National Library of Energy BETA

Sample records for technologies sky power

  1. Sky Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Power LLC Jump to: navigation, search Name: Sky Power LLC Place: Portland, Oregon Zip: 97204 Sector: Wind energy Product: Developer of a high-altitude wind turbine technology....

  2. SkyBuilt Power | Open Energy Information

    Open Energy Info (EERE)

    US-based renewable energy system integrator such as solar, wind, fuel cells, and micro-hydro power. References: SkyBuilt Power1 This article is a stub. You can help OpenEI by...

  3. Conergy SkyPower JV | Open Energy Information

    Open Energy Info (EERE)

    SkyPower JV Jump to: navigation, search Name: Conergy & SkyPower JV Place: Canada Sector: Solar Product: Canada-based solar project developer. References: Conergy & SkyPower JV1...

  4. SkyPower Pekon Electronics JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: SkyPower-Pekon Electronics JV Place: India Sector: Wind energy Product: Joint venture for development of Indian wind farms. References: SkyPower-Pekon Electronics...

  5. Sky WindPower Corp | Open Energy Information

    Open Energy Info (EERE)

    WindPower Corp Jump to: navigation, search Name: Sky WindPower Corp Place: Ramona, California Zip: 92065 Sector: Wind energy Product: Sky WindPower is working on turbines that...

  6. NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk...

  7. Pacific Power- Blue Sky Community Project Funds

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Pacific Power is currently accepting applications for 2016 Funding Awards. The deadline for submittal is May 31, 2016 5 PM PT. 

  8. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  9. Fuel from the Sky: Solar Power's Potential for Western Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... As with most other renewable forms of energy, CSP technologies will require incentives, such as buydowns, investment and production tax credits, and green energy premiums paid by ...

  10. NREL Success Stories - SkyFuel Partnership Reflects Bright Future

    ScienceCinema (OSTI)

    Jorgensen, Gary; Gee, Randy

    2013-05-29

    NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

  11. Blue Sky Energy Inc BSE | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc BSE Jump to: navigation, search Name: Blue Sky Energy Inc (BSE) Place: Vista, California Zip: 92081 Product: MPPT (Maximum Power Point Tracking) technology. Own a...

  12. Water Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. Gaia Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    Power Technologies Jump to: navigation, search Name: Gaia Power Technologies Place: New York, New York Zip: 10038 Sector: Efficiency Product: Provides distributed electrical power...

  14. Director, Water Power Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located in the Water Power Technologies Office (WPTO) in the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American...

  15. Argus Power Technology | Open Energy Information

    Open Energy Info (EERE)

    Argus Power Technology Jump to: navigation, search Name: Argus Power Technology Place: Zhengzhou, Henan Province, China Zip: 450001 Product: China-based company that manufactures...

  16. World Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    Power Technologies Jump to: navigation, search Name: World Power Technologies Place: Edison, NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  17. DOE Wind and Water Power Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  18. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  19. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  20. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  1. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and ...

  2. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  3. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  4. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  5. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  6. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  7. New Sky Energy | Open Energy Information

    Open Energy Info (EERE)

    Sky Energy Jump to: navigation, search Name: New Sky Energy Place: Boulder, Colorado Sector: Carbon Product: Colorado-based startup that focuses on using chemical technology to...

  8. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatchability | Department of Energy Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to

  9. Chapter 4: Advancing Clean Electric Power Technologies | Solar Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Solar Power Technologies Chapter 4: Technology Assessments Introduction Solar energy

  10. Power Technologies Energy Data Book - Fourth Edition

    SciTech Connect (OSTI)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  11. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  12. Cyclone Power Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Technologies Inc Place: Pompano Beach, Florida Zip: 33064 Product: Florida-based research and development company. The Company holds exclusive commercial rights to the...

  13. Power Tagging Technologies | Open Energy Information

    Open Energy Info (EERE)

    Superior, Colorado Zip: 80027 Product: Colorado-based developer of advanced digital signal processing technologies that enable real-time "power tagging" on the grid....

  14. Controlled Power Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technologies Ltd Place: Essex, United Kingdom Zip: SS15 6TP Product: Essex-based automotive component supply company involved in powertrain engineering, power electronics and...

  15. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect (OSTI)

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  16. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  17. Photon Power Technologies PPT | Open Energy Information

    Open Energy Info (EERE)

    PPT Jump to: navigation, search Name: Photon Power Technologies (PPT) Place: Ecully, France Product: French PV system installer for residential and commercial systems. Coordinates:...

  18. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  19. Fuel Cell Backup Power Technology Validation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

    2012-10-01

    Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

  20. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  1. Surface Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Surface Power Technologies Place: Ireland Sector: Solar, Wind energy Product: An Irish company supplying solar and micro-wind energy systems and...

  2. HVDC power transmission technology assessment

    SciTech Connect (OSTI)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  3. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Wind Power Chapter 4: Technology Assessments NOTE: The 2015 U.S. Department of Energy

  4. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Environmental Management (EM)

    Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American ...

  5. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  6. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  7. The Knotted Sky I: Planck constraints on the primordial power spectrum

    SciTech Connect (OSTI)

    Aslanyan, Grigor; Price, Layne C.; Easther, Richard; Abazajian, Kevork N. E-mail: lpri691@aucklanduni.ac.nz E-mail: r.easther@auckland.ac.nz

    2014-08-01

    Using the temperature data from Planck we search for departures from a power-law primordial power spectrum, employing Bayesian model-selection and posterior probabilities. We parametrize the spectrum with n knots located at arbitrary values of logk, with both linear and cubic splines. This formulation recovers both slow modulations and sharp transitions in the primordial spectrum. The power spectrum is well-fit by a featureless, power-law at wavenumbers k>10{sup -3} Mpc{sup -1}. A modulated primordial spectrum yields a better fit relative to ΛCDM at large scales, but there is no strong evidence for a departure from a power-law spectrum. Moreover, using simulated maps we show that a local feature at k ∼ 10{sup -3} Mpc{sup -1} can mimic the suppression of large-scale power. With multi-knot spectra we see only small changes in the posterior distributions for the other free parameters in the standard ΛCDM universe. Lastly, we investigate whether the hemispherical power asymmetry is explained by independent features in the primordial power spectrum in each ecliptic hemisphere, but find no significant differences between them.

  8. thermo-electric power conversion technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermo-electric power conversion technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  9. Concentrating Solar Power Tower Technology

    Broader source: Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  10. Chapter 4: Advancing Clean Electric Power Technologies | Marine and Hydrokinetic Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power

  11. Columbia Power Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    company is involved in the following MHK Technologies: Direct Drive Power Generation Buoy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:...

  12. Power sources manufactures association : power technology roadmap workshop - 2006.

    SciTech Connect (OSTI)

    Bowers, John S.

    2006-03-01

    The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

  13. Wireless Technologies Implications for Power Systems

    SciTech Connect (OSTI)

    Fuhr, Peter L; Manges, Wayne W; Schweitzer, Patrick; Kagan, Hesh

    2010-01-01

    Wireless technologies have advanced well beyond simple SCADA radio systems and point-to-point links. The current applications supported by industrial-grade wireless sensors and systems range from field measurements (classic I/O) to voice, video, asset tracking, mobile operators, etc. Which such a wide array of supported applications, the belief that wireless technology will only impact power systems in terms of wireless sensors is shortsighted. This paper, coauthored by a group of individuals intimately involved in the general realm of industrial wireless , presents a simple snapshot of current radio technologies that are used (or seriously contemplated for use) in power systems.

  14. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power ... More Documents & Publications Novel Manufacturing Technologies for High Power Induction ...

  15. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  16. MHK Technologies/PowerBuoy | Open Energy Information

    Open Energy Info (EERE)

    that are electrically connected to provide the desired power capacity. OPT's "smart" PowerBuoy utilizes computer-based, proprietary technologies. Technological...

  17. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  18. Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name: Guangdong Mingyang Wind Power Technology Co Ltd Place: Zhongshan City, Guangdong Province, China Sector:...

  19. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wende Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name: Beijing Wende Xingye Wind Power Technology Co Ltd Place: Beijing, China Sector: Wind energy Product:...

  20. Shenyang Huaren Wind Power Technology Development Co Ltd | Open...

    Open Energy Info (EERE)

    Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name: Shenyang Huaren Wind Power Technology Development Co Ltd Place: Shenyang, Liaoning Province, China...

  1. MHK Technologies/Sihwa tidal barrage power plant | Open Energy...

    Open Energy Info (EERE)

    Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile...

  2. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  3. Guodian Longyuan Power Technology Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longyuan Power Technology Engineering Co Ltd Jump to: navigation, search Name: Guodian Longyuan Power Technology Engineering Co Ltd Place: Beijing Municipality, China Sector:...

  4. Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Beijing Four Seasons Solar Power Technology Co Ltd Jump to: navigation, search Name: Beijing Four Seasons Solar Power Technology Co Ltd Place: Beijing, Beijing Municipality, China...

  5. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  6. Assessment of Parabolic Trough and Power Tower Solar Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  7. Jiuquan Xinmao Science and Technology Wind Power | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Wind Power Jump to: navigation, search Name: Jiuquan Xinmao Science and Technology Wind Power Place: Gansu Province, China Sector: Wind energy Product: Gansu...

  8. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  9. Aker Wade Power Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    Aker Wade Power Technologies LLC Jump to: navigation, search Name: Aker Wade Power Technologies LLC Place: Charlottesville, Virginia Zip: 22911 Sector: Services, Vehicles Product:...

  10. Shanghai Pearl Hydrogen Power Source Technology | Open Energy...

    Open Energy Info (EERE)

    Hydrogen Power Source Technology Jump to: navigation, search Name: Shanghai Pearl Hydrogen Power Source Technology Place: Shanghai, Shanghai Municipality, China Product: Chinese...

  11. Conventional Hydropower Technologies, Wind And Water Power Program...

    Energy Savers [EERE]

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US ...

  12. Microsoft PowerPoint - The DOE Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office - Jonathan Male Director July 24, 2014 http://www.energy.gov/eere/bioenergy/ bioenergy-technologies-office 2 | Bioenergy Technologies Office EERE Organization Chart Assistant Secretary David Danielson Office of Transportation Vehicle Technologies Office (VTO) Bioenergy Technologies Office (BETO) Fuel Cell Technologies Office (FCTO) Office of Renewable Power Solar Energy Technologies Office (SETO) Geothermal Technologies Office (GTO) Wind & Water Power

  13. The Knotted Sky II: does BICEP2 require a nontrivial primordial power spectrum?

    SciTech Connect (OSTI)

    Abazajian, Kevork N.; Aslanyan, Grigor; Easther, Richard; Price, Layne C. E-mail: g.aslanyan@auckland.ac.nz E-mail: lpri691@aucklanduni.ac.nz

    2014-08-01

    An inflationary gravitational wave background consistent with BICEP2 is difficult to reconcile with a simple power-law spectrum of primordial scalar perturbations. Tensor modes contribute to the temperature anisotropies at multipoles with l∼< 100, and this effect — together with a prior on the form of the scalar perturbations — was the source of previous bounds on the tensor-to-scalar ratio. We compute Bayesian evidence for combined fits to BICEP2 and Planck for three nontrivial primordial spectra: a) a running spectral index, b) a cutoff at fixed wavenumber, and c) a spectrum described by a linear spline with a single internal knot. We find no evidence for a cutoff, weak evidence for a running index, and significant evidence for a ''broken'' spectrum. Taken at face-value, the BICEP2 results require two new inflationary parameters in order to describe both the broken scale invariance in the perturbation spectrum and the observed tensor-to-scalar ratio. Alternatively, this tension may be resolved by additional data and more detailed analyses.

  14. Chapter 4: Advancing Clean Electric Power Technologies | Hydropower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Chapter 4: Technology Assessments Introduction Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949-2013). 1 It is the nation's largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of

  15. Analysis of S. 1844, the Clear Skies Act of 2003; S. 843, the Clean Air Planning Act of 2003; and S. 366, the Clean Power Act of 2003

    Reports and Publications (EIA)

    2004-01-01

    Senator James M. Inhofe requested that the Energy Information Administration (EIA) undertake analysis of S.843, the Clean Air Planning Act of 2003, introduced by Senator Thomas Carper; S.366, the Clean Power Act of 2003, introduced by Senator James Jeffords; and S.1844, the Clear Skies Act of 2003, introduced by Senator James M. Inhofe. The EIA received this request on March 19, 2004. This Service Report responds to his request.

  16. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  17. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  18. New High-Power Laser Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Laser Technology New High-Power Laser Technology December 10, 2013 - 10:38am Addthis Foro Energy partners with Dept of Energy to commercialize high power lasers for the ...

  19. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open...

    Open Energy Info (EERE)

    Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg...

  20. BurstPower Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    BurstPower Technologies Inc is a venture-backed start-up dedicated to developing and manufacturing ultracapacitors for the wireless communications and power quality...

  1. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit ...

  2. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf (747.75 KB) More ...

  3. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  4. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. ...

  5. Two-Phase Cooling Technology for Power Electronics with Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program ...

  6. Shenzhen Power Source Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co., Ltd Place: China Product: China-based manufacturer and researcher of lithium rechargeable batteries. References: Shenzhen Power Source Technology Co., Ltd1 This...

  7. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Info (EERE)

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  8. Power Electronics and Balance of System Hardware Technologies

    Broader source: Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  9. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am ...

  10. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  11. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  12. Microturbine Power Conversion Technology Review, April 2003 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Microturbine Power Conversion Technology Review, April 2003 Microturbine Power Conversion Technology Review, April 2003 Oak Ridge National Laboratory (ORNL) performed a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how

  13. Innovative Hydropower Technology Now Powering an Apple Data Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovative Hydropower Technology Now Powering an Apple Data Center Innovative Hydropower Technology Now Powering an Apple Data Center November 24, 2015 - 9:43am Addthis Innovative Hydropower Technology Now Powering an Apple Data Center Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Above: Completed Intake Structure. Water from the irrigation canal is divided in two as it approaches the plant. The existing drop structure

  14. Overview of Thermoelectric Power Generation Technologies in Japan |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting kajikawa.pdf (4.47 MB) More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  15. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Power Chapter 4: Technology Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S. electricity generation, 1 it is regionally much more significant in the western United States. Vast amounts of heat are contained in the interior of the earth from the slow decay of radioactive elements and the heat remaining from earth's formation. This heat flows to the surface at low rates

  16. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  17. Chapter 4: Advancing Clean Electric Power Technologies | Fast-Spectrum Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4:

  18. Bright Skies Ahead for Moapa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bright Skies Ahead for Moapa Bright Skies Ahead for Moapa March 1, 2013 - 7:19pm Addthis In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second 150-MW project that would use both PV and concentrated solar technologies to generate power for the Tribe. Photo from Moapa Band of Paiutes. In addition to the planned 250-MW solar farm set to begin construction in June 2013, the Moapa Band of Paiutes is working on a second

  19. Smart Technology Brings Power to the People

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Gephart, Julie M.

    2006-12-01

    Imagine youre at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (Youve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your homes energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise Testbed Demonstration, a project funded primarily by DOE. Through the GridWise Demonstration projects, researchers are gaining insight into energy consumers behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100 homes on the

  20. DOE Awards $20 Million to Develop Geothermal Power Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards $20 Million to Develop Geothermal Power Technologies DOE Awards $20 Million to Develop Geothermal Power Technologies September 22, 2010 - 10:48am Addthis Power of geothermal power units. DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids. Today's

  1. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electrical Machines | Department of Energy Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit review results 2010_amr_03.pdf (1.38 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies

  2. Chapter 4 - Advancing Clean Electric Power Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Clean electric power is paramount to today's mission to meet our interdependent security, economic, and environmental goals. While supporting aggressive emission reductions, the traditional market drivers such as reliability, safety, and affordability must be maintained and enhanced. The current portfolio of electric

  3. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  4. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. Conventional Hydropower Technologies (511.99 KB) More Documents & Publications Water Power for a Clean Energy

  5. New Technologies Power Wearable Devices through Body Power or...

    Open Energy Info (EERE)

    Power Wearable Devices through Body Power or the Environment Home > Groups > No Battery Wearables WikiSysop's picture Submitted by WikiSysop(15) Member 12 August, 2014 -...

  6. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  7. Chapter 4: Advancing Clean Electric Power Technologies | Stationary Fuel Cells Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Stationary Fuel Cells Chapter 4: Technology Assessments Introduction to

  8. Chapter 4: Advancing Clean Electric Power Technologies | Supercritical Carbon Dioxide Brayton Cycle Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Supercritical Carbon Dioxide Brayton Cycle Chapter 4: Technology Assessments Introduction The

  9. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description When...

  10. Sentry Power Technology | Open Energy Information

    Open Energy Info (EERE)

    Place: New Castle, Delaware Zip: 19720 Product: The company develop and sell battery-driven back up uninterrupted power supply power supply systems. References: Sentry...

  11. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are some specific sites on Pulsed Power MAGPIE Pulsed Power Facility, Imperial College NIF Naval Research Laboratory, Plasma Physics Division Reviews of U.S. Fusion Policy UKAEA...

  12. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Programs and Capabilities Experimental and Theoretical Programs Electromagnetic Technology at Sandia National Laboratories HEDP & ICF Simulation Codes ALEGRA Spect3D--A...

  13. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  14. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  15. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improves Lithium Ion Battery, Wins R&D 100 Award | Department of Energy Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award August 19, 2013 - 2:16pm Addthis Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion

  16. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer April 7, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics and Electric Motors | Department of Energy Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009_merit_review_3.pdf (747.75 KB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials 2012 Annual Merit Review Results Report - Power Electronics and

  18. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  19. Fuel Cycle Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  20. PowerPlus Technologies GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: PowerPlus Technologies GmbH Place: Gera, Germany Zip: 7548 Product: Micro combined heat and power plant manufacturer (4.7 kWe)....

  1. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  2. Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Baoding Tianwei Wind Power Technology Co Ltd Place: Baoding, Hebei Province, China Zip: 71051 Sector: Wind energy Product: A subsidary...

  3. NNSA-lab-created new magnets will power renewable technology...

    National Nuclear Security Administration (NNSA)

    NNSA-lab-created new magnets will power renewable technology Wednesday, June 1, 2016 - ... available without polluting the earth, the new research holds much promise for providing ...

  4. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National...

    Office of Environmental Management (EM)

    For more information, visit: water.energy.gov DOEEE-1166 * January 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys: A Knowledge ...

  5. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    (DOE's) Water Power Program supports the development of technologies that can harness the ... Conventional hydropower refers to the use of dams or impoundments to store water in a ...

  6. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  7. EERE Success Story-Columbia Power Technologies, Inc. Deploys...

    Broader source: Energy.gov (indexed) [DOE]

    In preparation for a full-scale bayocean demonstration and with EERE support, Columbia Power Technologies, Inc. (CPT) deployed an intermediate-scale wave energy converter to ...

  8. IEA-Technology Roadmap: Concentrating Solar Power | Open Energy...

    Open Energy Info (EERE)

    Power Screenshot References: IEA-CSP Roadmap1 "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of...

  9. Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

  10. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  11. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Broader source: Energy.gov (indexed) [DOE]

    state- of-the-art (SOTA) technology for coal-fired power generation with CCS. Advanced ... As an example, the Dakota Gasification Company's Great Plains Synfuels Plant in ...

  12. Overview of Thermoelectric Power Generation Technologies in Japan...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting kajikawa.pdf (4.47 MB) More ...

  13. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  14. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Technology In this section, you can select a concentrating solar power (CSP) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Parabolic Trough Systems-line-focus systems that use curved mirrors to focus sunlight on a receiver Linear Fresnel Reflector Systems-line-focus systems that use

  15. Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report | Department of Energy Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_003_lund.pdf (189.07 KB) More Documents & Publications Feasibility of EGS Development at Bradys Hot Springs, Nevada Concept Testing and Development at the Raft River Geothermal Field, Idaho Detecting Fractures Using Technology

  16. Cloudy Skies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. linn Space Science and Technology Division Los Alamos National Laboratory iLos Alamos, NM 87545 The earth's weather and climate are influenced strongly by phenomena associated with clouds. Therefore, a general circulation model (GCM) that models the evolution of weather and climate must include an accurate physical model of the clouds. This paper describes our efforts to develop a suitable cloud model. It concentrates on the microphysical processes that determine the evolution of droplet and

  17. Sandia National Laboratories: Pulsed-Power Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pulsed Power Pulsed-Power Science and Technology Advanced Pulsed Power Concepts SNL Remains One of the World's Premier Pulsed-Power Research and Applications Center Advanced Pulsed Power Concepts Planetary Research High Energy Density Physics Planetary Research Astrophysics SNL experiments may force revision of astrophysical models of the universe Astrophysics Inertial Confinement Fusion Innovative concepts could lead to "break-even" fusion in the

  18. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    SciTech Connect (OSTI)

    Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

    2014-09-01

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

  19. Wind Power Technologies Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGIES WIND POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation's electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80%

  20. Solar Technology Acceleration Center is Powering Up - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Acceleration Center is Powering Up October 21, 2009 Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, to mark a milestone in "Powering Up" one of the world's largest solar test and demonstration facilities. Since announcing the initial launch of SolarTAC one year ago, the site infrastructure development has progressed to the point where members can now break ground for their planned solar technology

  1. Energy Department Announces New Concentrating Solar Power Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments to American Industry, Universities | Department of Energy Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver,

  2. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses

  3. Porous Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    80026 Product: Porous Power is a Colorado-based developer of microporous, laminatable battery separators. Coordinates: 42.706102, -88.48126 Show Map Loading map......

  4. 2011 Water Power Technologies Peer Review Report

    SciTech Connect (OSTI)

    Zayas, Jose; Reed, Michael

    2012-06-01

    This report provides findings from the peer review meeting held in November 2011 to review the progress and accomplishments of the Energy Department Water Power Program.

  5. Chapter 4: Advancing Clean Electric Power Technologies

    Broader source: Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  6. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  7. Novel Dry Cooling Technology for Power Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  8. Power Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Houston, Texas Zip: 77024 Product: R&D company focused on alternative battery technology. Coordinates: 29.76045, -95.369784 Show Map Loading map......

  9. NREL SBV Pilot Water Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance and reliability and lower the cost of energy of marine energy and hydropower technologies. With NREL, partners can: * Collaborate with experts to develop...

  10. Chapter 4 — Advancing Clean Electric Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter describes the current status and future outlook for power generation technologies, and identifies RDD&D directions that will contribute to a portfolio of technology options that can meet future regional demands. A combination of flexible technology options will be required to meet increasing power needs in the U.S. and globally. The QTR focuses on technological advances to meet U.S. energy needs and challenges, recognizing that these also offer opportunities for cooperative research that will expedite the international deployment of these technologies.

  11. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  12. Sky Volt | Open Energy Information

    Open Energy Info (EERE)

    Volt Jump to: navigation, search Name Sky Volt Facility Sky Volt Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sky Volt LLC (community owned)...

  13. POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC?

    SciTech Connect (OSTI)

    Hansen, F. K.; Eriksen, H. K.; Lilje, P. B.; Banday, A. J.; Gorski, K. M. E-mail: h.k.k.eriksen@astro.uio.n E-mail: banday@MPA-Garching.MPG.D

    2009-10-20

    We repeat and extend the analysis of Eriksen et al. and Hansen et al., testing the isotropy of the cosmic microwave background fluctuations. We find that the hemispherical power asymmetry previously reported for the largest scales l = 2-40 extends to much smaller scales. In fact, for the full multipole range l = 2-600, significantly more power is found in the hemisphere centered at (theta = 107{sup 0} +- 10{sup 0}, phi = 226{sup 0} +- 10{sup 0}) in galactic co-latitude and longitude than in the opposite hemisphere, consistent with the previously detected direction of asymmetry for l = 2-40. We adopt a model selection test where the direction and amplitude of asymmetry, as well as the multipole range, are free parameters. A model with an asymmetric distribution of power for l = 2-600 is found to be preferred over the isotropic model at the 0.4% significance level, taking into account the additional parameters required to describe it. A similar direction of asymmetry is found independently in all six subranges of 100 multipoles between l = 2-600. None of our 9800 isotropic simulated maps show a similarly consistent direction of asymmetry over such a large multipole range. No known systematic effects or foregrounds are found to be able to explain the asymmetry.

  14. FMC high power density electric drive technology

    SciTech Connect (OSTI)

    Shafer, G.A.

    1994-12-31

    FMC has developed a unique capability in energy-efficient, high-performance AC induction electric drive systems for electric and hybrid vehicles. These drives will not only be important to future military ground combat vehicles, but will also provide significant competitive advantages to industrial and commercial machinery and vehicles. The product line under development includes drive motors and associated power converters directed at three power/vehicle weight classes. These drive systems cover a broad spectrum of potential vehicle applications, ranging from light pickup trucks to full-size transit buses. The drive motors and power converters are described.

  15. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  16. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect (OSTI)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  17. SkyTrough Parabolic Solar Collector

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features a collaboration between the solar industry and national laboratories that resulted in a ground-breaking, low-cost system for utility-scale power generation: the SkyTrough ...

  18. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  19. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy...

    Open Energy Info (EERE)

    license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130...

  20. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  1. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report 2008_apeem_report.pdf (6.95 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  2. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  3. Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today | Department of Energy Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable

  4. Testimonials - Partnerships in Combined Heat and Power Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Inc. | Department of Energy Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Kevin Keene, Project Director, Cummins" and footage of a man. Kevin Keene: Working with the Department of Energy has been

  5. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  6. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect (OSTI)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  7. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE)

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

  8. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  9. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  10. Combined Heat and Power Technology Fact Sheets Series: Steam Turbines

    Broader source: Energy.gov (indexed) [DOE]

    Steam Turbines Steam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal- lations (see Table 1 for summary of CHP attributes). Applications Based on data from the CHP Installation Database, 1 there are 699

  11. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  12. Vehicle Technologies Office Merit Review 2015: Technology Requirements for High Power Applications of Wireless Power Transfer

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about technology...

  13. Innovative Energy Storage Technologies Enabling More Renewable Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovative Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM

  14. Wind and Water Power Technologies FY'14 Budget At-a-Glance |...

    Office of Environmental Management (EM)

    and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a ...

  15. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  16. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    2012-02-27

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  17. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  18. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  19. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  20. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  1. Technology requirements for high-power Lithium Lorentz Force accelerators

    SciTech Connect (OSTI)

    Polk, J.; Frisbee, R.; Krauthamer, S.; Tikhonov, V.; Semenikhin, S.; Kim, V.

    1997-01-01

    Lithium Lorentz Force Accelerators (LFA{close_quote}s) are capable of processing very high power levels and are therefore applicable to a wide range of challenging missions. An analysis of a reusable orbit transfer vehicle with a solar or nuclear electric power source was performed to assess the applicability of high-power LFA{close_quote}s to this mission and to define engine performance and lifetime goals to help guide the technology development program. For this class of missions, the emphasis must be on achieving high efficiency at an Isp of 4000{endash}5000 s at power levels of 200{endash}250 kWe. The engines must demonstrate very reliable operation for a service life of about 3000 hours. These goals appear to be achievable with engine technologies currently under development. {copyright} {ital 1997 American Institute of Physics.}

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership

  3. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  4. Combined Heat and Power Technology Fact Sheets Series: Reciprocating Engines

    Broader source: Energy.gov (indexed) [DOE]

    Heat and Power Technology Fact Sheet Series Reciprocating Engines Reciprocating internal combustion engines are a mature tech- nology used for power generation, transportation, and many other purposes. Worldwide production of reciprocating internal combustion engines exceeds 200 million units per year. 1 For CHP installations, reciprocating engines have capacities that range from 10 kW to 10 MW. Multiple engines can be inte- grated to deliver capacities exceeding 10 MW in a single plant. Several

  5. MHK Technologies/Small power take off module | Open Energy Information

    Open Energy Info (EERE)

    module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Description The 18...

  6. Free-piston Stirling technology for space power

    SciTech Connect (OSTI)

    Slaby, J.G.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA`s new Civil Space Technology Initiative (CSTI). The overall goal of CSTI`s High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE.

  7. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  8. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  9. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Broader source: Energy.gov [DOE]

    Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

  10. EERE Success Story—Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

  11. Deep Sky Astronomical Image Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  12. MHK Technologies/FRI El Sea Power System | Open Energy Information

    Open Energy Info (EERE)

    FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Type Click here Axial Flow Turbine Technology Description The device is...

  13. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  14. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  15. Sloan digital sky survey

    SciTech Connect (OSTI)

    Kent, S.M.; Stoughton, C.; Newberg, H.; Loveday, J.; Petravick, D.; Gurbani, V.; Berman, E.; Sergey, G.; Lupton, R.

    1994-04-01

    The Sloan Digital Sky Survey will produce a detailed digital photometric map of half the northern sky to about 23 magnitude using a special purpose wide field 2.5 meter telescope. From this map we will select {approximately} 10{sup 6} galaxies and 10{sup 5} quasars, and obtain high resolution spectra using the same telescope. The imaging catalog will contain 10{sup 8} galaxies, a similar number of stars, and 10{sup 6} quasar candidates.

  16. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  17. Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-IN-00-030) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory Contact ANL About This Technology <p> Figure 1. Schematic of a functional fuel processor</p> Figure 1. Schematic of a functional fuel processor

  18. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  19. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  20. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Cells Fuel cells use an electrochemical process to convert the chemical energy in a fuel to electricity. In contrast to recipro- cating engines and gas turbines, fuel cells generate electric- ity without combusting the fuel. The first practical applica- tion for fuel cells emerged in the 1950s when fuel cells were used to provide onboard power for spacecraft. Fuel cells continue to be used in space exploration, but over the past few decades the technology has migrated to other applica- tions,

  1. Software Tools for Analysis of Concentrated Solar Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-8053 Unlimited Release Printed December 2008 Software and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further

  2. Perfect Power Prototype for Illinois Institute of Technology

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  3. EERE Water Power Technologies FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources ...

  4. Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power ...

  5. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test ...

  6. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

  7. Sustainable solar thermal power generation (STPG) technologies in Indian context

    SciTech Connect (OSTI)

    Sharma, R.S.

    1996-12-31

    India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

  8. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  9. Wind Power Technologies FY 2017 Budget At-A-Glance () | SciTech...

    Office of Scientific and Technical Information (OSTI)

    : Wind Power Technologies FY 2017 Budget At-A-Glance Citation Details In-Document Search Title: Wind Power Technologies FY 2017 Budget At-A-Glance You are accessing a document ...

  10. MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...

    Open Energy Info (EERE)

    Turbo Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

  11. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  12. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  13. Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Test Project | Department of Energy Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project 05_reed_ocean_power_technologies_inc_hart.ppt (1.48 MB) More Documents & Publications EA-1890: DOE Notice of Availability of the Finding of No Significant Impact

  14. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  15. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  16. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is

  17. MHK Technologies/Sea Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating...

  18. MHK Technologies/Canal Power | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description...

  19. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  20. Two-Phase Cooling Technology for Power Electronics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape037_moreno_2012_p.pdf (1013.93 KB) More Documents & Publications Two-Phase Cooling of Power Electronics Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics Two-Phase Cooling Technology for Power Electronics with Novel Coolants

  1. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  2. Sky Energy | Open Energy Information

    Open Energy Info (EERE)

    Sky Energy Place: Germany Product: A German company which is involved with the development of a 10MW STEG plant in the Moura region of Portugal. References: Sky Energy1 This...

  3. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT:...

  4. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  5. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C.

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  6. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  7. Chapter 4: Advancing Clean Electric Power Technologies | Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Carbon Dioxide Storage Technologies Carbon Dioxide Capture for Natural Gas and Industrial Applications Crosscutting Technologies in Carbon Dioxide Capture and...

  8. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  9. Notice of Intent: Innovative Technologies to Advance Non-Powered Dams and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped-Storage Hydropower Development | Department of Energy Innovative Technologies to Advance Non-Powered Dams and Pumped-Storage Hydropower Development Notice of Intent: Innovative Technologies to Advance Non-Powered Dams and Pumped-Storage Hydropower Development July 11, 2016 - 2:39pm Addthis Notice of Intent: Innovative Technologies to Advance Non-Powered Dams and Pumped-Storage Hydropower Development The Energy Department's Water Power Program intends to issue a Funding Opportunity

  10. Remote power systems with advanced storage technologies for Alaskan villages

    SciTech Connect (OSTI)

    Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

    1997-12-01

    Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes

  11. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Broader source: Energy.gov [DOE]

    Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to develop, design, construct, and operate, and they require a much larger minimum effective scale—typically at least 50 MW, compared with PV systems that can be as small as a few kilowatts. In recent years, PV’s greater modularity and lower LCOE have made it more attractive to many solar project developers, and some large projects that were originally planned for CSP have switched to PV. However, the ability of CSP to use thermal energy storage—and thus provide continuous power for long periods when the sun is not shining—could give CSP a vital role in evolving electricity systems. Because CSP with storage can store energy when net demand is low and release that energy when demand is high, it increases the electricity system’s ability to balance supply and demand over multiple time scales. Such flexibility becomes increasingly important as more variable-generation renewable energy is added to the system. For example, one analysis suggests that, under a 40% renewable portfolio standard in California, CSP with storage could provide more than twice as much value to the electricity system as variable-generation PV. For this reason, enhanced thermal energy storage is a critical component of the SunShot Initiative’s 2020 CSP technology-improvement roadmap.

  12. Technology verification phase. Dynamic isotope power system. Final report

    SciTech Connect (OSTI)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  13. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  14. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  15. MHK Technologies/SyncWave Power Resonator | Open Energy Information

    Open Energy Info (EERE)

    power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and...

  16. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  17. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... option for telecommunications operations that need reliable, long-running backup power at cellular phone signal relay sites, particularly during electric grid power outages. ...

  18. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on new-build coal-fired power plants, but there is opportunity in broadening this focus. ... Project Canada Power generation Century Plant United States Natural gas processing ...

  19. Chapter 4 - Advancing Clean Electric Power Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Complementing this evolving generation mix, technologies to enable higher efficiencies, ... contribute to a portfolio of technology options that can meet future regional demands. ...

  20. MHK Technologies/Current Power | Open Energy Information

    Open Energy Info (EERE)

    Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  1. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Broader source: Energy.gov (indexed) [DOE]

    technology for the purpose of improving human performance and plant status control (PSC) ... Leveraging the latest commercial off-the- shelf technology should result in improved human ...

  2. Summary of the NASA Lewis component technology program for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.; Swec, D.M.

    1992-10-01

    An update is presented on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power project is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The primary contractors for the space power and solar terrestrial projects develop component technologies directly related to their project goals. This Lewis component technology program, while coordinated with these main projects, is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.

  3. Advanced coal technologies in Czech heat and power systems

    SciTech Connect (OSTI)

    Noskievic, P. Ochodek, T.

    1998-07-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently, necessary steps in making coal utilization more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. preparatory steps have been taken in building an advanced combustion unit fueled by pulverized coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper than coal) do not result in an increased efficiency of the standing equipment by applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalization of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in the near future.

  4. Fun with Big Sky Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fun with Big Sky Learning Fun with Big Sky Learning WHEN: Mar 21, 2015 11:00 AM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, New Mexico, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Big Sky Learning Event Description Bring your kids and teens to the museum for an afternoon of "maker-space" activities with Big Sky Learning. Participants will be able to: Build their own Shake Bot-a small simple robot that shakes-and take

  5. Sky Vegetables | Open Energy Information

    Open Energy Info (EERE)

    Vegetables Jump to: navigation, search Name: Sky Vegetables Address: 45 Rosemary Street, Suite F Place: Needham, MA Zip: 02494 Sector: Solar Website: www.skyvegetables.comindex.ht...

  6. Hawaiis EVolution: Hawaii Powered. Technology Driven. ...

    Broader source: Energy.gov (indexed) [DOE]

    Powered. Technology Driven. Table of Contents Charting the Course Toward a Clean Energy Future 4 Forging a New Path for Island Transportation 5 Embracing New Alternatives 6...

  7. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  8. High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies

    Broader source: Energy.gov [DOE]

    Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

  9. Vehicle Technologies Office Merit Review 2015: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about power...

  10. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

  11. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  12. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... including vibrations, reducingoxidizing environments, ... for the existing coal-fired power plant fleet. An ... Novel sensor packaging methods should include ...

  13. Microsoft PowerPoint - [4] HVDC Technology Workshop Arlington...

    Broader source: Energy.gov (indexed) [DOE]

    in service) - VSC technology makes this easier, ... * Interconnection of remote renewable energy sources * ... loss (HVDC) transmission systems 16 systems * Controllable ...

  14. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events Contact Us

  16. Air Cooling Technology for Power Electronic Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Quadrennial Technology Review 2015: Technology Assessments--Marine and Hydrokinetic Power

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, and river and ocean currents into electricity. With more than 50% of the U.S. population living within 50 miles of the nation’s coasts, MHK technologies hold significant potential to supply renewable electricity to consumers in coastal load centers, particularly in the near term in areas with high costs of electricity and longer term in high resource areas in close proximity to major coastal load centers. MHK resource assessments identify a total U.S. technical resource potential of approximately 1250–1850 terawatt-hours (TWh) of generation per year from ocean wave, ocean current, ocean tidal, and river current energy. Of this, the U.S. continental technical resource potential is approximately 500–750 TWh/year. For context, roughly 90,000 homes can be powered by 1 TWh of electricity generation each year. A cost-effective MHK industry could provide a substantial amount of electricity for the nation owing in large part to its unique advantages as a source of energy, including its vast resource potential, its close proximity to major coastal load centers, and its long-term predictability and near-term forecastability.

  18. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  19. North Sky River | Open Energy Information

    Open Energy Info (EERE)

    Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  20. One Sky Homes | Open Energy Information

    Open Energy Info (EERE)

    Sky Homes Jump to: navigation, search Name: One Sky Homes Place: Los Gatos, CA Website: www.oneskyhomes.com References: One Sky Homes1 Information About Partnership with NREL...

  1. Desert Sky Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sky Wind Farm Jump to: navigation, search Name Desert Sky Wind Farm Facility Desert Sky Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Hawai'i's Evolution: Hawai'i Powered. Technology Driven. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Outlines Hawaii's energy and transportation goals and the implementation of electric vehicles (EV) and electric vehicle infrastructure since HCEI began in 2008. Includes information about Hawaii's role in leading the nation in available EV charging infrastructure per capita; challenges for continuing to implement EV technology; features on various successful EV users and

  3. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the NREL in Broomfield, Colorado from July 9 - 10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and to collect

  4. 2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Technology Transfer March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Accelerate Technology Transfer Development of On-Site Conical Spiral Welders for Large Turbine Towers-Eric Smith, Keystone Tower Systems, Inc. High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems-Stuart Nemster, Compact Membrane Systems Advanced Manufacturing Initiative-Daniel Laird, Sandia National Laboratories Manufacturing and Supply Chain R&D,

  5. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today's geothermal power plants draw on underground reservoirs of water or steam that are ... This "cascading" use of the geothermal resource is meant to improve the economics of ...

  6. Guodian United Power Technology Co Ltd formerly Guodian Union...

    Open Energy Info (EERE)

    Beijing Municipality, China Zip: 100044 Sector: Wind energy Product: China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References:...

  7. Harnessing the Power of Data, Technology and Innovation for a...

    Office of Environmental Management (EM)

    ... data available to their customers, provide consumers and first-responders with information about power outages, publish data about open building energy performance, and more. ...

  8. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Assessments Introduction Geothermal power taps into earth's internal heat as an energy source. While geothermal currently constitutes less than 1% of total U.S....

  9. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  10. Chapter 4: Advancing Clean Electric Power Technologies | Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The non-capture components of a power plant offer ... For pulverized coal plants it includes advanced turbines, ... than for more dilute air-fired combustion systems, which ...

  11. Helping Ensure High-Quality Installation of Solar Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Maximizes Taxpayer's Investment Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  12. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Broader source: Energy.gov (indexed) [DOE]

    consistent with expected deployment timelines. EOR and other Technology Options Crude oil development and production in U.S. oil reservoirs can include up to three distinct...

  14. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    This breakthrough membrane technology addresses market demands by lowering lithium-ion battery costs and improving safety through the replacement of polymer separators. The ...

  15. MHK Technologies/Hydrokinetic Power Barge | Open Energy Information

    Open Energy Info (EERE)

    design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest...

  16. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines. ...

  18. Sky Train Corp | Open Energy Information

    Open Energy Info (EERE)

    Train Corp Jump to: navigation, search Name: Sky Train Corp. Place: Palm Harbor, Florida Zip: 34684 Sector: Services Product: Sky Train Corporation is a consultant company...

  19. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Blue Sky Optimum Energy | Open Energy Information

    Open Energy Info (EERE)

    Optimum Energy Jump to: navigation, search Name: Blue Sky Optimum Energy Place: Buffalo, New York Product: Blue Sky offers a processing system to produce biodiesel at a cheaper...

  1. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Flexible and Distributed Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Measurements, Communications, and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Flexible and Distributed Energy Resources Chapter 3: Technology Assessments Introduction The U.S. electric power system is undergoing significant changes. The reliance on large thermal generators of the past is giving way to a much more dynamic paradigm. In recent years, many new technologies have been

  2. MHK Technologies/Ocean Powered Compressed Air Stations | Open...

    Open Energy Info (EERE)

    Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and...

  3. Vehicle Technologies Office: Power Electronics Research and Developmen...

    Energy Savers [EERE]

    energy from a battery to AC power to drive the motor. An inverter also acts as a motor controller and as a filter to isolate the battery from potential damage from stray currents. ...

  4. Chapter 4: Advancing Clean Electric Power Technologies | Supercritical...

    Broader source: Energy.gov (indexed) [DOE]

    parasitic power requirement for the balance of plant (BOP). ... or indirect-fired closed Rankine cycles which use water as a working fluid (typical in pulverized coal and nuclear ...

  5. MHK Technologies/IVEC Floating Wave Power Plant | Open Energy...

    Open Energy Info (EERE)

    Resource Click here Wave Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has...

  6. MHK Technologies/W2 POWER | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore...

  7. MHK Technologies/Submergible Power Generator | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C...

  8. MHK Technologies/Wave Power Desalination | Open Energy Information

    Open Energy Info (EERE)

    in water depths of 40 44m and uses a two point mooring system with four lines Its methodology for Technology Dimensions Device Testing Date Submitted 18:50.2 << Return to the...

  9. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Table 1. Key Assumptions a by Technology Battery Diesel Generator Fuel Cell Capacity (kW) 4-6 25-35 (operated at 6) 4-6 Lifetime 9 5 15 15 Leased bottles for 8- Fuel Storage ...

  10. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  11. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

  12. Nuclear power program and technology development in Korea

    SciTech Connect (OSTI)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  13. (Safety and reliability of nuclear power plant technology)

    SciTech Connect (OSTI)

    Dickson, T.L.

    1990-10-22

    The traveler attended the 16th MPA Seminar on the Safety and Reliability of Plant Technology with Special Emphasis on Nuclear Technology. The objective of the trip was to gather information and data that could prove useful to the US Nuclear Regulatory Commission (USNRC) sponsored Heavy-Section Steel Irradiation (HSSI) and Heavy-Section Steel Technology (HSST) Programs and to present a paper entitled, Effects of Irradiation on Initiation and Crack-Arrest Toughness of Two High-Copper Welds and on Stainless Steel Cladding. This paper summarizes results from the 5th, 6th, and 7th Irradiation Series of experiments performed within the HSSI Program by the Metals and Ceramics Division at Oak Ridge National Laboratory (ORNL).

  14. Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  15. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  16. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  17. Lumileds Develops Patterned Sapphire Substrate Technology for High-Power LEDs

    Broader source: Energy.gov [DOE]

    Patterned sapphire substrate (PSS) technology is an effective approach to improving efficacy and reducing cost of LEDs and has gained wide use in mid-power LEDs. With the help of DOE funding,...

  18. Motion-to-Energy (M2Eâ?¢) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  19. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  20. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to bench scale testing at 10 kWe, capturing 250 lbday of CO 2 , and then to 50 kWe, capturing 1 ton per day of CO 2 from the Arizona Public Service coal-fired Cholla power plant. ...

  1. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  2. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  3. Pacific Power- Blue Sky Community Project Funds

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Applications for 2016 funding were due May 31, 2016 at 5 PM PT. Applicants will be notified of the award decisions around September. 

  4. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  5. Distributed generation technology in a newly competitive electric power industry

    SciTech Connect (OSTI)

    Pfeifenberger, J.P.; Ammann, P.R.; Taylor, G.A.

    1996-10-01

    The electric utility industry is in the midst of enormous changes in market structure. While the generation sector faces increasing competition, the utilities` transmission and distribution function is undergoing a transition to more unbundled services and prices. This article discusses the extent to which these changes will affect the relative advantage of distributed generation technology. Although the ultimate market potential for distributed generation may be significant, the authors find that the market will be very heterogeneous with many small and only a few medium-sized market segments narrowly defined by operating requirements. The largest market segment is likely to develop for distributed generation technology with operational and economical characteristics suitable for peak-shaving. Unbundling of utility costs and prices will make base- and intermediate-load equipment, such as fuel cells, significantly less attractive in main market segments unless capital costs fall significantly below $1,000/kW.

  6. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Turbines Gas turbines are available in sizes ranging from approxi- mately one to more than 300 megawatts (MW) and are used to meet diverse power needs, including propulsion (e.g., aircraft, ships, and trains), direct drive (e.g., pumps and com- pressors) and stationary electricity generation. For electric- ity generation, gas turbines are available in a wide range of capacities and configurations, ranging from relatively small microturbines (described in a separate fact sheet 1 ) to very large

  7. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  8. Overview of Progress in Thermoelectric Power Generation Technologies in

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY lab 18 Aug 2015 Richard Hammack, Monitoring Team Lead USDOE National Energy Technology Laboratory, Pittsburgh, PA Overview of NETL Field Studies Related to Oil and Gas Production DOE Tribal Leaders Forum Denver, Colorado Newfield Exploration, Bakken Petroleum System, North Dakota * Reduce Environmental Impacts * Demonstrate Safe/Reliable Operations * Improve Efficiency of Hydraulic Fracturing Program Objectives * Surface Monitoring - Ambient Air Quality - Air Emissions - Ground Motion -

  9. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  11. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect (OSTI)

    Patton, Bruce; Sorensen, Kirk

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  12. IQ Power AG formerly iQ Power Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    is a developer and manufacturer of advanced, intelligent systems for optimising the performance of car batteries, independent of the specific battery technology. References: iQ...

  13. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Electric Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Energy Storage Chapter 3: Technology Assessments Introduction Electric energy storage technologies (EESTs) have the potential to significantly improve the operating capabilities of the grid as well as mitigate infrastructure investments. The key characteristic of energy storage technologies is their ability to store electricity produced at one time for use at another time, balancing supply and demand. This capability can be used to address a number of challenges facing the power sector

  14. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Measurements, Communications, and Controls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Measurements, Communications, and Controls Chapter 3: Technology Assessments Introduction Grid operators are tasked with maintaining the generation-load balance and ensuring the safe, reliable, and cost-effective delivery of electric power. This role is of critical importance today and will continue to be so in the future. However, this task is

  15. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  16. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Transmission and Distribution Components Chapter 3: Technology Assessments Introduction Today's electric power system was designed for efficiency, reliability, ease of operation, and to meet consumer needs at minimum cost. The grid of the future must maintain these characteristics while meeting a number of new requirements: supporting the integration of various clean and distributed

  17. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  18. Application of membrane technology to power generation waters

    SciTech Connect (OSTI)

    Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

    1980-03-01

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

  19. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  20. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect (OSTI)

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  1. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  2. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  3. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  4. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W.; Tesche, F.M.; Vance, E.F.

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  5. Red Sky with Red Mesa

    ScienceCinema (OSTI)

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  6. Red Sky with Red Mesa

    SciTech Connect (OSTI)

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  7. NREL: Water Power Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power

  8. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  9. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  10. SkyFuel Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Logo: SkyFuel Inc Name: SkyFuel Inc Address: 18300 W Highway 72 Place: Arvada, Colorado Zip: 80007 Region: Rockies Area Sector: Solar...

  11. Blue Sky Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Group Inc Jump to: navigation, search Name: Blue Sky Group Inc Place: Laramie, Wyoming Zip: WY 82072-3 Product: Blue Sky is an incubator that builds high quality, high tech...

  12. Blue Sky Bio Fuels | Open Energy Information

    Open Energy Info (EERE)

    Bio Fuels Jump to: navigation, search Name: Blue Sky Bio-Fuels Place: Oakland, California Zip: 94602 Product: Blue Sky owns and operates a biodiesel plant in Idaho with a capacity...

  13. Einstein and the Daytime Sky - A

    Office of Scientific and Technical Information (OSTI)

    Einstein found how this relates to the reason the sky is blue. A B C D A. A path with a ... exist, we may, somewhat unconsciously, associate Einstein with the dark nighttime sky. ...

  14. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  15. DOE Selects Projects to Advance Technologies for the Co-Production of Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks | Department of Energy to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks August 18, 2010 - 1:00pm Addthis Washington, DC - Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been

  16. 1987 Overview of the free-piston Stirling technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.; Alger, D.L.

    1994-09-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, NASA Lewis serves as the project office to manage the newly initiated NASA SP-100 Advanced Technology Program. This 5-yr program provides the technology thrust for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable growth candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are comparisons between predicted and experimental engine performance, enhanced performance resulting from regenerator modification, increased operating stroke brought about by isolating the gas bearing flow between the displacer and power piston, identifying excessive energy losses and recommending corrective action, and a better understanding of linear alternator design and operation. Technology work is also conducted on heat exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance performance. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  17. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Designs, Architectures, and Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designs, Architectures, and Concepts Chapter 3: Technology Assessments Introduction Society's growing dependence on the electric infrastructure, along with rapid changes in generation-side and demand-side technologies, is forcing a reconsideration of the fundamental design principles and operational concepts of the grid. Currently, the grid is characterized by monolithic central generation interconnected by high voltage transmission lines, with one-way power flows on distribution feeders,

  18. Laboratory technologies ENDURE(tm) SCR Catalyst and Hyperion Power Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    garner Federal Laboratory Consortium awards Federal Laboratory Consortium Awards Laboratory technologies ENDURE(tm) SCR Catalyst and Hyperion Power Module garner Federal Laboratory Consortium awards The annual awards recognize successful efforts by federal laboratory employees to transfer government-developed technology to commercial industry. April 27, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to

  19. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Connecticut Center for Advanced Technology, Inc. CCAT Energy Initiatives: Joel M. Rinebold 2 Strengths, Weaknesses, Barriers * Strengths - Value for Energy - Value for Environment - Value for Economy * Weaknesses - Lack of Planning and Analysis - Lack of Value Internalization * Barriers - Market Acceptance for D.G. - High Cost Due to Low Production - Predictable Investment 3 Hydrogen Roadmap

  20. Chapter 4: Advancing Clean Electric Power Technologies | Nuclear Fuel Cycles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the

  1. Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants

    Broader source: Energy.gov [DOE]

    "This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

  2. Breakdown voltage improvement of standard MOS technologies targeted at smart power

    SciTech Connect (OSTI)

    Santos, P.M.; Simas, M.I.C.; Lanca, M.; Finco, S.; Behrens, F.H.

    1995-12-31

    This paper presents and discusses trade-offs of three different design techniques intended to improve the breakdown voltage of n-type lateral medium power transistors to be fabricated in a conventional low cost CMOS technology. A thorough analysis of the static and dynamic characteristics of the modified structures was carried out with the support of a two-dimensional device simulator. The motivation behind this work was the construction of a low cost smart power microsystem, including control, sensing and protection circuitries, targeted at an electronic ballast for efficient control of the power delivered to fluorescent lamps.

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  4. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect (OSTI)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  5. Chapter 4: Advancing Clean Electric Power Technologies | High Temperature Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Reactors Chapter 4: Technology Assessments Introduction High temperature reactor (HTR) systems (i.e., reactors with core outlet temperatures between 700°C and 950°C) offer higher thermodynamic efficiency of converting the heat generated in the reactor to electricity (e.g., ~50% at 950°C or 47% at 850°C) than light water reactors (LWRs); this could greatly improve the economics of reactor systems. 1,2 However, the higher temperature also limits the number of fuel, coolant,

  6. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  7. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  8. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  9. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and

  10. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  11. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  12. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect (OSTI)

    Kolb, G.J.

    1996-12-01

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  13. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  14. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  15. Overview of free-piston Stirling engine technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Technology work is also conducted on heat-exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. Projections are made for future space-power requirements over the next few decades along with a recommendation to consider the use of dynamic power-conversion systems - either solar or nuclear. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kWe power range is presented.

  16. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  17. Electrical Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1998-02-18

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI/ADA Technologies dry sorbent sampling unit and the testing of Hg catalysts/sorbents in this low-flow, temperature controlled system. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  18. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  19. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared

  20. SkyPilot Networks | Open Energy Information

    Open Energy Info (EERE)

    California Product: US-based provider of broadband wireless solutions to utilities, public service agencies and municipalities. References: SkyPilot Networks1 This article...

  1. Sky Solar Global SA | Open Energy Information

    Open Energy Info (EERE)

    Global SA Jump to: navigation, search Name: Sky Solar Global SA Place: Madrid, Spain Zip: 28046 Product: Project developer, and distributor of Chinese PV modules to Spain and...

  2. Sky Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc Jump to: navigation, search Name: Sky Energy, Inc Place: Greenville, South Carolina Zip: 29607 Sector: Renewable Energy, Wind energy Product: Sells renewable...

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  4. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  5. Status of an advanced radioisotope space power system using free-piston Stirling technology

    SciTech Connect (OSTI)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  6. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    SciTech Connect (OSTI)

    Martin, Christopher; Pavlish, John

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  7. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  8. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  9. Candidate for solar power : a novel desalination technology for coal bed methane produced water.

    SciTech Connect (OSTI)

    Hanley, Charles J.; Andelman, Marc; Hightower, Michael M.; Sattler, Allan Richard

    2005-03-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.

  10. WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Doug Strickland

    2001-09-28

    In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at

  11. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment

  12. Reliability of radio transients detected in the Nasu sky survey

    SciTech Connect (OSTI)

    Aoki, Takahiro; Daishido, Tsuneaki; Tanaka, Tai; Nakao, Ryota; Nomura, Naomi; Sugisawa, Kentaro; Niinuma, Kotaro; Takefuji, Kazuhiro; Kida, Sumiko

    2014-01-20

    This article reports on the reliability of 11 radio transients detected in the Nasu sky survey. We derived false detection rates and evaluated the statistical significance of each transient source. A single source, labeled WJN J1443+3439, was statistically significant at the 10{sup 5} significance level; the other 10 sources were insignificant. On the basis of this single detection, the sky surface density of live radio transients was estimated to be 2{sub ?1.9}{sup +9}10{sup ?6} deg{sup ?2} at a flux density above 3 Jy and a frequency of 1.42 GHz. Since this result is comparable with other survey results and known transients, WJN J1443+3439 could not be excluded. The sky surface density supported a power-law distribution of source count versus flux density. For transient events, the power-law exponent was approximately 3/2. These results are expected to assist radio variable/transient surveys in next-generation facilities such as the Square Kilometre Array.

  13. All-sky interferometry with spherical harmonic transit telescopes

    SciTech Connect (OSTI)

    Shaw, J. Richard; Pen, Ue-Li; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert

    2014-02-01

    In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loève transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.

  14. APEX and ALPS, high power density technology programs in the U.S.

    SciTech Connect (OSTI)

    Wong, C.; Berk, S.; Abdou, M.; Mattas, R.

    1999-02-01

    In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations.

  15. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas

  16. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less

  17. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    SciTech Connect (OSTI)

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype, we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.

  18. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  19. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect (OSTI)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  20. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1997-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  1. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    SciTech Connect (OSTI)

    Olszewski, Mitch

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  2. Progress Towards Commercialization of Electrochemical Membrane Technology for CO2 Capture and Power Generation

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; DiNitto, M.; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, C. F.; Marina, Olga A.; Pederson, Larry R.

    2014-03-01

    To address the concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept, as a novel solution for greenhouse gas emission reduction. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s well established Direct FuelCell® products. The system concept works as two devices in one: it separates the CO2 from the exhaust of other plants and simultaneously, using a supplementary fuel, produces electric power at high efficiency. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of coal fired power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of a PC plant with no more than 35% increase in the cost of electricity. The specific objectives and related activities presently ongoing for the project include: 1) conduct bench scale tests of ECM and 2) evaluate the effects of impurities present in the coal plant flue gas by laboratory scale performance tests of the membrane.

  3. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect (OSTI)

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  4. Electric power research institute environmental control technology center report to the steering committee

    SciTech Connect (OSTI)

    1998-08-08

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini- Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  5. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  6. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1997-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  7. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    Carbon Sequestration Partnership Jump to: navigation, search Logo: Big Sky Carbon Sequestration Partnership Name: Big Sky Carbon Sequestration Partnership Address: 2327 University...

  8. Deep Sky Astronomical Image Database Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  9. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  10. Cogenra Solar formerly SkyWatch Energy | Open Energy Information

    Open Energy Info (EERE)

    Cogenra Solar formerly SkyWatch Energy Jump to: navigation, search Name: Cogenra Solar (formerly SkyWatch Energy) Place: Mountain View, California Zip: 94043 Sector: Solar Product:...

  11. Beijing Sky Solar Investment Management Co | Open Energy Information

    Open Energy Info (EERE)

    Sky Solar Investment Management Co Jump to: navigation, search Name: Beijing Sky Solar Investment & Management Co. Place: Beijing, China Sector: Solar Product: Beijing based...

  12. CECIC Blue Sky Investment Consulting Management Co Ltd | Open...

    Open Energy Info (EERE)

    CECIC Blue Sky Investment Consulting Management Co Ltd Jump to: navigation, search Name: CECIC Blue-Sky Investment Consulting & Management Co. Ltd Place: Beijing, Beijing...

  13. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Monitor Telescope Pipeline Citation Details In-Document Search Title: The Sloan Digital Sky Survey Monitor Telescope Pipeline You are accessing a...

  14. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration ...

  15. Carolina Blue Skies & Green Jobs Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative New York State-wide Alternative Fuel Vehicle Program for ...

  16. Carolina Blue Skies & Green Jobs Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (577.38 KB) More Documents & Publications Carolinas Blue Skies & Green Jobs Initiative Carolina Blue Skies & Green Jobs Initiative Advanced Electric Drive Vehicle Education Program

  17. Einstein and the Daytime Sky - D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Fun with polarizers In one respect, Einstein's mathematical analysis (like Rayleigh's earlier one) proves quite accurate, in a way that's easy to demonstrate. This has to do with how the sky's scattered light is polarized. Try looking at a patch of clear sky through one lens of a pair of polarizing sunglasses while you rotate the lens. You'll notice that the sky looks brighter as you look through the lens in some positions, and darker when the lens is in other positions. If the sun is not far

  18. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    SciTech Connect (OSTI)

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  19. Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler

    SciTech Connect (OSTI)

    Shingledecker, John P; Wright, Ian G

    2006-01-01

    The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

  20. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator

  1. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect (OSTI)

    1996-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  2. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    SciTech Connect (OSTI)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  3. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOE Patents [OSTI]

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  4. Science satellites scour skies for Santa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science satellites scour skies for Santa Science satellites scour skies for Santa Beginning at 6 a.m. Monday, Dec. 24, scientists will use two advanced science satellites to mark the path of the elfin traveler. December 20, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  5. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible

  6. The potential impact of externalities considerations on the market for biomass power technologies

    SciTech Connect (OSTI)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1994-02-01

    This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

  7. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

  8. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  9. Vehicle Technologies Office Merit Review 2016: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  10. Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  11. Vehicle Technologies Office Merit Review 2015: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  12. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes (pasteurization, desalination, cryogenics) Renewable energy (concentrated solar power, residential solar hot water, geothermal power plants, solar water...

  13. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  14. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  15. DOE FreedomCAR and Vehicle Technologies Program Advanced Power Electronics and Electrical Machines Annual Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FreedomCAR and Vehicle Technologies Program Advanced Power Electronics and Electrical Machines Annual Review Report Pollard Technology Center Oak Ridge, Tennessee May 3-5, 2005 Prepared by Oak Ridge National Laboratory June 16, 2005 For DOE Internal Use Only Table of Contents Page Attendee List 3 Webcast Attendance Report 5 Evaluation Form Results 6 Summary of Reviewers' Ratings (grouped by research area) 9 Reviewers Rating Descriptions 12 Reviewers' Comments (grouped by title) 13 Appendix A

  16. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  17. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  18. Clear Sky Detection Paper for Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Reno and C. W. Hansen, "Identification of Periods of Clear Sky Irradiance in Time Series of GHI Measurements," Renewable Energy, 2016. Preprint. DOI: 10.1016/j.renene.2015.12.031 1 Identification of Periods of Clear Sky Irradiance in Time Series of GHI Measurements Matthew J. Reno * and Clifford W. Hansen Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1033, USA *Corresponding author. E-mail address: mjreno@sandia.gov TEL.: +1 505 844 3087; Fax: +1 505 844 7231

  19. MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy...

    Open Energy Info (EERE)

    that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity Mooring Configuration The most...

  20. Advanced component development of MCFC technology at M-C Power

    SciTech Connect (OSTI)

    Erickson, D.S.; Haugh, E.J.; Benjamin, T.G.

    1996-12-31

    M-C Power Corporation (MCP) was founded in 1987 to commercialize Molten Carbonate Fuel Cell (MCFC) stacks. The first generation of active area cell components were successfully scaled-up from the 100-cm{sup 2} area laboratory scale to continuous production of commercial-area (1-m) components. These components have been tested in five commercial-area subscale (20-kW) stacks and one commercial-scale (250-kW) stack. The second 250 kW stack is being installed in the power plant for operation in late 1996 and components have already been manufactured for the third 250-kW stack which is scheduled to go on-line in the middle of 1997. Concurrent with commercial-area (1-m{sup 2}) active component manufacturing has been an ongoing effort to develop and test advanced component technologies that will enable MCP to meet its future cost and performance goals. The primary goal is to lower the total cell package cost, while attaining improvements in cell performance and endurance. This work is being completed through analysis of the cost drivers for raw materials and manufacturing techniques. A program is in place to verify the performance of the lower cost materials through pressurized (3 atm) bench scale (100-cm{sup 2}) cell tests. Bench-scale cell testing of advanced active area components has shown that simultaneous cost reduction and improvements in the performance and endurance are attainable. Following performance verification at the bench scale level, scale-up of the advanced component manufacturing processes to commercial-area has been ongoing in the past year. The following sections discuss some of the performance improvements and reductions in cost that have been realized.

  1. U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry

    SciTech Connect (OSTI)

    Hsieh, B.C.B.; Wang Yingshi

    1997-11-01

    Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

  2. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    SciTech Connect (OSTI)

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  3. Electric Power Research Institute Environmental Control Technology Center final monthly technical report, August 1995

    SciTech Connect (OSTI)

    1995-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit this month involved the Trace Element Removal (TER) test block, and the simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). Additionally, the second phase of the 1995 Carbon Injection test block began this month with the SDA/PJFF test configuration. At the end of the LDG testing this month, a one-week baseline test was conducted to generate approximately 200 lbs. of magnesium-lime FGD solids for analysis. On the 1.0 MW Post-FGD Selective Catalytic Reduction (SCR) unit, performance testing was continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and S0{sub 3} generation across the catalysts installed in the reactor. As a result of new directions received from EPRI, this will be the last scheduled month of testing for the SCR unit in 1995. At the completion of this month, the unit will be isolated from the flue gas path and placed in a cold-standby mode for future test activities. This report describes the status of facilities and test facilities at the pilot and mini-pilot plants.

  4. Electric Power Research Institute, Environmental Control Technology Center report to the steering committee. Final technical report

    SciTech Connect (OSTI)

    1995-12-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued with the Pilot High Velocity FGD (PHV) and the Trace Element Removal (TER) test blocks. In the High Velocity test block, SO{sub 2} removal and mist eliminator carryover rates were investigated while operating the absorber unit with various spray nozzle types and vertical mist eliminator sections. During the Trace Element Removal test block, the mercury measurements and control studies involving the EPA Method 29 continued with testing of several impinger capture solutions, and the use of activated carbon injection across the Pulse-Jet Fabric Filter (PJFF) unit. The 4.0 MW Spray Dryer Absorber System was utilized this month in the TER test configuration to inject and transfer activated carbon to the PJFF bags for downstream mercury capture. Work also began in December to prepare the 0.4 MW Mini-Pilot Absorber system for receipt of the B and W Condensing Heat Exchanger (CHX) unit to be used in the 1996 DOE/PRDA testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained in cold-standby this month.

  5. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A.; Krause, P.E.; Wilson, R.E.; Overholt, P.N.; Sobajic, D.J.; Hauer, J.F.; Rizy, D.T.

    1996-07-01

    In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

  6. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  7. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  8. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect (OSTI)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  9. Autonomous global sky monitoring with real-time robotic follow...

    Office of Scientific and Technical Information (OSTI)

    Conference: Autonomous global sky monitoring with real-time robotic follow-up Citation Details In-Document Search Title: Autonomous global sky monitoring with real-time robotic...

  10. Fast All-Sky Radiation Model for Solar Applications (FARMS):...

    Office of Scientific and Technical Information (OSTI)

    Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of ... Citation Details In-Document Search Title: Fast All-Sky Radiation Model for Solar ...

  11. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release Citation Details In-Document Search Title: The Sloan Digital Sky Survey...

  12. OZZ Solar Inc Sky Ozz International | Open Energy Information

    Open Energy Info (EERE)

    OZZ Solar Inc Sky Ozz International Jump to: navigation, search Name: OZZ Solar Inc. (Sky Ozz International) Place: Concord, Ontario, Canada Zip: L4K 4R1 Sector: Solar Product:...

  13. Blue Sky Green Field Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Green Field Wind Farm Jump to: navigation, search Name Blue Sky Green Field Wind Farm Facility Blue Sky Green Field Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  14. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  15. Sloan Digital Sky Survey (SDSS): Data Release 2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR2 provides provides images, imaging catalogs, spectra, and redshifts for download.

  16. Sloan Digital Sky Survey (SDSS): Data Release 5

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR5 provides provides images, imaging catalogs, spectra, and redshifts for download.

  17. Sloan Digital Sky Survey (SDSS): Data Release 3

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR3 provides provides images, imaging catalogs, spectra, and redshifts for download.

  18. Sloan Digital Sky Survey (SDSS): Data Release 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR4 provides provides images, imaging catalogs, spectra, and redshifts for download.

  19. Sloan Digital Sky Survey (SDSS): Data Release 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sloan Digital Sky Survey (SDSS) is one of the most ambitious and influential surveys in the history of astronomy.Over eight years of operations (SDSS-I, 2000-2005; SDSS-II, 2005-2008), it obtained deep, multi-color images covering more than a quarter of the sky and created 3-dimensional maps containing more than 930,000 galaxies and more than 120,000 quasars. The SDSS used a dedicated 2.5-meter telescope at Apache Point Observatory, New Mexico, equipped with two powerful special-purpose instruments. SDSS data have supported fundamental work across an extraordinary range of astronomical disciplines, including the properties of galaxies, the evolution of quasars, the structure and stellar populations of the Milky Way, the dwarf galaxy companions of the Milky Way and M31, asteroids and other small bodies in the solar system, and the large scale structure and matter and energy contents of the universe. (Taken from home page of www.sdss.org). DR1 was the first major data release, providing images, imaging catalogs, spectra, and redshifts for download.

  20. Building America Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Broader source: Energy.gov [DOE]

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  1. Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    Tim Merrigan

    2015-09-01

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  2. On the Path to SunShot: Advancing Concentrating Solar Power Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... thermal power-tower plants can achieve higher- ... or more slope, thereby reducing site-preparation costs ... function to a boiler in a conventional coal-fired power plant. ...

  3. Solar Powering Your Community: A Guide for Local Governments; Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar America Cities Fact Sheet - Solar Powering Your Community: A Guide for Local Governments, July 2009.

  4. Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors (Agreement ID:23726)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Appendix M - GPRA06 estimate of penetration of generating technologies into green power markets

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The Green Power Market Model (GPMM or the model) identifies and analyzes the potential electric-generating capacity additions that will result from green power programs, which are not captured in the least-cost analyses performed by the National Energy Modeling System (NEMS) and the Market Allocation (MARKAL) model. The term "green power" is used to define power generated from renewable energy sources, such as wind, solar, geothermal, and various forms of biomass. The Green Power market is an increasingly important element of the national renewable energy contribution, with changes in the regulatory and legislative environment and the recent dramatic changes in natural gas prices slowly altering the size of this opportunity.

  7. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    SciTech Connect (OSTI)

    Montgomery, Edward E. IV

    2010-05-06

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  8. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected

  9. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect (OSTI)

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  10. Infrared Sky Imager (IRSI) Instrument Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Infrared Sky Imager Instrument Handbook VR Morris April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  11. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  12. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    SciTech Connect (OSTI)

    Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra; Weist, Edward; Lau, Garret; Jonas, Gordon

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  13. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Vlahinos, A.

    2009-08-01

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  14. Air Cooling Technology for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    Bharathan, D.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Air Cooling for Power Electronics'.

  15. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  16. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  17. Defining the “proven technology” technical criterion in the reactor technology assessment for Malaysia’s nuclear power program

    SciTech Connect (OSTI)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul Manan, Jamal Abdul Nasir Abd

    2015-04-29

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that “proven technology” is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for “proven technology” is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the “proven technology” term according to a specific country’s requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of “proven technology” that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia’s definition of “proven technology”.

  18. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  19. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema (OSTI)

    Isabelle Grenier

    2010-01-08

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  20. Vehicle Technologies Office Merit Review 2014: Two-Phase Cooling of Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about two...

  1. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  2. Vehicle Technologies Office Merit Review 2016: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by TIAX at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  3. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  4. Vehicle Technologies Office Merit Review 2016: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  5. Vehicle Technologies Office Merit Review 2015: Enabling Materials for High Temperature Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling...

  6. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  7. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  8. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  9. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  10. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  11. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  12. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  14. Solar Energy Technologies Program - Growing Solar Power Industry Brightens Job Market (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    U.S. solar power capacity is expanding rapidly as part of the national initiative to double renewable energy resources in three years. This growth is helping to generate many new, well-paid jobs in solar power for American workers.

  15. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  16. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  17. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  18. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  19. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  20. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  1. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP

  2. The diffuse galactic far-ultraviolet sky

    SciTech Connect (OSTI)

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  3. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  4. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  5. Power beam technology at Los Alamos/A review of research and development activities

    SciTech Connect (OSTI)

    Casey, H.

    1990-01-01

    This document discusses techniques and research programs in power beam welding at Los Alamos National Laboratories. Specific areas discussed are in plasma welding, electron beam welding and laser welding. 11 refs., 9 figs. (FSD)

  6. Vehicle Technologies Office Merit Review 2015: A Disruptive Approach to Electric Vehicle Power Electronics

    Broader source: Energy.gov [DOE]

    Presentation given by U of Colorado at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a disruptive approach to...

  7. Status of Wave and Tidal Power Technologies for the United States

    SciTech Connect (OSTI)

    Musial, W.

    2008-08-01

    This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

  8. Vehicle Technologies Office Merit Review 2016: Enabling Materials for High Temperature Power Electronics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  9. Vehicle Technologies Office Merit Review 2016: SAE J2907 Motor Power Ratings Standards Support

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  10. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I. )

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

  11. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  12. A TECHNICAL, ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF AMINE-BASED CO2 CAPTURE TECHNOLOGY FOR POWER PLANT GREENHOUSE GAS CONTROL

    SciTech Connect (OSTI)

    Edward S. Rubin; Anand B. Rao

    2002-10-01

    Capture and sequestration of CO{sub 2} from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO{sub 2} absorption system for post-combustion flue gas applications have been developed, and integrated with an existing power plant modeling framework that includes multi-pollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO{sub 2} capture system design, interactions with other pollution control systems, and method of CO{sub 2} storage. The CO{sub 2} avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration, as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO{sub 2} capture cost was afforded by the SO{sub 2} emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multi-pollutant environmental management.

  13. Approach to market-penetration analysis for advanced electric-power-generation technologies

    SciTech Connect (OSTI)

    Lamontagne, J.; Love, P.; Queirolo, A.

    1980-12-01

    If commercialization of new technologies is the primary objective of the Department of Energy's Research, Development and Demonstration (RD and D) programs, the ultimate measure of benefit from RD and D programs is the extent of commercial acceptance of the developed technologies. Uncertainty about barriers to commercialization - government policy, fuel supply, etc. - make the task of estimating this acceptance very difficult. However, given that decisions must be made regarding allocation of RD and D funds, the best information available, with due regard for uncertainty, should serve as input to these decisions. An approach is presented for quantifying the range of market potential for new technologies (specifically in the utility sector) based on historical information and known plans for the future.

  14. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  15. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  16. Fast All-sky Radiation Models for Solar applications (FARMS)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Fast All-sky Radiation Models for Solar applications ... Radiative transfer (RT) models simulating broadband solar radiation have been widely used ...

  17. University of California, San Diego (UCSD) Sky Imager Cloud Position...

    Office of Scientific and Technical Information (OSTI)

    University of California, San Diego (UCSD) Sky Imager Cloud Position Study Field Campaign Report Citation Details In-Document Search Title: University of California, San Diego ...

  18. Big Sky, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sky, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2846507, -111.368292 Show Map Loading map... "minzoom":false,"mappingservice":...

  19. Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation You Can Depend On David Koeberlein- Principal Investigator Cummins Inc. Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks June 20, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ACE057 Innovation You Can Depend On Overview Budget: * Total: $77,662,230 * DoE share* $36,335,608 * CMI share* $36,335,608 * actuals as of 12/31/2013 Today

  20. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.