWICS data, which confirms the ACE observations and extends our view of solar wind neon into the three-dimensional heliosphere.

  4. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  5. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology...

    Open Energy Info (EERE)

    China Zip: 271000 Sector: Solar Product: Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References:...

  6. SolarMax Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Technology Inc Jump to: navigation, search Name: SolarMax Technology Inc Place: City of Industry, California Zip: 91745 Product: PV module maker and residential and commercial PV...

  7. Bosch Solar Sustainable Energy Technologies JV | Open Energy...

    Open Energy Info (EERE)

    Sustainable Energy Technologies JV Jump to: navigation, search Name: Bosch Solar & Sustainable Energy Technologies JV Place: Ontario, Canada Product: Canada-based JV to distribute...

  8. Shandong Sunvim Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Ltd Place: Shandong Province, China Product: Chinese manufacturer of CIGS thin film PV project. References: Shandong Sunvim Solar Technology Co Ltd1 This article...

  9. Jinzhou Prime Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Technology Co Ltd Jump to: navigation, search Name: Jinzhou Prime Solar PV Technology Co Ltd Place: China Product: The company produces pv cell and develops pv project....

  10. Beijing Zhonglian Solar Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Ltd Place: Beijing, Beijing Municipality, China Zip: 102211 Product: A Chinese partially integrated PV manufacturer. References: Beijing Zhonglian Solar Technology...

  11. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  12. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  13. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  14. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  15. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    SciTech Connect (OSTI)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  16. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect (OSTI)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  17. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  18. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  19. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U

  20. NREL: Technology Deployment - Solar Deployment and Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with

  1. Quadrennial Technology Review 2015: Technology Assessments--Wind...

    Office of Scientific and Technical Information (OSTI)

    than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The...

  2. RECONNECTION OUTFLOW GENERATED TURBULENCE IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Vrs, Z.; Sasunov, Y. L.; Zaqarashvili, T. V.; Khodachenko, M.; Semenov, V. S.; Bruno, R.

    2014-12-10

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the generation of local turbulence in the solar wind. Comparing TDR/QSR model predictions of the outflow structures with actual measurements shows that both models can explain the data equally well. It is demonstrated that the outflows can often generate more or less spatially extended turbulent boundary layers. The structure of a unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and spectral break locations shows that reconnection can change the local field and plasma conditions which may support different local turbulent dissipation mechanisms at their characteristic wavenumbers.

  3. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  4. 2014–2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  5. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect (OSTI)

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-12-10

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  6. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  7. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  8. 2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Technology Transfer March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Accelerate Technology Transfer Development of On-Site Conical Spiral Welders for Large Turbine Towers-Eric Smith, Keystone Tower Systems, Inc. High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems-Stuart Nemster, Compact Membrane Systems Advanced Manufacturing Initiative-Daniel Laird, Sandia National Laboratories Manufacturing and Supply Chain R&D,

  9. Solar/Wind Contractor Licensing | Open Energy Information

    Open Energy Info (EERE)

    Licensing Louisiana InstallerContractor Photovoltaics Solar Water Heat Yes Tennessee Solar Panel Installation Specialty and Solar Thermal-Geothermal Licensing (Tennessee)...

  10. Windway Technologies Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Windway Technologies Energy Purchaser AlliantIES Utilities Location Joice IA Coordinates 43.3629, -93.4559 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  12. Ascent Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Ascent Solar develops and plans to manufacture CIGS thin-film solar cells and modules for the satellite and high-altitude airship (HAA)...

  13. NREL: Technology Deployment - Solar Screenings and Implementation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scoring low on one component will not automatically disqualify the university. Campus solar and sustainability goals Plans for future solar projects and solar deployment capacity ...

  14. Technology transfer: The winds of change

    SciTech Connect (OSTI)

    Choudhury, A.

    1994-12-31

    This talk will present a historical perspective of the legislation that facilitated technology transfer from the federal laboratory system, especially with reference to CRADAs. Some of the recently proposed legislation that could potentially impact these intellectual property provisions of GATT and NAFTA will be discussed. An overview of Martin Marietta Energy Systems, Inc.`s technology transfer activities will also be presented.

  15. Wind and Water Power Technologies FY'14 Budget At-a-Glance |...

    Office of Environmental Management (EM)

    and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a ...

  16. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Correlation studies between solar wind parameters and the decimetric radio emission from Jupiter

    SciTech Connect (OSTI)

    Bolton, S.J.; Gulkis, S.; Klein, M.J.; De Pater, I.; Thompson, T.J.

    1989-01-01

    Results of a study comparing long-term time variations (years) in Jupiter's synchrotron radio emission with a variety of solar wind parameters and the 10.7-cm solar flux are reported. Data from 1963 through 1985 were analyzed, and the results suggest that many solar wind parameters are correlated with the intensity of the synchrotron emission produced by the relativistic electrons in the Jovian Van Allen radiation belts. Significant nonzero correlation coefficients appear to be associated with solar wind ion density, ram pressure, thermal pressure, flow velocity, momentum, and ion temperature. The highest correlation coefficients are obtained for solar wind ram pressure (NV/sup 2/) and thermal pressure (NT). The correlation analysis suggests that the delay time between fluctuations in the solar wind and changes in the Jovian synchrotron emission is typically about 2 years. The delay time of the correlation places important constraints on the theoretical models describing the radiation belts. The implication of these results, if the correlations are real, is that the solar wind is influencing the supply and/or loss of electrons to Jupiter's inner magnetosphere. We note that the data for this work spans only about two periods of the solar activity cycle, and because of the long time scales of the observed variations, it is important to confirm these results with additional observations. copyright American Geophysical Union 1989

  19. Research & Development Needs for Building-Integrated Solar Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Needs for Building-Integrated Solar Technologies Research & Development Needs for Building-Integrated Solar Technologies The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development

  20. Brookhaven National Laboratory's low cost solar technology

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1984-09-01

    The problems identified in early study - cost, architectural compatibility, and reliability - were not likely to be solved with conventional practices in the solar industry. BNL then embarked upon an iterative development process towards a solution founded on the methodology which establish a set of key guidelines for the research. With the derivation of cost goals ($5 to $6 per square foot, installed) and performance targets (consistent with conventional technology) it was considered important to use sophisticated industrial product development technologies to achieve the desired results. The normal industrial practice to reduce cost, for example, is to reduce material intensity, strive for simplicity in design and apply as much mass production as possible. This approach revealed the potential of polymer films as a basic construction material for solar collectors. Further refinements to reduce cost were developed, including the perfection of a non-pressurized absorber/heat exchanger and the adaptability of a printable optical selective surface. Additional significant advantages were acquired through application of a monocoque construction technique borrowed from the aircraft industry. The procedures used, including important support from industry to help identify materials and guide fabrication techniques, eventually resulted in construction and successful testing of a thin polymer film solar collector. To achieve the overall objectives of viable solar economics some system concepts have been explored by BNL. Consistent with the cost goals mentioned, it is believed that the low pressure designs pursued will be successful. Designs for the storage tank and distribution system that have been pursued include the use of polymer film lined sheet metal for the storage tanks and plastic pipe.

  1. The Impact of Wind and Solar on the Value of Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this analysis is to examine how the value proposition for energy storage changes as a function of wind and solar power penetration. It uses a grid modeling approach comparing the operational costs of an electric power system both with and without added storage. It creates a series of scenarios with increasing wind and solar power penetration and examines how the value of storage changes. It also explores the mechanisms behind this change in value, including the change in on-peak and off-peak price differentials and the cost of operating reserves created by increased penetration of wind and solar energy.

  2. New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar September 16, 2015 - 6:36pm Addthis A new study published by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) found that the U.S. Eastern Interconnection-one of the largest power systems in the world-can reliably support up to a 30% penetration of wind and solar power. Using high-performance

  3. PV Technologies India Ltd Moser Baer Solar Plc | Open Energy...

    Open Energy Info (EERE)

    India Ltd Moser Baer Solar Plc Jump to: navigation, search Name: PV Technologies India Ltd (Moser Baer Solar Plc) Place: New Delhi, Delhi (NCT), India Zip: 110020 Product: One of...

  4. Wuxi Jiacheng Solar Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Wuxi Jiacheng Solar Energy Technology Co Ltd Place: Yi Xing, Jiangsu Province, China Zip: 214251 Sector: Solar Product: A high-tech company...

  5. Technology Solutions for New Homes Case Study: Indirect Solar...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, ...

  6. Perovskite solar technology shows quick energy returns | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite solar technology shows quick energy returns By Payal Marathe * July 17, 2015 Tweet EmailPrint Solar panels are an investment-not only in terms of money, but also energy. ...

  7. Photo of the Week: Boosting Solar Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosting Solar Technology Photo of the Week: Boosting Solar Technology April 15, 2013 - 4:47pm Addthis Concentrated solar panels are getting a power boost. This summer, Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system -- one that can help natural gas power plants reduce their fuel usage by up to 20 percent. PNNL has developed a system that uses a thermochemical conversion device to convert natural gas and sunlight into a more energy-rich fuel

  8. Project Profile: Flexible Assembly Solar Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power » Project Profile: Flexible Assembly Solar Technology Project Profile: Flexible Assembly Solar Technology BrightSource Energy logo -- This project is inactive -- BrightSource Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and deploying an automated collector-assembly platform. The researchers are also developing a more efficient installation process that has the potential to drastically reduce construction time and cost for

  9. DOE Outlines Research Needed to Improve Solar Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its

  10. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  11. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect (OSTI)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  12. Particle acceleration via reconnection processes in the supersonic solar wind

    SciTech Connect (OSTI)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-10

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle

  13. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... understanding of the complex physics governing wind flow into and through wind farms. ... Wind Program Home About the Program Research & Development Offshore Wind Distributed ...

  14. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  15. The Impact of Wind and Solar on the Value of Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of Wind and Solar on the Value of Energy Storage Paul Denholm, Jennie Jorgenson, ... and energy storage, to support a wider array of electric power system operations. ...

  16. Research and Innovation in U.S. Wind Won't Die with Expiration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Sandia has decades of experience developing and improving wind-turbine technology. It ...

  17. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  18. NREL Solar Cell Wins Federal Technology Transfer Prize - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize for the commercialization of federally funded research. The Inverted Metamorphic Multijunction (IMM) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The

  19. Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Soft Costs » Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Graphic showing a web of people with energy bolts connecting them. Through the SEEDS program, seven projects are investigating strategies to accelerate the pace of change for solar energy technologies using cutting-edge analytical and computational tools, real-world market data, and pilot

  20. Energy Department Announces New Concentrating Solar Power Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments to American Industry, Universities | Department of Energy Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver,