Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sky Power LLC | Open Energy Information  

Open Energy Info (EERE)

Oregon Zip: 97204 Sector: Wind energy Product: Developer of a high-altitude wind turbine technology. References: Sky Power LLC1 This article is a stub. You can help...

2

Conergy SkyPower JV | Open Energy Information  

Open Energy Info (EERE)

SkyPower JV SkyPower JV Jump to: navigation, search Name Conergy & SkyPower JV Place Canada Sector Solar Product Canada-based solar project developer. References Conergy & SkyPower JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Conergy & SkyPower JV is a company located in Canada . References ↑ "Conergy & SkyPower JV" Retrieved from "http://en.openei.org/w/index.php?title=Conergy_SkyPower_JV&oldid=343842" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

3

SkyPower Pekon Electronics JV | Open Energy Information  

Open Energy Info (EERE)

Pekon Electronics JV Jump to: navigation, search Name: SkyPower-Pekon Electronics JV Place: India Sector: Wind energy Product: Joint venture for development of Indian wind farms....

4

Sky WindPower Corp | Open Energy Information  

Open Energy Info (EERE)

California Zip: 92065 Sector: Wind energy Product: Sky WindPower is working on turbines that would look like airborne balloons or kites, tethered to the ground. References:...

5

NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects Bright  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk about their partnership to develop a thin film to substitute for bulkier glass mirrors on solar-collecting parabolic troughs. Get the Adobe Flash Player to see this video. Credit: Fireside Production More Information For more information about NREL's partnership with SkyFuel, read Award-Winning Reflector to Cut Solar Cost and New Solar Technology Concentrates on Cost, Efficiency. Learn more about NREL's Concentrating Solar Power Research. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities

6

Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis' California Lighting Technology Center will utilize Jade Sky Technologies' driver ICs to help spur  

E-Print Network [OSTI]

Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis of cost-effective, easy-to-use LED lighting solutions Milpitas, Calif. ­ October 15, 2013 ­ Jade Sky Technologies (JST), a clean-tech start-up manufacturer of driver ICs for LED lighting applications, announces

California at Davis, University of

7

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

8

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible, Philippines Vanadium ........ Swaziland, Central Africa Zinc ................ Peru, Canada, Mexico Silver

Scott, Christopher

9

LED Lamp Project Lights the Way to Flicker-Free Replacement Jade Sky Technologies and UC Davis's California Lighting Technology Center demonstrate the  

E-Print Network [OSTI]

, 2014 ­ Jade Sky Technologies ("JST"), a clean-tech start-up manufacturer of LED Technologies and UC Davis's California Lighting Technology Center demonstrate the lighting Specification. JST collaborated with UC Davis's California Lighting Technology Center

California at Davis, University of

10

Classification of wind power technologies  

Science Journals Connector (OSTI)

Literature offers many possibilities to classify wind power technologies, for example with respect to their ... which materials are required for the construction of wind power plants and which of them may become....

Anja Brumme

2014-01-01T23:59:59.000Z

11

NREL Success Stories - SkyFuel Partnership Reflects Bright Future  

ScienceCinema (OSTI)

NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

Jorgensen, Gary; Gee, Randy

2013-05-29T23:59:59.000Z

12

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics Power Electronics The power electronics activity focuses on research and development (R&D) for flexible, integrated, modular power electronics for power conditioning and control, including a power switch stage capable of running a variety of motors and loads. Efforts are underway to reduce overall system costs for these vehicles through the elimination of additional cooling loops to keep the power electronics within their safe operation ranges. These challenges are being met within the program through research in: Silicon carbide and Gallium Nitride semiconductors, which can be operated at much higher temperatures than current silicon semiconductors; Packaging innovations for higher temperature operation; Improved thermal control technologies; and

13

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

14

The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey  

E-Print Network [OSTI]

We calculate the angular correlation function of galaxies in the Two Micron All Sky Survey. We minimize the possible contamination by stars, dust, seeing and sky brightness by studying their cross correlation with galaxy density, and limiting the galaxy sample accordingly. We measure the correlation function at scales between 1-18 arcdegs using a half million galaxies. We find a best fit power law to the correlation function has a slope of 0.76 and an amplitude of 0.11. However, there are statistically significant oscillations around this power law. The largest oscillation occurs at about 0.8 degrees, corresponding to 2.8 h^{-1} Mpc at the median redshift of our survey, as expected in halo occupation distribution descriptions of galaxy clustering. We invert the angular correlation function using Singular Value Decomposition to measure the three-dimensional power spectrum and find that it too is in good agreement with previous measurements. A dip seen in the power spectrum at small wavenumber k is statistically consistent with CDM-type power spectra. A fit of CDM-type power spectra to k < 0.2 h Mpc^{-1} give constraints of \\Gamma_{eff}=0.116 and \\sigma_8=0.96. This suggest a K_s-band linear bias of 1.1+/-0.2. This \\Gamma_{eff} is different from the WMAP CMB derived value. On small scales the power-law shape of our power spectrum is shallower than that derived for the SDSS. These facts together imply a biasing of these different galaxies that might be nonlinear, that might be either waveband or luminosity dependent, and that might have a nonlocal origin.

Ariyeh H. Maller; Daniel H. McIntosh; Neal Katz; Martin D. Weinberg

2003-04-01T23:59:59.000Z

15

Vehicle Technologies Office: 2010 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies....

16

Vehicle Technologies Office: 2013 Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that...

17

Vehicle Technologies Office: 2009 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and...

18

Vehicle Technologies Office: 2012 Advanced Power Electronics...  

Energy Savers [EERE]

2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

19

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

20

Nuclear Power Technology: A Mandate for Change  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

Kunmo Chung; George A. Hazelrigg

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL Power Technologies Energy Data Book (2006): Technology Profiles |  

Open Energy Info (EERE)

Power Technologies Energy Data Book (2006): Technology Profiles Power Technologies Energy Data Book (2006): Technology Profiles Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. The technologies covered are: biomass, geothermal, concentrating solar power (CSP), wind, hydro, solar buildings, reciprocating engines, microturbines, fuel cells, batteries, advanced energy storage, and super conducting power technology. Depending on the technology, data may go as far back as 1980 and projections may go as far into the future as 2020.

22

Cyclone Power Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Cyclone Power Technologies Inc Cyclone Power Technologies Inc Jump to: navigation, search Name Cyclone Power Technologies Inc Place Pompano Beach, Florida Zip 33064 Product Florida-based research and development company. The Company holds exclusive commercial rights to the Schoell Cycle Engine, an external combustion, heat-regenerative engine capable of running on any fuel source. References Cyclone Power Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cyclone Power Technologies Inc is a company located in Pompano Beach, Florida . References ↑ "Cyclone Power Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=Cyclone_Power_Technologies_Inc&oldid=344013

23

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

24

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

25

Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology  

SciTech Connect (OSTI)

The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

2013-08-06T23:59:59.000Z

26

Concentrating Solar Power Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

27

Surface Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Surface Power Technologies Place: Ireland Sector: Solar, Wind energy Product: An Irish company supplying solar and micro-wind energy systems...

28

Microturbine Power Conversion Technology Review, April 2003  

Broader source: Energy.gov [DOE]

A technology review to assess the market for power electronic converters to connect microturbines to the electric grid or local loads.

29

Fuel Cell Backup Power Technology Validation (Presentation)  

SciTech Connect (OSTI)

Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

2012-10-01T23:59:59.000Z

30

HVDC power transmission technology assessment  

SciTech Connect (OSTI)

The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

1997-04-01T23:59:59.000Z

31

MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

Yongsoo Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yongsoo Wave Power Plant.jpg Technology Profile Technology Type Click...

32

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Program Concentrating Solar Power Program Office of Solar Energy Technologies operate for 80% of the summer mid-peak hours and 66% of the winter mid-peak hours. A natural gas backup system supplements the solar capacity and contributes 25% of the plants' annual output. The SEGS plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. In the SEGS design, the curved solar collectors focus sunlight onto a receiver pipe. Mechanical controls slowly rotate the collectors during the day, keeping them aimed at the sun as it travels across the sky. Synthetic oil flowing through the receiver pipe serves as the heat transfer medium. The collectors concentrate sunlight 30 to 60 times the normal intensity on the receiver, heating the oil as high as 735°F (390°C).

33

Small Power Technology for Tetrahedral Rovers  

Science Journals Connector (OSTI)

The Small Power Technology (SPOT) being studied at GSFC has the potential to be an efficient and compact radioisotope based electrical power system. Such a system would provide power for innovative tetrahedral robotic arms and walkers to support the lunar exploration initiative within the next decade. Presently NASA has designated two flight qualified Radioisotope Power Supplies (RPS): the Multi?Mission RTG (MMRTG) which uses thermocouple technology and the more efficient but more massive Stirling RTG (SRTG) which uses a mechanical heat (Stirling) engine technology. With SPOT thermal output from a radioisotope source is converted to electrical power using a combination of shape memory material and piezoelectric crystals. The SPOT combined energy conversion technologies are potentially more efficient than thermocouples and do not require moving parts thus keeping efficiency high with an excellent mass to power ratio. Applications of particular interest are highly modular addressable reconfigurable arrays of tetrahedral structural components designed to be arms or rovers with high mobility in rough terrain. Such prototypes are currently being built at GSFC. Missions requiring long?lived operation in unilluminated environments preclude the use of solar cells as the main power source and must rely on the use of RPS technology. The design concept calls for a small motor and battery assembly for each strut and thus a distributed power system. We estimate based on performance of our current tetrahedral prototypes and power scaling for small motors that such devices require tens of watts of power output per kilogram of power supply. For these reasons SPOT is a good candidate for the ART (addressable Reconfigurable Technology) baseline power system.

P. E. Clark; S. R. Floyd; C. D. Butler; Y. Flom

2006-01-01T23:59:59.000Z

34

NREL: Advanced Power Electronics - Technology Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

35

Porous Power Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies LLC Porous Power Technologies LLC Jump to: navigation, search Logo: Porous Power Technologies LLC Name Porous Power Technologies LLC Address 2765 Dagny Way, Suite 200 Place Lafayette, Colorado Zip 80026 Sector Efficiency Product Laminable, porous, absorbent Li-ion batteries Website http://www.porouspower.com/ Coordinates 40.0130129°, -105.1327972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0130129,"lon":-105.1327972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Ocean Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Power Technologies Jump to: navigation, search Logo: Ocean Power Technologies Name Ocean Power Technologies Address 1590 Reed Road Place Pennington, New Jersey Zip 08534 Year founded 1994 Number of employees 100 Website http://www.oceanpowertechnolog Coordinates 40.297652°, -74.794481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.297652,"lon":-74.794481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Distribution Power Flow for Smart Grid Technologies  

SciTech Connect (OSTI)

Smart Grid technologies hold the promise of being able to solve many of the problems currently facing in the electric power industry. However, the large scale deployment of these new technologies has been limited due to an inability to accurately model their effects or to quantify their potential benefits. GridLAB-D is a new open source power system modeling and simulation environment developed by the United States Department of Energy specifically to integrate detailed power systems and end-use models. In order to effectively model the vast array of possible smart grid technologies GridLAB-D was developed as a general simulation environment. This paper describes the basic design concept, the power flow solutions implemented, and a detailed example of the type of analysis that can be performed within the simulation environment in order to support the evaluation of smart grid technologies.

Schneider, Kevin P.; Chassin, David P.; Chen, Yousu; Fuller, Jason C.

2009-03-18T23:59:59.000Z

38

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

39

Concentrating Solar Power: Technology Overview  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

40

Power sources manufactures association : power technology roadmap workshop - 2006.  

SciTech Connect (OSTI)

The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

Bowers, John S.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network [OSTI]

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California, San Diego, La Jolla, CA 92093-0417 619-534-7869 (619-534-7716, Fax) ABSTRACT Fusion is one of a few future power sources with the poten

Najmabadi, Farrokh

42

Two-Phase Cooling Technology for Power Electronics with Novel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two-Phase Cooling Technology for Power Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells...

43

Air Cooling Technology for Advanced Power Electronics and Electric...  

Broader source: Energy.gov (indexed) [DOE]

Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

44

Combined Heat & Power Technology Overview and Federal Sector...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

45

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

46

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

47

Porous Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies Porous Power Technologies Jump to: navigation, search Name Porous Power Technologies Place Lafayette, Colorado Zip 80026 Product Porous Power is a Colorado-based developer of microporous, laminatable battery separators. Coordinates 42.706102°, -88.48126° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.706102,"lon":-88.48126,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Technology projections for solar dynamic power  

Science Journals Connector (OSTI)

Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency long life without performance degradation and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite a low power Space Based Radar and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA DOD and commercial missions.

Lee S. Mason

1999-01-01T23:59:59.000Z

49

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

50

Power Tagging Technologies | Open Energy Information  

Open Energy Info (EERE)

Tagging Technologies Tagging Technologies Jump to: navigation, search Name Power Tagging Technologies Place Superior, Colorado Zip 80027 Product Colorado-based developer of advanced digital signal processing technologies that enable real-time "power tagging" on the grid. Coordinates 41.761495°, -108.967894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.761495,"lon":-108.967894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Engineered Sequestration and Advanced Power Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

52

Pulsed Power Technology at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Z-Machine Time-exposure photograph of electrical flashover arcs produced over the surface of the water in the accelerator tank as a byproduct of Z operation. These flashovers are much like strokes of lightning Related links Electromagnetic Technology at Sandia National Laboratories Pulsed Power Technology Published Papers Inertial Fusion Energy C. L. Olson, "Inertial Fusion Energy with Pulsed Power," 2000 Codes: ALEGRA K. C. Cochrane, "Aluminum Equation of State Validation and Verification for the ALEGRA HEDP Simulation Code," 2006 T. Trucano, "ALEGRA-HEDP Validation Strategy," 2005 C. Garasi , "Multi-dimensional high energy density physics modeling and simulation of wire array z-pinch physics," 2003 Equation of State (EOS)

53

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect (OSTI)

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

54

Power Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Power Technology Inc Power Technology Inc Place Houston, Texas Zip 77024 Product R&D company focused on alternative battery technology. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

The effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum  

E-Print Network [OSTI]

Our motion relative to the cosmic-microwave-background (CMB) rest frame deflects light rays giving rise to shifts as large as L -> L(1+-beta), where beta=0.00123 is our velocity (in units of the speed of light) on measurements of small-scale (large multipole moment L) CMB fluctuations. For measurements at L>1000, where the CMB power spectrum varies roughly as C(L) ~ L^-7, the fractional change to the power spectrum measured on a small sky patch can be as large as Delta C(L)/C(L)~7*beta~1%, larger than the measurement uncertainties in several current experiments. Here we present a novel harmonic-space approach to this CMB aberration that improves upon prior work by allowing us to (i) go to higher orders in beta, thus extending the validity of the analysis to measurements at L>1/beta~800; and (ii) treat the effects of window functions and pixelization in a more accurate and computationally efficient manner. We calculate precisely the magnitude of the systematic bias in the power spectrum inferred from current S...

Jeong, Donghui; Dai, Liang; Kamionkowski, Marc; Wang, Xin

2014-01-01T23:59:59.000Z

56

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

57

Wireless electricity (Power) transmission using solar based power satellite technology  

Science Journals Connector (OSTI)

In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

M Maqsood; M Nauman Nasir

2013-01-01T23:59:59.000Z

58

Guodian Longyuan Power Technology Engineering Co Ltd | Open Energy  

Open Energy Info (EERE)

Power Technology Engineering Co Ltd Power Technology Engineering Co Ltd Jump to: navigation, search Name Guodian Longyuan Power Technology Engineering Co Ltd Place Beijing Municipality, China Sector Biomass Product Beijing-based power plant developer, active as biomass platform of Guodian Technology & Environment. References Guodian Longyuan Power Technology Engineering Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guodian Longyuan Power Technology Engineering Co Ltd is a company located in Beijing Municipality, China . References ↑ "Guodian Longyuan Power Technology Engineering Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guodian_Longyuan_Power_Technology_Engineering_Co_Ltd&oldid=346304

59

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

60

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers [EERE]

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Overview of Thermoelectric Power Generation Technologies in Japan  

Broader source: Energy.gov [DOE]

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

62

Nuclear Power Technology for the Future  

SciTech Connect (OSTI)

Ensuring sufficient energy for electricity, fresh water and transportation represents a major challenge for this century. Energy demand will increase dramatically as developing countries improve their standards of living. Nuclear power will become an increasingly important source of energy for production of electricity, fresh water and hydrogen as transportation fuel. Hydrocarbon sources of energy are not acceptable in the long term because of global warming and uneven supply. To ensure that nuclear power can meet this challenge, improved technologies are required to address the problems of nuclear waste, management of nuclear materials and safety as many more nuclear plants are built. These technologies are being developed at Argonne National Laboratory as part of the DOE international program of Generation IV reactors. Essential to meeting these challenges is the development of fast-spectrum nuclear reactors for which fuel and fission products are recycled to the reactor to be 'burned'. I will discuss work on fast-spectrum reactor and fuel-cycle design. The technologies discussed will be 'passively safe' reactor design and 'pyroprocessing' for fuel reprocessing.

Sackett, John I. (ANL) [ANL

2003-07-23T23:59:59.000Z

63

Carolinas Blue Skies & Green Jobs Initiative | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carolinas Blue Skies & Green Jobs Initiative Carolinas Blue Skies & Green Jobs Initiative 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

64

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

for Combined Heat and Power, U.S. E NVTL . P ROT . A GENCY CCombined Heat and Power: A Technology Whose Time Has ComeD.C. COMBINED HEAT AND POWER A. Create an Organization to

Ferraina, Steven

2014-01-01T23:59:59.000Z

65

Guodian United Power Technology Co Ltd formerly Guodian Union Power | Open  

Open Energy Info (EERE)

United Power Technology Co Ltd formerly Guodian Union Power United Power Technology Co Ltd formerly Guodian Union Power Jump to: navigation, search Name Guodian United Power Technology Co Ltd (formerly Guodian Union Power) Place Beijing, Beijing Municipality, China Zip 100044 Sector Wind energy Product China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References Guodian United Power Technology Co Ltd (formerly Guodian Union Power)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guodian United Power Technology Co Ltd (formerly Guodian Union Power) is a company located in Beijing, Beijing Municipality, China . References ↑ "Guodian United Power Technology Co Ltd (formerly Guodian

66

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Mingyang Wind Power Technology Co Ltd Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name Guangdong Mingyang Wind Power Technology Co Ltd Place Zhongshan City, Guangdong Province, China Sector Wind energy Product Subsidiary of privately owned Guangdong Mingyang Electric that manufacturers 1.5MW wind turbines. References Guangdong Mingyang Wind Power Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangdong Mingyang Wind Power Technology Co Ltd is a company located in Zhongshan City, Guangdong Province, China . References ↑ "Guangdong Mingyang Wind Power Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangdong_Mingyang_Wind_Power_Technology_Co_Ltd&oldid=346230

67

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

68

Power Technologies Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Energy Data Book Power Technologies Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Power Technologies Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, Wind Topics: Resource assessment, Pathways analysis Resource Type: Dataset Website: www.nrel.gov/analysis/power_databook/ References: Program Website[1] Logo: Power Technologies Energy Data Book The data book compiles a comprehensive set of data about power technologies from diverse sources. "The main purpose of the data book is to compile, in one central document, a comprehensive set of data about power technologies from diverse sources. The need for policy makers and analysts to be well-informed about power

69

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

70

Smart Technology Brings Power to the People  

SciTech Connect (OSTI)

Imagine youre at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (Youve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your homes energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise Testbed Demonstration, a project funded primarily by DOE. Through the GridWise Demonstration projects, researchers are gaining insight into energy consumers behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100 homes on the Olympic Peninsula in Washington State receive energy price information through a broadband Internet connection and have received automated demand-response thermostats and water heaters that can adjust energy use based on price. Fifty of those homes and an additional 50 homes in Yakima, Washington, and 50 homes in Gresham, Oregon, have computer chips helping control their dryers. These chips sense when the power transmission system is under stress and automatically turn off certain functions briefly until the grid can be stabilized by power operators.

Hammerstrom, Donald J.; Gephart, Julie M.

2006-12-01T23:59:59.000Z

71

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

72

Vehicle Technologies Office: Power Electronics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Finally, power electronics convert and distribute electrical power to other vehicle systems such as heating and ventilation, lighting, and infotainment. Power electronics...

73

(Nuclear power plant control and instrumentation technology)  

SciTech Connect (OSTI)

While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

White, J.D.

1990-10-10T23:59:59.000Z

74

Laser power beaming applications and technology  

SciTech Connect (OSTI)

Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers` plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of the top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the ``long pole in the tent``, this paper summarizes Rocketdyne`s approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability (IOC).

Burke, R.J.; Cover, R.A.; Curtin, M.S.; Dinius, R.W.; Lampel, M.C. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division

1994-12-31T23:59:59.000Z

75

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

76

MHK Technologies/Current Power | Open Energy Information  

Open Energy Info (EERE)

Power Power < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Power.jpg Technology Profile Primary Organization Current Power AB Project(s) where this technology is utilized *MHK Projects/Norde lv Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Current Power device is a slow speed vertical axis turbine that utilizes a direct drive permanent magnet rotating generator The concept is based on a vertical axle turbine directly coupled to a permanent magnet synchronous generator The system is intended to be placed on the bottom of the ocean or a river where it would be protected from storm surges and strong waves The output from the generator has to be rectified and inverted before connection to the grid Robustness is achived by the simple mechanical construction

77

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

78

Concentrating Solar Power Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

79

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

80

2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies  

Broader source: Energy.gov [DOE]

This document contains the compiled hydropower technologies presentations from the U.S. Department of Energy 2014 Water Power Program Peer Review, held February 25-27, 2014.

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint  

SciTech Connect (OSTI)

Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

Bennion, K.; Kelly, K.

2009-08-01T23:59:59.000Z

82

Demonstration of Air-Power-Assist (APA) Engine Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

83

Backup Power Cost of Ownership Analysis and Incumbent Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in...

84

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech...

85

Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

86

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

87

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

88

MHK Technologies/W2 POWER | Open Energy Information  

Open Energy Info (EERE)

POWER POWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage W2 POWER.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore wind mills Mooring Configuration Slack mooring but allowed to sway 90 degree around prevailing wind direction All within a frame mooring with capasity of i e 10 units This is similar to the type of mooring used by modern type ferrfloting fish faring i Norway but in larger scale Optimum Marine/Riverline Conditions Offshore deep water with average significant wave hight 2 5 m and periode average 5 6 Sice we combine wave and offshore wind power we also desired good wind conditions

89

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

90

MHK Technologies/Oscillating Cascade Power System OCPS | Open Energy  

Open Energy Info (EERE)

Oscillating Cascade Power System OCPS Oscillating Cascade Power System OCPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oscillating Cascade Power System OCPS.jpg Technology Profile Primary Organization New Energy Solutions LLC Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The OCPS generator consists of a cascade of vertical hydrofoils submerged in moving water This array of hydrofoils oscillates in antiphase at resonance flutter in a slow swimming motion resulting in maximum power transfer from flowing water to electricity The system efficiently converts the oscillating mechanical energy into a steady electric current A 60 overall water to wire efficiency was demonstrated at the proof of concept test and 65 or better overall efficiency is projected using the new engineering advances incorporated since the test in the commercial model

91

MHK Technologies/SurfPower | Open Energy Information  

Open Energy Info (EERE)

SurfPower SurfPower < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SurfPower.jpg Technology Profile Primary Organization Seawood Designs Inc Project(s) where this technology is utilized *MHK Projects/Lake Huron Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The SurfPower is a constant pressure, fluid operated rectangular plate point absorber. The device is anchored to the seabed via hydraulic cylinders that operate as piston pumps. The upward and lateral motion of a pontoon forces fluid from the piston pump, at high pressure (200 bar), to a collection main on the seabed. This high pressure fluid is delivered to an onshore Pelton turbine that drives an asynchronous electrical generator.

92

Solar electricity-a low power technology  

Science Journals Connector (OSTI)

The author examines the future potential of solar power with regard to its applications. He suggests that although the large size and small power output of solar cell electric systems are obstacles to high power usage, realistic low power applications can make a valuable contribution to world energy needs

L.B. Harris

1982-01-01T23:59:59.000Z

93

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

94

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network [OSTI]

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

95

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

96

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

97

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

98

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

99

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

100

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

SciTech Connect (OSTI)

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Management of Bonneville Power Administration's Information Technology Program, IG-0861  

Broader source: Energy.gov (indexed) [DOE]

Management of Bonneville Power Management of Bonneville Power Administration's Information Technology Program DOE/IG-0861 March 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 March 26, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Bonneville Power Administration's Information Technology Program" INTRODUCTION AND OBJECTIVE The Bonneville Power Administration provides about 30 percent of wholesale electric power to regional utilities that service homes, hospitals, financial institutions, commercial entities and military installations in the Pacific Northwest. Bonneville makes extensive use of various

102

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World generated by nuclear power. What will the U.S. energy portfolio look like, and how will the energy demand is focused on longer- term operation of nuclear power plants, including measurements to detect

103

A Technology Overview of the PowerChip Development Program  

E-Print Network [OSTI]

The PowerChip research program is developing technologies to radically improve the size, integration, and performance of power electronics operating at up to grid-scale voltages (e.g., up to 200V) and low-to-moderate power ...

Araghchini, Mohammad

104

World Power Technologies | Open Energy Information  

Open Energy Info (EERE)

NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL National Wind Technology Center...

105

Novel Dry Cooling Technology for Power Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

106

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers [EERE]

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

107

Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Herbert E. andrus, Jr. Principal Investigator ALSTOM Power 2000 Day Hill Rd. Windsor, CT 06095 860-285-4770 herbert.e.andrus@power.alstom.com Hybrid Combustion-GasifiCation CHemiCal loopinG Coal power teCHnoloGy development Description Gasification technologies can provide a stable, affordable energy supply for the nation, while also providing high efficiencies and near zero pollutants. With coal

108

The impacts of technological learning on the optimum technology mix: simulations for the Indian power sector  

Science Journals Connector (OSTI)

For the investigation of the optimum technology mix of any country, which is clearly an issue of dynamic nature, technological learning and economies of scale play a significant role. Hence, in this paper's long term planning exercise for the Indian power sector (2000-2025), our simulation analysis specifically includes the impacts of technological learning on the optimal inter-temporal choice of power generation technologies. Based on dynamic linear programming methods and MARKAL, a software tool for power generation capacity planning, the most significant result of our analysis is that among various renewable energy technologies, technological learning will favour wind and small hydropower generation, while pressurised fluidised bed combustion-based coal power plants appear to be the favourite conventional fossil fuel-based technology in India.

Jyotirmay Mathur; Narendra Kumar Bansal; Hermann-Joseh Wagner

2004-01-01T23:59:59.000Z

109

MHK Technologies/PowerGin | Open Energy Information  

Open Energy Info (EERE)

PowerGin PowerGin < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerGin.jpg Technology Profile Primary Organization Kinetic Wave Power Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The energy conversion rate of the PowerGin is 20 30 The PowerGin makes use of both vertical and horizontal energy which allows the device to operate effectively in low wave states Buckets are mounted in a dense spiral pattern around the perimeter similar to hydro electric turbine blades which provide a high surface area to catch wave energy As the buckets on the ramp side of the rotor fill with wave water the rotors begin to turn Water is emptied out of the bucket instantaneously when it is submerged under the water by a patented gravity driven flap on the bottom The flap slams shut in one direction and opens in the other The two rotors rotate in opposite directions which maintain balance and continuous rotary power flow

110

The Industrialization of Thermoelectric Power Generation Technology  

Broader source: Energy.gov [DOE]

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

111

Application of IGCC Technology to Power Generation  

Science Journals Connector (OSTI)

Improved efficiency and low cost are two of the objectives in the development and commercialization of power generation cycles. With the advent of todays commercial advanced gas turbines and high-temperature gas

R. E. Ayala

1998-01-01T23:59:59.000Z

112

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov [DOE]

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

113

High-power LED Technology and Solid State Lighting  

Science Journals Connector (OSTI)

The rapid adoption of LEDs in general illumination is fueled by high-power phosphor-conversion and direct color blue and red LED technology. Over the last several years...

Goetz, Werner

114

Coal Technology for Power, Liquid Fuels, and Chemicals  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electric power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado-Ute Electric Associations...21].

Burtron H. Davis; James Hower

2012-01-01T23:59:59.000Z

115

Energy Department Announces New Concentrating Solar Power Technology  

Broader source: Energy.gov (indexed) [DOE]

New Concentrating Solar Power New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier today, the Energy Department announced new investments for 21 total projects to further advance cutting-edge concentrating solar power technologies (CSP). The awards span 13 states for a total of $56 million over three years, subject to congressional appropriations. The research projects, conducted in partnership with private industry, national

116

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

117

Wind and Water Power Technologies FY'14 Budget At-a-Glance |...  

Energy Savers [EERE]

Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a...

118

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

Broader source: Energy.gov [DOE]

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

119

High Power Electrodynamics (HPE): Accelerator Operations and Technology,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACTS CONTACTS Group Leader Bruce Carlsten Deputy Group Leader Ellen Guenette Administrator Josephine (Jo) Torres High-Power Electrodynamics (HPE) The High-Power Electrodynamics (AOT-HPE) Group applies accelerator and beam technologies to national-security-directed energy missions. AOT-HPE has three programmatic thrusts: free-electron lasers (FELs), high-power microwaves (HPM), and compact radiography. To maintain a vigorous and robust technical base for addressing DOE and DoD needs, the group's project portfolio is balanced between exploratory research, infrastructure development, and programmatic deliverables for sponsors. Funding is roughly 25% from the Lab's Directed Research and Development Program, 65% from DoD, and 10% from DOE. Technology Focus Areas AOT-HPE is the Laboratory's main vehicle for applying accelerator-based technologies to directed-energy mission needs. The group recognizes that many directed-energy missions are enabled by compact high-brightness electron accelerators and mm-wave and THz technologies.

120

Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of  

Broader source: Energy.gov (indexed) [DOE]

Argonne Lab's Breakthrough Cathode Technology Powers Electric Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy The Department of Energy has been investing in vehicle electrification for more than a decade, with results that speak for themselves: The battery technologies in almost all of the electric vehicles and hybrids on the road today were developed with support from the Department. As you may have read

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Inspection technologies protect and enhance materials for power plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inspection technologies protect and enhance materials for power plants Inspection technologies protect and enhance materials for power plants Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Inspection technologies protect and enhance materials for power plants A researcher makes thermal images of ceramic defects THERMAL IMAGING - Julian Benz uses Argonne's thermal imaging system

122

Cape Peninsula University of Technology - Centre for Distributed Power and  

Open Energy Info (EERE)

Peninsula University of Technology - Centre for Distributed Power and Peninsula University of Technology - Centre for Distributed Power and Electronic Systems Jump to: navigation, search Name Cape Peninsula University of Technology Address Symphony way, Bellville Place Cape Town, South Africa Zip 7535 Region Western cape Number of employees 11-50 Year founded 2004 Phone number +27219596563 Website http://www.cput.ac.za References Dr Atanda Raji[1] Prof. Kahn MTE[2] Dr Marco Adonis[3] Dr Wilfred Fritz[4] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. Cape Peninsula University of Technology - Centre for Distributed Power and Electronic Systems is a research institution based in Cape Town, South Africa. References ↑ "Dr Atanda Raji" ↑ "Prof. Kahn MTE" ↑ "Dr Marco Adonis"

123

Chapter 14 - Marine Power Generation Technologies  

Science Journals Connector (OSTI)

Abstract There are four ways in which the worlds oceans can provide an energy source for power generation. Marine currents around coastlines, inlets, and estuaries can be exploited with underwater turbines. Ocean waves are also a source of energy that can be tapped using a variety of different devices that convert the oscillating motion of waves into a motion that can be used to provide electricity generation. The worlds oceans, particularly in the tropical regions, are massive solar collectors, absorbing heat that creates a hot layer on the surface of the sea. This hot water can be used to drive a heat engine, with cooling taken from the ocean depths where the temperature remains low. The mixing of fresh and salt water also releases energy, and this too can be tapped in a number of ways to generate electricity. All of these are being developed as means of power generation.

Paul Breeze

2014-01-01T23:59:59.000Z

124

MHK Technologies/Pelagic Power 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pelagic Power 1.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The technology of Pelagic Power has on a simple working principle based on a wave pump In its simplest form the wave pump consists of thre components a linear piston pump a water anchor and a surface bouy Pumps that are afloat 20 40 meters under the surface of the sea are key elements in Pelagic Power s wave energy concept In a submerged position the pumps are not at risk of being exposed to storm waves Within the new installations lie either so called absorbers or buoys upon the surface These devices gather energy from the waves and send it to the pumps located further down The pumps movement occurs between the absorber and a water anchor placed on each pump These pumps are called pelagic wave pumps and are not anchored to the seabed

125

Water Power Technologies Office FY 2015 Budget At-A-Glance  

Energy Savers [EERE]

Water Power Technologies Office leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering...

126

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

127

Analysis of S.1844, the Clear Skies Act of 2003; S.843, the Clean Air Planning Act of 2003; and S.366, the Clean Power Act of 2003  

Gasoline and Diesel Fuel Update (EIA)

SR/OIAF/2004-05 SR/OIAF/2004-05 Analysis of S. 1844, the Clear Skies Act of 2003; S. 843, the Clean Air Planning Act of 2003; and S. 366, the Clean Power Act of 2003 May 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the

128

New and Underutilized Technology: Computer Power Management Systems |  

Broader source: Energy.gov (indexed) [DOE]

Computer Power Management Systems Computer Power Management Systems New and Underutilized Technology: Computer Power Management Systems October 7, 2013 - 9:08am Addthis The following information outlines key deployment considerations for computer power management systems within the Federal sector. Benefits Computer power management systems include network-based software that manages computer power consumption by automatically putting them in standby, hibernation, or other low energy consuming state without interfering with user productivity or IT functions. Application Computer power management systems are applicable in most building categories with high computer counts. Key Factors for Deployment Life-cycle cost effectiveness studies are recommended prior to deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

129

MHK Technologies/Vert Network Power Station | Open Energy Information  

Open Energy Info (EERE)

Network Power Station Network Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vert Network Power Station.jpg Technology Profile Primary Organization Vert Labs LLP Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Vert Network is 1st cost effective wave power system that brings profit with the current level of pricing for renewable electricity The technology of Vert Network is based on an array of plastic floats that produce compressed air from the torque that is created from levers attached to the floats The compressed air is then sent to the shore by rubber pipe which is significantly cheaper and easier to maintain than underwater copper cables Consequently the generation is done on land using a standard turbine generator rather than requiring highly bespoke and overly robust generation devices which have to be specially designed for the marine environment and require specialist skills to maintain The marine based device is therefore made entirely from plastic carbon fibre and rubber so all the components are made from standard materials using mouldings and can be produced very cheaply VERT Labs estimates show that it can provide electricity at about 0 10 kWh When VERT Labs reache

130

Pulsed Power Technology at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News and Reviews News and Reviews Pulsed Power in the News Nuclear fusion simulation shows high-gain energy output (March 2012) Rapid-fire pulse brings Sandia Z method closer to goal of high-yield fusion reactor (April 2007) Ice created in nanoseconds by Sandia's Z machine (March 2007) Z-Machine Shockwaves Melt Diamond (November 2006) Phase diagram of water revised by Sandia researchers (October 2006) Z fires objects faster than Earth moves through space (June 6, 2005) Sandia imagists view imploding wire arrays on Z (November 10, 2004) Z's $61.7 million refurbishment to advance capabilities (October 21, 2004) Z produces fusion neutrons (April 7, 2003) Former shock physics manager (Asay) elected to NAE (February 20, 2003) Z-Beamlet image shows Z evenly compresses pellet (August 30, 2001)

131

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

132

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

133

Bright Skies Ahead for Moapa | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bright Skies Ahead for Moapa Bright Skies Ahead for Moapa Bright Skies Ahead for Moapa March 1, 2013 - 7:19pm Addthis In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes. In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes. Photo from Moapa Band of Paiutes. Photo from Moapa Band of Paiutes. Moapa Band of Paiutes Chairman William Anderson. In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes.

134

Beijing PowerU Technology | Open Energy Information  

Open Energy Info (EERE)

Beijing PowerU Technology Beijing PowerU Technology Jump to: navigation, search Name Beijing PowerU Technology Place Beijing, Beijing Municipality, China Zip 100089 Sector Buildings, Efficiency Product An energy efficiency service company provide energy savings for large commercial and public buildings such as airport, hospitals and factories. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Kinmac Solar formerly Lucky Power Technology Co Ltd Kinmac Solar formerly Lucky Power Technology Co Ltd Jump to: navigation, search Name Kinmac Solar (formerly Lucky Power Technology Co Ltd) Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect (OSTI)

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

137

Important technology considerations for space nuclear power systems  

SciTech Connect (OSTI)

This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

1988-03-01T23:59:59.000Z

138

Space power technology into the 21st century  

SciTech Connect (OSTI)

This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.

Faymon, K.A.; Fordyce, J.S.

1984-01-01T23:59:59.000Z

139

A methodology for evaluating ``new`` technologies in nuclear power plants  

SciTech Connect (OSTI)

As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

Korsah, K.; Clark, R.L.; Holcomb, D.E.

1994-06-01T23:59:59.000Z

140

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

142

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

143

Surface Analysis and Computer Technology Optics and Power Supplies  

E-Print Network [OSTI]

Surface Analysis and Computer Technology Optics and Power Supplies ErLEED User Manual 1.2 #12;All for this manual: 78000144. SPECS GmbH Voltastr. 5 13355 Berlin Germany phone +49 30 467824-0, fax +49 30 4642083 determination of thin films and of clean and adsorbate covered crystal surfaces. In addition, LEED is used

Gellman, Andrew J.

144

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader A Climate Contingency Roadmap for the U.S. Electricity Sector: Phase II (PDF 192 KB) This roadmap examines the role of the electric sector in climate change and the sectoral impacts of alternative climate policy designs. The document explores the capabilities and costs of emissions reduction options and the influence of company-specific circumstances on the design of cost-effective response strategies. It also investigates mechanisms to create incentives for support of advanced climate-related technology research, development, and demonstration. Electric Power Research Institute Roadmap The Electric Power Research Institute is initiating an effort to develop an

145

Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Beijing Four Seasons Solar Power Technology Co Ltd Beijing Four Seasons Solar Power Technology Co Ltd Place Beijing, Beijing Municipality, China Sector Solar Product Company involved in selling solar power equipment in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Baoding Tianwei Wind Power Technology Co Ltd Baoding Tianwei Wind Power Technology Co Ltd Place Baoding, Hebei Province, China Zip 71051 Sector Wind energy Product A subsidary company of Tianwei Baobian, focuses on developing, designing, producing and selling wind turbines and core components of wind power systems. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

NREL: Advanced Power Electronics - Modeling of Cooling Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling of Cooling Technologies Improves Performance Modeling of Cooling Technologies Improves Performance Thermal modeling image of spray cooling of inverter chip surface shows the liquid breaking up into fine droplets that impinge on the liquid wall, which enhances the spacial uniformity of heat removal. Modeling Cooling Technologies-Spray Cooling The NREL advanced power electronics team is modeling cooling technologies that would enhance performance of the inverters and motors in hybrid-electric and fuel cell vehicles. The team is modeling two-phase spray cooling, jet impingement, and mini- and micro-channel cooling, and has successfully used Fluent software to show a good comparison between numerical models and published experimental data. Currently, the team is conducting modeling to simulate real life conditions such as those that

148

Shenyang Huaren Wind Power Technology Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Huaren Wind Power Technology Development Co Ltd Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name Shenyang Huaren Wind Power Technology Development Co Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product China-based technology provider of 1MW, 1.5MW and 3MW wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

NETL Coal Power Systems & Technology: Interactive Project Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal & Power Systems Coal & Power Systems Project Portfolio Web Map Welcome to the Strategic Center for Coal Project Portfolio Web Map assembled by NETL. The web map includes projects across all Coal & Power Systems technologies including Advanced Energy Systems, Carbon Capture, Carbon Storage, Cross-Cutting Research, Futuregen 2.0, Industrial Carbon Capture and Storage (ICCS), Clean Coal Power Initiative (CCPI), Geologic Sequestration Training and Research (GSTR), Geologic Sequestration Site Characterization (GSSC), and ICCS (Research). This active web map is updated frequently and provided for informational purposes only. The NETL Strategic Center for Coal Project Portfolio Web Map requires Microsoft Silverlight, a free downloadable browser plug-in. If Silverlight has not been installed previously you will be prompted to do so when the link is clicked to initiate the web map. Microsoft Silverlight is also available at: http://www.microsoft.com/getsilverlight/Get-Started/Install/Default.aspx.

150

Cloudy Skies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J. linn J. linn Space Science and Technology Division Los Alamos National Laboratory iLos Alamos, NM 87545 The earth's weather and climate are influenced strongly by phenomena associated with clouds. Therefore, a general circulation model (GCM) that models the evolution of weather and climate must include an accurate physical model of the clouds. This paper describes our efforts to develop a suitable cloud model. It concentrates on the microphysical processes that determine the evolution of droplet and ice crystal size distributions, precipitation rates, total and condensed water content, and radiative extinction coefficients. We assume a fixed temperature, acloud vertical thickness, and concentrations and size distributions of cloud condensation nuclei (CCN) and ice condensation nuclei

151

Sky Volt | Open Energy Information  

Open Energy Info (EERE)

Volt Volt Jump to: navigation, search Name Sky Volt Facility Sky Volt Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sky Volt LLC (community owned) Energy Purchaser City of Greenfield - excess to Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.29038343°, -94.48851585° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.29038343,"lon":-94.48851585,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

A Review of Sloped Solar Updraft Power Technology  

Science Journals Connector (OSTI)

Abstract The Solar Updraft Power Plant (SUPP) concept was successfully proven in the last few decades through many experimental and analytical approaches. However, the high investment cost compared to the plant efficiency and the limited height of the chimney due to the technological constraints are considered the main disadvantages of the SUPP. In order to overcome these problems, many novel concepts were proposed; One being the Sloped Solar Updraft Power Plant (SSUPP). This paper provides a comprehensive overall review for all SSUPP researches up-to-date including the principle with a description of the plant, physical process, theoretical and experimental studies.

Shadi Kalash; Wajih Naimeh; Salman Ajib

2014-01-01T23:59:59.000Z

153

Technology status and project development risks of advanced coal power generation technologies in APEC developing economies  

SciTech Connect (OSTI)

The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

Lusica, N.; Xie, T.; Lu, T.

2008-10-15T23:59:59.000Z

154

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

155

MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...  

Open Energy Info (EERE)

MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology Profile Primary Organization SeaNergy...

156

Understanding the adoption of solar power technologies in the UK domestic sector.  

E-Print Network [OSTI]

??The aim of this thesis was to provide new insights into the adoption of solar power technologies. Policy has identified solar technologies capable of providing (more)

Faiers, Adam

2009-01-01T23:59:59.000Z

157

Net Power Technology NP Holdings or NPH | Open Energy Information  

Open Energy Info (EERE)

Net Power Technology NP Holdings or NPH Net Power Technology NP Holdings or NPH Jump to: navigation, search Name Net Power Technology (NP Holdings or NPH) Place Chanchun, Jilin Province, China Sector Efficiency, Renewable Energy Product China-based company, focused on electricity storage systems based on zinc-bromide redox flow cells for renewable energy and energy efficiency applications. Coordinates 40.911701°, 45.354198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.911701,"lon":45.354198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

GridWise: Transforming the Power Grid with Information Technology  

SciTech Connect (OSTI)

GridWise is a vision for the future electric system shared by a new DOE initiative and an industry alliance. GridWise is built upon the fundamental premise that information technology will profoundly transform the planning and operation of the power grid, just at is has changed business, education, and entertainment. The electric power system has served us remarkably well for over half a century. However, with business-as-usual solutions, the U.S. will invest around $450 billion in conventional electric infrastructuregeneration, transmission, and distributionover the next 20 years just to meet demand for a growing population and economy. Even more investment will be needed to relieve the growing backlog of deferred transmission additions. Since the mortgage on infrastructure is a major component of electric rates, economic prosperity and our way of life depend upon minimizing the need for new infrastructure by increasing the utilization of these assets. This paper discusses the GridWise vision and describes some example technologies and how they are woven together to fundamentally alter the way the power grid works. The benefits of an information-rich power system and key elements of the DOEs new GridWise initiative are also presented.

Pratt, Robert G.; Lightner, Eric M.

2004-10-28T23:59:59.000Z

160

Wind power project siting workshop: emerging issues and technologies  

SciTech Connect (OSTI)

With wind power development extending more broadly across the various regions of the United States, and with new participants entering the wind development business, AWEA developed a workshop on the various ways in which wind power projects affect--and don't affect--elements of the human and natural environment. Over 180 people gathered in Portland, OR on October 13-14, 2004 to participate in a day and a half of presentations by 20 leading industry specialists. Their presentations covered emerging issues of project siting, such as bat interactions and wildlife survey techniques, and methods of generating local support for wind projects. Workshop topics included: Avian and Bat Research Updates; Wildlife Survey Technologies & Techniques; Technical Issues such as Noise, Aesthetics, and Lighting; National Environmental Policy Act (NEPA) Scenarios and Federal Land Policies; Tribal & Community Relations; Federal & State Permitting Process; and Bureau of Land Management Wind Power Developments.

anon.

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...  

Broader source: Energy.gov (indexed) [DOE]

technologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150...

162

STUDY AND ANALYSIS ON TECHNOLOGY AND DEVELOPMENT OF INFORMATION NETWORK OF RURAL POWER GRID  

Science Journals Connector (OSTI)

This paper describes the technology and transferring mode of rural power grids information network, analyses technology of communication system of electric power grid in rural area, chooses a new develop ... on ...

Weiying Li

2009-01-01T23:59:59.000Z

163

Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment...  

Broader source: Energy.gov (indexed) [DOE]

Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test...

164

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

165

Powered by technology or powering technology? Belief-based decision-making in nuclear power and synthetic fuel.  

E-Print Network [OSTI]

?? The overarching question in this study is how and why technical-fixes in energy policy failed. In the post-WWII era, civilian nuclear power and synthetic (more)

Yang, Chi-Jen

2008-01-01T23:59:59.000Z

166

Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The Advanced Power Electronics and Electric Machinery subprogram within the DOE Vehicle Technologies Office provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric machinery technologies that will leapfrog current on-the-road technologies.

167

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov (indexed) [DOE]

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

168

Dysprosium, the balance problem, and wind power technology  

Science Journals Connector (OSTI)

Abstract Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is covered by critical REE rich deposits or Dy rich deposits, the increase in Dy demand results in an oversupply of Ce and Y only, while the demand for Nd and La exceeds their supply. In the case of an oversupply of REEs, the environmental impacts associated with the \\{REEs\\} production should be allocated to Dy and consequently to the technologies that utilize the metal. The results also show that very large quantities of thorium will be co-produced as a result of the demand for Dy. The thorium would need to be carefully disposed of, or significant thorium applications would need to be found.

Ayman Elshkaki; T.E. Graedel

2014-01-01T23:59:59.000Z

169

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

Susan M. Capalbo

2004-10-31T23:59:59.000Z

170

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

171

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

172

HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program  

SciTech Connect (OSTI)

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

173

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

174

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

175

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

Williams, & Jonas Monast, Wind Power: Barriers and Policyheat, photovoltaics, wind power, biomass, and hydroelectrictechnology. 183 Including wind power in states Renewable

Ferraina, Steven

2014-01-01T23:59:59.000Z

176

Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector  

E-Print Network [OSTI]

coal power generation technologies in Vietnam. It ranks their severity by applying the analytical sites. For advanced coal power technologies, the barriers are weak industrial capability, high cost Institute of Technology, Thailand. 1 halshs-00444826,version1-7Jan2010 #12;1. Introduction There are many

Boyer, Edmond

177

Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector  

E-Print Network [OSTI]

coal power generation technologies in Vietnam. It ranks their severity by applying the analytical sites. For advanced coal power technologies, the barriers are weak industrial capability, high cost Institute of Technology, Thailand. 1 halshs-00444826,version1-7Jan2010 Author manuscript, published

Boyer, Edmond

178

Blue Sky Energy Inc BSE | Open Energy Information  

Open Energy Info (EERE)

Energy Inc BSE Energy Inc BSE Jump to: navigation, search Name Blue Sky Energy Inc (BSE) Place Vista, California Zip 92081 Product MPPT (Maximum Power Point Tracking) technology. Own a patented technology allowing an increase of power from a PV array of up to 30% more than conventional controllers. Coordinates 37.989712°, -93.665689° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.989712,"lon":-93.665689,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

This introduction to wind power technology is meant to help communities begin considering or  

E-Print Network [OSTI]

This introduction to wind power technology is meant to help communities begin considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology available in the United States. We also recommend a visit to a modern wind power installation ­ it will answer many

Massachusetts at Amherst, University of

180

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies  

E-Print Network [OSTI]

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced coal technologies in Czech heat and power systems  

SciTech Connect (OSTI)

Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently necessary steps in making coal utilisation more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. Preparatory steps have been taken in building an advanced combustion unit fuelled by pulverised coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper then coal) do not oblige to increase efficiency of the standing equipment applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalisation of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in near future.

Noskievic, P.; Ochodek, T. [VSB-Technical Univ., Ostrava (Czechoslovakia)

1998-04-01T23:59:59.000Z

182

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

183

Technology verification phase. Dynamic isotope power system. Final report  

SciTech Connect (OSTI)

The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

Halsey, D.G.

1982-03-10T23:59:59.000Z

184

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

2004. Grid Connected Wind Power in China. NREL/Commercialization of Wind Power Technology in China. Coal and Candles: Wind Powerin China. EnergyPolicy

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

185

SkyFuel Inc | Open Energy Information  

Open Energy Info (EERE)

SkyFuel Inc SkyFuel Inc Jump to: navigation, search Logo: SkyFuel Inc Name SkyFuel Inc Address 18300 W Highway 72 Place Arvada, Colorado Zip 80007 Sector Solar Product Solar thermal power Website http://www.skyfuel.com/ Coordinates 39.862942°, -105.206509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.862942,"lon":-105.206509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

MHK Technologies/FRI El Sea Power System | Open Energy Information  

Open Energy Info (EERE)

El Sea Power System El Sea Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The device is composed of a floating structure vessel and various horizontal axis turbines positioned at regular intervals on a horizontal adjustable and modular tube the so called line This tube also functions as transmission shaft for the power captured from water flows and transferred to the electric generator which eventually transforms it into electrical energy

187

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network [OSTI]

This work introduces a model of Future Technology Transformations for the power sector (FTT:Power), a representation of global power systems based on market competition, induced technological change (ITC) and natural resource use and depletion. It is the first component of a family of sectoral bottom-up models of technology, designed for integration into the global macroeconometric model E3MG. ITC occurs as a result of technological learning produced by cumulative investment and leads to highly nonlinear, irreversible and path dependent technological transitions. The model uses a dynamic coupled set of logistic differential equations. As opposed to traditional bottom-up energy models based on systems optimisation, such differential equations offer an appropriate treatment of the times and structure of change involved in sectoral technology transformations, as well as a much reduced computational load. Resource use and depletion are represented by local cost-supply curves, which give rise to different regional...

Mercure, J -F

2012-01-01T23:59:59.000Z

188

Technology investment decisions under uncertainty : a new modeling framework for the electric power sector  

E-Print Network [OSTI]

Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

Santen, Nidhi

2013-01-01T23:59:59.000Z

189

Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

190

Photovoltaics for Bulk Power Applications: Cost/Performance Targets and Technology Prospects  

Science Journals Connector (OSTI)

Photovoltaic (PV) power technology has shown steady progress over the past ten years toward its ultimate use in bulk i.e., energy-significant electric power applications, including demonstration of highly ...

Edgar A. DeMeo

1991-01-01T23:59:59.000Z

191

Work for the DOE Office of Power Technology - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Power of Power Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Energy System Applications Bookmark and Share DOE Office of Power Technology NDE for Ceramics in Microturbines The concept of distributed energy systems using small gas turbines (< 500

192

2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 2427.

193

Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

194

High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies  

Broader source: Energy.gov [DOE]

Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

195

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

196

Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis  

Broader source: Energy.gov [DOE]

Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

197

Improving the liquid-cooling systems of power units and technological equipment  

Science Journals Connector (OSTI)

Processes in the liquid cooling systems of power units and technological equipment are considered. Criteria ... of the energy and resource aspects of the cooling systems.

V. A. Zhukov

2011-12-01T23:59:59.000Z

198

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

199

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network [OSTI]

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

200

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

COBE Sky Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COBE sky map COBE sky map This map of the ancient sky shows the minute variations in the microwave background discovered by the team led by Lawrence Berkeley Laboratory astrophysicist George Smoot. As seen in the map, vast regions of space have minute variations in temperature. Over billions of years, gravity magnified these small differences into the clusters of galaxies we observe today. Displayed horizontally across the middle of the map is the Milky Way galaxy. The image, a 360-degree map of the whole sky, shows the relic radiation from the Big Bang. The map was derived from one year of data taken by the Differential Microwave Radiometers onboard NASA's Cosmic Background Explorer satellite. Using Galactic coordinates, the map shows the plane of the Milky Way galaxy horizontally and the center of our galaxy at its

202

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

203

Customizable Fuel Processor Technology Benefits Fuel Cell Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Industries Automotive - range extenders for electric vehicles Residential heat and power Remote and portable power More Information Fuel processors have been...

204

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

205

Electric Power Esearch Institute: Environmental Control Technology Center  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI Integrated SO{sub x}/NO{sub x} removal process, the DOE PRDA testing of the B&W/Condensing Heat Exchanger (CHX), and support for the Semi-Continuous On-line Mercury Analyzer. The test configuration utilized in the EPRI Integrated SO{sub x}/NO{sub x} removal process included the 4.0 MW Spray Dryer Absorber (SDA), the Pulse-jet Fabric Filter (PJFF), and a new Selective Catalytic Reduction (SCR) reactor installed at the ECTC. During this testing, O&M support was also required to conclude the test efforts under the EPRI Hazardous Air Pollutant (HAP) test block. This included the on-site development efforts for the Semi-Continuous On-line Mercury Analyzer. In the DOE PRDA project with the B&W/Condensing Heat Exchanger (CHX), the effects of the increased particulate loading to the unit were monitored throughout the month. Also, the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly.

NONE

1996-11-01T23:59:59.000Z

206

The Solar Power Tower Jlich A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbzl; G. Koll

2009-01-01T23:59:59.000Z

207

Air Cooling Technology for Power Electronic Thermal Control  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

208

Air Cooling Technology for Power Electronic Thermal Control  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

209

Two-Phase Cooling Technology for Power Electronics  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

210

MHK Technologies/Small power take off module | Open Energy Information  

Open Energy Info (EERE)

power take off module power take off module < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Small power take off module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The 18 5kW power modules consist of a 5th generation Wells turbine valve and noise attenuator The complete modules weigh less than a tonne so installation or removal is easily achievable using a small mobile crane The modules are very simple and rugged the blades are fixed onto the rotor have no pitching mechanism no gearbox and have no contact with seawater

211

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

212

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

213

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

214

Assessment of postcombustion carbon capture technologies for power generation  

Science Journals Connector (OSTI)

A significant proportion of power generation stems from coal-combustion processes and accordingly represents one of the largest point sources of CO2 emissions worldwide. Coal power plants are major assets with la...

Mikel C. Duke; Bradley Ladewig; Simon Smart

2010-06-01T23:59:59.000Z

215

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

216

V2G Technology for Designing Active Filter System to Improve Wind Power Quality  

E-Print Network [OSTI]

V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

Pota, Himanshu Roy

217

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network [OSTI]

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

218

Air Cooling Technology for Power Electronic Thermal Control  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

219

Harnessing the Power of Data, Technology and Innovation for a...  

Office of Environmental Management (EM)

Moniz Secretary of Energy Dr. John P. Holdren Dr. John P. Holdren Director of the White House Office of Science and Technology Policy Editor's note: This article originally...

220

New High-Power Laser Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

edge technology developers to pioneer applications that accelerate the adoption of geothermal energy. In 2013, Foro Energy, Inc. (Foro) partnered with the GTO, through a 50...

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technology transfer: solar power and distributed rural electrification  

Science Journals Connector (OSTI)

The research objective is to assess and transfer high efficiency multi-junction photovoltaic cell technology developed at the National Renewable Energy Lab to a start-up venture. The technology integrates a rooftop satellite-dish sized reflector that tracks and concentrates solar energy onto the target cell. There are still rural communities in the world where

Stephen W. Jordan; Tugrul U. Daim

2012-01-01T23:59:59.000Z

222

Power Consumption in Bufferless Optical Packet Switches in SOA Technology  

Science Journals Connector (OSTI)

Increase in data transmission and processing speed unavoidably leads to high requirements on power supply. Especially in the case of high-capacity electronic routers, the question of...

Eramo, V; Listanti, M

2009-01-01T23:59:59.000Z

223

1995 Asia investment survey - coal, private power, and technology  

SciTech Connect (OSTI)

An investment survey for Asia is presented. The market for fossil-fuel power plants and air pollution control are discussed.

Johnson, C.J.; Binsheng Li

1995-06-01T23:59:59.000Z

224

Air Cooling Technology for Advanced Power Electronics and Electric...  

Broader source: Energy.gov (indexed) [DOE]

OF AIR COOLING FOR USE WITH AUTOMOTIVE POWER ELECTRONICS Desikan Bharathan, Kenneth Kelly National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado, 80401...

225

Potential of the Power-to-Heat Technology in District Heating Grids in Germany  

Science Journals Connector (OSTI)

Abstract The increasing amount of power generation from weather-dependent renewable sources in Germany is projected to lead to a considerable number of hours in which power generation exceeds power demand. One possibility to take advantage of this power surplus is through the Power-to-Heat technology. As combined heat and power (CHP)-plants can be upgraded relatively easily with a Power-to-Heat facility, a huge potential can be developed in German district heating grids which are mainly served by CHP-plants. In this paper the potential of the Power-to-Heat technology in district heating grids in Germany is evaluated for the years 2015 to 2030 under different assumptions.

Diana Bttger; Mario Gtz; Nelly Lehr; Hendrik Kondziella; Thomas Bruckner

2014-01-01T23:59:59.000Z

226

Wind and Water Power Technologies FY'14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

1 WIND & WATER POWER TECHNOLOGIES WIND POWER PROGRAM FY14 BUDGET AT-A-GLANCE Wind and Water Power Technologies accelerates U.S. deployment of clean, affordable and reliable domestic wind power through research, development and demonstration. These advanced technology investments directly contribute to the President's goals for the United States to double renewable electricity generation again by 2020 and to achieve 80 percent of its electricity from clean, carbon-free energy sources by 2035 through reducing costs and increasing performance of wind energy systems. Wind power currently provides 3.5 percent of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than

227

Coal-fired power generation: Proven technologies and pollution control systems  

SciTech Connect (OSTI)

During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

Balat, M. [University of Mah, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

228

Reactive Power Compensation Technologies, State-of-the-Art Review  

E-Print Network [OSTI]

at all levels of power transmission, it improves HVDC (High Voltage Direct Current) conversion terminal performance, increases transmission efficiency, controls steady-state and temporary overvoltages [4], and can the performance of the overall ac power system. Traditionally, rotating synchronous condensers and fixed

Catholic University of Chile (Universidad Católica de Chile)

229

RF power potential of 45 nm CMOS technology  

E-Print Network [OSTI]

This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

Putnam, Christopher

230

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

231

Solar Thermionic Space Power Technology Testing: A Historical Perspective  

Science Journals Connector (OSTI)

This paper provides a brief overview of both the past and recent efforts aimed at the development and testing of solar thermionic space power systems. Recently the Air Force has been investigating the feasibility of developing a thermionic generator heated with a large inflatable solar concentrator for orbital space power missions with electrical power requirements that exceed 50 kWe. This concept analysis follows a similar study by the NASA Jet Propulsion Laboratory in the 1960s where the objective was a 500 We power generator for interplanetary probes. Details of the potential missions system designs and power specifications as well as results of ground tests and demonstrations are detailed and compared for each era.

Steven F. Adams

2006-01-01T23:59:59.000Z

232

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota  

E-Print Network [OSTI]

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota Abstract an implementation of V2G technology is proposed here to improve the quality and stability of wind power output

Pota, Himanshu Roy

233

Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

234

Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

235

DOE Awards $20 Million to Develop Geothermal Power Technologies  

Broader source: Energy.gov [DOE]

DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids.

236

Market Power and Technological Bias: The Case of Electricity Generation  

E-Print Network [OSTI]

, the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... , Cambridge CB3 9DE, UK, Tel: ++ 44 1223 335200, paul.twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However...

Twomey, Paul; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

237

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

238

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

239

Thermoelectric power generation materials: Technology and application opportunities  

Science Journals Connector (OSTI)

Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions (67 missions to date, more than 30 years of life) as well as terrestrial applic...

Jean-Pierre Fleurial

2009-04-01T23:59:59.000Z

240

Gasifier-based power generation: Technology and economics  

Science Journals Connector (OSTI)

The paper describes a 100 kW power generation system installed at Port Blair, Andaman and Nicobar Islands, under a project sponsored by the Department of Non-Conventional Energy Sources, Government of India. The ...

B N Baliga; S Dasappa; U Shrinivasa; H S Mukunda

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network [OSTI]

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

242

Photo of the Week: Improving Power Plant Technology... in 3-D | Department  

Broader source: Energy.gov (indexed) [DOE]

Improving Power Plant Technology... in 3-D Improving Power Plant Technology... in 3-D Photo of the Week: Improving Power Plant Technology... in 3-D June 6, 2013 - 12:58pm Addthis This week, Secretary Ernest Moniz experienced the 3-D visualizations at the Consortium for the Advanced Simulation of Light Water Reactors (CASL), one of the Department's Energy Innovation Hubs. The facility, located at Oak Ridge National Laboratory, develops computer models that simulate nuclear power plant operations. The researchers at CASL are developing technology that could accelerate upgrades at existing nuclear plants while improving the plants' reliability and safety. Check out more photos from Secretary Moniz's visit to CASL. | Photo courtesy of Oak Ridge National Laboratory.

243

A Explanatory Model of Public Acceptance for Nuclear Power Technology: From Low-Carbon Perspective  

Science Journals Connector (OSTI)

There are not so many literature about nuclear power technology of public acceptance in China, but different scholars have different opinions about the determinants of public acceptance. Xi and Xue studied that w...

Yuan-hua Yang; Li Li; Guo-hua Niu

2013-01-01T23:59:59.000Z

244

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

245

Study on the use of VLSI ASIC technology for generic power system computer relay architectures  

E-Print Network [OSTI]

This thesis discusses the feasibility of improving power system computer relay devices using Very Large Scale Integration technology. It outlines the functionality that is required of this equipment A high-level design that attempts to use dedicated...

Faulkner, Kenneth Ray

2012-06-07T23:59:59.000Z

246

Clean Coal Technology and the Clean Coal Power Initiative | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies tested in the original program achieved commercial success. The early program, however, was focused on the environmental challenges of the time - primarily concerns over the impact of acid rain on forests and

247

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

248

MHK Technologies/Sea Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating plant skims off a small percentage of the surface layer to use as the heat source. For the heat sink, the plant has a large diameter submerged pipe to pump up the heavier frigid water below. A small amount of heat is extracted from the warm water and a lesser amount is put into the cold water. The net difference in energy flow is turned into electricity and fresh water and/or fuels and other useful products. Electricity is transmitted to shore through an underwater cable.The warm surface ocean water is pumped to the boiler, which transfers heat to the working fluid, turning it into a high-pressure vapor. The turbine generator spins as the vapor rushes through it to reach the low-pressure condenser, which is cooled by the nearly freezing water brought up from the ocean depths. After condensing, the working fluid is sent back to the boiler to be reused and to repeat the cycle.

249

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network [OSTI]

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

250

IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic  

E-Print Network [OSTI]

IEEEProof IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic-Wecksler, Member, IEEE, William K. Durfee, and G´eza F. Kogler 3 4 Abstract--Ankle-foot orthoses (AFOs) can be used Index Terms--Active assist, ankle-foot orthosis (AFO), fluid17 power, gait.18 I. MOTIVATION19 FOR MOST

Durfee, William K.

251

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

252

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

253

5. annual clean coal technology conference: powering the next millennium. Volume 2  

SciTech Connect (OSTI)

The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

NONE

1997-06-01T23:59:59.000Z

254

Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Christos Altantzis, MIT, and Martin Schmitt, LAV. All the images were generated from their work at LAV. Cosmological Simulations for Large-Scale Sky Surveys PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Chemistry The combustion of coal and petroleum-based fuels supply most of the energy needed to meet the world's transportation and power generation demands. To address the anticipated petroleum shortage, along with increasing energy

255

Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators  

SciTech Connect (OSTI)

Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

1993-08-01T23:59:59.000Z

256

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

Susan M. Capalbo

2005-01-31T23:59:59.000Z

257

Applications of high-temperature superconductors in power technology  

Science Journals Connector (OSTI)

Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20?K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

John R Hull

2003-01-01T23:59:59.000Z

258

Concentrating Solar Power Program Technology Overview (Fact Sheet)  

SciTech Connect (OSTI)

Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

Not Available

2001-04-01T23:59:59.000Z

259

Fuel Cell Technologies Office: Transportation and Stationary Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

260

Parametric study for the penetration of combined cycle technologies into Cyprus power system  

Science Journals Connector (OSTI)

In this work, a parametric study concerning the use of combined cycle technologies for power generation, by independent power producers in Cyprus, is carried out. The costbenefit analysis is carried out using the Independent Power Producers optimization algorithm in which the electricity unit cost is calculated. Various conventional generation options are examined, such as, steam turbines and open cycle gas turbines, and compared with a parametric study (variations in fuel type, capital cost and efficiency) for combined cycle technologies. The results indicate that the future use of combined cycle technology with natural gas as fuel is recommended. Furthermore, it is estimated that by the use of natural gas combined cycle, the CO2 emissions environmental indicator of Cyprus power industry would be significantly reduced.

Andreas Poullikkas

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

262

Application of membrane technology to power generation waters  

SciTech Connect (OSTI)

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

263

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT  

E-Print Network [OSTI]

THERMAL POWER PROJECT #12;PIPING MTO 1089-202-108 1 2 1 BE,7.1Thk.,Welded To ANSI B-36.10 12" 165 M/4" 6 2.2 12" 12" 4 3" 3" 1 2" 2" 2 Equal Tee, SW, 3000#, ANSI B-16.11 1½" 1½" 5 ASTM A105 12" 6" 4 3" 2" 2 Reducing Tee, SW, 3000#, ANSI B-16.11 1½" 3/4" 2 ASTM A105 1½" 2 3/4" 15 Threaded pipet (NPT) 1" 6

Narayanan, H.

264

Desert Sky Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Desert Sky Wind Farm Desert Sky Wind Farm Jump to: navigation, search Name Desert Sky Wind Farm Facility Desert Sky Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner American Electric Power Developer GE Energy Energy Purchaser City of San Antonio Texas (Utility Company) Location Pecos County TX Coordinates 30.926626°, -102.100067° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.926626,"lon":-102.100067,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Hacking the Sky  

E-Print Network [OSTI]

In this article I present some special astronomical scripts created for Google Earth, Google Sky and Twitter. These 'hacks' are examples of the ways in which such tools can be used either alone, in on conjunction with online services. The result of a combination of multiple, online services to form a new facility is called a mash-up. Some of what follows falls into that definition. As we move into an era of online data and tools, it is the network as a whole that becomes important. Tools emerging from this network can be capable of more than the sum of their parts.

Simpson, R J

2009-01-01T23:59:59.000Z

266

Preliminary exploration on low-carbon technology roadmap of Chinas power sector  

Science Journals Connector (OSTI)

Climate change poses huge challenges to the sustainable development of human society. As a major CO2 emission source, decarbonization of power sector is fundamental for CO2 emission abatement. Therefore, considering the carbon lock-in effects, its critical to formulate an appropriate roadmap for low-carbon generation technologies. In this paper, key low-carbon technology solutions are firstly identified according to their developing prospects and the fundamental realities of Chinas power sector. Then, costs, reduction effects and potentials for the key technology options are evaluated. On this basis, typical scenarios are selected and a scenario set is established which identifies and incorporates the key low carbon factors, and a multi-scenario analysis is implemented to Chinas power sector based on a comprehensive power mix planning model. Then, contributions of CO2 reduction among the key technology solutions are revealed. Prospect for CO2 emission reduction is discussed, which informs the possible emission trajectories towards 2030. Finally, low-carbon technology roadmaps under specific scenarios are elaborated, which implies corresponding optimal evolution of power generation mix.

Qixin Chen; Chongqing Kang; Qing Xia; Dabo Guan

2011-01-01T23:59:59.000Z

267

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

268

Power load forecasting using data mining and knowledge discovery technology  

Science Journals Connector (OSTI)

Considering the importance of the peak load to the dispatching and management of the electric system, the error of peak load is proposed in this paper as criteria to evaluate the effect of the forecasting model. This paper proposes a systemic framework that attempts to use data mining and knowledge discovery (DMKD) to pretreat the data. And a new model is proposed which combines artificial neural networks with data mining and knowledge discovery for electric load forecasting. With DMKD technology, the system not only could mine the historical daily loading which had the same meteorological category as the forecasting day to compose data sequence with highly similar meteorological features, but also could eliminate the redundant influential factors. Then an artificial neural network is constructed to predict according to its characteristics. Using this new model, it could eliminate the redundant information, accelerate the training speed of neural network and improve the stability of the convergence. Compared with single BP neural network, this new method can achieve greater forecasting accuracy.

Yongli Wang; Dongxiao Niu; Ling Ji

2011-01-01T23:59:59.000Z

269

Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xingye Wind Power Technology Co Ltd Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name Beijing Wende Xingye Wind Power Technology Co Ltd Place Beijing, China Sector Wind energy Product Beijing-based wind project developer. It has plans to develop Alateng Wind Farm, located in Inner Mongolia, China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

DOE Selects Projects to Advance Technologies for the Co-Production of Power  

Broader source: Energy.gov (indexed) [DOE]

Advance Technologies for the Co-Production Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks August 18, 2010 - 1:00pm Addthis Washington, DC - Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been selected for further development by the U.S. Department of Energy (DOE). The total value of the projects is approximately $8.2 million, with $6.4 million of DOE funding and $1.8 million of non-Federal cost sharing. Syngas is a mixture of predominantly carbon monoxide and hydrogen which can subsequently be converted either to power, fuels, or chemicals. The

271

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

272

Historical development of concentrating solar power technologies to generate clean electricity efficiently A review  

Science Journals Connector (OSTI)

Abstract The conventional ways for generating electricity around the world face two main problems, which are gradual increase in the earth?s average surface temperature (global warming) and depleting fossil fuel reserves. So switching to renewable energy technologies is an urgent need. Concentrating solar power (CSP) technologies are one of renewable technologies that are able to solve the present and future electricity problems. In this paper the historical evolution for the cornerstone plants of CSP technologies to generate clean electricity was reviewed and the current projects worldwide of CSP technologies were presented to show that the CSP technologies are technically and commercially proven and have the possibility for hybridization with fossil fuel or integration with storage systems to sustain continuous operation similar to conventional plants. Among all solar thermal technologies parabolic trough is the most technically and commercially proven. It also has the possibility for hybridization since it is proven by operating in several commercial projects for more than 28 years. It has a high maturity level and able to provide the required operating heat energy either as a stand-alone or in hybrid systems at the lowest cost and lower economic risks. For this reason, this technology is dominant in the operational and under-construction projects. However, currently there is a trend toward employing the other CSP technologies in the future projects as a result of the improvement in their performance. The use of PTC technology in the operational CSP projects is 95.7% and has decreased to 73.4% for the under-construction projects. Meanwhile, the uses of Fresnel collector (LFC), Tower power (TSP) and Stirling dish (SDC) technologies in the operational projects are 2.07%, 2.24%, and 0% respectively and have increased to 5.74%, 20.82% and 0.052% respectively for the under-construction projects. For the development projects, the use of TSP technology has reached to 71.43%, compared to 28.57% for PTC.

Dhyia Aidroos Baharoon; Hasimah Abdul Rahman; Wan Zaidi Wan Omar; Saeed Obaid Fadhl

2015-01-01T23:59:59.000Z

273

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment  

SciTech Connect (OSTI)

Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.

Parker, Steven A.; Beeson, Tracy A.

2009-11-20T23:59:59.000Z

274

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect (OSTI)

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

275

Grid-friendly wind power systems based on the synchronverter technology  

Science Journals Connector (OSTI)

Abstract Back-to-back PWM converters are becoming a realistic alternative to conventional converters in high-power wind power applications. In this paper, a control strategy based on the synchronverter technology is proposed for back-to-back PWM converters. Both converters are run as synchronverters, which are mathematically equivalent to the conventional synchronous generators. The rotor-side converter is responsible for maintaining the DC link voltage and the grid-side converter is responsible for the maximum power point tracking (MPPT). As the two converters are operated using the synchronverter technology, the formed wind power system becomes more friendly to the grid. Extensive real-time digital simulation results are presented to verify the effectiveness of the proposed method under normal operation and grid-fault scenarios.

Qing-Chang Zhong; Zhenyu Ma; Wen-Long Ming; George C. Konstantopoulos

2015-01-01T23:59:59.000Z

276

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

277

Applying Learning Curves to Modeling Future Coal and Gas Power Generation Technologies  

Science Journals Connector (OSTI)

Other potential improvements to the model include an expansion to cover competing energy technologies not included in the current model such as nuclear, wind, and solar. ... Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. ... Bergek, A.; Tell, F.; Berggren, C.; Watson, J.Technological Capabilities and Late Shakeouts: Industrial Dynamics in the Advanced Gas Turbine Industry, 19872002 Industrial and Corporate Change 2008, 17 ( 2) 335 392 ...

Chris Ordowich; John Chase; Daniel Steele; Ripudaman Malhotra; Michiaki Harada; Keiji Makino

2011-11-28T23:59:59.000Z

278

Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program  

SciTech Connect (OSTI)

A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

1993-01-01T23:59:59.000Z

279

NETL: News Release - Eyes in the Sky...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 28, 2003 August 28, 2003 Eyes in the Sky... Remote Sensing Technology Maps Flow of Groundwater from the Air Photo: Remote Sensor Suspended Beneath a Helicopter Detects Groundwater Beneath the Surface DOE is using remote sensors suspended from helicopters to map the flow of groundwater that may be affected by energy projects. In four states this past spring and summer, eyes have turned skyward as helicopters zig-zagged over hills and valleys, towing torpedo- or spiderweb-like contraptions that conjured up thoughts of Superman - "Look! Up in the sky!" But the "x-ray vision" in this case isn't comic-book fantasy. Instead, using aerial remote sensing techniques, researchers working with the U.S. Department of Energy are "seeing" through solid ground to create

280

New Sky Energy | Open Energy Information  

Open Energy Info (EERE)

New Sky Energy New Sky Energy Place Boulder, Colorado Sector Carbon Product Colorado-based startup that focuses on using chemical technology to convert carbon dioxide to usable outputs. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Technologies in a Grid Application heat, usually in thethe Grid. In this Grid the heat loads are not that great,Combined Heat and Power Technologies in a Grid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

282

LBNLs Low-NOx Combustion Technologies for Heat and Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Swirl Injectors for Swirl Injectors for High Hydrogen Fuel Gas Turbines Robert K. Cheng Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 Research supported by NETL - Fossil Energy, US Dept. of Energy Presentation at UTSR Workshop - Oct. 20, 2010 Participants and Collaborators  LBNL - Environmental Energy Technology Div.  Robert Cheng, David Littlejohn, Peter Therkelsen, Ken Smith & Sy Ali  United Tech. Research Center - Pratt & Whitney Power Systems  Dustin Davis, Catalin Fotache & Richard Tuthill  Florida Turbine Technologies  Russell Jones & Joe Brostmeyer  LBNL - Computational Research Div.  John Bell & Marc Day  Siemens Energy Inc.  Scott Martin & Enrique Portillo Bilbao  University of Iowa

283

Status of Rankine-cycle technology for space nuclear power applications  

SciTech Connect (OSTI)

A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

Holcomb, R.S.

1991-01-01T23:59:59.000Z

284

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

285

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants  

Broader source: Energy.gov [DOE]

"This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

286

How Wireless Power Charging Technology Affects Sensor Network Deployment and Routing  

E-Print Network [OSTI]

of environmental energy such as sunlight and acoustic vibra- tions [6]­[9]. However, the energy that a solar cell with a large solar cell; the low harvesting efficiency of small solar cells, together with uncontrollableHow Wireless Power Charging Technology Affects Sensor Network Deployment and Routing Bin Tong, Zi

Wang, Guiling

287

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

Science Journals Connector (OSTI)

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System ... In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. ...

A.I. Schfer; A. Broeckmann; B.S. Richards

2006-12-29T23:59:59.000Z

288

NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)  

SciTech Connect (OSTI)

Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

Not Available

2010-08-01T23:59:59.000Z

289

An evaluation of the dismantling technologies for decommissioning of nuclear power plants  

Science Journals Connector (OSTI)

Abstract This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator.

KwanSeong Jeong; ByungSeon Choi; Jeikwon Moon; Dongjun Hyun; JongHwan Lee; IkJune Kim; GeunHo Kim; JaeSeok Seo

2014-01-01T23:59:59.000Z

290

MHK Technologies/Device for the Power Advantage of Sea Currents | Open  

Open Energy Info (EERE)

for the Power Advantage of Sea Currents for the Power Advantage of Sea Currents < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Device for the Power Advantage of Sea Currents.jpg Technology Profile Primary Organization Carmelo Vell n Technology Resource Click here Current Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The project is a device for connection of turbines or hydraulic wheels in order to obtain energy from a water current variable in depth and direction of flow Its installation is executed by a mechanism of pivots in a direct way or a ballast at the sub aqueous bottom Its particular hydrodynamic morphology contributes to the direction and stabilization of all the set in the direction and sine of the current It has a series of devices able to measure the intensity of the current flow to orient the equipment towards the most favorable angle of attack of that flow towards the turbine It s applicable to any type of water current but it s especially suitable for the location in a basic sea current It allows to lodge different types from turbines or hydraulic wheels with the main object of the obtaining of energy preferably electrical which can be obtained by the combination of the turbine installed with a generator The project is placed then in the scope of the ecological and rene

291

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

292

Application of CFB technology for large power generating units and CO{sub 2} capture  

SciTech Connect (OSTI)

Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units are used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.

Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.; Khaneev, K. V.; Bondarenko, I. G.; Mel'nikov, D. A. [JSC 'All-Russian Thermotechnical Institute' ('VTI') (Russian Federation)

2010-07-15T23:59:59.000Z

293

Sky Train Corp | Open Energy Information  

Open Energy Info (EERE)

Train Corp Jump to: navigation, search Name: Sky Train Corp. Place: Palm Harbor, Florida Zip: 34684 Sector: Services Product: Sky Train Corporation is a consultant company...

294

Microsoft Word - NEPA Big Sky Final EA .doc  

Broader source: Energy.gov (indexed) [DOE]

886 886 FINAL ENVIRONMENTAL ASSESSMENT For The Big Sky Regional Carbon Sequestration Partnership - Phase III: Kevin Dome Carbon Storage Project U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY April 2013 U.S. Department of Energy Kevin Dome Carbon Storage Project National Energy Technology Laboratory Final Environmental Assessment i April 2013 COVER SHEET Responsible Agency: The U.S. Department of Energy (DOE) Title: Environmental Assessment for the Big Sky Regional Carbon Sequestration Partnership - Phase III: Kevin Dome Carbon Storage Project (DOE/EA-1886) Contact: For additional copies or more information about this Environmental Assessment, please contact: Mr. Bill Gwilliam U.S. Department of Energy

295

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

296

ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission  

E-Print Network [OSTI]

ECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission and distribution systems. Policy drivers. Assets and demand management. Smart grid Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

297

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network [OSTI]

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad Católica de Chile)

298

Prospects of Smart Grid Technologies for a Sustainable and Secure Power  

Open Energy Info (EERE)

Prospects of Smart Grid Technologies for a Sustainable and Secure Power Prospects of Smart Grid Technologies for a Sustainable and Secure Power Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prospects of Smart Grid Technologies for a Sustainable and Secure Power Supply Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.worldenergy.org/documents/p001546.pdf Equivalent URI: cleanenergysolutions.org/content/prospects-smart-grid-technologies-sus Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Resource Integration Planning,Enabling Legislation,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

299

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

SciTech Connect (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

300

Sensors and nuclear power. Report by the Technology Transfer Sensors Task Team  

SciTech Connect (OSTI)

The existing sensor systems for the basic process parameters in nuclear power plant operation have limitations with respect to accuracy, ease of maintenance and signal processing. These limitations comprise the economy of nuclear power generation. To reduce the costs and improve performance of nuclear power plant fabrication, operation, maintenance and repair we need to advance the sensor technology being applied in the nuclear industry. The economic viability and public acceptance of nuclear power will depend on how well we direct and apply technological advances to the industry. This report was prepared by a team with members representing a wide range of the nuclear industry embracing the university programs, national laboratories, architect engineers and reactor manufacturers. An intensive effort was made to survey current sensor technology, evaluate future trends and determine development needs. This included literature surveys, visits with utilities, universities, laboratories and organizations outside the nuclear industry. Several conferences were attended to take advantage of the access to experts in selected topics and to obtain opinions. Numerous telephone contacts and exchanges by mail supplemented the above efforts. Finally, the broad technical depth of the team members provided the basis for the stimulating working sessions during which this report was organized and drafted.

Not Available

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

KPV: A clear-sky index for photovoltaics  

Science Journals Connector (OSTI)

Abstract The rapidly growing installed base of distributed solar photovoltaic (PV) systems is causing increased interest in forecasting their power output. A key step towards this is accurately estimating the output from a PV system based on the known output from a nearby PV system. However, each PV system is unique with its own hardware configuration, orientation, shading, etc. Thus, the process of using the power output from one system to estimate the power output of another nearby system is not necessarily straightforward. In order to address these challenges, a modified clear-sky index for photovoltaics is proposed. This index is the ratio of the instantaneous PV power output to the instantaneous theoretical clear-sky power output derived from a clear-sky radiation model and PV system simulation routine. This definition performs better than previous clear-sky indices when both PV systems characteristics are known and the two PV systems have similar orientations. Through this index, the performance of a nearby PV system can be predicted quite accurately. This is demonstrated through the analysis of power output data from five residential PV systems in Canberra, Australia.

N.A. Engerer; F.P. Mills

2014-01-01T23:59:59.000Z

302

Blue Skies for China  

Science Journals Connector (OSTI)

...land degradation. Last year, 40% of urban wastewater was discharged into neighborhood water bodies...cost-effective pollution-control (such as wastewater treatment) and resource-recycling technologies, because the current processes...

Bojie Fu

2008-08-01T23:59:59.000Z

303

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect (OSTI)

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

304

Sky Cover from MFRSR Observations  

SciTech Connect (OSTI)

The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their model clear-sky counterparts are two main components of a new method for estimating the fractional sky cover of different cloud types, including cumulus clouds. The performance of this method is illustrated using 1-min resolution data from ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumulus clouds. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Flynn, Connor J.; Long, Charles N.

2011-07-01T23:59:59.000Z

305

Day, night and all-weather security surveillance automation synergy from combining two powerful technologies  

SciTech Connect (OSTI)

Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)

Morellas, Vassilios; Johnson, Andrew [Honeywell Labs, 3660, Technology Drive, Minneapolis MN 5518 (United States); Johnston, Chris [Honeywell ACS, 1985 Douglas Drive North, Golden Valley MN 55422 (United States); Roberts, Sharon D.; Francisco, Glen L. [L-3 Communications Infrared Products, 13532 N. Central Expressway, Dallas TX 75243 (United States)

2006-07-01T23:59:59.000Z

306

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

SciTech Connect (OSTI)

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

307

Big Sky Carbon Sequestration Partnership  

SciTech Connect (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

308

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

309

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

310

Power Supply Optimization in Sub-130 nm Leakage Dominant Technologies Man L Mui Kaustav Banerjee Amit Mehrotra  

E-Print Network [OSTI]

behaviour as a function of power supply and temperature. We use these models to calculate the full, it is essential to control the leakage power and the temperature of the die. One viable method for optimizingPower Supply Optimization in Sub-130 nm Leakage Dominant Technologies Man L Mui Kaustav Banerjee

311

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

312

Renewable energy technologies for the Indian power sector: mitigation potential and operational strategies  

Science Journals Connector (OSTI)

The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energyenvironment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of technoeconomic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socioenvironmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.

Debyani Ghosh; P.R. Shukla; Amit Garg; P.Venkata Ramana

2002-01-01T23:59:59.000Z

313

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facilitys electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

314

ClearEdge Power formerly Quantum Leap Technology | Open Energy Information  

Open Energy Info (EERE)

ClearEdge Power formerly Quantum Leap Technology ClearEdge Power formerly Quantum Leap Technology Jump to: navigation, search Name ClearEdge Power (formerly Quantum Leap Technology) Place Hillsboro, Oregon Zip 97124 Sector Hydro, Hydrogen Product Develops small scale (~2.0kW) hydrogen fuel cells using silicon wafers. Coordinates 43.651735°, -90.341144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.651735,"lon":-90.341144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Status of an advanced radioisotope space power system using free-piston Stirling technology  

SciTech Connect (OSTI)

This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel alternator electrical connections, thereby reducing vibration levels by more than an order of magnitude. It will also demonstrate use of an artificial neural network to monitor system health without invasive instrumentation. The second NASA contract, begun in January 1998, will develop an active adaptive vibration reduction system to be integrated with the DOE-funded TDC convertors. Preliminary descriptions and specifications of the Stirling convertor design, as well as program status and plans, are included.

White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

1998-07-01T23:59:59.000Z

316

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network [OSTI]

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

317

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

318

Shelter for the Sky  

SciTech Connect (OSTI)

A solemn ceremony in Slavutich Ukraine on April 26th 2007 marked the twenty-first anniversary of the most catastrophic accident in the history of commercial nuclear power. Significant progress has recently been made toward transformation of Chernobyl to an environmentally sound site. Many readers will recall that in only eight months following the 1986 accident, the Soviets constructed an enormous facility to contain the radioactive contamination in the remains of Chernobyl Nuclear Power Plant Unit-4. Popularly known as the sarcophagus, but correctly referred to as the Object Shelter, it has deteriorated with time and is now in danger of collapse. STABILIZATION Several measures to structurally stabilize the Object Shelter and prevent its collapse have recently been completed. These measures are the largest construction projects undertaken in the local zone since the completion of the Object Shelter. The most significant risk reduction was accomplished by Measure-2 in December 2006. Stabilization

Schmieman, Eric A.

2007-07-01T23:59:59.000Z

319

RECIPIENT:SkyFuel, Inc.  

Broader source: Energy.gov (indexed) [DOE]

SkyFuel, Inc. SkyFuel, Inc. u.s. DEPARTl.\IIEN T OF ENER qY EERE PROJECT MANAGEMENT CENTER NEPA DETERlvIINATION Page 1 of2 STATE: CO PROJECT TITL E: SkyFuel 8aseload Parabolic Trough Funding Opportunity Announcement Number Procurement I.nstrument N mber NEPA Control Number CID Number Baseload DE-EEOO03584 GFO-OOO3584-002 G03584 Based on my review oftbe information concerning the proposed achon, as NEP] Compliance Officer (authorized under DOE Order 4Sl.tA), I have made the followmg determmatlOn: ex, EA, EIS APPENDIX AND NUMBER: Descnptlon : 83.6 Small-scale Sltmg, construction, modification, operation, and de mmlSSlonlng of faCilities for smaliscale research research and and development projects; conventionallaboralory 0 rations (such as preparation of chemical

320

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Financial valuation of investments in future power generation technologies: nuclear fusion and CCS in an emissions trading system  

Science Journals Connector (OSTI)

This paper outlines a model approach for the financial valuation of future power generation technologies, such as nuclear fusion or carbon capture and storage (CCS) under an emissions trading regime. Since on imp...

Heinz Eckart Klingelhfer; Peter Kurz

2011-12-01T23:59:59.000Z

322

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

323

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Broader source: Energy.gov (indexed) [DOE]

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

324

Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI?s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

None

1997-11-01T23:59:59.000Z

325

NREL Power Technologies Energy Data Book (2006) : U.S. Electricity  

Open Energy Info (EERE)

: U.S. Electricity : U.S. Electricity Generation Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting, among other things, electricity generation. The series of datasets included are: electricity net generation (1980 - 2030); generation and transmission/distribution losses (1980 - 2030); and electricity trade (e.g. gross domestic firm power trade, gross imports from Mexico and Canada). Source NREL Date Released March 06th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Electricity Generation NREL Data

326

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

327

Red Sky with Red Mesa  

ScienceCinema (OSTI)

The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

None

2014-06-23T23:59:59.000Z

328

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Simon, J.; Mosey, G.

2013-01-01T23:59:59.000Z

329

NETL Coal to Hydrogen Program National Energy Technology Laboratory  

E-Print Network [OSTI]

/Hydrogen Production CCPI Technology Demonstrations (50/50) · Clear Skies · Reduced Carbon Intensity Clean Coal

330

One Sky Homes | Open Energy Information  

Open Energy Info (EERE)

Homes Jump to: navigation, search Name: One Sky Homes Place: Los Gatos, CA Website: http:www.oneskyhomes.com References: One Sky Homes1 Information About Partnership with NREL...

331

Green Skies of Brazil |GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Skies of Brazil Green Skies of Brazil Lucas Malta 2014.08.28 Not every professional gets to see on a daily basis the impact of herhis work on other people's lives. If you...

332

assumed, with no inter-district transport.) If the conventional technology coal-fired power plant is used  

E-Print Network [OSTI]

assumed, with no inter-district transport.) If the conventional technology coal-fired power plant-fired power plant is used for comparison, then lower SO2, NOx or particulate emissions can be expected in 9 of diesel captive plants in the Mangalore division is a matter of particular concern because the division

333

Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations  

Science Journals Connector (OSTI)

Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500C) and high temperatures (about 1000C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of raw materials until their disposal, following the from cradle to grave perspective. The environmental impact of the two power plants was simulated by using the software SimaPro 7.1, elaborated by PR Consultants and using the Eco-Indicator 99 methodology. Finally, the results of the analysis of the environmental impact are used to calculate the following parameters associated to the power plants: EPBT (Energy Pay-Back Time), CO2 emissions and GWP100 (Global Warming Potential over a 100year time horizon).

U. Desideri; F. Zepparelli; V. Morettini; E. Garroni

2013-01-01T23:59:59.000Z

334

Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler  

SciTech Connect (OSTI)

The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

Shingledecker, John P [ORNL; Wright, Ian G [ORNL

2006-01-01T23:59:59.000Z

335

Off-shore wind power potential evaluation and economy analysis of entire Japan using GIS technology  

Science Journals Connector (OSTI)

Off-shore wind energy has been drawing interest recently. This research is focusing on the potential analysis of off-shore wind energy surrounding entire Japan coast using GIS technology. Base on the economy and environment assessment, this research is evaluating the current situation and forecasting on future of wind energy technology in Japan. In order to reduce the green-house gas emission, renewable energy (such as wind energy, solar energy, fuel cell) will gradually substitute can be installed the primary energy resource (such as coal, oil, scale gas). Based on GIS technique, wind power turbines in the surrounding area of Japanese coast-line. In the study, 2,000 kW rated wind turbines are considered for further installation. As the result of this study, we have determined that 108,067 in 330 places number of off-shore with annual generation of 180.0 TWh are expected. This is equal to 20% of annual total generated power of Japan in 2010. Wind speed 6 m/s or more of the coastline, the average cost of electricity is about generation cost is within 10 to 17 Japanese Yen/kWh and construction cost is within 139,445 Japanese Yen/kW to 240,366 Japanese Yen/kW.

Asifujiang Abudureyimu; Yoshiki Hayashi; Zulati Litifu; Ken Nagasaka

2012-01-01T23:59:59.000Z

336

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Sorbents as a Solid Sorbents as a Retrofit Technology for CO 2 Capture from Coal-fired Power Plants Background Retrofitting the current fleet of pulverized coal (PC)-fired power plants for the separation and sequestration of carbon dioxide (CO 2 ) is one of the most significant challenges for effective, long-term carbon management. Post-combustion CO 2 capture using solid-sorbent based technologies is a potential resolution to this challenge that could be appropriate for both new and existing PC-fired power plant

337

Assessing employment in renewable energy technologies: A case study for wind power in Brazil  

Science Journals Connector (OSTI)

Abstract Environmental concerns and the search for climate change mitigation have led to the deployment of renewable energy technologies (RET) in several countries. The adoption of incentive policies, especially those based on heavy subsides, has motivated the discussion of social and economic benefits brought about by these technologies, mainly on the impact on employment rates. In this context, several studies have been conducted to quantify job creation by RET, concluding that the latter are more labor intensive than traditional fossil fueled technologies. However, results for different assessments vary largely due to distinct methodological approaches, and are frequently highly aggregated. Thus, results are not comparable or applicable to other contexts. Previous studies have failed to quantify the effects of imports and exports of RET equipment in total employment, usually associating employment and installed capacity in the year studied. This study has aimed to address these issues, creating an index for employment quantification based on production, instead of installed, capacity. We have estimated both direct jobs in manufacture, construction, and operation and management, and indirect jobs both in the upstream supply chains of materials and inputs to manufacture of wind turbines and construction of wind farms. We have also performed an assessment of jobs created in wind energy projects which are expected to begin operation in Brazil until 2017. The resulting job potential in Brazil corresponds to13.5 persons-year equivalent for each MW installed between manufacture and first year of operation of a wind power plant, and 24.5 persons-year equivalent over the wind farm lifetime. Results show that major contribution from wind power for job creation are in the construction stage and, despite of the low amount of jobs created in operation and maintenance relative to new installed capacity, those stable jobs stand out as they persist over the entire wind farm's life time.

Moana Simas; Sergio Pacca

2014-01-01T23:59:59.000Z

338

Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

NONE

1996-06-01T23:59:59.000Z

339

Blue energy: Current technologies for sustainable power generation from water salinity gradient  

Science Journals Connector (OSTI)

Abstract Salinity energy stored as the salinity difference between seawater and freshwater is a large-scale renewable resource that can be harvested and converted to electricity, but extracting it efficiently as a form of useful energy remains a challenge. With the development of membrane science and technology, membrane-based techniques for energy extraction from water salinity, such as pressure-retarded osmosis and reverse electro-dialysis, have seen tremendous development in recent years. Meanwhile, many other novel methods for harvesting exergy from water mixing processes, such as electrochemical capacitor and nano-fluidic energy harvesting systems, have been proposed. In this work, an overview and state-of-the-art of the current technologies for sustainable power generation from the water salinity gradient are presented. Characteristics of these technologies are analyzed and compared for this particular application. Based on these entropic energy extracting methods, the water salinity, as the blue energy, will be another source of renewable energy to satisfy the ever-growing energy demand of human society.

Zhijun Jia; Baoguo Wang; Shiqiang Song; Yongsheng Fan

2014-01-01T23:59:59.000Z

340

ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Koncinski, W.S.; O`Hara, L.M. [eds.; Hawsey, R.A.; Murphy, A.W. [comps.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

Hawsey, R.A. [comp.; Turner, J.W. [ed.

1996-05-01T23:59:59.000Z

342

ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

1997-05-01T23:59:59.000Z

343

ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Hawsey, R.A.; Murphy, A.W.

1999-04-01T23:59:59.000Z

344

ORNL superconducting technology program for electric power systems. Annual report for FY 1993  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

Hawsey, R.A. [comp.

1994-04-01T23:59:59.000Z

345

Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

346

Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review  

Science Journals Connector (OSTI)

Abstract The ever increasing penetration of renewable energy systems (RESs) in today deregulated intelligent power grids, necessitates the use of electrical storage systems. Energy storage systems (ESSs) are helpful to make balance between generation and demand improving the performance of whole power grid. In collaboration with RESs, energy storage devices can be integrated into the power networks to bring ancillary service for the power system and hence enable an increased penetration of distributed generation (DG) units. This paper presents different applications of electrical energy storage technologies in power systems emphasizing on the collaboration of such entities with RESs. The role of \\{ESSs\\} in intelligent micropower grids is also discussed where the stochastic nature of renewable energy sources may affect the power quality. Particular attention is paid to flywheel storage, electrochemical storage, pumped hydroelectric storage, and compressed air storage and their operating principle are discussed as well. The application of each type in the area of power system is investigated and compared to others.

Sam Koohi-Kamali; V.V. Tyagi; N.A. Rahim; N.L. Panwar; H. Mokhlis

2013-01-01T23:59:59.000Z

347

GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky |  

Broader source: Energy.gov (indexed) [DOE]

GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky GLAST Observatory Renamed for Fermi, Reveals Entire Gamma-Ray Sky August 26, 2008 - 3:20pm Addthis WASHINGTON, D.C. - The U.S. Department of Energy (DOE) and NASA announced today that the Gamma-Ray Large Area Space Telescope (GLAST) has revealed its first all-sky map in gamma rays. The onboard Large Area Telescope's (LAT) all-sky image-which shows the glowing gas of the Milky Way, blinking pulsars and a flaring galaxy billions of light-years away-was created using only 95 hours of "first light" observations, compared with past missions which took years to produce a similar image. Scientists expect the telescope will discover many new pulsars in our own galaxy, reveal powerful

348

ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

Gaustad, Krista; Gaustad, Krista; McFarlane, Sally; McFarlane, Sally

349

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

350

Climate and energy: a comparative assessment of the Satellite Power System (SPS) and alternative energy technologies  

SciTech Connect (OSTI)

The potential effects of five energy technologies on global, regional, and local climate were assessed. The energy technologies examined were coal combustion, light water nuclear reactors, satellite power systems, terrestrial photovoltaics, and fusion. The assessment focused on waste heat rejection, production of particulate aerosols, and emissions of carbon dioxide. The current state of climate modeling and long-range climate prediction introduces considerable uncertainty into the assessment, but it may be concluded that waste heat will not produce detectable changes in global climate until world energy use increases 100-fold, although minor effects on local weather may occur now; that primary particulate emissions from coal combustion constitute a small percentage of total atmospheric particulates; that carbon dioxide from coal combustion in the US alone accounts for about 30% of the current increase in global atmospheric CO/sub 2/, which may, by about 2050, increase world temperature 2 to 3/sup 0/C, with pronounced effects on world climate; that rocket exhaust from numerous launches during construction of an SPS may affect the upper atmosphere, with uncertain consequences; and that much research in climatology is needed before potential effects can be quantitatively predicted with any confidence. Although climatic impact is an appropriate concern in formulating long-term energy policy, the level of uncertainty about it suggests that it is not currently useful as a decision criterion. 88 references.

Kellermeyer, D.A.

1980-01-01T23:59:59.000Z

351

Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants  

SciTech Connect (OSTI)

Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

2011-09-30T23:59:59.000Z

352

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Broader source: Energy.gov (indexed) [DOE]

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

353

2012 SG Peer Review - The Perfect Power Prototype for the Illinois Institute of Technology - Mohmmad Shahidehpour, IIT  

Broader source: Energy.gov (indexed) [DOE]

Perfect Power Progress Report Perfect Power Progress Report Dr. Mohammad Shahidehpour DOE Peer Review | June 2012 Perfect Power @ IIT Perfect Power @ IIT Funded by the U.S. Department of Energy * $13.6M ($7.6M from DOE, $6M Cost Share) * 5 year project * Located at Illinois Institute of Technology (IIT) * Involves the entire campus * Partners: IIT, Exelon, S&C Electric, Schweitzer, IPS, Eaton Corporation, ZBB, CIYCOR, Continental Electric, Intelligent Generation This project aligns with the OE mission and the Smart Grid program goals to develop technologies to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply. Leadership Mohammad Shahidehpour (Principal Investigator) Project Advisor ComEd/Exelon

354

Overview of current development in electrical energy storage technologies and the application potential in power system operation  

Science Journals Connector (OSTI)

Abstract Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented.

Xing Luo; Jihong Wang; Mark Dooner; Jonathan Clarke

2015-01-01T23:59:59.000Z

355

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

356

IEEE PHOTONICS TECHNOLOGY LETTERS 1 High-Power 2.3-m GaSb-Based Linear Laser Array  

E-Print Network [OSTI]

2.3-m laser. Al Ga As Sb cladding layers. Details of the lasers' heterostructure design can be foundIEEE PHOTONICS TECHNOLOGY LETTERS 1 High-Power 2.3-m GaSb-Based Linear Laser Array L. Shterengas, G--High-power 2.3- m In(Al)GaAsSb­GaSb type-I double quantum-well diode laser arrays were fabricated

357

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the countrys industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits

2007-09-01T23:59:59.000Z

358

Solar Energy Technologies Program: Solar Multimedia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy EERE Home Programs & Offices Consumer Information Solar Multimedia search Home EERE » SunShot Initiative » Solar Multimedia Printable Version Bookmark and Share Feature Photo of 3 solar dishes, which have reflective, square-shaped material that creates a mirror image of the sky and clouds. Each dish is anchored to the ground by a vertical pole. Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Photovoltaics Concentrating Solar Power Concentrating Solar Power Solar Applications Residential Residential Commercial Commercial Large Installations Large Installations City and County City and County Federal Federal Manufacturing Manufacturing Development and Testing

359

Commercialization possibilities of Stirling engine technology for microscale power generation in Sweden; MicroStirling.  

E-Print Network [OSTI]

?? The presented masters thesis has evaluated the possibility of commercializing a research project at the Royal Institute of Technologys (KTH) Department of Energy Technology (more)

Backman, Peter

2012-01-01T23:59:59.000Z

360

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan  

SciTech Connect (OSTI)

In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

Miyasaka, Tadahisa

1993-12-31T23:59:59.000Z

362

Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem  

SciTech Connect (OSTI)

Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM architectures on Exascale computing systems.

Bergman, Keren

2014-08-28T23:59:59.000Z

363

Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the Power-to-gas-to-gas-to-power Technology  

Science Journals Connector (OSTI)

Abstract Excess energy produced from renewables can be stored and reused via the power-to-gas-to-power (PGP) technology. We present an innovative idea which represents a decarbonised extension of PGP based on a closed carbon cycle. Our show case for the cities Potsdam and Brandenburg/Havel (Germany) outlines an overall efficiency for the entire process chain of 28% with total costs of electricity of 20 eurocents/kWh. If existing locations in Europe, where natural gas storage in porous formations is performed, were to be extended by CO2 storage sites, a significant quantity of wind and solar energy could be stored economically as methane.

Michael Khn; Martin Streibel; Natalie Nakaten; Thomas Kempka

2014-01-01T23:59:59.000Z

364

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

E-Print Network [OSTI]

the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only...

Schfer, Andrea; Broeckmann, Andreas; Richards, Bryce

2007-01-01T23:59:59.000Z

365

The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system  

SciTech Connect (OSTI)

In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

366

NREL: Concentrating Solar Power Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. NREL collaborates with industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus on components R&D and systems analysis related to power tower and parabolic trough technologies: Collectors Receivers Power block Thermal energy storage Analysis. In addition, NREL has received funding through the following competitively awarded projects: 10-megawatt supercritical carbon dioxide (s-CO2) turbine test Near-blackbody, enclosed-particle receiver integrated with a

367

MW-class hybrid power system based on planar solid oxide stack technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

368

Products and Technologies | Department of Energy  

Energy Savers [EERE]

mechanisms for projects Project assistance Technology Deployment Image of a rooftop air conditioning unit with two skylights next to it and a blue sky with white clouds in...

369

Sky Vegetables | Open Energy Information  

Open Energy Info (EERE)

Vegetables Vegetables Jump to: navigation, search Name Sky Vegetables Address 45 Rosemary Street, Suite F Place Needham, MA Zip 02494 Sector Solar Website http://www.skyvegetables.com/i Coordinates 42.2882945°, -71.2335259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2882945,"lon":-71.2335259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Einstein and the Daytime Sky - D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D. Fun with polarizers D. Fun with polarizers In one respect, Einstein's mathematical analysis (like Rayleigh's earlier one) proves quite accurate, in a way that's easy to demonstrate. This has to do with how the sky's scattered light is polarized. Try looking at a patch of clear sky through one lens of a pair of polarizing sunglasses while you rotate the lens. You'll notice that the sky looks brighter as you look through the lens in some positions, and darker when the lens is in other positions. If the sun is not far from the patch of sky you're looking at, you'll find that the sky looks brightest when the sun is to the left or right of the lens, and darkest when the sun is "above the top" or "below the bottom" of the lens. Why is this? Any kind of wave-whether sound wave, water wave, light wave-is associated

371

Big Sky Regional Carbon Sequestration Partnership--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov William Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6569 william.aljoe@netl.doe.gov Leslie L. Schmidt Business Contact Montana State University-Bozeman 309 Montana Hall Bozeman, MT 59717-2470 406-994-2381 lschmidt@montana.edu Lee Spangler Technical Contact Montana State University-Bozeman P.O. Box 172460 Bozeman, MT 59717-2470 406-994-4399 spangler@montana.edu PARTNERS Battelle Pacific Northwest Division Center for Advanced Energy Studies Cimarex Energy Columbia University, Lamont-Doherty Earth Observatory Crow Tribe Big Sky Regional Carbon Sequestration

372

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network [OSTI]

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

373

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

374

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

375

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

376

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

377

Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors (Agreement ID:23726)  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

378

Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

379

Two-Phase Cooling Technology for Power Electronics with Novel Coolants  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

380

Development of a Dry Sorbent-Based Post Combustion CO2 Capture Technology for Retrofit in Existing Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Sorbent-Based Dry Sorbent-Based Post Combustion CO 2 Capture Technology for Retrofit in Existing Power Plants Background Currently available commercial processes to remove carbon dioxide (CO 2 ) from flue gas streams are costly and energy intensive. RTI International is heading a research team to continue development and scale-up of an innovative process for CO 2 capture that has significant potential to be less expensive and less energy intensive than conventional technologies. The "Dry Carbonate Process" utilizes a dry,

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

SciTech Connect (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

382

Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications  

SciTech Connect (OSTI)

Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

Stone, J.R.

1994-07-01T23:59:59.000Z

383

Tools & Technologies  

Broader source: Energy.gov [DOE]

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

384

Carolina Blue Skies & Green Jobs Initiative | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

arravt064tiboyer2012o.pdf More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative New York State-wide...

385

Carolina Blue Skies & Green Jobs Initiative | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

arravt064tiboyer2011p.pdf More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative Puget Sound Clean Cities...

386

The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system  

SciTech Connect (OSTI)

In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

387

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

388

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect (OSTI)

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

389

Microsoft PowerPoint - 10-04 Sundar Technology Needs for WTP Simulants - PSSundar.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Needs for WTP Simulants Needs for WTP Simulants P. S. Sundar Process Technology - Plant Operations Div Waste Treatment Plant Project November 17, 2010 Bechtel National, Inc. Print Close Technology Needs for WTP Simulants 2 Agenda * Major simulant requirements of WTP Project and the associated challenges Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 3 Simplified Process Flowsheet IHLW ILAW LAW Feed HLW Feed HLW Recycles LAW Recycles Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 4 Simulant Needs * Commissioning Simulants - As received and pretreated LAW supernatants - As received HLW sludge - Pretreated HLW sludge - Vitrification recycle streams

390

Technology and social process : oscillations in Iron Age copper production and power in Southern Jordan.  

E-Print Network [OSTI]

??Records of technological practice provide an important lens for studying societies and cultures across time and space. This dissertation takes a diachronic view of the (more)

Ben-Yosef, Erez

2010-01-01T23:59:59.000Z

391

Argonne Labs Breakthrough Cathode Technology Powers Electric Vehicles of Today  

Broader source: Energy.gov [DOE]

Jeff Chamberlain, who leads Argonne's Energy Storage Initiative, explains what goes into taking advanced battery technologies from the lab to the marketplace.

392

The feasibility of modern technologies for reinforced concrete containment structures of nuclear power plants.  

E-Print Network [OSTI]

??This report explores the requirements for the design and analysis of concrete containment and shows how newer material technologies such as self-consolidating concrete (SCC) and (more)

Czerniewski, Sarah

2009-01-01T23:59:59.000Z

393

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

394

NiSource Energy Technologies: Optimizing Combined Heat and Power Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-01-01T23:59:59.000Z

395

Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

396

Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

397

Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet)  

Broader source: Energy.gov [DOE]

The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

398

Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about two...

399

Microsoft PowerPoint - 130709 DOE-NETL CO2 Capture Technology Meeting Linde Presentation v1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slipstream pilot plant demonstration of an amine- Slipstream pilot plant demonstration of an amine- based post-combustion capture technology for CO 2 capture from coal-fired power plant flue gas DOE funding award DE-FE0007453 2013 NETL CO 2 Capture Technology Meeting Krish R. Krishnamurthy, Linde LLC July 8-11, 2013 Pittsburgh, PA 2 The Linde Group Overview and Carbon Capture Expertise 1 Linde Engineering Technology-focused Air Separation Global #1 Air Separation Global #1 Hydrogen/Syn Gas Global #2 Hydrogen/Syn Gas Global #2 Olefins Global #2 Olefins Global #2 Natural Gas Global #3 Natural Gas Global #3 HyCO Tonnage Plants >70 plants HyCO Tonnage Plants >70 plants HyCO Tonnage Plants >70 plants ASU Tonnage Plants >300 plants ASU Tonnage Plants >300 plants ECOVAR Std Plants >1,000 plants ECOVAR Std Plants >1,000 plants

400

Accounting for Circumsolar and Horizon Cloud Determination Errors in Sky Image Inferral of Sky Cover  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accounting for Circumsolar and Horizon Cloud Determination Errors in Sky Accounting for Circumsolar and Horizon Cloud Determination Errors in Sky Image Inferral of Sky Cover. C. N. Long, Pacific Northwest National Laboratory 1) Introduction In observing the cloudless sky, one can often notice that the area near the sun is whiter and brighter than the rest of the hemisphere. Additionally, even a slight haze will make a large angular area of the horizon whiter and brighter when the sun is low on the horizon. The human eye has an amazing ability to handle a range of light intensity spanning orders of magnitude. But one of the persistent problems in using sky images to infer fractional sky cover is the intensity range limitations of the camera detector. It is desirable to have bright enough images to be able to detect thin clouds, yet this often means the part of the image near the

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations  

Science Journals Connector (OSTI)

Abstract Oxy-fuel technology is one of the potential solutions to reduce CO2 emissions from coal-fired power plants. Although vendors offer a retrofit package, to the best of our knowledge there has not been a study undertaken that looks at the technical and economic viability of oxy-fuel technology for CO2 capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a total capacity of about 3600MW. The analysis was done using the oxy-fuel model developed by Carnegie Mellon University in the USA. The model was used to define the performance and costs of retrofitting the boilers. The results obtained showed that the CO2 emission rate was reduced by a factor of 10 for all the plants when retrofitted to oxy-fuel combustion. Between 27 and 29% of the energy generated was used to capture CO2. The energy loss was correlated to the coal properties. Sulphur content in the coal samples affects the energy used for flue gas cooling but did not affect the energy used for CO2 purification and compression. The study also showed there is a need for the flue gas to be treated for \\{NOx\\} and \\{SOx\\} control. The total capital costs and cost of electricity for the six plants were different, resulting with the cost of electricity varying from 101$/MWh to124$/MWh.

B.O. Oboirien; B.C. North; T. Kleyn

2014-01-01T23:59:59.000Z

402

North Sky River | Open Energy Information  

Open Energy Info (EERE)

Sky River Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Location Tehachapi CA Coordinates 35.335578°, -118.186347° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.335578,"lon":-118.186347,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Big Sky Wind Facility | Open Energy Information  

Open Energy Info (EERE)

Sky Wind Facility Sky Wind Facility Jump to: navigation, search Name Big Sky Wind Facility Facility Big Sky Wind Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Energy Developer Edison Mission Energy Energy Purchaser PJM Market Location Bureau County IL Coordinates 41.579967°, -89.46177° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.579967,"lon":-89.46177,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Sky coverage of orbital detectors. Analytical approach  

E-Print Network [OSTI]

Orbital detectors without pointing capability have to keep their field of view axis laying on their orbital plane, to observe the largest sky fraction. A general approach to estimate the exposure of each sky element for such detectors is a valuable tool in the R&D phase of a project, when the detector characteristics are still to be fixed. An analytical method to estimate the sky exposure is developed, which makes only few very reasonable approximations. The formulae obtained with this method are used to compute the histogram of the sky exposure of a hypothetical gamma-ray detector installed on the ISS. The C++ code used in this example is freely available on the http://cern.ch/casadei/software.html web page.

Diego Casadei

2005-11-23T23:59:59.000Z

405

Einstein and the Daytime Sky - C  

Office of Scientific and Technical Information (OSTI)

Einstein "Einstein and the Daytime Sky" (continued) A B C D C. Imitation of opal Since Einstein was addressing a more general question than the color of the atmosphere, his results...

406

Sky River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sky River Wind Farm Sky River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Zond Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Solar Power In China | Open Energy Information  

Open Energy Info (EERE)

Solar Power In China Solar Power In China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Working on #ask query to display all Chinese solar companies TODO: query not working: need to select only certain "Place" - China and "Sector" - Solar All Solar PV Anwell Technologies Ltd aka Sungen BSL-Solar Beijing Sijimicoe Solar Energy Beijing Sky Solar Investment Management Co Big China Solar Energy Group CETC Solar Energy Centro Renewables Holding Limited China Innovation Investment Limited China Technology Solar Power Holdings Ltd Hong Kong Taiyang Investment Group Co Ltd Hope Solar Sun Bear Solar Ltd Sunrain Trina Solar Yingli Solar ZTE Energy Co Ltd Investment in Solar China's state-owned banks have provided low-cost loans to China's renewable

408

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250C and 700C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

409

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

gasification-based combustion turbine systems. The paper dmws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy...-14, 1994 Coupled with gasification, combustion turbine power generation also may provide attractive opportunities for other fuels, such as low-value residual oils and petroleum coke. Residual oil firing of boilers in large steam turbine-based power...

Karp, A. D.; Simbeck, D. R.

410

Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

Bharathan, D.

2009-05-01T23:59:59.000Z

411

Microsoft PowerPoint - 3-03_pt 2_Mendoza_Hanford Retrieval Technology.PPTX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ruben Mendoza Ruben Mendoza November 16, 2010 Hanford Retrieval Technology Development 1 Print Close Hanford's Retrieval Challenge * Tank Retrieval Goal - Meet the Tri-Party Agreement (TPA) Commitments Retrieve to residual tank volumes of: - 100 Series (75 ft dia) Tanks to ≤ 360 ft 3 (~2,700 gallons) - 200 Series (20 ft dia) Tanks to ≤ 30 ft 3 (~225 gallons) * Two retrieval technologies shall be deployed to their "limits of technology" to meet the TPA goals. An additional technology shall be deployed to its limits of technology unless DOE and the Washington State Department of Ecology believe it is not practicable. * Current Status - 149 Total SSTs - 7 retrievals completed to TPA requirements,

412

PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS  

SciTech Connect (OSTI)

North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

2004-02-01T23:59:59.000Z

413

Review Article: Power line communication technologies for smart grid applications: A review of advances and challenges  

Science Journals Connector (OSTI)

This paper investigates the use of Power Line Communication (PLC) for Smart Grid (SG) applications. Firstly, an overview is done to define the characteristics of PLC and PLC-based SG applications are addressed to define the compatibility of PLC. Then, ... Keywords: PLC-based smart grid applications, Power line communication, Smart grid

Melike Yigit, V. Cagri Gungor, Gurkan Tuna, Maria Rangoussi, Etimad Fadel

2014-09-01T23:59:59.000Z

414

Analysis of partial discharge detection in power cable by WTST-NST filter technology  

Science Journals Connector (OSTI)

The objectives of on-line monitoring are to prevent failures, reduce maintenance costs, and predict the life of the power system equipment. It is non-destructive and also cost-effective due to its ability to be applied when the equipments are in-service ... Keywords: MRD-MRR algorithm, adaptive WTST-NST filter, partial discharge, power cable, stationary noise interference

Hui Wang; Chengjun Huang; Junhua Liu; Linpeng Yao; Yong Qian; Xiuchen Jiang

2009-05-01T23:59:59.000Z

415

2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)  

SciTech Connect (OSTI)

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

416

2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)  

SciTech Connect (OSTI)

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

417

Wind Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

418

Wind Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

419

Comparative technology and public policy: The development of the nuclear power reactor in six nations  

Science Journals Connector (OSTI)

This essay proposes an analytic framework to compare the development and commercialization of a number of advanced civilian technologies. This framework emphasizes the multiple institutional actors and their obje...

Peter DeLeon

1980-02-01T23:59:59.000Z

420

Application of CFB technology for large power generating units and CO2 capture  

Science Journals Connector (OSTI)

Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large ... feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat ......

G. A. Ryabov; O. M. Folomeev; D. A. Sankin

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The View From the Trenches: Organization, Power, and Technology at Two Nonprofit Homeless Outreach Centers  

E-Print Network [OSTI]

Centers Christopher A. Le Dantec W. Keith Edwards GVU Center and School of Interactive Computing College of Computing Georgia Institute of Technology Atlanta, GA, USA {ledantec, keith}@cc.gatech.edu ABSTRACT

Edwards, Keith

422

Life Cycle Assessment for Emerging Technologies: Case Studies for Photovoltaic and Wind Power (11 pp)  

Science Journals Connector (OSTI)

The life cycle inventory analysis for photovoltaic power shows that each production ... be important for specific elementary flows. A life cycle impact assessment (LCIA) shows that there ... Material consumption...

Niels Jungbluth; Christian Bauer

2005-01-01T23:59:59.000Z

423

Renewable energy powered membrane technology: Salt and inorganic contaminant removal by nanofiltration/reverse osmosis  

E-Print Network [OSTI]

The objective of this study was to evaluate the effects of fluctuating energy and pH on retention of dissolved contaminants from real Australian groundwaters using a solar (photovoltaic) powered ultrafiltration ...

Richards, Laura A.; Richards, Bryce S.; Schfer, Andrea

2011-01-01T23:59:59.000Z

424

Thermal energy storage technologies and systems for concentrating solar power plants  

Science Journals Connector (OSTI)

This paper presents a review of thermal energy storage system design methodologies and the factors to be considered at different hierarchical levels for concentrating solar power (CSP) plants. Thermal energy storage forms a key component of a power plant for improvement of its dispatchability. Though there have been many reviews of storage media, there are not many that focus on storage system design along with its integration into the power plant. This paper discusses the thermal energy storage system designs presented in the literature along with thermal and exergy efficiency analyses of various thermal energy storage systems integrated into the power plant. Economic aspects of these systems and the relevant publications in literature are also summarized in this effort.

Sarada Kuravi; Jamie Trahan; D. Yogi Goswami; Muhammad M. Rahman; Elias K. Stefanakos

2013-01-01T23:59:59.000Z

425

U.S. program on materials technology for ultra-supercritical coal power plants  

Science Journals Connector (OSTI)

The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide, since the energy crisis in the 1970s. The ne...

R. Viswanathan; J. F. Henry; J. Tanzosh

2005-06-01T23:59:59.000Z

426

Forecast of Advanced Technology Adoption for Coal Fired Power Generation Towards the Year of 2050  

Science Journals Connector (OSTI)

The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, ... . In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluati...

Keiji Makino

2013-01-01T23:59:59.000Z

427

The Impact of Intranet Technology on Power in Franchisee/Franchisor Relationships  

Science Journals Connector (OSTI)

In this exploratory study we investigate the impact of an organization-wide intranet on the power relationships between franchisee and franchisor. This article reports on a study of an intranet implementation ...

Michael H. Dickey; Blake Ives

2000-01-01T23:59:59.000Z

428

An update technology for integrated biomass gasification combined cycle power plant  

Science Journals Connector (OSTI)

A discussion is presented on the technical analysis of a 6.4 MWe integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers ... producing 5.85 MW electrical power in open cycle and 55...

Paritosh Bhattacharya; Suman Dey

2014-01-01T23:59:59.000Z

429

Northern Power Systems Unlocking a New US Wind Turbine Technology Opportunity  

Broader source: Energy.gov (indexed) [DOE]

Confidential Confidential Northern Power EnergyBridge TM UPS Status Update September 29, 2008 DOE Peer Review - Washington, DC This project is part of the Energy Storage Collaboration between the California Energy Commission (CEC) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS) and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000 2 Project Objectives * Maintain high power quality on protected loads at all times * Provide power to protected load in event of a utility sag or outage * Meet the ITI (CBEMA) curve during power

430

A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances  

E-Print Network [OSTI]

A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Abstract. A physical algorithm that of Jin [2000]. Two neighboring pixels over the same land cover have a difference in temperature largely

Jin, Menglin

431

Microsoft PowerPoint - [4] HVDC Technology Workshop Arlington April 2013 RevC [Compatibility Mode]  

Broader source: Energy.gov (indexed) [DOE]

Neil Kirby Neil Kirby Panel Session : State of HVDC Technologies US DOE Grid Tech Applications for High-Voltage Direct Current Transmission Technologies GRID Neil Kirby Arlington, VA April 22 nd , 2013 Agenda * HVDC Technologies * World View * Key Projects * Development Work P 2 HVDC Transmission Back to Back - Asynchronous interconnection of adjacent networks - DC Circuit is short - within the same building/station - 2 Converters in 1 Station Point to Point - Long Distance Transmission by Overhead Line or Insulated Submarine or Underground Cable or a combination of these - DC Circuit Distance according to application - DC Circuit Distance according to application - Two Converter Stations Multi-terminal - 3 or more HVDC Converter Stations on a common DC conductor - Limited installations worldwide (2 systems in service)

432

Approach to market-penetration analysis for advanced electric-power-generation technologies  

SciTech Connect (OSTI)

If commercialization of new technologies is the primary objective of the Department of Energy's Research, Development and Demonstration (RD and D) programs, the ultimate measure of benefit from RD and D programs is the extent of commercial acceptance of the developed technologies. Uncertainty about barriers to commercialization - government policy, fuel supply, etc. - make the task of estimating this acceptance very difficult. However, given that decisions must be made regarding allocation of RD and D funds, the best information available, with due regard for uncertainty, should serve as input to these decisions. An approach is presented for quantifying the range of market potential for new technologies (specifically in the utility sector) based on historical information and known plans for the future.

Lamontagne, J.; Love, P.; Queirolo, A.

1980-12-01T23:59:59.000Z

433

New technology for purging the steam generators of nuclear power plants  

SciTech Connect (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

434

Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors  

Science Journals Connector (OSTI)

Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors ... As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribo-polarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. ... The TENG can be applied to harvest all kinds of mechanical energy that is available but wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water, and more. ...

Zhong Lin Wang

2013-09-30T23:59:59.000Z

435

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

SciTech Connect (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

436

Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant  

Science Journals Connector (OSTI)

Abstract Lignite-based polygeneration system has been considered as a feasible technology to realize clean and efficient utilization of coal resources. A newly polygeneration system has been proposed, featuring the combination of a 2נ300MW circulating fluidized bed (CFB) power plant and atmospheric pressure fluidized bed pyrolyzers. Xiaolongtan lignite is pyrolyzed in pyrolyzers. Pyrolyzed volatiles are further utilized for the co-generation of methanol, oil, and electricity, while char residues are fired in CFB boilers to maintain the full load condition of boilers. Detailed system models were built, and the optimum operation parameters of the polygeneration plant were sought. Technical and economic performances of optimum design of the polygeneration plant were analyzed and compared with those of the conventional CFB power plant based on the evaluation of energy and exergy efficiency, internal rate of return (IRR), and payback period. Results revealed that system efficiency and the IRR of the polygeneration plant are ca. 9% and 14% points higher than those of the power plant, respectively. The study also analyzed the effects of market fluctuations on the economic condition of the polygeneration plant, and found that prices of fuel, material, and products have great impacts on the economic characteristics of the polygeneration plant. Polygeneration plant is more economic than CFB power plant even when prices fluctuate within a wide range. This paper provides a thorough evaluation of the polygeneration plant, and the study indicates that the proposed polygeneration plant has a bright prospect.

Zhihang Guo; Qinhui Wang; Mengxiang Fang; Zhongyang Luo; Kefa Cen

2014-01-01T23:59:59.000Z

437

Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies  

Science Journals Connector (OSTI)

Abstract Worldwide energy production requirements could not be fully satisfied by nuclear and renewables sources. Therefore a sustainable use of fossil fuels (coal in particular) will be required for several decades. In this scenario, carbon capture and storage (CCS) represents a key solution to control the global warming reducing carbon dioxide emissions. The integration between CCS technologies and power generation plants currently needs a demonstration at commercial scale to reduce both technological risks and high capital and operating cost. This paper compares, from the technical and economic points of view, the performance of three coal-fired power generation technologies: (i) ultra-supercritical (USC) plant equipped with a conventional flue gas treatment (CGT) process, (ii) USC plant equipped with SNOX technology for a combined removal of sulphur and nitrogen oxides and (iii) integrated gasification combined cycle (IGCC) plant based on a slurry-feed entrained-flow gasifier. Each technology was analysed in its configurations without and with CO2 capture, referring to a commercial-scale of 1000MWth. Technical assessment was carried out by using simulation models implemented through Aspen Plus and Gate-Cycle tools, whereas economic assessment was performed through a properly developed simulation model. USC equipped with CGT systems shows an overall efficiency (43.7%) comparable to IGCC (43.9%), whereas introduction of SNOX technology increases USC efficiency up to 44.8%. Being the CCS energy penalties significantly higher for USC (about 10.5% points vs. about 8.5 for IGCC), the IGCC with CCS is more efficient (35.3%) than the corresponding CO2-free USC (34.2% for the SNOX-based configuration). Whereas, for the case study, USC is most profitable than IGCC (with a net present value, NPV, of 190M vs. 54M) for a conventional configuration, CO2-free IGCC shows a higher NPV (?673M) than USC (?711M). In any cases, the NPV of all the CO2-free configurations is strongly negative: this means that, with the current market conditions, the introduction of a CCS system cannot be economically justified without a significant incentive.

Vittorio Tola; Alberto Pettinau

2014-01-01T23:59:59.000Z

438

SolarSkies | Open Energy Information  

Open Energy Info (EERE)

SolarSkies SolarSkies Jump to: navigation, search Name SolarSkies Address 106 Donovan Drive Place Alexandria, Minnesota Zip 56308 Country United States Sector Solar Coordinates 45.88897°, -95.3536576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.88897,"lon":-95.3536576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants  

E-Print Network [OSTI]

This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

Leitgab, Martin

2013-01-01T23:59:59.000Z

440

Geographic, Technologic, And Economic Analysis of Using Reclaimed Water for Thermoelectric Power Plant Cooling  

Science Journals Connector (OSTI)

Additionally, several thermoelectric power plants in Texas currently use reclaimed water for at least some portion of their cooling water needs, including Austin Energys Sand Hill Energy Center; CPS Energys J K Spruce, J T Deely, and O W Sommers plants; Xcel Energys Nichols, Harrington, and Jones facilities; and the Spencer Generating Station near Denton, among others. ...

Ashlynn S. Stillwell; Michael E. Webber

2014-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The use of reverse osmosis technology for water treatment in power engineering  

Science Journals Connector (OSTI)

The results of operation of DVS-M/150 installations for a total output of 150 m3/h (ZAO NPK Mediana-Filtr) at the Water Treatment Department of the Novocherkassk Thermal Power Plant (NchGRES) are presented, and ...

A. N. Samodurov; S. E. Lysenko; S. L. Gromov; A. A. Panteleev

2006-06-01T23:59:59.000Z

442

Power Maximization of a Closed-orbit Kite Generator System Mariam Ahmed*  

E-Print Network [OSTI]

offered by Sky WindPower, Joby energy [7], or Makani Power (funded by Google)[8], would be to use airborne

Paris-Sud XI, Université de

443

State of Art of Small Scale Solar Powered ORC Systems: A Review of the Different Typologies and Technology Perspectives  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric, even for small sizes, is continuing to garner more attention, by virtue of maturation of small size organic Rankine cycle generators, and of small size absorption chiller even if cost and reliability are still not optimal. Indeed, solar thermal power technology improvement would consent to stimulate an ambit already present in Europe and Italy with a well-known tradition and established leadership and efforts focused on a single solar technology would bring to positive effects concerning controllable electric and thermal energy uses. In this context, the present work tries to summarize the possible cycles and fluids that can be applied in a small solar thermal power plant. Despite a plethora of simulated and experimental cycles and fluids, the simplest cycle using near isentropic fluids seems to be the best choice for a small ORC-based CHP system, even if particular attention has to be done to all the sizing parameters (electricity, heating and cooling demand; area and type of solar collector; flow and temperature of the thermal carrier; flow, temperature and pressure of the working fluid; storage volumes; etc.). Indeed, efficiency and reliability of the reported systems are very different, but, it seems that global efficiency of even more than 10% and global cost of even less than 10,000 /kW can be obtained even at size of few kW if adequate systems are constructed and managed.

M. Villarini; E. Bocci; M. Moneti; A. Di Carlo; A. Micangeli

2014-01-01T23:59:59.000Z

444

Microsoft PowerPoint - Vyew Webinar Technology by Catherine Brennan [Compatibility Mode]  

Broader source: Energy.gov (indexed) [DOE]

V V V W bi T h l W bi T h l Vyew Vyew Webinar Technology Webinar Technology Ms Ms Catherine Catherine Brennan Brennan Ms. Ms. Catherine Catherine Brennan Brennan Office of Environmental Management Office of Environmental Management Environmental Management Site Environmental Management Site Specific Advisory Board Specific Advisory Board Environmental Management Site Environmental Management Site- -Specific Advisory Board Specific Advisory Board Public Meeting Public Meeting - - April 29, 2010 April 29, 2010 What is Vyew? V i t ti li ll b ti d b * Vyew is a next-generation online collaboration and web conferencing service that brings people and content together. g * With Vyew you can host LIVE conferences and work collaboratively. * Inside Vyew you can also stream live or capture what is

445

Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology  

E-Print Network [OSTI]

and scientific markets. The development of the solid-state charge-coupled device (CCD) in the early 1970's led to as a camera-on-a-chip, and represents a second generation solid state image sensor technology. A block diagram systems typically operate for an hour on an 1800 mA-hr 6 Y NiCad rechargeable battery, corresponding to 10

Fossum, Eric R.

446

Tracking Santa With Our Eyes in the Sky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tracking Santa With Our Eyes in the Sky Tracking Santa With Our Eyes in the Sky Tracking Santa With Our Eyes in the Sky December 24, 2013 - 10:00am Addthis The Energy Department's Los Alamos National Lab is tracking Santa Claus as he circles the globe the night before Christmas. The Energy Department's Los Alamos National Lab is tracking Santa Claus as he circles the globe the night before Christmas. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Every year since 1998, the Energy Department's Los Alamos National Lab has been using state-of-the-art technology to track Santa Claus as he circles the globe the night before Christmas. You'll be able to monitor St. Nick's journey here starting at 6 a.m. ET on Christmas Eve. Since Santa doesn't file his flight path with the Federal Aviation

447

The Physics of Basis For A Conservative Physics And Conservative Technology Tokamak Power Plant, ARIES-ACT2  

SciTech Connect (OSTI)

The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall {beta}N reaches {approximately} 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about {approximately} 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MA can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over {rho} {approximately} 0.2-0.6 with 20 MW. The pedestal density is {approximately} 0.65x10{sup 20}/m{sup 3} and the temperature is {approximately} 9.0 keV. The H98 factor is 1.25, n/n{sub Gr} = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.

Kessel, C. E.

2014-03-04T23:59:59.000Z

448

Coal fueled diesel system for stationary power applications-technology development  

SciTech Connect (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

449

SkyFuel | Open Energy Information  

Open Energy Info (EERE)

SkyFuel SkyFuel Jump to: navigation, search Logo: SkyFuel Name SkyFuel Address 18300 West Highway 72 Place Arvada, Colorado Zip 80007 Sector Solar Product Parabolic Trough Solar Collector Year founded 2007 Number of employees 11-50 Phone number 303.330.0276 Website http://www.skyfuel.com Coordinates 39.8630176°, -105.2064482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8630176,"lon":-105.2064482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

American Clean Skies Foundation | Open Energy Information  

Open Energy Info (EERE)

Skies Foundation Skies Foundation Jump to: navigation, search Logo: American Clean Skies Foundation Name American Clean Skies Foundation Address 750 1st Street NE, Suite 1100 Place Washington, DC Zip 20002 Region Northeast - NY NJ CT PA Area Year founded 2007 Phone number (202) 682-6294 Website http://www.cleanskies.org/ Coordinates 38.899704°, -77.007068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899704,"lon":-77.007068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Sublime endeavours : connecting earth to sky  

E-Print Network [OSTI]

We live in an era in which we come closer everyday to conquering the elements, to a degree that earlier humans could scarcely dream of. Nearly one hundred years ago, we took to the skies, and learned to fly. Today the act ...

Kain, Jacob E. (Jacob Evelyn), 1974-

2000-01-01T23:59:59.000Z

452

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping  Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

453

The Nature of Power Synthesizing the History of Technology and Environmental History  

E-Print Network [OSTI]

of the Minneapolis mill. First, let us walk through the ruins to trace the path of energy. Nuclear fusion in the sun sent energy to earth in the form of light. Wheat plants captured solar energy and transformed it into chemical energy by storing it in bonds between... action even against the resistance of others who are participating in the action.11 In his view, power is socially determined, related to but not necessarily dependent on material inputs, and defined in relation to the ability of others.12 This view...

Russell, Edmund P.; Allison, James; Finger, Thomas; Brown, John K.; Balogh, Brain; Carlson, W. Bernard

2011-04-01T23:59:59.000Z

454

The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1  

SciTech Connect (OSTI)

The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized ?N ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached ?N = 5.28 with BT = 6.75, while the peaked pressure case reaches ?N < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ? ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

Charles Kessel, et al

2014-03-05T23:59:59.000Z

455

Sloan Digital Sky Survey (SDSS): Data Release 4  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR4 provides provides images, imaging catalogs, spectra, and redshifts for download.

456

Sloan Digital Sky Survey (SDSS): Data Release 3  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR3 provides provides images, imaging catalogs, spectra, and redshifts for download.

457

Sloan Digital Sky Survey (SDSS): Data Release 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR1 was the first major data release, providing images, imaging catalogs, spectra, and redshifts for download.

458

Sloan Digital Sky Survey (SDSS): Data Release 2  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR2 provides provides images, imaging catalogs, spectra, and redshifts for download.

459

Sloan Digital Sky Survey (SDSS): Data Release 5  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR5 provides provides images, imaging catalogs, spectra, and redshifts for download.

460

NREL: Water Power Research - Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power resources like water power is a critical part of the deployment planning and commercialization process. Variable and weather-dependent resources can create operational concerns for grid operators. These concerns include conventional generation ramping, load/generation balancing, and planning

Note: This page contains sample records for the topic "technologies sky power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Office of Geothermal and Wind Technologies Blades are where the turbine meets the wind. Turbine blades take advantage of aero- dynamics to extract the wind's energy, which can then be converted to useful electricity. Airfoils-the cross-sectional shape of the blades-determine the aerodynamic forces on blades. They are key to blade design. In the seventies, the young and fast-growing U.S. wind industry used airfoil designs from airplane wings to design turbine blades because those airfoil designs were widely available, and engineers understood how they performed on aircraft. Airfoils specifically designed for wind turbines did not yet exist. The industry quickly learned, however, how harsh the operating environment is for wind turbines as compared to that for airplanes.

462

9 - Oxyfuel combustion systems and technology for carbon dioxide (CO2) capture in power plants  

Science Journals Connector (OSTI)

Abstract: Oxyfuel combustion uses pure oxygen instead of air to burn carbonaceous materials, resulting in a CO2 separation efficiency theoretically close to 100% should the fuel and oxygen be free of contaminants. This chapter examines several oxyfuel systems, considering two categories of power cycle those based on steam cycles and those based on gas cycles both of which generate oxygen using a cryogenic air separation unit. Also covered is the AZEP cycle, which belongs in the second category but which uses a ceramic membrane integrated into the system to separate oxygen from air. Oxy-combustion in IGCC plants and in gas turbine cycles integrating solid oxide fuel cells is also examined here as a low emission process. The technical issues and future potential for each option are discussed and reference is made to several pilot installations and ongoing R & D projects.

P. Mathieu

2010-01-01T23:59:59.000Z

463

Energy technologies for rural areas ?? decentralised power generation through MARKAL modelling: a case study  

Science Journals Connector (OSTI)

Due to shortage of power, extremely subsidised tariffs, poor financial recovery, long transmission lines, there exists a very poor demand-supply balance in the rural energy sectors of India. MARKAL bases analysis of a village-group in western India reveals that there is a potential of reducing the electricity demand by about 18% as compared to the business-as-usual case through adopting energy efficiency measures. Results show that in the studied area, renewable energy systems are not likely to penetrate without government subsidy. Sufficient potential was found for making the area independent from grid through decentralised electricity generation. Through decentralised electricity generation, there is a potential of reducing 2200 ton carbon-dioxide emissions as compared to the business-as-usual case. Electricity generation through bio-gas plants for domestic consumption and through photovoltaic systems for irrigation pumps have been found more attractive as compared to other options.

Jyotirmay Mathur

2007-01-01T23:59:59.000Z

464

Electric Power Research Institute: Environmental Control Technology Center. Report to the Steering Committee, February 1996. Final technical report  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System and the Trace Element Removal test blocks. With this testing, the mercury measurement (Method 29) studies also continued with impinger capture solutions. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) was utilized in the TER test configuration this month. The B&W/CHX Heat Exchanger unit is being installed utilizing the Mini Pilot Flue Gas System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

NONE

1996-02-01T23:59:59.000Z

465

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect (OSTI)

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

466

NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

Not Available

2012-07-01T23:59:59.000Z

467

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect (OSTI)

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

468

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994  

SciTech Connect (OSTI)

This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

Not Available

1994-05-01T23:59:59.000Z

469

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

ScienceCinema (OSTI)

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Isabelle Grenier

2010-01-08T23:59:59.000Z

470