Sample records for technologies selective catalytic

  1. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05T23:59:59.000Z

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  2. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01T23:59:59.000Z

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  3. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  4. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  5. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  6. Molecular Components of Catalytic Selectivity

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-07-02T23:59:59.000Z

    Selectivity, that is, to produce one molecule out of many other thermodynamically feasible product molecules, is the key concept to develop 'clean manufacturing' processes that do not produce byproducts (green chemistry). Small differences in potential energy barriers for elementary reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), instead of the overall activation energy for the reaction that controls turnover rates (activity). Recent studies have demonstrated the atomic- or molecular-level tailoring of parameters such as the surface structures of active sites that give rise to nanoparticle size and shape dependence of turnover rates and reaction selectivities. Here, we highlight seven molecular components that influence reaction selectivities. These include: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states for model metal single crystal and colloid nanoparticle catalysts. We show examples of their functioning and describe in-situ instruments that permit us to investigate their roles in surface reactions.

  7. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology

    SciTech Connect (OSTI)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13T23:59:59.000Z

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

  8. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01T23:59:59.000Z

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  9. Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control

    E-Print Network [OSTI]

    Castro Galnares, Sebastián (Castro Galnares Wright Paz)

    2008-01-01T23:59:59.000Z

    A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

  10. Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties of BIMEVOX (Me = Ta)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties for syngas or H2 production from light hydrocarbons. #12;2 Keywords: Dense membrane reactor, BIMEVOX, BITAVOX to decouple the two steps of the redox mechanism that prevails in selective oxidation of hydrocarbons [1

  11. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  12. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  13. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  14. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  15. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  16. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  17. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace027peden2011...

  18. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace027peden2012...

  19. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace027peden2010o...

  20. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. acep02peden...

  1. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Ag, Fe, Cr, Y - Metal oxides - ZrO 2 , MoO 3 - Zeolites - Mordenite, Ferrierite, - Y, Beta Pioneering Science and Technology Office of Science U.S. Department of Energy Minimal...

  2. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Ag, Fe, Cr, Y - Metal oxides - ZrO 2 , MoO 3 - Zeolites - Mordenite, Ferrierite, - Y, Beta Pioneering Science and Technology Office of Science U.S. Department of Energy Catalyst...

  3. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 4, April--June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  4. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Jones, S.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  5. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using...

  6. Correlations between surface structure and catalytic activity/selectivity

    SciTech Connect (OSTI)

    Goodman, D.W.

    1992-10-01T23:59:59.000Z

    Objective is to address the keys to understanding the relation between surface structure and catalytic activity/selectivity. Of concern are questions related to enhanced catalytic properties of mixed-metal catalysts and critical active site requirements for molecular synthesis and rearrangement. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), UV and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS). Our research program builds upon our previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well we are exploiting our recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. The program is proceeding toward the study of the unique catalytic properties of ultrathin metal films; the investigation of the critical ensemble size requirements for principal catalytic reaction types; and the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  7. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  8. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  9. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  10. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  11. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06T23:59:59.000Z

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  12. Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology

    E-Print Network [OSTI]

    Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology Patricia by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas. Advanced membrane technology is being used to remove CO and CO2 from the reformate. The fuel processor

  13. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15T23:59:59.000Z

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  14. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15T23:59:59.000Z

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  15. Selective catalytic reduction of sulfur dioxide to elemental sulfur

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-01-01T23:59:59.000Z

    Elemental sulfur recovery from SO[sub 2]-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO[sub 2] with coke) and Claus plants(reaction of SO[sub 2] with H[sub 2]S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO[sub 2] to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO[sub 2] reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO[sub 2] reduction planned over various CeO[sub 2]-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought Claus-alternative'' for coal-fired power plant applications.

  16. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  17. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  18. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NO x Using Cu-zeolite D. William Brookshear 1 , Todd J. Toops 2 , William Rohr 1 , Ke Nguyen 1 , and Bruce G....

  19. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Broader source: Energy.gov (indexed) [DOE]

    the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium...

  20. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report

    SciTech Connect (OSTI)

    NONE

    1996-06-14T23:59:59.000Z

    The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

  1. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast...

  2. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Broader source: Energy.gov (indexed) [DOE]

    biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast...

  3. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Li, W.B.; Yang, R.T.

    1995-12-01T23:59:59.000Z

    Efforts continued towards the synthesis of new pillared clay catalysts for the selective catalytic reduction of nitric oxide by ammonia. The possibility of utilizing hydrocarbons was also investigated.

  4. New Developments in Titania-Based Catalysts for Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew CatalyticDemands on Heavy

  5. Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles

    E-Print Network [OSTI]

    Kik, Pieter

    Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt nanoparticles (NPs) prepared by micelle encapsulation and supported on -Al2O3 during the oxidation of methanol the pretreatment. KEYWORDS: platinum, methanol oxidation, operando, XAFS, EXAFS, XANES, alumina, nanoparticle, size

  6. DOI: 10.1002/chem.200700579 Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed

    E-Print Network [OSTI]

    Iglesia, Enrique

    % ethanol conversion) were much higher than in previous re- ports. The presence of TiO2 during syn- thesisDOI: 10.1002/chem.200700579 Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed Mo, easily separated from organic reactants and products, and gas-phase process- es that avoid solid

  7. Highly selective catalytic process for synthesizing 1-hexene from ethylene

    DOE Patents [OSTI]

    Sen, Ayusman (State College, PA); Murtuza, Shahid (Chicago, IL); Harkins, Seth B. (Pasadena, CA); Andes, Cecily (State College, PA)

    2002-01-01T23:59:59.000Z

    Ethylene is trimerized to form 1-hexene, at a selectivity of up to about 99 mole percent, by contacting ethylene, at an ethylene pressure of from about 200-1500 psig and at a reaction temperature of from about 0.degree. C. to about 100.degree. C., with a catalyst comprising a tantalum compound (e.g., TaCl.sub.5) and a alkylating component comprising a metal hydrocarbyl compound or a metal hydrocarbyl halide compound (e.g., Sn(CH.sub.3).sub.4).

  8. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06T23:59:59.000Z

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  9. Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide. Second semiannual report, 1996

    SciTech Connect (OSTI)

    Yang, R.T.; Li, W.B.; Sirilumpen, M.; Tharapiwattananon, N.

    1997-08-01T23:59:59.000Z

    During the first six months of the program, the work has progressed as planned. We have constructed a reactor system and assembled all laboratory essentials for conducting the three-year project. First, the catalytic activities of the Cu(2+) ion exchanged alumina-pillared clay for the selective catalytic reduction of NO by ethylene were measured. The temperature range was 250-500{degrees}C. The activities of this catalyst were substantially higher than the catalyst that has been extensively studied in the literature, Cu-ZSM-5. Fourier Transform Infrared Spectroscopy (FTIR) was used to study the acidity of the catalyst. The second part of the work was an in-depth FTIR study of the NO decomposition mechanism on the catalyst. This was planned as the first and the key step to obtain an understanding of the reaction mechanism. Key surface intermediates were identified from the FTIR spectra, and a redox type Eley-Rideal mechanism was proposed for the NO decomposition on this catalyst. This report will be divided into two parts. In Part One, we report results on the catalytic activities of the Cu-alumina-pillared clay and a direct comparison with other known catalysts. In Part two, we focus on the FTIR study and from the results, we propose a NO decomposition mechanism on this new catalyst. Plans for the next six months include tests of different pillared clays as well as the catalytic mechanism. The micro reactor will continue to be the key equipment for measuring the catalytic activities. FTIR will continue to be the major technique for identifying surface species and hence understanding the reaction mechanism.

  10. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    SciTech Connect (OSTI)

    R. Q. LONG; R.T. YANG

    1998-09-30T23:59:59.000Z

    Selective catalytic reduction (SCR) of NO{sub x} by hydrocarbons was investigated on Pt doped MCM-41 and copper ion and/or cerium ion-exchanged Al-MCM-41 in the presence of excess oxygen. It was found that Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts reported in the literature, such as Pt/Al{sub 2}O{sub 3} and Pt/ZSM-5. For different hydrocarbons, the catalytic activity decreased according to the sequence of C{sub 3}H{sub 6} {approx} C{sub 2}H{sub 4} >> C{sub 3}H{sub 8} > CH{sub 4}. This catalyst was also stable in the presence of H{sub 2}O and SO{sub 2}. Cu exchanged Al-MCM-41 and cerium promoted Cu-Al-MCM-41 (i.e., Ce-Cu-Al-MCM-41) were also found to be active in this reaction. Higher NO{sub x} conversions to N2 were obtained on the Ce-Cu-Al-MCM-41 as compared with Cu-Al-MCM-41. The activity of Ce-Cu-Al-MCM-41 was approximately the same as that of Cu-ZSM-5; but the former had a wider temperature window. TPR results indicated that only isolated Cu{sup 2+} and Cu{sup +} ions were detected in the Cu{sup 2+}-exchanged Al-MCM-41 samples, which may play an important role in the selective catalytic reduction of NO{sub x} to N{sub 2}. After some cerium ions were introduced into Cu-Al-MCM-41, Cu{sup 2+} in the molecular sieve became more easily reducible by H{sub 2}. This may be related to the increase of catalytic activity of NO{sub x} reduction by ethylene.

  11. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:| Department ofengine

  12. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:| Department ofengineDepartment of

  13. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:| Department ofengineDepartment

  14. Degradation Mechanisms of Urea Selective Catalytic Reduction Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton:| Department

  15. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29T23:59:59.000Z

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO2)SO4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  16. Aluminosilicates as controlled molecular environments for selective photochemical and catalytic reactions

    SciTech Connect (OSTI)

    Carrado, K.A.

    1986-01-01T23:59:59.000Z

    This dissertation concerns research that involves photochemical, catalytic and spectroscopic studies of clays, pillared clays and zeolites. Incorporation of uranyl ions into hectorite, montmorillonite, bentonite and vermiculite clays was monitored by XRD and luminescence methods. Excitation and emission characteristics were studied in order to understand the behavior of uranyl ions in clays after various thermal treatments. Luminescence lifetime measurements elucidated the number of uranyl sites. Uranyl-exchanged clays were found to absorb light at lower energies (445-455nm) than analogous uranyl-exchanged zeolites (425nm). Each uranyl-exchanged clay was tested as a catalyst for the photoassisted oxidation of isopropyl alcohol. Energy transfer (ET) between uranyl and Eu(III) ions in different zeolite framework systems was examined. The efficiency of ET (eta/sub t/) was found to be affected by the type of framework present. Pillared bentonites were examined in the hydrocracking of decane. A catalytically and spectroscopically active dopant ion, Cr(III), was introduced into the clays in both pillared and unpillared forms depending upon synthetic conditions. EPR and DRS were employed to monitor the environment of Cr(III) for determination of its location - whether in the micropore structure or associated with alumina pillars. Catalytic behavior based upon this variability of location was examined. Incorporation of Cr(III) ions into an alumina pillar was found to increase the stability and activity with respect to an alumina PILC catalyst. The results of these studies suggest that selective, efficient catalysts can be designed around inorganic ions in aluminosilicate supports.

  17. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    SciTech Connect (OSTI)

    R.Q. Long; N. Tharappiwattananon; W.B. Li; R.T. Yang

    2000-09-01T23:59:59.000Z

    Removal of NO{sub x} (NO + NO{sub 2}) from exhaust gases is a challenging subject. V{sub 2}O{sub 5}-based catalysts are commercial catalysts for selective catalytic reduction (SCR) with NH{sub 3} for stationary sources. However, for diesel and lean-burn gasoline engines in vehicles, hydrocarbons would be the preferred reducing agents over NH{sub 3} because of the practical problems associated with the use of NH{sub 3} (i.e., handling and slippage through the reactor). The noble-metal three-way catalysts are not effective under these conditions. The first catalyst found to be active for selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen was copper exchanged ZSM-5 and other zeolites, reported in 1990 by Iwamoto in Japan and Held et al. in Germany. Although Cu-ZSM-5 is very active and the most intensively studied catalyst, it suffers from severe deactivation in engine tests, mainly due to H{sub 2}O and SO{sub 2}. In this project, we found that ion-exchanged pillared clays and MCM-41 catalysts showed superior SCR activities of NO with hydrocarbon. All Cu{sup 2+}-exchanged pillared clays showed higher SCR activities than Cu-ZSM-5 reported in the literature. In particular, H{sub 2}O and SO{sub 2} only slightly deactivated the SCR activity of Cu-TiO{sub 2}-PILC, whereas severe deactivation was observed for Cu-ZSM-5. Moreover, Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts, i.e., Pt/Al{sub 2}O{sub 3}, Pt/SiO{sub 2} and Pt/ZSM-5. The Pt/MCM-41 catalyst also showed a good stability in the presence of H{sub 2}O and SO{sub 2}.

  18. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01T23:59:59.000Z

    L ABORATORY Optimal Technology Selection and Operation ofEnvironmental Energy Technologies Division 15 January 2007for Electric Reliability Technology Solutions with funding

  19. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Li, W.B.; Yang, R.T.

    1995-12-01T23:59:59.000Z

    During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

  20. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect (OSTI)

    Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

    2013-01-18T23:59:59.000Z

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  1. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect (OSTI)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28T23:59:59.000Z

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

  2. Center for Catalytic Science and Technology Recent Highlights from the Center for

    E-Print Network [OSTI]

    Firestone, Jeremy

    Science and Technology Oxygen evolution from water is the critical reaction for solar fuel production Evolution Catalysts for Solar Fuel Production pH = 6 pH = 2 Selective Leaching Men+ pH strongly affects and distributed energy ­ Reforming technologies/H2 production ­ Bio-fuel processing · Overarching themes

  3. Correlations between surface structure and catalytic activity/selectivity. Progress report, January 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Goodman, D.W.

    1994-09-01T23:59:59.000Z

    The primary focus of this research is to address those issues which are keys to understanding the relationship between surface properties and catalytic activity/selectivity. These issues also impact the understanding of the origins of the enhanced catalytic properties of mixed-metal catalysts. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), ultraviolet and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS), infrared reflection absorption spectroscopy (IRAS), and scanning tunneling and atomic force microscopy (STM and AFM). This research program builds upon previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well, the authors are exploiting recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. Specifically, the program is proceeding toward three goals: (1) the study of the unique catalytic properties of ultrathin metal films; (2) the investigation of the critical ensemble size requirements for principal catalytic reaction types; and (3) the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  4. Correlations between surface structure and catalytic activity/selectivity. Progress report, January 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Goodman, D.W.

    1992-10-01T23:59:59.000Z

    Objective is to address the keys to understanding the relation between surface structure and catalytic activity/selectivity. Of concern are questions related to enhanced catalytic properties of mixed-metal catalysts and critical active site requirements for molecular synthesis and rearrangement. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), UV and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS). Our research program builds upon our previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well we are exploiting our recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. The program is proceeding toward the study of the unique catalytic properties of ultrathin metal films; the investigation of the critical ensemble size requirements for principal catalytic reaction types; and the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  5. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08T23:59:59.000Z

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  6. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    SciTech Connect (OSTI)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01T23:59:59.000Z

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  7. DOE Selects Contractor for California Energy Technology Engineering...

    Broader source: Energy.gov (indexed) [DOE]

    California Energy Technology Engineering Center Cleanup DOE Selects Contractor for California Energy Technology Engineering Center Cleanup June 26, 2014 - 12:00pm Addthis Media...

  8. Superior catalysts for selective catalytic reduction of nitric oxide. Final technical report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    Yang, R.T.; Li, W.B.; Chen, J.P.; Hausladen, M.C.; Cheng, L.S.; Kikkinides, E.S.

    1995-12-31T23:59:59.000Z

    The most advanced and proven technology for NO{sub x} control for stationary sources is Selective Catalytic Reduction (SCR). In SCR, NO{sub x} is reduced by NH{sub 3} to N{sub 2} and H{sub 2}O. The commercial catalysts are based on V{sub 2}O{sub 5}/TiO{sub 2}, and the vanadium-based catalysts are patented by the Japanese (Mitsubishi). However, there are three main advantages for the vanadium-based SCR catalyst: (a) a tendency to be poisoned in the flue gas; (b) oxidation of SO{sub 2} to SO{sub 3} by V{sub 2}O{sub 5}, this is a particularly severe problem due to the higher sulfur content of American coals compared with coals used in Japan (from Australia) and in Europe; (c) environmental problems involved in the disposal of the spent catalyst (due to the toxicity of vanadium). In order to overcome these problems, in addition to the undesirable dominance by the Japanese patent position, the authors have studied in this project a new type of catalyst for the SCR reaction; namely, pillared clays, which have adjustable, unique structures and acidity. Three types of catalysts were developed and tested for this reaction, i.e. Fe{sub 2}O{sub 3}-pillared clays, delaminated Fe{sub 2}O{sub 3}-pillared clays, and ion-exchanged pillared clays. The project was divided into sixteen tasks, and will be reported as such.

  9. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Li, W.B.; Yang, R.T.

    1994-12-31T23:59:59.000Z

    During the past quarter, progress was made in three tasks. The poisoning effects of alkali metals (as Na{sub 2}O, K{sub 2}0 and Cs{sub 2}O) on iron oxide pillared clay (Fe-Bentonite) catalyst for selective catalytic reduction (SCR) of NO with NH{sub 3} were investigated. The effects of sulfur dioxide and water vapor on the performance of the high activity catalyst, that is, Ce-doped Fe-Bentonite pillared clay (Ce-Fe-Bentonite) were examined. In addition, an iron ion-exchanged titania pillared clay (Ti-PILC) was prepared and its catalytic activity for the SCR of NO with NH{sub 3} was studied, which showed a high activity and a high S0{sub 2} and H{sub 2}0 resistance at high temperatures (i.e., above 400{degree}C).

  10. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06T23:59:59.000Z

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  11. The selective catalytic reduction of nitric oxide with ammonia in the presence of oxygen

    E-Print Network [OSTI]

    Gruber, Karen Ann

    1989-01-01T23:59:59.000Z

    materials. Aluminum pillared titanium phosphate and hydrous sodium titanium oxide were the support structures of interest. The efFect of phosphate, aluminum and sodium on catalytic activity was studied. The reaction conditions were a feed composition... titanium oxide support was found to be the most effective catalyst of this study which led to the conclusion that phosphate, aluminum and sodium decrease the activity of vanadia catalysts for the SCR of NO with NHs in the presence of oxygen. ACKi...

  12. Practical Issues when Selecting PV Technologies (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2010-09-09T23:59:59.000Z

    Presentation highlighting practical considerations for photovoltaic technologies and strategies for future reductions in cost and increases in efficiency.

  13. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 April--30 June 1994

    SciTech Connect (OSTI)

    Chen, J.P.; Li, W.B.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-09-01T23:59:59.000Z

    In the last Quarterly Technical Progress Report the authors reported the synthesis and (partial characterization) and SCR (Selective Catalytic Reduction of NO) activity for a delaminated Fe{sub 2}O{sub 3}-pillared clay (Fe{sub 2}O{sub 3}-PILC). The SCR activity for this PILC was substantially higher than that of the commercial-type V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst. During the past quarter, the authors first completed the characterization of the delaminated Fe{sub 2}O{sub 3}-PILC catalyst. Both physical characterization (micropore probing by adsorption and Moessbauer spectroscopy) and chemical characterization (by IR spectroscopy) were performed. Since the synthesis of this PILC sample was undertaken under a specific set of conditions and it is known that the PILC properties depend strongly on the synthesis conditions, they then proceeded to examine in a systematic manner the dependence of the catalytic properties of the PILC on its synthesis conditions. Four parameters in the synthesis were studied: Fe precursors, pH of the pillaring solution, concentration of the pillaring solution, and the starting clay. Finally, the effect of the Cr{sub 2}O{sub 3} promoter on the SCR activity of the pillar clay was studied. Results are reported.

  14. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal

    SciTech Connect (OSTI)

    Yan Cao; Bobby Chen; Jiang Wu; Hong Cui; John Smith; Chi-Kuan Chen; Paul Chu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2007-01-15T23:59:59.000Z

    One of the cost-effective mercury control technologies in coal-fired power plants is the enhanced oxidation of elemental mercury in selective catalytic reduction (SCR) followed by the capture of the oxidized mercury in the wet scrubber. This paper is the first in a series of two in which the validation of the SCR slipstream test and Hg speciation variation in runs with or without SCR catalysts inside the SCR slipstream reactor under special gas additions (HCl, Cl{sub 2}, SO{sub 2}, and SO{sub 3}) are presented. Tests indicate that the use of a catalyst in a SCR slipstream reactor can achieve greater than 90% NO reduction efficiency with a NH{sub 3}/NO ratio of about 1. There is no evidence to show that the reactor material affects mercury speciation. Both SCR catalysts used in this study exhibited a catalytic effect on the elemental mercury oxidation but had no apparent adsorption effect. SCR catalyst 2 seemed more sensitive to the operational temperature. The spike gas tests indicated that HCl can promote Hg{sup 0} oxidation but not Cl{sub 2}. The effect of Cl{sub 2} on mercury oxidation may be inhibited by higher concentrations of SO{sub 2}, NO, or H{sub 2}O in real flue-gas atmospheres within the typical SCR temperature range (300-350{sup o}C). SO{sub 2} seemed to inhibit mercury oxidation; however, SO{sub 3} may have some effect on the promotion of mercury oxidation in runs with or without SCR catalysts. 25 refs., 9 figs., 2 tabs.

  15. On the mechanism of NO selective catalytic reduction by hydrocarbons over Cu-ZSM-5 via X-ray absorption spectroscopic study

    SciTech Connect (OSTI)

    Liu, D.J. [AlliedSignal Inc., Des Plaines, IL (United States)] [AlliedSignal Inc., Des Plaines, IL (United States); Robota, H.J. [ASEC, Tulsa, OK (United States)] [ASEC, Tulsa, OK (United States)

    1999-04-08T23:59:59.000Z

    An understanding of the catalytic mechanism of NO{sub x} reduction is critical for the development of next-generation high-fuel efficiency, low-emission vehicles. This paper compiles the investigations in recent years on the mechanism of NO selective catalytic reduction (SCR) by hydrocarbon over Cu-ZSM-5. The studies were focused on the oxidation state and coordination chemistry of the exchanged Cu as the active site during the catalytic reaction using X-ray absorption spectroscopic (XAS) techniques, mainly XANES and EXAFS. Their experiment demonstrated the existence of a redox mechanism which involves cyclic switching of the oxidation states between Cu(II) and Cu(I) in an oxygen-rich gas mixture under elevated temperature. The authors also observed the coordination structural change of copper ion in ZSM-5 accompanying the change of oxidation state. A correlation between cuprous ion concentration and catalytic activity was found in NO SCR by propene. The impact of another two hydrocarbons, propane and methane, on the copper redox behavior also appears to correlate to catalytic activities in the respective mixtures. Discussions on the nature of the active sites and the mechanism of SCR are presented based on the XAS data analysis. The similarity and difference of the physical properties of copper ion between NO catalytic decomposition and NO SCR are also discussed.

  16. Comparative analyses for selected clean coal technologies in the international marketplace

    SciTech Connect (OSTI)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01T23:59:59.000Z

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  17. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-03-01T23:59:59.000Z

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  18. Immobilization technology down-selection radiation barrier approach

    SciTech Connect (OSTI)

    Gray, L.W.; Gould, T.H.

    1997-05-23T23:59:59.000Z

    Six immobilization technology projects variants, previously selected for evaluation during the PEIS/ROD process, have been evaluated with respect to the nine basic criteria for fissile materials disposition. Metrics for the criteria were developed to facilitate a comparative analysis of the technology variants. The six technology variants are grouped according to their radiation barrier approach. Information and data for the technology options were provided by limited experimental studies, definitions of process flowsheets, and preliminary evaluations of facility concepts and costs.

  19. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect (OSTI)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-02-12T23:59:59.000Z

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  20. Selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based and pillared interlayer clay-based catalysts 

    E-Print Network [OSTI]

    Oh, Hyuk Jin

    2004-09-30T23:59:59.000Z

    The selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based (V2O5-WO3/TiO2) and pillared interlayer clay-based (V2O5/Ti-PILC) monolithic honeycomb catalysts using a laboratory laminar-flow ...

  1. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  2. Technological development and innovation : selected policy implications

    E-Print Network [OSTI]

    Benson, Christopher Lee

    2012-01-01T23:59:59.000Z

    Technological development is one of the main drivers in economic progress throughout the world and is strongly linked to the creation of new industries, jobs, and wealth. This thesis attempts to better understand how a ...

  3. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Investigation of a series of transition metal oxides and precious metal based catalysts for ammonia selective oxidation at...

  4. Development of the integrated environmental control model: Cost models of selective catalytic reduction (SCR) NO{sub x} control systems. Quarterly progress report, October--December 1993

    SciTech Connect (OSTI)

    Frey, H.C.; Rubin, E.S.

    1994-01-31T23:59:59.000Z

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. Increasingly strict NO{sub x} control requirements are being imposed by various state and local regulatory agencies in the U.S. These requirements may lead to U.S. SCR applications, particularly for plants burning low sulfur coals (Robie et al.). Furthermore, implicit in Title IV of the 1990 Clean Air Act Amendment is a national NO{sub x} emission reduction of 2 million tons per year. Thus, there may be other incentives to adapt SCR technology more generally to U.S. coal-fired power plants with varying coal sulfur contents. However, concern remains over the applicability of SCR technology to U.S. plants burning high sulfur coals or coals with significantly different fly ash characteristics than those burned in Germany and Japan. There is also concern regarding the application of SCR to peaking units due to potential startup and shutdown problems (Lowe et al.). In this report, new capital cost models of two SCR systems are developed. These are {open_quotes}hot-side high-dust{close_quotes} and {open_quotes}tail-end low-dust{close_quotes} options. In a previous quarterly report, performance models for these two systems were developed.

  5. Seven Universities Selected To Conduct Advanced Turbine Technology Studies

    Broader source: Energy.gov [DOE]

    Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

  6. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly technical progress report No. 2, October--December 1992

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-12-31T23:59:59.000Z

    Elemental sulfur recovery from SO{sub 2}-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO{sub 2} with coke) and Claus plants(reaction of SO{sub 2} with H{sub 2}S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO{sub 2} to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO{sub 2} reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO{sub 2} reduction planned over various CeO{sub 2}-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought ``Claus-alternative`` for coal-fired power plant applications.

  7. Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst

    SciTech Connect (OSTI)

    Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Fisher, Galen [University of Michigan] [University of Michigan; West, Brian H [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

  8. Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

    SciTech Connect (OSTI)

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-27T23:59:59.000Z

    Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability to catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes to activate otherwise unreactive molecules in the confines of an active site. Although much less complex than the evolved active sites of enzymes, synthetic host molecules have been developed that can carry out complex reactions with their cavities. While progress has been made toward highly efficient and selective reactivity inside of synthetic hosts, the lofty goal of duplicating enzymes specificity remains.[7-9] Pioneered by Lehn, Cram, Pedersen, and Breslow, supramolecular chemistry has evolved well beyond the crown ethers and cryptands originally studied.[10-12] Despite the increased complexity of synthetic host molecules, most assembly conditions utilize self-assembly to form complex highly-symmetric structures from relatively simple subunits. For supramolecular assemblies able to encapsulate guest molecules, the chemical environment in each assembly--defined by the size, shape, charge, and functional group availability--greatly influences the guest-binding characteristics.[6, 13-17

  9. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImagingof AdvancedNOx Using

  10. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect (OSTI)

    Jeffrey A. Phillips

    2010-10-01T23:59:59.000Z

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  11. Superior catalysts for selective catalytic reduction of nitric oxide. Annual technical report, September 30, 1993--September 29, 1994

    SciTech Connect (OSTI)

    Chen, J.P.; Hausladen, M.C.; Yang, R.T.

    1995-03-01T23:59:59.000Z

    A delaminated Fe{sub 2}O{sub 3}-pillared clay catalyst was prepared for the selective catalytic reduction (SCR) of NO by NH{sub 3} at above 300{degrees}C. The delaminated pillard clay was characterized by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) chemical analysis, XRD (X-ray diffraction) structure and line broadening analyses, micropore size probing, and Moessbauer analysis. These analyses showed that the catalyst contained fragmented Fe{sub 2}O{sub 3}-pillared clay forming {open_quotes}house-of-cards{close_quotes} structure with dispersed Fe{sub 2}O{sub 3} particles approximately 170 {angstrom} in size. The SCR activity of the delaminated pillard clay was higher than the commercial-type V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst, and also higher than the undelaminated pillard clay and supported Fe{sub 2}O{sub 3} catalysts, under conditions with SO{sub 2}. Infrared measurements of adsorbed NH{sub 3} showed strong Bronsted acidity which was caused possibly by interactions between Fe{sub 2}O{sub 3} and clay.

  12. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect (OSTI)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-15T23:59:59.000Z

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

  13. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01T23:59:59.000Z

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites.

  14. Selective Catalytic Reduction (SCR) of nitric oxide with ammonia using Cu-ZSM-5 and Va-based honeycomb monolith catalysts: effect of H2 pretreatment, NH3-to-NO ratio, O2, and space velocity 

    E-Print Network [OSTI]

    Gupta, Saurabh

    2004-09-30T23:59:59.000Z

    In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim ...

  15. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions

    SciTech Connect (OSTI)

    Chun W. Lee; Shannon D. Serre; Yongxin Zhao; Sung Jun Lee; Thomas W. Hastings [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). Office of Research and Development, National Risk Management Research Laboratory

    2008-04-15T23:59:59.000Z

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg{sup 0}) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg{sup 0}. Concentrations of Hg{sup 0} and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg0 oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg{sup 0} oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg{sup 0} oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg{sup 2+}) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH{sub 3}) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg{sup 0} oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH{sub 3} injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas. 18 refs., 7 figs., 3 tabs.

  16. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 January 1994--31 March 1994

    SciTech Connect (OSTI)

    Chen, J.P.; Cheng, L.S.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-05-01T23:59:59.000Z

    During the past quarter, progress has been made in four tasks as summarized below: Task 1: A delaminated Fe{sub 2}O{sub 3} pillared clay was synthesized and carefully characterized. The chemical composition was measured by ICP atomic emission spectrometry. The structural changes in the clay as well as the iron oxide particle sizes were characterized by X-ray diffraction techniques. Task 2: The Selective Catalytic Reduction (SCR, i.e., NO reduction with NH{sub 3}) activities of the delaminated pillared clay were tested and compared with four other most active SCR catalysts: a commercial V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst, a Fe{sub 2}O{sub 3}-pillared clay, and two supported Fe{sub 2}O{sub 3} catalysts (on Al{sub 2}O{sub 3} and TiO{sub 2}). The delaminated Fe{sub 2}O{sub 3} pillared clay exhibited the highest SCR activities. Catalyst stability test showed that the delaminated sample was also stable. Task 3: To further increase the SCR activity of the delaminated pillared clay, Cr{sub 2}O{sub 3} was doped as a promoter by incipient wetness. Task 4: Deactivation effects of SO{sub 2} and H{sub 2}O on the SCR activities of the delaminated Fe{sub 2}O{sub 3} pillared clay were studied, and compared with other SCR catalysts. The delaminated clay catalyst showed the least deactivation.

  17. Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia

    SciTech Connect (OSTI)

    Cheng, L.S.; Yang, R.T. [State Univ. of New York, Buffalo, NY (United States)] [State Univ. of New York, Buffalo, NY (United States); Ning Chen [Univ. of Michigan, Ann Arbor, MI (United States)] [Univ. of Michigan, Ann Arbor, MI (United States)

    1996-11-01T23:59:59.000Z

    TiO{sub 2}-pillard clay (PILC) with high surface area, large pore volume, and large interlayer spacing was used as the support for mixed Fe{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} as the catalyst for selective catalytic reduction (SCR) of NO with NH{sub 3}. The Fe/Cr ratio was varied at a fixed total amount of oxide dopant of 10% (wt). The Fe-Cr/TiO{sub 2}-PILC with Fe/Cr=3 showed the highest activity. Compared with commercial V{sub 2}O{sub 5}/TiO{sub 2} catalysts, the activity (on a per gram basis) of the doped pillared clay was approximately twice as high under H{sub 2}O- and SO{sub 2}-free conditions and was approximately 40% higher under conditions with H{sub 2}O and SO{sub 2}. In addition, its activity for SO{sub 2} oxidation was only 20%-25% of that of the V{sub 2}O{sub 5}-based catalysts. TPD of NH{sub 3} on the Fe-Cr/TiO{sub 2}-PILC catalyst showed that both M=O and M-OH (M=Fe or Cr) were necessary for the SCR reaction. In situ IR spectra of NH{sub 3} showed that there was a higher Bronsted acidity than the Lewis acidity on the surface under reaction conditions and that there existed a direct correlation between the SCR activity and the Bronsted acidity among pillared clays with different Fe/Cr ratios. These results, along with the transient response to O{sub 2}, indicated that a similar mechanism to that on the V{sub 2}O{sub 5} catalyst was operative. The TiO{sub 2}-pillared clay used as the support also contributed to the high activity of the Fe-Cr catalyst. The TiO{sub 2} pillars combined with the tetrahedral SiO{sub 2} surfaces of the clay apparently gave rise to a high dispersion of Fe{sub 2}O{sub 3}. 52 refs., 10 figs., 5 tabs.

  18. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01T23:59:59.000Z

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  19. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    SciTech Connect (OSTI)

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-07-12T23:59:59.000Z

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  20. Fuel Cell Project Selected for First Ever Technology-to-Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Selected for First Ever Technology-to-Market SBIR Award Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award May 14, 2014 - 5:36pm Addthis The U.S....

  1. Catalytic decomposition of alcohols over size-selected Pt nanoparticles supported on ZrO2: A study of activity, selectivity, and stability

    E-Print Network [OSTI]

    Kik, Pieter

    ,17]. Catalytic reforming of gasoline additives, e.g. methanol, ethanol, and potentially butanol, may serve. Recent studies have focused on the feasibility of obtaining hydrogen (via steam reforming) from 2 hydrogen generation from alcohols (i.e. methanol, ethanol, propanol, butanol) can promote the use of fuel

  2. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27T23:59:59.000Z

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  3. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect (OSTI)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01T23:59:59.000Z

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  4. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02T23:59:59.000Z

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  5. Catalytic Distillation

    E-Print Network [OSTI]

    Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

    1984-01-01T23:59:59.000Z

    Catalytic Distillation' refers to a chemical process which performs both a catalyzed reaction and primary fractionation of the reaction components simultaneously. A structured catalyst which also is an effective distillation component has been...

  6. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  7. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect (OSTI)

    Streit, R.D.; Couture, S.A.

    1995-03-01T23:59:59.000Z

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  8. Selective Catalytic Reduction (SCR) of nitric oxide with ammonia using Cu-ZSM-5 and Va-based honeycomb monolith catalysts: effect of H2 pretreatment, NH3-to-NO ratio, O2, and space velocity

    E-Print Network [OSTI]

    Gupta, Saurabh

    2004-09-30T23:59:59.000Z

    In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim was to delineate the effect...

  9. Development and application of a framework for technology and model selection under uncertainty

    E-Print Network [OSTI]

    Berkelmans, Ingrid (Ingrid M.)

    2010-01-01T23:59:59.000Z

    Technology selection is a complex decision problem that is often faced in process engineering. This has been a particularly important problem recently in the energy field, in which many new technologies have been proposed. ...

  10. Selective catalytic reduction of nitrogen oxides by ammonia over Fe{sup 3+}-exchanged TiO{sub 2}-pillared clay catalysts

    SciTech Connect (OSTI)

    Long, R.Q.; Yang, R.T. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1999-09-10T23:59:59.000Z

    Fe-exchanged TiO{sub 2}-pillared clay (PILC) catalysts were prepared and used for selective catalytic reduction (SCR) of NO{sub x} by ammonia. They were also characterized for surface area, pore size distribution, and by XRD, H{sub 2}-TPR, and FT-IR methods. The Fe-TiO{sub 2}-PILC catalysts showed high activities in the reduction of NO{sub x} by NH{sub 3} in the presence of excess oxygen. SO{sub 2} further increased the catalytic activities at above 350 C, whereas H{sub 2}O decreased the activity slightly. The catalysts were about twice as active as commercial-type V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalyst in the presence of H{sub 2}O and SO{sub 2}. Moreover, compared to the commercial catalyst, the Fe-TiO{sub 2}-PILC catalysts had higher N{sub 2}/N{sub 2}O product selectivities (e.g., 0--1% vs 9% N{sub 2}O at 400 C) and substantially lower activities (by 74--88%) for SO{sub 2} oxidation to SO{sub 3} under the same reaction conditions. The activity was further increased to over three times that of the vanadia-based catalyst when Ce was added. The high activity and low N{sub 2}O selectivity for the Fe-TiO{sub 2}-PILC catalysts were attributed to their low activity in the oxidation of ammonia, as compared with vanadia catalysts. XRD patterns of Fe-TiO{sub 2}-PILC were similar to those of TiO{sub 2}-PILC, showing no peaks due to iron oxide, even when the iron content reached 20.1%. The TPR results indicated that iron in the Fe-TiO{sub 2}-PILC catalysts with lower iron contents existed in the form of isolated Fe{sup 3+} ions. The activities of Fe-TiO{sub 2}-PILC catalysts were consistent with their surface acidities, which were identified by FT-IR of the NH{sub 3}-adsorbed samples. The enhancement of activities by H{sub 2}O + SO{sub 2} was attributed to the increase of surface acidity resulting from the formation of surface sulfate species of iron.

  11. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02T23:59:59.000Z

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  12. PROJECT W-551 INTERIM PRETREATMENT SYSTEM TECHNOLOGY SELECTION SUMMARY DECISION REPORT AND RECOMMENDATION

    SciTech Connect (OSTI)

    CONRAD EA

    2008-08-12T23:59:59.000Z

    This report provides the conclusions of the tank farm interim pretreatment technology decision process. It documents the methodology, data, and results of the selection of cross-flow filtration and ion exchange technologies for implementation in project W-551, Interim Pretreatment System. This selection resulted from the evaluation of specific scope criteria using quantitative and qualitative analyses, group workshops, and technical expert personnel.

  13. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect (OSTI)

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

    2006-05-15T23:59:59.000Z

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  14. Ion-exchanged pillared clays: A new class of catalysts for selective catalytic reduction of NO by hydrocarbons and by ammonia

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Selective catalytic reduction (SCR) of NO by NH{sub 3} is presently performed with vanadia-based catalysts for flue gas applications. Hydrocarbons would be the preferred reducing agents over NH{sub 3} because of the practical problems associated with the use of NH{sub 3} (i.e., handling and slippage through the reactor). SCR of NO by hydrocarbons can also find important applications for lean-burn (i.e., O{sub 2}-rich) gasoline and diesel engines where the noble-metal three-way catalysts are not effective in the presence of excess oxygen. Pillared interlayered clays (PILCs) have been studied extensively for a number of catalyzed reactions. We have found high activities of PILCs for SCR of NO by NH{sub 3} (26.28). Pillared clays have considerable Bronsted acidity (27, 28), and the protons can be exchanged with metal cations. The Bronsted acidity of TiO{sub 2}-PILC, in particular, remains high after heat treatment at temperatures as high as 400{degrees}C (27-29). In this note, we report first results on the activities of cation-exchanged pillared clays for SCR of NO by both hydrocarbon and NH{sub 3}. 37 refs., 3 figs.

  15. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    SciTech Connect (OSTI)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31T23:59:59.000Z

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  16. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; Thomas, John F [ORNL; Parks, II, James E [ORNL; West, Brian H [ORNL

    2015-01-01T23:59:59.000Z

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  17. DOE Announces Selections for Solid-State Lighting Core Technology...

    Broader source: Energy.gov (indexed) [DOE]

    OLEDs with longer lifetimes. Recipient: Sandia National Laboratories Title: Semi-polar GaN Materials Technology for High IQE Green LEDs Funding Source: American Recovery and...

  18. Vehicle Technologies Office: Past Funding Opportunities and Selections...

    Office of Environmental Management (EM)

    Lightweighting Applications and Advanced Alloy Development for Automotive and Heavy-Duty Engines - DE-FOA-0000648 - Projects Selected FY2011 Clean Cities Community Readiness and...

  19. Enterprise information technology project portfolio selection through system dynamics simulations

    E-Print Network [OSTI]

    Zhou, Bin, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    As companies are increasingly relying on information technologies (IT) to help maintain their existing and develop new competitive advantages, investing effectively in IT is becoming more and more important. One of the ...

  20. DOE Announces Selections for Solid-State Lighting Core Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to low-cost practice. Recipient: Inlustra Technologies Title: High efficiency non-polar GaN-based LEDs Team Members: University of California, Santa Barbara Summary: This project...

  1. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  2. IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas Catalytic Partial

    E-Print Network [OSTI]

    Peng, Huei

    IEEE TRANSACTION ON CONTROL SYSTEM TECHNOLOGY, VOL. XX, NO. Y, MONTH 2003 1 Control of Natural Gas that reforms natural gas to hydrogen-rich mixture to feed the anode field of fuel cell stack is considered partial oxidation of the methane in the natural gas. We present a model-based control analysis and design

  3. DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core...

  4. DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State...

  5. DOE Announces Selections for SSL Core Technology and Product Development Funding Opportunities (Round 5)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory, on behalf of the U.S. Department of Energy (DOE), is pleased to announce its selections for solid-state lighting (SSL) funding opportunities. Fourteen...

  6. Energy conservation technology selection: An agent-based approach

    SciTech Connect (OSTI)

    DeBaillie, L.P.; Nemeth, R.J.; Case, M.P.

    1994-12-31T23:59:59.000Z

    This chapter presents an automation model designed to manage the required data and the calculation of technology ranking criteria such as investment payback, energy savings, and pollution abatement on a national level. The model is under development at the United States Army Construction Engineering Research Laboratories (USACERL) in MicroSoft Windows 3.1 on a personal computer using Designer Software, an agent-based and object-oriented modeling environment. Small rule-based systems called agents evaluate each technology based upon information contained in a shared database called a blackboard. The blackboard contains data such as installation fuel prices, building data, and weather information. Each agent represents a particular energy conservation technology and evaluates the potential of that technology based upon this shared data. The model is constructed in a modular fashion to facilitate the modification and addition of new technologies by adding or modifying agents. A rule-based system applies each agent`s heuristics (rules-of-thumb) and algorithms to produce analysis results. A spreadsheet data link has been implemented to input external data or to output analysis results.

  7. Catalytic Coherence

    E-Print Network [OSTI]

    Johan Aberg

    2014-10-20T23:59:59.000Z

    Due to conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its power to enable coherent operations. This finding stands in contrast to the degradation of other quantum resources, and has direct consequences for quantum thermodynamics, as it shows that latent energy that may be locked into superpositions of energy eigenstates can be released catalytically.

  8. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10T23:59:59.000Z

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  9. Guidebook for Selecting Cost-Effective Wireless Communication Technologies for Intelligent Transportation Systems

    E-Print Network [OSTI]

    Texas at Austin, University of

    0-4449-P1 Guidebook for Selecting Cost-Effective Wireless Communication Technologies Research, The University of Texas at Austin Project 0-4449: Cost-Effective Strategies for Communicating-2650 Sponsoring Organization: Texas Department of Transportation Research and Technology Implementation Office P

  10. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  11. Tool for Selecting CDM Methods & Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformation 61TokamachiTonglingTool for Selecting CDM

  12. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A. Ross, T.L.

    1998-01-01T23:59:59.000Z

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  13. Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List

    SciTech Connect (OSTI)

    Alai, M; Glascoe, L; Love, A; Johnson, M; Einfeld, W

    2005-06-29T23:59:59.000Z

    The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) was to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.

  14. Enhanced Sampling and Analysis, Selection of Technology for Testing

    SciTech Connect (OSTI)

    Svoboda, John; Meikrantz, David

    2010-02-01T23:59:59.000Z

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. This report details the progress made in the first half of FY 2010 and includes a further consideration of the research focus and goals for this year. Our sampling options and focus for the next generation sampling method are presented along with the criteria used for choosing our path forward. We have decided to pursue the option of evaluating the feasibility of microcapillary based chips to remotely collect, transfer, track and supply microliters of sample solutions to analytical equipment in support of aqueous processes for used nuclear fuel cycles. Microchip vendors have been screened and a choice made for the development of a suitable microchip design followed by production of samples for evaluation by ANL, LANL, and INL on an independent basis.

  15. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01T23:59:59.000Z

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  16. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01T23:59:59.000Z

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  17. Inspection of selected issues regarding the Department`s Enhanced Technology Transfer Program

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    An inspection was conducted to review the Department of Energy`s Enhanced Technology Transfer Program, now referred to as the Department`s Technology Transfer Program, in order to improve the effectiveness of the program and to identify issues that require management attention. Specifically, selected Departmental and Laboratory plans, policies, and procedures for implementing technology transfer activities were reviewed. Legislation, Department directives, Management and Operating contract clauses, and selected Cooperative Research and Development Agreements/Joint Work Statements were also collected and reviewed. The inspection identified four issues for management`s attention: (1) there is a lack of uniform budget guidelines for the Department`s technology transfer activities, (2) there is a lack of objectives for the Department`s Technology Transfer Program, (3) the budget and accounting information submitted to the Office of Management and Budget regarding the Department`s technology transfer activities is incomplete, and (4) there is a Department`s Technology Transfer Program. The report includes specific recommendations to address these matters.

  18. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  19. Ability of Catalytic Converters to Reduce Air Pollution

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    NOx - 1 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST Last updated: June 17, 2014 #12;NOx - 2 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST INTRODUCTION Automobile engines

  20. X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy

    E-Print Network [OSTI]

    Kasman, Alex

    X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy 1, and that the protection and control provided under patent laws and other legal means for the protection of property rights that employees of the College may require assistance in determining and evaluating patentability

  1. Assessing selected technologies and operational strategies for improving the environmental performance of future aircraft

    E-Print Network [OSTI]

    Mahashabde, Anuja (Anuja Anil)

    2006-01-01T23:59:59.000Z

    The aviation industry is expected to grow at a rate of 4-5% in the next 20 years. Such a growth rate may have important impacts on local air quality, climate change and community noise. This work assesses selected technologies ...

  2. Evaluation and selection of aqueous-based technology for partitioning radionuclides from ICPP calcine

    SciTech Connect (OSTI)

    Olson, A.L.; Schulz, W.W.; Burchfield, L.A.; Carlson, C.D.; Swanson, J.L.; Thompson, M.C.

    1993-02-01T23:59:59.000Z

    Early in 1993 Westinghouse Idaho Nuclear Company (WINCO) chartered a Panel of Nuclear Separations Experts. The purpose of this Panel was to assist WINCO scientists and engineers in selecting, evaluating, and ranking candidate aqueous-based processes and technologies for potential use in partitioning selected radionuclides from nitric acid solutions of retrieved Idaho Chemical Processing Plant (ICPP) calcine. Radionuclides of interest are all transuranium elements, {sup 90}Sr, {sup 99}Tc, {sup 129}I, and {sup 137}Cs. The six man Panel met for 4 days (February 16--19, 1993) on the campus of the Idaho State University in Pocatello, Idaho. Principal topics addressed included: Available radionuclide removal technology; applicability of separations technology and processes to ICPP calcine; and potential integrated radionuclide partitioning schemes. This report, prepared from contributions from all Panel members, presents a comprehensive account of the proceedings and significant findings of the February, 1993 meeting in Pocatello.

  3. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  4. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  5. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30T23:59:59.000Z

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  6. Catalytic dense membranes of doped Bi4V2O11 (BIMEVOX) for selective partial oxidation: chemistry of defects vs. catalysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ), which determine the selectivity, either to mild oxidation products (acrolein, hexadiene, CO like methanol, acrolein and the like (acrylonitrile, acrylic acid), maleic anhydride, phthalic

  7. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01T23:59:59.000Z

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  8. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  9. Challenges in Catalytic Manufacture of Renewable Pyrrolidinones from Fermentation Derived Succinate

    SciTech Connect (OSTI)

    White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Frye, John G.; Werpy, Todd A.

    2014-09-05T23:59:59.000Z

    Fermentation derived succinic acid ammonium salt is an ideal precursor for manufacture of renewable N-methyl pyrrolidinone (NMP) or 2-pyrrolidinone (2P) via heterogeneous catalysis. However, there are many challenges to making this a practical reality. Chief among the challenges is avoiding catalyst poisoning by fermentation by- and co-products. Battelle / Pacific Northwest National Laboratory (PNNL) have developed an economically effective technology strategy for this purpose. The technology is a combination of purely thermal processing, followed by simple catalytic hydrogenation that together avoids catalyst poisoning from fermentation impurities and provides high selectivity and yields of NMP or 2P.

  10. DECISION ANALYSIS SCIENCE MODELING FOR APPLICATION AND FIELDING SELECTION APPLIED TO EQUIPMENT DISMANTLEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    The dismantlement of radioactively contaminated process equipment is a major concern during the D&D process. There are an estimated 1,200 buildings in the DOE-EM complex that will require the dismantlement of equipment and various metal structures. As buildings undergo the D&D process, this metallic equipment contaminated with radionuclides such as uranium and plutonium must be size-reduced before final disposal. A single information source comparing dismantlement technologies in the areas of safety, cost, and performance is needed by DOE managers and is not currently available. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D&D project costs. The purpose of this investigation was to evaluate commercially available and innovative technologies for equipment dismantlement and provide a comprehensive source of information to the D&D community in the areas of technology performance, cost, and health and safety.

  11. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1984-01-01T23:59:59.000Z

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  12. DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core...

  13. A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field

    E-Print Network [OSTI]

    Benson, Christopher Lee

    This paper presents a relatively simple, objective and repeatable method for selecting sets of patents that are representative of a specific technological domain. The methodology consists of using search terms to locate ...

  14. DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core...

  15. TWO SBIR-STTR GRANTS SELECTED FOR AWARD FOR SSL TECHNOLOGY (FY15 PHASE II RELEASE 1)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has selected for award two Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) proposals targeting advances in solid...

  16. FOUR SBIR-STTR GRANTS SELECTED FOR AWARD FOR SSL TECHNOLOGY (FY15 PHASE I RELEASE 1)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has selected for award four Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) proposals targeting advances in solid...

  17. Low-level radioactive waste technology: a selected, annotated bibliography. [416 references

    SciTech Connect (OSTI)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01T23:59:59.000Z

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

  18. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19T23:59:59.000Z

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  19. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01T23:59:59.000Z

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  20. Catalytic studies of supported Pd-Au catalysts 

    E-Print Network [OSTI]

    Boopalachandran, Praveenkumar

    2006-08-16T23:59:59.000Z

    Although Pd-Au high-surface area catalysts are used in industry to improve activity and selectivity, a thorough understanding of the nature of these enhancements is lacking. A molecular-level understanding of catalytic ...

  1. Development of the integrated environmental control model: Performance models of selective catalytic reduction NO{sub x} control systems. Quarterly progress report, [April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Frey, H.C.

    1993-07-01T23:59:59.000Z

    This report concerns the Integrated Environmental Control Model (IECM) created and enhanced by Carnegie Mellon University (CMU) for the US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC). The IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results.

  2. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01T23:59:59.000Z

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  3. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22T23:59:59.000Z

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  4. A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Catalysts via First Principles (Agreement ID:10635) Catalysts via First Principles Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  5. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17T23:59:59.000Z

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  6. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E. (La Crescenta, CA)

    1990-03-20T23:59:59.000Z

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  7. Using Pinch Technology to Explore Trade-Offs Between Energy Cost, Capital Cost, Process Modifications, and Utility Selection

    E-Print Network [OSTI]

    McMullan, A. S.

    , energy cost, process modifications and utility selection. The application of Pinch' Technology to a Chemi-Thermo Mechanical Pulping process is used to illustrate the approach and the results. INTRODUCTION The general approach to process design.... AN EXAMPLE - THE CTMP PROCESS The Chemi-Thermo Mechanical Pulping (CTMP) process will be used as an example to illustrate how process modifications and utility selection impact total capital and operating costs. For each of the possible process...

  8. FTIR and kinetic studies of the mechanism of Fe{sup 3+}-exchanged TiO{sub 2}-pillared clay catalyst for selective catalytic reduction of NO with ammonia

    SciTech Connect (OSTI)

    Long, R.Q.; Yang, R.T.

    2000-02-15T23:59:59.000Z

    A series of FTIR spectroscopic and kinetic studies of the selective catalytic reduction (SCR) of nitric oxide by ammonia were conducted on Fe{sup 3+}-exchanged TiO{sub 2}-pillared clay (Fe-TiO{sub 2}-PILC) catalyst. It was found that No molecules were absorbed on the fresh Fe-TiO{sub 2}-PILC catalyst and then oxidized by O{sub 2} to adsorbed NO{sub 2} and nitrate species. These NO{sub x} adspecies could be reduced by NH{sub 3} at high temperatures. NH{sub 3} molecules could also be adsorbed on the Broensted acid and Lewis acid sites on the Fe-TiO{sub 2}-PILC catalyst to generate, respectively, NH{sup +}{sub 4} ions and coordinated NH{sub 3} species. These NH{sub 3} adspecies were active in reacting with NO, NO + O{sub 2} and NO{sub 2}, but the reaction rates of NH{sub 3} + NO + O{sub 2} and NH{sub 3} + NO{sub 2} were much higher than that of NNO + NH{sub 3}. However, under reaction conditions, the surface of Fe-TiO{sub 2}-PILC was mainly covered by NH{sup +}{sub 4} ions and coordinated NH{sub 3}, and no NO{sub x} adspecies were detected. This is in agreement with the zero-order for the SCR reaction with respect to NH{sub 3}. A possible reaction scheme for the SCR reaction on Fe-TiO{sub 2}-PILC was proposed. NO reduction initially involved the reaction between NO{sub 2} and pairs of NH{sub 3} adspecies to form an active intermediate, which finally reacted with gaseous or weakly adsorbed NO to produce N{sub 2} and H{sub 2}O.

  9. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  10. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31T23:59:59.000Z

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  11. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15T23:59:59.000Z

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

  12. Concentric catalytic combustor

    DOE Patents [OSTI]

    Bruck, Gerald J. (Oviedo, FL); Laster, Walter R. (Oviedo, FL)

    2009-03-24T23:59:59.000Z

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  13. Catalytic hydrodesulfurization of bitumen

    SciTech Connect (OSTI)

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31T23:59:59.000Z

    Investigations of the catalytic hydrodesulfurization of Venezuela bitumen and its water emulsion (Orimulsion) were carried out. This material contained a large amount of sulfur and organometallics, such as vanadium and nickel compounds. A variety of nickel and molybdenum catalysts were prepared. These, as well as two commercial catalysts, were tested with Orimulsion and vacuum-dried, pentane-insoluble and soluble bitumen. Catalytic hydrotreatment removed up to 75% of sulfur from the bitumen. Hydrodesulfurization was found to be affected by reaction temperature, reaction time, catalyst, and feed material. Moisture-free bitumen and a pentane-soluble bitumen fraction were desulfurized more effectively than Orimulsion. Zeolite-based catalysts gave higher desulfurization than synthetic clay catalysts.

  14. Catalytic reforming catalyst

    SciTech Connect (OSTI)

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09T23:59:59.000Z

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  15. Laying technological groundwork for Templated Assembly by Selective Removal (TASR) at biological length scales

    E-Print Network [OSTI]

    Agarwal, Gunjan

    2012-01-01T23:59:59.000Z

    This work presents the size-selective sorting of biological cells using the assembly process known as Templated Assembly by Selective Removal (TASR). This research has demonstrated experimentally, for the first time, the ...

  16. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01T23:59:59.000Z

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  17. Synthesis and Characterization of Metal Complexes to be Employed in the Catalytic Depolymerization of Lignin Model Compounds

    SciTech Connect (OSTI)

    Chmely, S. C.; Kim, S.; Beckham, G. T.

    2012-01-01T23:59:59.000Z

    Lignin is an earth-abundant biopolymer that is grossly underutilized as a value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading to fuels and chemicals. The development of new mild and selective catalytic routes to depolymerize this recalcitrant biopolymer is required to more effectively utilize lignin. To that end, our group aims to synthesize and characterize a collection of organometallic catalysts to promote atom-economical catalytic lignin deconstruction. These catalysts have been screened against dimeric lignin model compounds in order to gain mechanistic insights into their modes of action. In addition, experimental efforts have been coupled with quantum mechanical calculations to elucidate solution behavior of the catalysts as well as the mechanisms of lignin depolymerization. Detailed synthetic procedures, as well as spectroscopic and crystallographic characterization and DFT calculations will be presented.

  18. TWO SBIR-STTR GRANTS SELECTED FOR AWARD FOR SSL TECHNOLOGY (FY15...

    Broader source: Energy.gov (indexed) [DOE]

    and light uniformity, using substrates with improved barrier properties to prevent degradation, and developing low-cost roll-to-roll manufacturing technology for domestic...

  19. Catalytic reforming methods

    DOE Patents [OSTI]

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14T23:59:59.000Z

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  20. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Metal Decontamination Technologies

    SciTech Connect (OSTI)

    Lagos, L.E.; Ebadian, M.A.

    1998-01-01T23:59:59.000Z

    During the decontamination and decommissioning (D and D) activities being conducted by the U.S. Department of Energy (DOE), approximately 550,000 metric tons of contaminated metal will be generated by the disposition of contaminated buildings. The majority of the structural steel is considered to be radiologically contaminated. The D and D activities require the treatment of the structural steel to reduce occupational and environmental radiological exposures during dismantlement. Treatment technologies may also be required for possible recycling. Many proven commercial treatment technologies are available. These treatment processes vary in aggressiveness, safety requirements, secondary waste generation, necessary capital, and operation and maintenance costs. Choosing the appropriate technology to meet the decontamination objectives for structural steel is a difficult process. A single information source comparing innovative and nuclear and non-nuclear technologies in the areas of safety, cost and effectiveness is not currently commercially available to perform a detailed analysis. This study presents comparable data related to operation and maintenance, cost, and health and safely aspects of three readily available technologies and one innovative technology for nuclear decontamination. The technologies include Advance Recyclable Media System (ARMS{trademark}), NELCO Porta Shot Blast{trademark} (JHJ-2000), Pegasus Coating Removal System 7 (PCRS-7) and the innovative laser ablation technology called the Yag Eraser{trademark}.

  1. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect (OSTI)

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01T23:59:59.000Z

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  2. Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument

    SciTech Connect (OSTI)

    Yin, C.; Tyo, E. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)] [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kuchta, K. [Extrel CMS, LLC, 575 Epsilon Dr. Suite 2, Pittsburgh, Pennsylvania 15238-2838 (United States)] [Extrel CMS, LLC, 575 Epsilon Dr. Suite 2, Pittsburgh, Pennsylvania 15238-2838 (United States); Issendorff, B. von [Physikalisches Institut, Universität Freiburg, Stefan-Meier Str. 21, D-79104 Freiburg (Germany)] [Physikalisches Institut, Universität Freiburg, Stefan-Meier Str. 21, D-79104 Freiburg (Germany); Vajda, S., E-mail: vajda@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscience and Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637 (United States); Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, Connecticut 06520 (United States)

    2014-05-07T23:59:59.000Z

    We report a new high vacuum instrument which is dedicated to the preparation of well-defined clusters supported on model and technologically relevant supports for catalytic and materials investigations. The instrument is based on deposition of size selected metallic cluster ions that are produced by a high flux magnetron cluster source. The throughput of the apparatus is maximized by collecting and focusing ions utilizing a conical octupole ion guide and a linear ion guide. The size selection is achieved by a quadrupole mass filter. The new design of the sample holder provides for the preparation of multiple samples on supports of various sizes and shapes in one session. After cluster deposition onto the support of interest, samples will be taken out of the chamber for a variety of testing and characterization.

  3. Catalytic hydrodesulfurization of bitumen

    SciTech Connect (OSTI)

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31T23:59:59.000Z

    Investigations of the catalytic hydrodesulfurization of Venezuela bitumen and its water-emulsion (Orimulsion) were carried out. A variety of catalysts were prepared and some impregnated with molybdenum and sulfided. These and two commercial catalysts were tested with Orimulsion, vacuum-dried Orimulsion, and pentane-insoluble and soluble Orimulsion. Hydrotreatment of feed material was done in a 15-mL tube reactor using a variety of catalysts at 390{degrees}C under an initial 1000-psi hydrogen pressure with a reaction time of 1-3 hours. The hydrotreated products were analyzed by total sulfur analysis. Catalytic hydrotreatment removed up to 75% of sulfur from the bitumen. Nickel and/or molybdenum impregnation on various supports promoted sulfur removal from Orimulsion. Hydrodesulfurization was found to be affected by reaction temperature, reaction time, catalyst, and feed material. A moisture-free bitumen and a pentane-soluble bitumen fraction were desulfurized more effectively than Orimulsion. Zeolite-based catalysts gave higher desulfurization than synthetic clay catalysts or commercial AMOCAT and HDN catalysts.

  4. Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application Takashi: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature

  5. Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki, and Nobuhide Kasagi

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki@thtlab.t.u-tokyo.ac.jp Abstract We developed a micro catalytic combustor using high-precision ceramic tape-casting technology and nano-porous alumina catalyst layer. It is found that failure of the ceramic combustor occurs due

  6. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14T23:59:59.000Z

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  7. Enzymatically based cellulosic ethanol production technology was selected as a key area for biomass

    E-Print Network [OSTI]

    California at Riverside, University of

    of biotechnology offered the promise for significant advances that could dramati- cally reduce costs and make Laboratory, PO Box 2008, Oak Ridge, Tennessee, USA 5 Center for Environmental Research & Technology, Bourns

  8. Technology selection and architecture optimization of in-situ resource utilization systems

    E-Print Network [OSTI]

    Chepko, Ariane (Ariane Brooke)

    2009-01-01T23:59:59.000Z

    This paper discusses an approach to exploring the conceptual design space of large-scale, complex electromechanical systems that are technologically immature. A modeling framework that addresses the fluctuating architectural ...

  9. Methodology for technology selection for Department of Defense research and development programs

    E-Print Network [OSTI]

    Nair, Michael L. (Michael Lawrie), 1979-

    2011-01-01T23:59:59.000Z

    In recent years, many of the Department of Defense's major acquisition programs have experienced significant budget overruns and schedule delays. Closer examination of these programs reveals that in many cases, technologies ...

  10. Methods and apparatus for catalytic hydrothermal gasification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods and apparatus for catalytic hydrothermal gasification of biomass Re-direct Destination: Continuous processing of wet biomass feedstock by catalytic hydrothermal...

  11. Synthesis, Characterization, and Catalytic Function of Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization, and Catalytic Function of Novel Highly Dispersed Tungsten Oxide Catalysts on Mesoporous Silica . Synthesis, Characterization, and Catalytic Function of Novel...

  12. Preparation, Characterization, and Catalytic Properties of Tungsten...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation, Characterization, and Catalytic Properties of Tungsten Trioxide Cyclic Trimers on FeO(111)Pt(111). Preparation, Characterization, and Catalytic Properties of Tungsten...

  13. Systems Approach and Quantitative Decision Tools for Technology Selection in Environmentally Friendly Drilling 

    E-Print Network [OSTI]

    Yu, Ok Y.

    2010-01-16T23:59:59.000Z

    .............................................. 79 5-11 Selection procedure and constraints for the ?Rig? subsystem ................... 80 5-12 An example of input scores........................................................................ 80 5-13 Overall attribute score for each... ......................................... 90 6-3 Influence diagram for the drilling site of the case study ............................ 91 6-4 Selection procedure for the ?Rig? subsystem of the case study................. 92 6-5 An example of input scores of the case study...

  14. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21T23:59:59.000Z

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  15. Catalytic multi-stage liquefaction (CMSL)

    SciTech Connect (OSTI)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01T23:59:59.000Z

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  16. DOE Announces Selections for SSL Core Technology Research (Round 7), Product Development (Round 7), and U.S. Manufacturing (Round 2) Funding Opportunities

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory, on behalf of the U.S. Department of Energy (DOE), is pleased to announce the following selections for solid-state lighting (SSL) funding opportunities....

  17. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  18. DOE Announces Selections for SSL Core Technology (Round 6), Product Development (Round 6), and U.S. Manufacturing (Round 1) Funding Opportunities

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory, on behalf of the U.S. Department of Energy (DOE), is pleased to announce the following selections for solid-state lighting (SSL) funding opportunities...

  19. Mobile biometric device (MBD) technology : summary of selected first responder experiences in pilot projects.

    SciTech Connect (OSTI)

    Aldridge, Chris D.

    2013-06-01T23:59:59.000Z

    Mobile biometric devices (MBDs) capable of both enrolling individuals in databases and performing identification checks of subjects in the field are seen as an important capability for military, law enforcement, and homeland security operations. The technology is advancing rapidly. The Department of Homeland Security Science and Technology Directorate through an Interagency Agreement with Sandia sponsored a series of pilot projects to obtain information for the first responder law enforcement community on further identification of requirements for mobile biometric device technology. Working with 62 different jurisdictions, including components of the Department of Homeland Security, Sandia delivered a series of reports on user operation of state-of-the-art mobile biometric devices. These reports included feedback information on MBD usage in both operational and exercise scenarios. The findings and conclusions of the project address both the limitations and possibilities of MBD technology to improve operations. Evidence of these possibilities can be found in the adoption of this technology by many agencies today and the cooperation of several law enforcement agencies in both participating in the pilot efforts and sharing of information about their own experiences in efforts undertaken separately.

  20. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  1. LIST of Selected Applicants for CAFT "Advances in Experimental Designs for Development of Technologies in Agriculture"

    E-Print Network [OSTI]

    Rodriguez, Carlos

    of Technologies in Agriculture" (October 23, 2013 ­ November 12, 2013) S.No. Name & Post/Discipline Institute Agricultural Statistics Pandit Jawaharlal Nehru College of Agriculture & Research Institute (PAJANCOA &RI Office, Navsari Agricultural University, Eru Char Rasta, Navsari, Gujrat-396450 (M): 07600049176 akshay

  2. Reaction mechanisms for catalytic partial oxidation systems : application to ethylene epoxidation

    E-Print Network [OSTI]

    Anantharaman, Bharthwaj

    2005-01-01T23:59:59.000Z

    With the rapid advances in kinetic modeling, building elementary surface mechanisms have become vital to understand the complex chemistry for catalytic partial oxidation systems. Given that there is selected experimental ...

  3. Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection

    SciTech Connect (OSTI)

    Benjamin Russ

    2009-05-01T23:59:59.000Z

    This report summarizes the sulfur-iodine (SI) thermochemical water splitting process for the purpose of supporting the process for evaluating and recommending a hydrogen production technology to deploy with the Next Generation Nuclear Plant (NGNP). This package provides the baseline process description as well as a comparison with the process as it was implemented in the Integrated Lab Scale (ILS) experiment conducted at General Atomics from 2006-2009.

  4. Demonstration and Transfer of Selected New Technologies for Animal Waste Pollution Control 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Gregory, Lucas

    2009-01-01T23:59:59.000Z

    Technical Report April 2009 D e m o n s tr a t i o n and Transfer of Selected New Technolo g i e s for Animal Waste Pollution Control TSSWCB Project 03-10 Final Report Prepared by: Dr. Saqib Mukhtar, Texas AgriLife Extension Service... ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..............7 Technolo g y De monstr a t i o n s and Methodol o g y ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Geotube ? Dewater i n g System...

  5. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  6. The catalytic oxidation of propane 

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01T23:59:59.000Z

    THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  7. The catalytic oxidation of propane

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01T23:59:59.000Z

    THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  8. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  9. Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection: Process Performance Package

    SciTech Connect (OSTI)

    Benjamin Russ

    2009-06-01T23:59:59.000Z

    This document describes the details of implementing a Sulfur-Iodine (S-I) hydrogen production plant to deploy with the Next General Nuclear Power Plant (NGNP). Technical requirements and specifications are included, and a conceptual plant design is presented. The following areas of interest are outlined in particular as a baseline for the various technology comparisons: (1) Performance Criteria - (a) Quantity of hydrogen produced, (b) Purity of hydrogen produced, (c) Flexibility to serve various applications, (d) Waste management; (2) Economic Considerations - (a) Cost of hydrogen, (b) Development costs; and (3) Risk - (a) Technical maturity of the S-I process, (b) Development risk, (c) Scale up options.

  10. DOE Selects Nine R&D Projects to Advance SSL Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of Energy to InvestEnergy Selects Nine R&D

  11. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    of Demonstrated Energy Technologies. (1989). The Pyrocoreof Demonstrated Energy Technologies. (1990). Cooling systemof Demonstrated Energy Technologies. (1993a). Energy-saving

  12. Optimal Technology Selection and Operation of Microgrids inCommercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui,Afzal; Firestone, Ryan; Chandran, Bala

    2007-01-15T23:59:59.000Z

    The deployment of small (<1-2 MW) clusters of generators,heat and electrical storage, efficiency investments, and combined heatand power (CHP) applications (particularly involving heat activatedcooling) in commercial buildings promises significant benefits but posesmany technical and financial challenges, both in system choice and itsoperation; if successful, such systems may be precursors to widespreadmicrogrid deployment. The presented optimization approach to choosingsuch systems and their operating schedules uses Berkeley Lab'sDistributed Energy Resources Customer Adoption Model [DER-CAM], extendedto incorporate electrical storage options. DER-CAM chooses annual energybill minimizing systems in a fully technology-neutral manner. Anillustrative example for a San Francisco hotel is reported. The chosensystem includes two engines and an absorption chiller, providing anestimated 11 percent cost savings and 10 percent carbon emissionreductions, under idealized circumstances.

  13. Radioanalytical technology for 10 CFR Part 61 and other selected radionuclides: Literature review

    SciTech Connect (OSTI)

    Thomas, C.W.; Thomas, V.W.; Robertson, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01T23:59:59.000Z

    A comprehensive literature review and assessment was conducted to identify and evaluate radioanalytical technology and procedures used for measuring 10CFR61 radionuclides and other long-lived isotopes. This review evaluated radiochemical procedures currently in use at a number of laboratories in the US, as well as identifying new advanced methods and techniques which could be adapted for routine radiochemical analyses of low-level radioactive waste. The 10CFR61 radionuclides include {sup 14}C, {sup 60}Cl, {sup 59,63}Ni, {sup 90}Sr, {sup 94}Nb, {sup 99}Tc, {sup 129}I, {sup 137}Cs, and TRU isotopes with half lives greater than 5 years. Other low-level radionuclides of interest include {sup 7,10}Be, {sup 26}Al, {sup 36}Cl, {sup 93}Mo, {sup 109,113m}Cd, and {sup 121m,126}Sn, which may be present in various types of waste streams from nuclear power stations.

  14. Catalytic hydrocarbon reactions over supported metal oxides. Final report, August 1, 1986--July 31, 1995

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1995-10-20T23:59:59.000Z

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. The approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. The current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. During the course of these studies the author has: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by metathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  15. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31T23:59:59.000Z

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  16. Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE, Yuji SUZUKI, and Nobuhide KASAGI

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE@thtlab.t.u-tokyo.ac.jp Abstract Micro-scale catalytic combustor fueled by butane is investigated. A cost-effective ceramic combustor is developed using high- precision tape-casting technology. Nano-porous alumina fabricated through

  17. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31T23:59:59.000Z

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  18. INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING

    E-Print Network [OSTI]

    INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

  19. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 3, Appendices O--T. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    Volume 3 contains the following appendices: Appendix O, Second Series-Manual APH Tests; Appendix P, Third Series-Manual APH Tests; Appendix Q, ABB Analysis of Air Preheaters-Final Report; Appendix R, ABB Corrosion Analysis Study; Appendix S, SRI Waste Stream Impacts Study; and Appendix T, Economic Evaluation.

  20. Catalytic membrane reactors for chemicals upgrading and environmental control

    SciTech Connect (OSTI)

    Sammells, A.F. [Eltron Research, Inc., Boulder, CO (United States)

    1994-12-31T23:59:59.000Z

    Mixed ionic and electronic conducting catalytic membrane reactors are being developed for promoting a number of spontaneous chemical reactions either leading to synthesis of value added products or decomposition of environmental contaminants. The dense non-porous ceramic materials behave as short-circuited electrochemical devices whereby ions (oxygen anions or protons) and electrons become simultaneously mediated for one reaction surface to another. The rationale behind membrane materials selection and specific applications will be discussed.

  1. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  2. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  3. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30T23:59:59.000Z

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  4. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); McLean, Joseph B. (So. Somerville, NJ); Comolli, Alfred G. (Yardley, PA)

    1989-01-01T23:59:59.000Z

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  5. Synthesis of Z-(Pinacolato)allylboron and Z-(Pinacolato)alkenylboron Compounds through Stereoselective Catalytic Cross-Metathesis

    E-Print Network [OSTI]

    Kiesewetter, Elizabeth T.

    The first examples of catalytic cross-metathesis (CM) reactions that furnish Z-(pinacolato)allylboron and Z-(pinacolato)alkenylboron compounds are disclosed. Products are generated with high Z selectivity by the use of a ...

  6. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTank 48H Treatment Project (TTP)BIOMASS

  7. Technology Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153AssistanceKeyDepartment

  8. Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995

    SciTech Connect (OSTI)

    Benedek, K. [Little (Arthur D.), Inc., Cambridge, MA (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States)

    1996-02-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  9. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1992-02-03T23:59:59.000Z

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  10. Novel selective surface flow (SSF{trademark}) membranes for the recovery of hydrogen from waste gas streams. Phase 2: Technology development, final report

    SciTech Connect (OSTI)

    Anand, M.; Ludwig, K.A.

    1996-04-01T23:59:59.000Z

    The objective of Phase II of the Selective Surface Flow Membrane program was Technology Development. Issues addressed were: (i) to develop detailed performance characteristics on a 1 ft{sup 2} multi- tube module and develop design data, (ii) to build a field test rig and complete field evaluation with the 1 ft{sup 2} area membrane system, (iii) to implement membrane preparation technology and demonstrate membrane performance in 3.5 ft long tube, (iv) to complete detailed process design and economic analysis.

  11. Superconducting Cuprates on Catalytic Substrates - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Superconducting Cuprates on Catalytic Substrates Brookhaven National Laboratory Contact BNL About...

  12. Catalytic Nanostructures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C lKieling ,CatalysisPortalCatalytic

  13. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  14. Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1995-01-31T23:59:59.000Z

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  15. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  16. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys....

  17. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing High Catalytic Rates for Hydrogen Production Using...

  18. Nanoporous carbon catalytic membranes and method for making the same

    DOE Patents [OSTI]

    Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

    2002-01-01T23:59:59.000Z

    Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

  19. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    Technology Super Boiler High-efficiency welding Pumppercent and the gas boiler has an efficiency of 68 percent.natural gas boiler plus 33.4% efficiency grid electricity

  20. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    Corporation). (2000). In N. Martin (Ed. ). EIA. (1997).of Energy 1994 (No. DOE/EIA-0512(94)). Washington, DC: U.S.of Industrial Technologies. [EIA], U.S. Energy Information

  1. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  2. DEVELOPMENT AND SELECTION OF TECHNOLOGIES FOR MERCURY MANAGEMENT ON U.S. DEPARTMENT OF ENERGY SITES: THE MER01-MER04 AND MERCURY SPECIATION DEMONSTRATIONS

    SciTech Connect (OSTI)

    Morris, Michael I.; Hulet, Greg A.

    2003-02-27T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) Transuranic and Mixed Waste Focus Area (TMFA), funded from fiscal year (FY) 1996 though FY 2002, was tasked with finding solutions for the mixed waste treatment problems of the DOE complex. During TMFA's initial technical baseline development process, three of the top four technology deficiencies identified were the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury-contaminated mixed waste. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, assisted TMFA in soliciting, identifying, initiating, and managing efforts to address these areas. Solicitations and contract awards were made to the private sector to demonstrate both the amalgamation and stabilization processes using both actual mixed wastes and surrogate samples. The goal was to develop separation and removal processes that will meet DOE's needs. This paper discusses the technology selection process, development activities, and the accomplishments of TMFA through these various activities.

  3. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  4. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17T23:59:59.000Z

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  5. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (Somerville, NJ)

    1989-01-01T23:59:59.000Z

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  6. Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

  7. Long life catalytic membrane reactors for spontaneous conversion of natural gas to synthesis gas

    SciTech Connect (OSTI)

    Schwartz, M., White, J., Deych, S., Millard, J., Myers, M., Sammells, A.

    1997-10-01T23:59:59.000Z

    This program is focusing on the development of mixed ionic and electronic conducting materials based on the brown millerite structure for use in catalytic membrane reactors (CMRs). These CMRs are being evaluated for promoting the spontaneous and highly selective oxidative reforming of carbon dioxide / natural gas mixtures to synthesis gas.

  8. Technology Innovation Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...

  9. 1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV

    E-Print Network [OSTI]

    1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor) and the electric motor to deliver power in parallel to drive the wheels.

  10. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    programs. deer08copan.pdf More Documents & Publications Strategies for Integrated Emission Control Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5...

  11. Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand Sustained CoordinationWater10 DOE

  12. Bifunctional Catalysts for the Selective Catalytic Reduction of NO by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand Sustained CoordinationWater10 DOEHydrocarbons |

  13. Selective Catalytic Reduction and Exhaust Gas Recirculation Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory BoardSecuringSee theEnergy3at

  14. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY STAR ReferralServices

  15. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY STAR ReferralServicesReduction

  16. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY STAR

  17. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY STARReduction Materials, and

  18. Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY STARReduction Materials,

  19. Environmental Control Technology

    SciTech Connect (OSTI)

    NONE

    1997-02-10T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutants (HAP) study was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber and the Pulse-Jet Fabric Filter). Testing also continued across the B&W/CHX Heat Exchanger this month as the effects of increased particulate loading are being studied. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. On September 13, 1996, the ECTC completed an independent test block for a third-party company, Air Purification Inc. (API). For this testing, the ECTC's staff (O&M and Testing) were contracted to conduct performance and validation testing across a new, integrated emissions control device, the Rotorfilter{trademark}. This testing was conducted for a thirty (30) day period simultaneously with the B&W/CHX test block. The HAP testing resumed as this third-party test block was completed. Testing in September at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC) included tests from the Pilot Trace Elements Removal (TER) test block as part of EPRI's overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions. The 1996 program is being performed on the 4.0 MW wet FGD pilot unit and the spray dryer/pulse jet fabric filter (SDA/PJFF) pilot units. The 1996 Trace Elements Removal (TER) test block is a continuation of the 1995 TER test block and will focus on up to five research areas, depending on experimental results. These areas are: (1) Mercury speciation methods; (2) Effect of FGD system operating variables on mercury removal; (3) Novel methods for elemental mercury control; (4) Catalytic methods for converting elemental mercury to oxidized mercury; and (5) Electrostatic charging of particulate material in the FGD inlet flue gas stream.

  20. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  1. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14T23:59:59.000Z

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  2. Catalytic fabric filtration for simultaneous NO sub x and particulate control

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-05-01T23:59:59.000Z

    The objective of this program is to develop advanced concepts for removal of NO{sub x} from flue gas emitted by coalfired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x}. emissions to 60 ppM or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). Other requirements include production of a nonhazardous waste or a salable byproduct. The concept should have application to both new and retrofit coal-fired systems. The concept should also show the potential for a 50% cost savings when compared to a commercial selective catalytic reduction (SCR) process capable of meeting the 60-ppM NO{sub x} emission limit.

  3. Technology Deployment Annual Report 2010

    SciTech Connect (OSTI)

    Keith Arterburn

    2010-12-01T23:59:59.000Z

    This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

  4. Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties

    SciTech Connect (OSTI)

    Garrido Pedrosa, Anne M. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)]. E-mail: annemgp@yahoo.com; Souza, Marcelo J.B. [Federal University of Sergipe, Department of Chemical Engineering, 49100-000 Sao Cristovao-SE (Brazil); Melo, Dulce M.A. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil); Araujo, Antonio S. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)

    2006-06-15T23:59:59.000Z

    Bifunctional catalysts consisting of cobalt and nickel supported on HY zeolite were synthesized by solvent excess impregnation and characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, atomic absorption spectroscopy, thermogravimetric analysis and nitrogen adsorption. The profiles of metal reduction on zeolite were obtained by temperature-programmed reduction. The catalytic properties of the bifunctional catalysts were verified by n-hexane hydroconversion. X-ray diffraction and microstructural analyses showed the presence of crystalline phases in HY zeolite and in samples after impregnation. A decrease in the micropore surface area was observed by nitrogen adsorption experiments and attributed to a reduction in the accessibility to micropores. The catalysts showed catalytic activity in the hydroconversion of n-hexane with selectivity to branched hydrocarbons. Such catalytic activity was related to the acid and metallic properties of the bifunctional catalysts used.

  5. A catalytic approach to estimate the redox potential of heme-peroxidases

    SciTech Connect (OSTI)

    Ayala, Marcela [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico)]. E-mail: maa@ibt.unam.mx; Roman, Rosa [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico); Vazquez-Duhalt, Rafael [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico)

    2007-06-08T23:59:59.000Z

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.

  6. Assessment of natural gas technology opportunities in the treatment of selected metals containing wastes. Topical report, June 1994-August 1995

    SciTech Connect (OSTI)

    McGervey, J.; Holmes, J.G.; Bluestein, J.

    1995-08-01T23:59:59.000Z

    The report analyzes the disposal of certain waste streams that contain heavy metals, as determined by Resource Conservation and Recovery Act (RCRA) regulations. Generation of the wastes, the regulatory status of the wastes, and current treatment practices are characterized, and the role of natural gas is determined. The four hazardous metal waste streams addressed in this report are electric arc furnace (EAF) dust, electroplating sludge wastes, used and off-specification circuit boards and cathode ray tubes, and wastes from lead manufacturing. This report assesses research and development opportunities relevant to natural gas technologies that may result from current and future enviromental regulations.

  7. Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief. Industrial Technologies Program (ITP) (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Technologies Office2 DOEandMaterials

  8. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect (OSTI)

    Tom Barton

    2009-03-10T23:59:59.000Z

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

  9. Chemical Technology Division annual technical report, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  10. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    SciTech Connect (OSTI)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck (Austria)] [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck (Austria); Rameshan, Raffael [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck (Austria) [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck (Austria); Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Rameshan, Christoph [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck (Austria) [Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck (Austria); Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/01, 1060 Vienna (Austria)

    2014-05-15T23:59:59.000Z

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  11. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    SciTech Connect (OSTI)

    Professor Francisco Zaera

    2007-08-09T23:59:59.000Z

    The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a ?-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the –Ni–O rows that form in this system. Carbon and nitrogen oxides, on the other hand, display no pre

  12. Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels

    SciTech Connect (OSTI)

    Gluckstein, Jeffrey A [ORNL; Hu, Michael Z. [ORNL; Kidder, Michelle [ORNL; McFarlane, Joanna [ORNL; Narula, Chaitanya Kumar [ORNL; Sturgeon, Matthew R [ORNL

    2010-12-01T23:59:59.000Z

    Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave and deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.

  13. Studies Relevent to Catalytic Activation Co & other small Molecules

    SciTech Connect (OSTI)

    Ford, Peter C

    2005-02-22T23:59:59.000Z

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  14. Porous Core-Shell Nanostructures for Catalytic Applications

    E-Print Network [OSTI]

    Ewers, Trevor David

    2012-01-01T23:59:59.000Z

    C.Y Mou. Catalytic nano-rattle of Au@ hollow silica: towardshollow nanostructures induced by the Kirkendall effect: The basic concept. NanoHollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano,

  15. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect (OSTI)

    NONE

    1996-11-15T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  16. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -SeptemberWorkshopby:DataDepartment of

  17. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions,Department

  18. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoalsEvaluation11ofExStaffEx-Situ

  19. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the LostDepartmentIn the

  20. Nanoparticle Technology for Biorefining of Non-Food Source Feedstocks

    SciTech Connect (OSTI)

    Pruski, Marek; Trewyn, Brian G.; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22T23:59:59.000Z

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  1. Tantalum pillard montmorillonite: II. Acidic and catalytic properties

    SciTech Connect (OSTI)

    Guiu, G.; Grange, P. [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)] [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1997-06-01T23:59:59.000Z

    The acidic and catalytic properties of a series of Ta-PILCs synthesized with a different initial tantalum content were characterized by adsorption of gaseous probe molecules (TPD of ammonia and FTIR spectra of absorbed pyridine) and by the test reaction of 1-butanol dehydration. A large increase of acidity was noted in Ta-PILCs compared to Na-montmorillonite or tantalum oxide. Cross-linking pillars and silica layers of the clay induce stronger Lewis and new Bronsted sites. The lack of basic sites formation is evidenced by the dehydration of 1-butanol to butene selectivity (100%). The incorporation of the tantalum oxide between the montmorillonite sheets produce, within Ta-PILC, acid centers of the same nature as observed for the silicon-tantalum mixed oxides. 32 refs., 4 figs., 5 tabs.

  2. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    SciTech Connect (OSTI)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

    2004-01-15T23:59:59.000Z

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

  3. CATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE

    E-Print Network [OSTI]

    to the conversion of the world to a "hydrogen economy" is the problem of onboard hydrogen storage. Despite decadesCATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE Craig M. Jensen, Dalin Sun, Sesha Sai RamanH/Al and the reverse hydrogenation reactions have been determined through kinetic studies of 2 mol % Ti and Zr doped

  4. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  5. Transparent and Catalytic Carbon Nanotube Films

    E-Print Network [OSTI]

    Hone, James

    for the dye-sensitized solar cell. Other possible applications include batteries, fuel cells and intercalation in hydrogen fuel cells and lithium ion batteries.1,10,12,14 However, the electrochemical activity to optimize performance through processing. In this study, we quantify the catalytic activity of single

  6. Chemical Technology Division annual technical report, 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  7. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  8. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30T23:59:59.000Z

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  10. Advanced Catalytic Hydrogenation Retrofit Reactor

    SciTech Connect (OSTI)

    Reinaldo M. Machado

    2002-08-15T23:59:59.000Z

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  11. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21T23:59:59.000Z

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  12. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Westmont, IL); Wang, Xiaoping (Naperville, IL)

    2010-08-03T23:59:59.000Z

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  13. Method and apparatus for a catalytic firebox reactor

    DOE Patents [OSTI]

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01T23:59:59.000Z

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  14. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03T23:59:59.000Z

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  15. New Clean Coal Cycle Optimized Using Pinch Technology 

    E-Print Network [OSTI]

    Rossiter, A. P.; O'Donnell, J. J.

    1990-01-01T23:59:59.000Z

    transport reaction technology, developed originally for Fluid Catalytic Cracking plants, is used in the coal conversion steps; and pulverized limestone is circulated with the coal to capture the sulfur that is released during this process. Both gas turbines...

  16. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect (OSTI)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01T23:59:59.000Z

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  17. PRaVDA are delighted to announce that it has been selected as the winner in the Institute of Engineering and Technology (IET) Innovation Competition under the

    E-Print Network [OSTI]

    Wagner, Stephan

    of Engineering and Technology (IET) Innovation Competition under the model based engineering category. The Institution of Engineering and Technology's (IET) Innovation Awards recognise excellence across 16 categories Technology Innovation Award in 2012; and have grown to the point where they could float the company

  18. ChemBioChem 2003, 4, 531 540 DOI: 10.1002/cbic.200300591 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 533 Selective Protein Degradation by

    E-Print Network [OSTI]

    Davis, Ben G.

    A, Weinheim 533 Selective Protein Degradation by Ligand-Targeted Enzymes: Towards the Creation of Catalytic: affinity cleavage ¥ enzymes ¥ protein design ¥ receptors ¥ selectivity The selective degradation, through partial degradation by extracellular serine proteinases.[4, 5] The likelihood of the existence

  19. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24T23:59:59.000Z

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  20. Synthesis and Characterization of Transition Metal Complexes Useful for the Catalytic Deconstruction of Lignin

    SciTech Connect (OSTI)

    Chmely, S. C.; Kim, S.; Beckham, G. T.

    2012-01-01T23:59:59.000Z

    Lignin is an earth-abundant biopolymer that is grossly underutilized as a source of fuels and value-added chemicals. However, lignin is an intractable heteropolymer, which makes it difficult to deconstruct and upgrade in many chemically selective biomass conversion routes. The development of new catalytic routes to depolymerize this recalcitrant biopolymer is required to more effectively utilize lignin. To that end, our group aims to synthesize and characterize a collection of inorganic and organometallic catalysts to promote atom-economical catalytic lignin depolymerization. These catalysts have been screened against a continuum of model compounds and biomass-derived lignin for their usefulness in the deconstruction of these substrates. In addition, we have coupled our experimental efforts with quantum mechanical calculations to elucidate the mechanisms of catalysts to identify the mechanisms of lignin depolymerization. Detailed synthetic procedures, as well as spectroscopic and crystallographic characterization and DFT calculations will be presented.

  1. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect (OSTI)

    Somorjai, G.A.

    2009-09-14T23:59:59.000Z

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  2. Piloted rich-catalytic lean-burn hybrid combustor

    DOE Patents [OSTI]

    Newburry, Donald Maurice (Orlando, FL)

    2002-01-01T23:59:59.000Z

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  3. Catalytic Consequences of Acid Strength in the Conversion of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Catalytic Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Abstract:...

  4. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more...

  5. Improved Low-Temperature Performance of Catalytic Converters...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalytic converters, installed on vehicles with internal combustion and diesel engines, convert the toxic byproducts of combustion to less toxic compounds. In two-way (lean...

  6. The Effects of Trace Contaminants on Catalytic Processing of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing of Biomass-Derived Feedstocks . Abstract: Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to...

  7. Catalytic Solutions Inc CSI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst Regeneration MarketCatalytic

  8. BioCatalytics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |BigBigLakeBioCatalytics

  9. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect (OSTI)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01T23:59:59.000Z

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  10. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  11. bectno-selcat | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company Services, Pensacola, FL PROGRAM PUBLICATIONS Final Reports Innovative Clean Coal Technologies (ICCT) Demonstration of Selective Catalytic Reduction (SCR) Technology...

  12. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  13. Selective, nickel-catalyzed carbon-carbon bond-forming reactions of alkynes

    E-Print Network [OSTI]

    Miller, Karen M. (Karen Marie)

    2005-01-01T23:59:59.000Z

    Catalytic addition reactions to alkynes are among the most useful and efficient methods for preparing diverse types of substituted olefins. Controlling both regioselectivity and (EIZ)- selectivity in such transformations ...

  14. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect (OSTI)

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B.; Morreale, Bryan D.; Gellman, Andrew J.

    2013-04-01T23:59:59.000Z

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  15. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30T23:59:59.000Z

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  16. Chemical Technology Division annual technical report, 1992

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01T23:59:59.000Z

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  17. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors.

    E-Print Network [OSTI]

    Boyer, Edmond

    for structured catalytic reactors. Thierry Giornelli, Axel Löfberg* and Elisabeth Bordes-Richard Unité de.Lofberg@univ-lille1.fr Abstract The parameters to be controlled to coat metallic walls by VOx/TiO2 catalysts which) was chosen because of its large application in industrial catalytic reactors. TiO2 films on stainless steel

  18. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions

    SciTech Connect (OSTI)

    Tsai, An-Pang [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); National Institute for Materials Science, Tsukuba 305-0047 (Japan); Kimura, Tomofumi; Suzuki, Yukinori; Kameoka, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Shimoda, Masahiko [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Ishii, Yasushi [Department of Physics, Chuo University, Kasuga, Tokyo 112-8551 (Japan)

    2013-04-14T23:59:59.000Z

    We investigated the catalytic properties of a CuNi solid solution and Pd for methanol-related reactions and associated valence electronic structures. Calculations and X-ray photoelectron spectroscopy measurements revealed that the CuNi alloy has a similar valence electronic structure to Pd and hence they exhibited similar CO selectivities in steam reforming of methanol and decomposition of methanol. Samples prepared by various processes were found to have similar CO selectivities. We conjecture that alloying of Cu and Ni dramatically alters the valence electronic structures, making it similar to that of Pd so that the alloy exhibits similar catalytic properties to Pd. First-principles slab calculations of surface electronic structures support this conjecture.

  19. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    1998-01-01T23:59:59.000Z

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB.sub.1-x B'.sub.x O.sub.3-y wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B' is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated-by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B' ion such that the stoichiometric ratio A:B:B' is 1:1-x:x where 0.2.ltoreq..times.0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the singlephase material to obtain a membrane.

  20. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, J.H.; Schwartz, M.; Sammells, A.F.

    1998-10-13T23:59:59.000Z

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.

  1. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect (OSTI)

    Lu, Yi

    2005-06-01T23:59:59.000Z

    In vitro selection for DNAzymes that are catalytically active with UO22+ ions as the metal cofactor has been completed. The 10th generation pool of DNA was cloned and sequenced. A total of 84 clones were sequenced and placed into families based on sequence alignments. Selected members of each family were 5-labeled with 32P and amplified using PCR. Activity assays were conducted using the isotopically labeled DNAzymes in order to determine which sequences were the most active. The secondary structures of the two most active sequences, called Clone 13 and Clone 39, were determined using the computer program Mfold. A cleavage rate of approximately 1 min-1 in the presence of 10 uM UO22+ was observed for both clones. Clone 39 was determined to be the best candidate for truncation to create a trans-cleaving DNAzyme, based on its secondary structure. An enzyme strand, called 39E, and a substrate strand, called 39DS, were designed by truncating the cis-cleaving DNAzyme. An alternative enzyme strand, called 39Ec, was also assayed with the 39DS substrate. This strand was designed so that the two binding arms were perfectly complimentary, unlike 39E, which formed three mismatched base pairs with 39DS. Both 39E and 39Ec were found to be active, with a rate of approximately 1 min-1 in the presence of 10 uM UO22+. A preliminary UO22+ binding curve was obtained for the 39Ec/39DS trans-cleaving system. The enzyme is active with UO22+ concentrations as low as 1 nM. Based on the preliminary binding curve data, the apparent UO22+ binding constant is approximately 330 nM, and kmax is approximately 1 min-1.

  2. Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

  3. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27T23:59:59.000Z

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  4. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20T23:59:59.000Z

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  5. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1984-01-01T23:59:59.000Z

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  6. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1985-01-01T23:59:59.000Z

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  7. Catalytic cartridge SO/sub 3/ decomposer

    DOE Patents [OSTI]

    Galloway, T.R.

    1980-11-18T23:59:59.000Z

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  8. Catalytic carbon membranes for hydrogen production

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  9. Catalytic cracking of residual petroleum fractions

    SciTech Connect (OSTI)

    Moore, H.F.; Mayo, S.L.; Goolsby, T.L. (Research and Development Dept., Ashland Petroleum Co., Ashland, KY (US))

    1991-01-01T23:59:59.000Z

    This paper reports on Arabian Light crude oil vacuum bottoms fractionated into five high-boiling fractions by wiped film evaporation, and the fractions subjected to catalytic cracking in a fixed-fluidized bed using a commercial equilibrium cracking catalyst. Density, aromaticity, and heteroatom content generally increased with boiling point, as did metals content except for vanadium and iron which demonstrated possible bimodal distributions. The cracking response of these fractions showed increasing yields of dry gas and coke, with decreasing gasoline yields, as a function of increasing apparent boiling point as would normally be expected. Surprisingly, however, local maxima were observed for wet gas yield and total conversion, with local minima for cycle oil and slurry yields, in the region of the 1200-1263{degrees}F (650-680{degrees}C) middle fraction. All fractions showed significant response to cracking, with coke yields generally being the only negative factor observed.

  10. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 4, JULY/AUGUST 2002 935 3-D Photonic Circuit Technology

    E-Print Network [OSTI]

    Bowers, John

    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 4, JULY/AUGUST 2002 935 3-D devel- oped today. By making the leap to multilayer interconnects, more compact devices can be obtained

  11. DOE Announces Selections for SSL Core Technology Research (Round 10), Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the competitive selection of nine projects for solid-state lighting (SSL), in response to the SSL R&D funding opportunity announcement (FOA) DE-FOA...

  12. Mill Designed Bio bleaching Technologies

    SciTech Connect (OSTI)

    Institute of Paper Science Technology

    2004-01-30T23:59:59.000Z

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current generation of laccase has a broad spectrum of operating parameters. Nonetheless, the development of future genetically engineered laccases with enhanced temperature, pH and redox potentials will dramatically improve the overall process. A second challenge for LMS bleaching technologies is the need to develop effective, catalytic mediators. From the literature we already know this is feasible since ABTS and some inorganic mediators are catalytic. Unfortunately, the mediators that exhibit catalytic properties do not exhibit significant delignification properties and this is a challenge for future research studies. Potential short-term mill application of laccase has been recently reported by Felby132 and Chandra133 as they have demonstrated that the physical properties of linerboard can be improved when exposed to laccase without a chemical mediator. In addition, xxx has shown that the addition of laccase to the whitewater of the paper machine has several benefits for the removal of colloidal materials. Finally, this research program has presented important features on the delignification chemistry of LMS{sub NHA} and LMS{sub VA} that, in the opinion of the author, are momentous contributions to the overall LMS chemistry/biochemistry knowledge base which will continue to have future benefits.

  13. Heat transfer rates in fixed bed catalytic reactors

    E-Print Network [OSTI]

    Levelton, Bruce Harding

    1951-01-01T23:59:59.000Z

    HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX DB DNCLR YFNOAXa rRJRuSIX nSeR 1951i HssNIJFu FT SI TSBuR FXO LIXSRXS NRLIeeRXOROt HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX BSar DNCLR YFNOAXa r...RJRuSIX June 1951 HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS A Dissertation Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  14. Sequential tasks performed by catalytic pumps for colloidal crystallization

    E-Print Network [OSTI]

    Ali Afshar Farniya; Maria J. Esplandiu; Adrian Bachtold

    2014-10-20T23:59:59.000Z

    Gold-platinum catalytic pumps immersed in a chemical fuel are used to manipulate silica colloids. The manipulation relies on the electric field and the fluid flow generated by the pump. Catalytic pumps perform various tasks, such as the repulsion of colloids, the attraction of colloids, and the guided crystallization of colloids. We demonstrate that catalytic pumps can execute these tasks sequentially over time. Switching from one task to the next is related to the local change of the proton concentration, which modifies the colloid zeta potential and consequently the electric force acting on the colloids.

  15. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-09-12T23:59:59.000Z

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  16. TU DELFT PROCESS TECHNOLOGY INSTITUTE INSTITUTE LECTURE

    E-Print Network [OSTI]

    Lindken, Ralph

    TU DELFT PROCESS TECHNOLOGY INSTITUTE INSTITUTE LECTURE CHEMICAL REACTORS WITH DIRECT HEATING is in contrast with conventional operation of catalytic reactors, where heat is generally supplied through the reactor wall and unnecessary heating of the fluid phase, catalyst support and reactor materials occur

  17. Control of Substrate Access to the Active Site and Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Substrate Access to the Active Site and Catalytic Mechanism of Methane and Toluene Monooxygenases Friday, June 22, 2012 - 3:30pm SSRL Main Conference Room 137-322 Prof....

  18. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

    2007-06-19T23:59:59.000Z

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  19. Emerging catalytic processes for the production of adipic acid

    E-Print Network [OSTI]

    Van de Vyver, Stijn

    Research efforts to find more sustainable pathways for the synthesis of adipic acid have led to the introduction of new catalytic processes for producing this commodity chemical from alternative resources. With a focus on ...

  20. Catalytic H2O2 decomposition on palladium surfaces

    E-Print Network [OSTI]

    Salinas, S. Adriana

    1998-01-01T23:59:59.000Z

    The catalytic decomposition of H?O? at smooth single-crystal and polycrystalline palladium surfaces that had been subjected to various surface modifications has been studied. Monolayer and submonolayer coverages of I, Br and Cl adsorbates were used...

  1. An Energy Analysis of the Catalytic Combustion Burner

    E-Print Network [OSTI]

    Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

    2006-01-01T23:59:59.000Z

    The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional...

  2. In situ XAS Characterization of Catalytic Nano-Materials with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying...

  3. atp catalytic domain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 328 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  4. acidic multimetallic catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 106 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  5. automobile catalytic converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Odei 2006-01-01 408 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  6. atp catalytic cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 275 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  7. advanced catalytic hydrogenation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 188 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  8. apparent catalytic site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 257 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  9. advanced catalytic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 225 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  10. acrylamide catalytically inhibits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 78 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  11. assisted catalytic oxidation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 251 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  12. active catalytic sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 337 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  13. atpase catalytic domain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 266 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  14. advanced catalytic materials 1996: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 467 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  15. archaeal primase catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 92 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  16. advanced catalytic science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 488 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  17. Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming

    E-Print Network [OSTI]

    Kuncharam, Bhanu Vardhan

    2013-11-26T23:59:59.000Z

    This research explores a novel application of catalytic membrane reactors for high- purity hydrogen extraction from bioethanol reforming. Conventional membrane systems employ hydrogen permselective materials such as palladium, polymer membranes...

  18. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay [Northwestern University

    2013-05-08T23:59:59.000Z

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  19. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17T23:59:59.000Z

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  20. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07T23:59:59.000Z

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  1. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22T23:59:59.000Z

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  2. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  3. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01T23:59:59.000Z

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  4. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Weber, G.F.; Ness, S.R.; Laudal, D.L.; Dunham, G.

    1992-05-01T23:59:59.000Z

    The objective of this program is to develop advanced concepts for removal of NO{sub x} from flue gas emitted by coalfired utility boilers, or for the control of NO{sub x} formation by advanced combustion modification techniques. Funded projects are required to focus on the development of technology that significantly advances the state of the art using a process or a combination of processes capable of reducing NO{sub x}. emissions to 60 ppM or less. The concept must have successfully undergone sufficient laboratory-scale development to justify scaleup for further evaluation at the pilot scale (not to exceed 5 MWe in size). Other requirements include production of a nonhazardous waste or a salable byproduct. The concept should have application to both new and retrofit coal-fired systems. The concept should also show the potential for a 50% cost savings when compared to a commercial selective catalytic reduction (SCR) process capable of meeting the 60-ppM NO{sub x} emission limit.

  5. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

    DOE Patents [OSTI]

    Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.

  6. NO{sub x} Emission Abatement Technologies

    SciTech Connect (OSTI)

    Goles, R

    1991-10-01T23:59:59.000Z

    The Hanford Waste Vitrification Plant (HWVP) will convert Hanford Site high-level liquid defense waste to a solid vitrified (glass) form suitable for final disposal in a geological repository. Future process flow sheet developments may establish a need for a NO, scrubber in the melter off-gas system. Consequently, a technology review has been conducted to identify and compare applicable off-gas processing alternatives should NO, emission abatement be required. Denitrification processes can be separated into two distinct categories, wet or dry, depending upon whether or not NO{sub x} is absorbed into an aqueous solution. The dry methods of removal are generally more efficient (>90%) than wet scrubbing approaches (>60%); however, most dry approaches are applicable only to NO,. Of the dry removal methods, selective catalytic reduction (SCR) using NH3 reductant and a hydrogen zeolite catalyst appears to be the most suitable technology for reducing HWVP NO{sub x} emissions should emission abatement be required. SCR is a relatively simple, well established technology that produces no secondary waste stream and is applicable to a wide range of NO{sub x} concentrations (500 to 30,000 ppm). This technology has been successfully applied to uranium dissolver exhaust streams and has, more recently, been tested and evaluated as the best available control technology for reducing NO, emissions at the Idaho National Engineering Laboratory's waste calciner facility, and at DOE's West Valley Demonstration Project. Unlike dry NO, scrubbing methods, the wet techniques are not specific to NO{sub x}, so they may support the process in more than one way. This is the only major advantage associated with wet technologies. Their disadvantages are that they are not highly efficient at low NO{sub x} concentrations, they produce a secondary waste stream, and they may require complex chemical support to reduce equipment size. Wet scrubbing of HWVP process NO{sub x} emissions is an option that is justifiable only if the technology is needed to eliminate other process emissions and scrubbing compatibility can be established.

  7. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides. Progress report, August 1, 1991--January 31, 1992

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1992-02-03T23:59:59.000Z

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  8. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  9. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  10. Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Selection Process Fellowships will be awarded based on academic excellence, relevance of candidate's research to the laboratory mission in fundamental nuclear...

  11. Energy Department Selects 11 Tribal Communities to Deploy Energy...

    Energy Savers [EERE]

    Selects 11 Tribal Communities to Deploy Energy Efficiency and Renewable Energy Technologies Energy Department Selects 11 Tribal Communities to Deploy Energy Efficiency and...

  12. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts

    SciTech Connect (OSTI)

    Karim, Ayman M.; Su, Yu; Engelhard, Mark H.; King, David L.; Wang, Yong

    2011-02-25T23:59:59.000Z

    Abstract: The catalytic roles of Co0 and Co2+ during steam reforming of ethanol were investigated over Co/MgO catalysts. Catalysts with different Co0/(Co0+Co2+) fraction were prepared through calcination and/or reduction at different temperatures, and the Co0 fraction was quantified by TPR and in-situ XPS. High temperature calcination of Co/MgO allowed us to prepare catalysts with more non-reducible Co2+ incorporated in the MgO lattice, while lower calcination temperatures allowed for the preparation of catalysts with higher Co0/(Co0+Co2+) fractions. The catalytic tests on Co0, non-reducible Co2+, and reducible Co2+ indicated that Co0 is much more active than either reducible or non-reducible Co2+ for C-C cleavage and water gas shift reaction. In addition, catalysts with a higher Co0 surface fraction exhibited a lower selectivity to CH4.

  13. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 7. Accident analysis: Selection and assessment of potential release scenarios. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Accident Analysis is an evaluation of the likelihood of occurrence and resulting consequences from several general classes of accidents that could potentially occur during operation of the facility. The Accident Analysis also evaluates the effectiveness of existing mitigation measures in reducing off-site impacts. Volume VII describes in detail the methods used to conduct the Accident Analysis and reports the results of evaluations of likelihood and consequence for the selected accident scenarios.

  14. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevsCold ClimateTestingPredictingSelecting

  15. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29T23:59:59.000Z

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  16. Development of Pollution Prevention Technologies

    SciTech Connect (OSTI)

    Polle, Juergen [Brooklyn College; Sanchez-Delgado, Roberto [Brooklyn College

    2013-12-30T23:59:59.000Z

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.

  17. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01T23:59:59.000Z

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ?4%/yr and ?2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  18. Chemical Technology Division annual technical report, 1993

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01T23:59:59.000Z

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  19. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01T23:59:59.000Z

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  20. Electric Power Research Institute: Environmental control technology. Final technical monthly report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block. A second phase of the lime Forced Oxidation process with DBA addition (LDG) was also conducted simultaneously on the Pilot System this month. This month the ECTC was off-line from 6/9 through 6/19 to complete a Facility retrofit project. During this brief outage, modifications were made to the ECTC Flue Gas Handling System to enhance the facility capabilities, and to prepare for future High Velocity Wet FGD Testing. On the Cold-Side Selective Catalytic Reduction (SCR) unit, the low temperature performance testing resumed this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the new SCR catalysts.

  1. Electric Power Research Institute, Environmental Control Technology Center report to the Steering Committee. Final technical report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block, and a simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). At the end of the month, a series of Duct Injection tests began in a study to determine the efficiencies of alkaline injection for removing trace elements (mercury). On the Cold-Side Selective Catalytic Reduction (SCR) unit, low temperature performance testing continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the catalysts installed in the SCR reactor. This report describes the status of the facilities and test activities at the pilot and mini-pilot plants.

  2. Atomic-scale investigations of the struct. and dynamics of complex catalytic materials

    SciTech Connect (OSTI)

    Karl Sohlberg, Drexel University

    2007-05-16T23:59:59.000Z

    By some accounts, catalysis impacts ? 30% of GDP in developed countries [Maxwell, I. E. Nature 394, 325-326 (1998)]. Catalysis is the enabling technology for petroleum production, for control of gaseous emissions from petroleum combustion, and for the production of industrial and consumer chemicals. Future applications of catalysis are potentially even more far reaching. There is an ever-growing need to move the economy from a fossil-fuel energy base to cleaner alternatives. Hydrogen-based combustion systems and fuel cells could play a dominant role, given a plentiful and inexpensive source of hydrogen. Photocatalysis is the most promising clean technology for hydrogen production, relying solely on water and sunlight, but performance enhancements in photocatalysis are needed to make this technology economically competitive. Given the enormously wide spread utilization of catalysts, even incremental performance enhancements would have far-reaching benefits for multiple end-use sectors. In the area of fuel and chemical production, such improvements would translate into vast reductions in energy consumption. At the consumption end, improvements in the catalysts involved would yield tremendous reductions in pollution. In the area of photocatalysis, such efficiency improvements could finally render hydrogen an economically viable fuel. Prerequisite to the non-empirical design and refinement of improved catalysts is the identification of the atomic-scale structure and properties of the catalytically active sites. This has become a major industrial research priority. The focus of this research program was to combine atomic-resolution Z-contrast electron microscopy with first-principles density functional theory calculations to deliver an atomic-scale description of heterogeneous catalytic systems that could form the basis for non-empirical design of improved catalysts with greater energy efficiency.

  3. Method for measuring recovery of catalytic elements from fuel cells

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley, NJ)

    2011-03-08T23:59:59.000Z

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  4. Catalytic process for control of NOx emissions using hydrogen

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2010-05-18T23:59:59.000Z

    A selective catalytic reduction process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent. A zirconium sulfate (ZrO2)SO4 catalyst support material with about 0.01-2.0 wt. % Pd is applied to a catalytic bed positioned in a flow of exhaust gas at about 70-200.degree. C. The support material may be (ZrO2--SiO2)SO4. H2O and hydrogen may be injected into the exhaust gas upstream of the catalyst to a concentration of about 15-23 vol. % H2O and a molar ratio for H2/NOx in the range of 10-100. A hydrogen-containing fuel may be synthesized in an Integrated Gasification Combined Cycle power plant for combustion in a gas turbine to produce the exhaust gas flow. A portion of the fuel may be diverted for the hydrogen injection.

  5. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect (OSTI)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02T23:59:59.000Z

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  6. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    SciTech Connect (OSTI)

    Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01T23:59:59.000Z

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  7. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30T23:59:59.000Z

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  8. The backflow cell model for fluidized bed catalytic reactors

    E-Print Network [OSTI]

    Ganapathy, E. V

    1967-01-01T23:59:59.000Z

    THE BACKFLOW CELL MODEL FOR FLUIDI2ED BED CATALYTIC REACTORS A Thesis By E. V. Ganapathy Submitted to the Graduate College of the Texas A&M University in partial fulfillment of' the requirements for the degree of MASTER OF SCIENCE May 1967... Major Subject Chemical En ineerin THE BACKFLOW CELL MODEL FOR FLUIDIZED BED CATALYTIC REACTORS A Thesis E. V. Ganapathy Approved as to style and content by: chairman of Committee ~H+d d D p t t Member Member) May 1967 SO THE BACKFLOW CELL...

  9. Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site

    SciTech Connect (OSTI)

    Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

    1980-05-01T23:59:59.000Z

    As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

  10. Catalytic conversion of C/sub 3/-C/sub 4/ paraffins to gasoline

    SciTech Connect (OSTI)

    Batchelder, R.F.; Pennline, H.W.; Schehl, R.R.; Finseth, D.H.

    1984-12-01T23:59:59.000Z

    The reaction of propane and butane to form gasoline-range hydrocarbons in a single-step catalytic process has been investigated in a tubular packed-bed reactor maintained at near isothermal conditions. Three catalyst systems were studied: a zeolite, ZSM-5; a dehydrogenation catalyst, chromia-alumina; and a 50:50 mixture by weight of the previous two catalysts. The effects of process parameters on the catalyst activity and product selectivity were determined. It was found that ZSM-5 alone will convert propane or butane to gasoline-range products over a temperaure range of 350/sup 0/ to 540/sup 0/C. The reaction of butane over ZSM-5 results in a large selectivity to propane (30 to 70 weight percent) depending on the temperature. The addition of chromia-alumina to ZSM-5 increased the first-order rate constant for butane conversion by 60% at 450/sup 0/C. The addition of chromia-alumina to ZSM-5 also increased the C/sub 5+/ selectivity for butane conversion by 30% at 540/sup 0/C. The addition of chromia-alumina to ZSM-5 had little effect on the rate of propane conversion, but it did increase the C/sub 5+/ selectivity for propane conversion by over 100% at 540/sup 0/C. The liquid product from alkane conversion was highly aromatic (>80%) under all conditions tested. 12 references, 8 figures.

  11. Spectrally selective glazings

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  12. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan (Lisle, IL), Pellin, Michael J. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL); Marshall, Christopher L. (Naperville, IL); Winans, Randall A. (Downers Grove, IL); Meiwes-Broer, Karl-Heinz (Roggentin, GR)

    2012-04-03T23:59:59.000Z

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  13. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan (Lisle, IL); Pellin, Michael J. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL); Marshall, Christopher L. (Naperville, IL); Winans, Randall A. (Downers Grove, IL); Meiwes-Broer, Karl-Heinz (Roggentin, GR)

    2012-03-27T23:59:59.000Z

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  14. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01T23:59:59.000Z

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  15. Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes

    E-Print Network [OSTI]

    Hanna, Brian S. (Brian Stewart)

    2011-01-01T23:59:59.000Z

    A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

  16. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01T23:59:59.000Z

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  17. Effects of dispersion and support on adsorption, catalytic and electronic properties of cobalt/alumina Co hydrogenation catalysts

    SciTech Connect (OSTI)

    Bartholomew, C.H.

    1990-09-29T23:59:59.000Z

    An investigation of the effects of surface structure, dispersion, and support on the adsorption, catalytic, and electronic properties of cobalt/alumina is described, the objectives of which were to determine (1) the effects of surface structure and metal dispersion on the adsorption and catalytic properties of cobalt and (2) the effects of direct electronic interactions between metal clusters and support, on the adsorption, catalytic and electronic properties of cobalt supported on alumina. Effects of surface structure and dispersion on the adsorption, activity/selectivity, and electronic properties of Co/W single crystal surfaces and alumina-supported cobalt were investigated in a surface investigation, lab reactor studies, TPD/TPSR studies, and a Moessbauer spectroscopy study. The structure, stability, surface electronic properties, and chemisorptive properties of vapor-deposited cobalt overlayers (0-4 ML) on W(110) and W(100) were studied by Auger electron spectroscopy, low energy electron diffraction, work function changes, and temperature programmed desorption (TPD) of cobalt, hydrogen, and carbon monoxide. The CO chemisorptive properties of the two cobalt overlayers are quite different, CO adsorption being dissociative on the W(100) surface and nondissociative on the W(110) surface; comparison of the results with those for Ni/W(100) indicate that Co/W(100) dissociates CO as a result of electronic interaction with the tungsten substrate.

  18. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  19. CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity

    SciTech Connect (OSTI)

    Kwak, Ja Hun; Kovarik, Libor; Szanyi, Janos

    2013-11-01T23:59:59.000Z

    The catalytic performance of a series of Ru/Al2O3 catalysts with Ru content in the 0.1-5% range was examined in the reduction of CO2 with H2. At low Ru loadings (?0.5 %) where the active metal phase is highly dispersed (mostly atomically) on the alumina support CO is formed with high selectivity. With increasing metal loading the selectivity toward CH4 formation increases, while that for CO production decreases. In the 0.1% Ru/Al2O3 catalyst Ru is mostly present in atomic dispersion as STEM images obtained from the fresh sample prior to catalytic testing reveal. STEM images recorded form this same sample following temperature programmed reaction test clearly show the agglomeration of small metal particles (and atoms) into 3D clusters. The clustering of the highly dispersed metal phase is responsible for the observed dramatic selectivity change during elevated temperature tests: dramatic decrease in CO, and large increase in CH4 selectivity. Apparent activation energies, estimated from the slopes of Arrhenius plots, of 82 kJ/mol and 62 kJ/mol for CO and CH4 formation were determined, respectively, regardless of Ru loading. These results suggest that the formation of CO and CH4 follow different reaction pathways, or proceed on active centers of different nature. Reactions with CO2/H2 and CO/H2 mixtures (under otherwise identical reaction conditions) reveal that the onset temperature of CO2 reduction is about 150 ºC lower than of CO reduction. We thank Dr. Feng Gao for carrying out the H2 chemisorption measurements on all the Ru/Al2O3 catalysts discussed in this work. The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project, while the TEM work was supported by the Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US Department of Energy by Battelle under contract number DE-AC05-76RL01830. JHK also acknowledges the support of this work by the 2013 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea).

  20. Catalytic fabric filtration for simultaneous NO{sub x} and particulate control. Final report

    SciTech Connect (OSTI)

    Weber, G.F.; Dunham, G.E.; Laudal, D.L.; Ness, S.R.; Schelkoph, G.L.

    1994-08-01T23:59:59.000Z

    The overall objective of the project proposed was to evaluate the catalyst-coated fabric filter concept for effective control of NO{sub 2} and particulate emissions simultaneously. General goals included demonstrating high removal efficiency of NO{sub x} and particulate matter, acceptable bag and catalyst life, and that process economics show a significant cost savings in comparison to a commercial SCR process and conventional particulate control. Specific goals included the following: reduce NO{sub x} emissions to 60 ppM or less; demonstrate particulate removal efficiency of >99.5%; demonstrate a bag/catalyst life of >1 year; Control ammonia slip to <25 ppM; show that catalytic fabric filtration can achieve a 50% cost savings over conventional fabric filtration and SCR control technology; determine compatibility with S0{sub 2} removal systems; and show that the concept results in a nonhazardous waste product.

  1. Catalytic reactive separation system for energy-efficient production of cumene

    DOE Patents [OSTI]

    Buelna, Genoveva (Nuevo Laredo, MX); Nenoff, Tina M. (Albuquerque, NM)

    2009-07-28T23:59:59.000Z

    The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

  2. Interacting FisherWright Diffusions in a Catalytic Medium Andreas Greven

    E-Print Network [OSTI]

    Klenke, Achim

    environment (catalytic medium). Here we introduce a model of interacting Fisher­Wright diffusions where environment, catalytic medium, longtime behaviour, rescaling. AMS Subject Classification: 60K35, 60J70Interacting Fisher­Wright Diffusions in a Catalytic Medium Andreas Greven Mathematisches Institut

  3. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high-octane components for use in high-performance gasoline fuels. The reformer also has a important function

  4. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high-octane components for use in high-performance gasoline fuels. The reformer also has an important function

  5. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  6. Catalytic, Enantioselective Alkylations of N,O-Acetals

    E-Print Network [OSTI]

    Lectka, Thomas

    , 10998-10999. (2) Hoveyda et al. have developed a Ni-catalyzed alkylation reaction of allylic acetalsCatalytic, Enantioselective Alkylations of N,O-Acetals Dana Ferraris, Travis Dudding, Brandon Young alkylation reactions of acetals have attained a prominent position in organic synthesis.1 Methods employing

  7. Catalytic Asymmetric Synthesis of Hydroxy Enol Ethers: Approach to a

    E-Print Network [OSTI]

    Walsh, Patrick J.

    for the generation of polypro- pionate backbone.1-7 In contrast, the asymmetric acetate aldol reaction that leads associated with acetate aldol reactions have prompted investigations into alternative methods to generate the catalytic asymmetric allylation of aldehydes followed by oxidative cleavage of the allyl group (Scheme 1, A

  8. Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC)

    E-Print Network [OSTI]

    Williams, Roger L.

    Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC) MUTATIONAL ANALYSIS OF RESIDUES WITHIN THE ACTIVE SITE AND HYDROPHOBIC RIDGE OF PLC 1* (Received for publication, November 20, 1997 Institute, University of Dundee, Dundee DD1 4HN, United Kingdom Structural studies of phospholipase C 1 (PLC

  9. Utilization of char from biomass gasification in catalytic applications

    E-Print Network [OSTI]

    temperature or time. In addition, micropores were observed in char that was made in CO2, but not in char, but sintering was not observed during gasification with CO2. This showed that the properties of char depend catalytically or thermally. However, thermal decomposition requires high temperatures, and catalyst deactivation

  10. Short Communication Catalytic coal gasification: use of calcium versus potassium*

    E-Print Network [OSTI]

    Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis was to study the relative merits (or liabilities) of these two catalysts in coal char gasification. This work

  11. Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast

    E-Print Network [OSTI]

    Fayer, Michael D.

    REPORTS Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes in solutions. Here, we extend the technique to probing the interfacial dynamics and structure of a silica. The structural dynamics, as reported on by a carbonyl stretch vibration of the surface-bound complex, have

  12. Reaction network and kinetics for the catalytic oxidation of toluene over V sub 2 O sub 5

    SciTech Connect (OSTI)

    Zhu, J.; Andersson, L.T. (Univ. of Lund (Sweden))

    1990-11-01T23:59:59.000Z

    The oxidation of three methyl-diphenylmethane isomers and of bibenzyl, benzyl alcohol, and benzaldehyde, which are intermediates in the catalytic oxidation of toluene over V{sub 2}O{sub 5}, has been studied to elucidate the reaction network and relative importance of various reactions. Selectivity dependences reveal that the network is composed mainly of three parallel reaction routes: (1) side-chain oxidation with consecutive reactions, (2) oxidative coupling with both parallel and consecutive reactions, and (3) carbon oxide formation. Coupling products are not negligible, with an initial selectivity of 29% (400{degree}C). Anthraquinone is produced mainly from o-methyl-diphenylmethane conditions and catalyst used. Selectivity dependences suggested product lumping and a simplified network. Kinetic analysis of this reaction network indicates that higher temperatures favor route 2 over route 1. The same initial intermediates for route 1 of side-chain oxidation and for route 2 of oxidative coupling are suggested.

  13. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  14. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley Heights, NJ); Heinz, Robert (Ludwigshafen, DE)

    2012-06-26T23:59:59.000Z

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  15. Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors

    SciTech Connect (OSTI)

    Bharadwaj, S.S.; Schmidt, L.D. (Univ. of Minnesota, Minneapolis (United States))

    1994-03-01T23:59:59.000Z

    The production of synthesis gas (CO + H[sub 2]) by the catalytic partial oxidation of CH[sub 4] in air or O[sub 2] in static fluidized beds at atmospheric pressure has been examined over Pt, Rh, and Ni catalysts coated on 100-[mu]m [alpha]-Al[sub 2]O[sub 3] beads. With CH[sub 4]/air feeds, CO and H[sub 2] selectivities as high as 95% with >90% CH[sub 4] conversion were obtained on Rh and Ni catalysts at contact times of 0.1-0.5 sec. Pt catalysts were found to have significantly lower selectivities for all the three catalysts were improved by heating the reaction mixture above the autothermal reactor temperature and using O[sub 2] instead of air. The selectivities and conversions were fairly constant over the range of contact time s used. Probable reaction pathways for CH[sub 4] oxidation in fluidized beds are discussed. 31 refs., 6 figs.

  16. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for New and Existing Homes: Selecting Ventilation Systems for Existing Homes Building America Technology Solutions for New and Existing Homes: Selecting Ventilation...

  17. Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative...

    Office of Environmental Management (EM)

    Deployment Initiatives Selection Table Vehicle Technologies Office: FY14 DE-FOA-0000951 Alternative Fuel Vehicle Deployment Initiatives Selection Table The Energy Department...

  18. Electric Power Research Institute: Environmental Control Technology Center: Report to the Steering Committee, March 1996. Final technical report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System for the Hazardous Air Pollutant (HAP) test block. With this testing, the mercury measurement (Method 29) studies also continued with various impinger capture solutions. Also, the installation of the B&W/CHX Heat Exchanger unit was completed in March. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) and the 4.0 MW Pilot Wet FGD Unit and were utilized in the HAP test configuration this month. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold- standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  19. Electric Power Research Institute: Environmental Control Technology Center. Report to the Steering Committee, February 1996. Final technical report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System and the Trace Element Removal test blocks. With this testing, the mercury measurement (Method 29) studies also continued with impinger capture solutions. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) was utilized in the TER test configuration this month. The B&W/CHX Heat Exchanger unit is being installed utilizing the Mini Pilot Flue Gas System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  20. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01T23:59:59.000Z

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  1. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04T23:59:59.000Z

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  2. Protocol development for evaluation of commercial catalytic cracking catalysts

    SciTech Connect (OSTI)

    Mitchell, M.M. Jr.; Moore, H.F. (Ashland Petroleum Co., KY (USA))

    1988-09-01T23:59:59.000Z

    A complete, new set of testing protocols has been developed for qualification of catalysts for Ashland's commercial catalytic cracking units. The objective of this test development is to identify new generations of improved cracking catalysts. Prior test protocols have classically utilized microactivity (MAT) testing of steamed virgin catalysts, while more advanced methods have utilized fixed fluid bed and/or circulating pilot units. Each of these techniques, however, have been limited by their correlation to commercial operations, weaknesses in metallation and preparation of pseudo-equilibrium catalysts, and mechanical constraints on the use of heavy, vacuum bottoms-containing feedstocks. These new protocols have been baselined, compared to commercial Ashland results on known catalytic cracking catalysts, and utilized to evaluate a range of potentially new catalyst samples.

  3. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

    2002-01-01T23:59:59.000Z

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  4. Nox control technology data base for gas-fueled prime movers: Phase 1. Topical report, March 1985-September 1986

    SciTech Connect (OSTI)

    Thring, R.H.; Hull, R.W.; Ingalls, M.; Urban, C.; Ariga, S.

    1988-04-01T23:59:59.000Z

    Phase 1 of a study to expand the performance and life-cycle cost data base for NOx control of gas-fueled prime movers has been accomplished through experimental evaluations of fuel effects, technical literature reviews of Japanese and domestic approaches to NOx control and through direct contacts with manufacturers and users in the United States and Japan. Engine tests confirm literature findings that natural gas and methanol provide an advantage over petroleum fuels in limiting NOx formation. For lean-burn engines (e.g., two-cycle and gas turbine engines), selective catalytic reduction offers the greatest amount of NOx control. Installation, operating and maintenance costs are very high; the method has received moderate acceptance in Japan but limited use in the United States. For rich-burn engines, nonselective catalytic reduction is gaining acceptance for NOx control. This method is basically the adaption of automotive three-way catalyst technology. Further RandD is recommended for alternative methods of NOx control which include combustion-cycle modifications and noncatalytic exhaust aftertreatment.

  5. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09T23:59:59.000Z

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  6. SCIENCE & TECHNOLOGY COMMITTEE Select Committee Announcement

    E-Print Network [OSTI]

    Crowther, Paul

    actions. On the one hand it champions supporting business investment in research and development, while-based economy, it should increase spending on science in Wednesday's Budget. The Pre-Budget Report in December 2009 announced that £600 million would be cut from higher education and science and research budgets

  7. Technology documentation for selected radwaste incineration systems

    SciTech Connect (OSTI)

    Ziegler, D.L. (comp.)

    1982-12-01T23:59:59.000Z

    Several incineration systems have been developed and demonstrated on a production scale for combustion of radioactive waste from contractor operated Department of Energy (DOE) facilities. Demonstrated operating information and engineered design information is documented in this report on four of these systems; the Cyclone Incinerator (CI), Fluidized Bed Incinerator (FBI), Controlled-Air Incinerator (CAI) and Electric Controlled Air Incinerator (ECAI). The CI, FBI and CAI have been demonstrated with actual contaminated plant waste and the ECAI has been demonstrated with simulated waste using dysprosium oxide as a stand-in for plutonium oxide. The weight and volume reduction that can be obtained by each system processing typical solid plant transuranic (TRU) waste has been presented. Where a given system has been tested for other applications, such as combustion of resins, TBP-solvent mixtures, organic liquids, polychlorinated biphenyl (PCB), resuts of these experiments have been included. This document is a compilation of reports prepared by the operating contractor personnel responsible for development of each of the systems. In addition, as a part of the program management responsibility, the Transuranic Waste System Office (TWSO) has provided an overview of the contractor supplied information.

  8. Technology Pathway Selection Effort | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeamDevelopment Advances EMTechnology Pathway

  9. An investigation of urea decomposition and selective non-catalytic removal of nitric oxide with urea

    E-Print Network [OSTI]

    Park, Yong Hun

    2004-09-30T23:59:59.000Z

    The use of urea (NH2CONH2) to remove nitric oxide (NO) from exhaust streams was investigated using a laboratory laminar-flow reactor. The experiments used a number of gas compositions to simulate different combustion exhaust gases. The urea...

  10. An investigation of urea decomposition and selective non-catalytic removal of nitric oxide with urea 

    E-Print Network [OSTI]

    Park, Yong Hun

    2004-09-30T23:59:59.000Z

    The use of urea (NH2CONH2) to remove nitric oxide (NO) from exhaust streams was investigated using a laboratory laminar-flow reactor. The experiments used a number of gas compositions to simulate different combustion exhaust ...

  11. Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts 

    E-Print Network [OSTI]

    Sharma, Giriraj

    2005-11-01T23:59:59.000Z

    In this work, the steady-state performance of zeolite-based Cu-ZSM-5, vanadium based honeycomb monolith catalysts (V), vanadium-titanium based pillared inter layered clay catalyst (V-Ti PLIC) and vanadium-titanium-tungsten-based ...

  12. The catalytic oxidation of ethylene and butenes with air: total aldehyde production and selectivity 

    E-Print Network [OSTI]

    Burns, John Cunningham

    1952-01-01T23:59:59.000Z

    wit!& oxygen. A study of t? o oxidation of ethyl&rue end of ethylene oxide soparetely re- vealed ti'at ti-, o oxidatio&& o. either compound rioldcd carbon dioxido and water directly, "xtensive kinetic studies led to tl. o proposal of a reaction...

  13. Experiments on the reduction of nitric oxide from exhaust gases by selective non-catalytic reactions

    E-Print Network [OSTI]

    Narney, John Kenneth

    1993-01-01T23:59:59.000Z

    . The simulated exhaust gas contained varying amounts of N2, 02, H20, CO, and NO and the reactor conditions were varied with regard to temperature, residence time, and mixing. The results of these experiments show that the effect of oxygen concentration and NH3...

  14. Molybdenum and tungsen alkylidene species for catalytic Enantio-, Z-, and E-selective olefin metathesis reactions

    E-Print Network [OSTI]

    Marinescu, Smaranda Constan?a

    2011-01-01T23:59:59.000Z

    CHAPTER1 A general introduction to olefin metathesis is given. Highlights include a detailed discussion of group VI imido alkylidene catalysts. CHAPTER 2 Several bispyrrolide species Mo(NAr)(CHCMe 2Ph)(pyr)2 (Ar = ...

  15. Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction

    E-Print Network [OSTI]

    Liu, Y. A.

    portion of the tower and 2 spray-scrubber sections in the bottom. The NOx-laden fumes enter the bottom

  16. The catalytic oxidation of ethylene and butenes with air: total aldehyde production and selectivity

    E-Print Network [OSTI]

    Burns, John Cunningham

    1952-01-01T23:59:59.000Z

    wit!& oxygen. A study of t? o oxidation of ethyl&rue end of ethylene oxide soparetely re- vealed ti'at ti-, o oxidatio&& o. either compound rioldcd carbon dioxido and water directly, "xtensive kinetic studies led to tl. o proposal of a reaction...

  17. Kinetic modeling of nitric oxide removal from exhaust gases by Selective Non-Catalytic Reduction

    E-Print Network [OSTI]

    Chenanda, Cariappa Mudappa

    1993-01-01T23:59:59.000Z

    as an additive. The thermal DeNOx process was studied using the detailed chemical mechanism developed at Sandia National Laboratories. For the RAPRENOx process, a chemical mechanism has been developed to match the available experimental data. The influence...

  18. Flow reactor experiments on the selective non-catalytic removal of nitrogen oxides

    E-Print Network [OSTI]

    Gentemann, Alexander M.G.

    2001-01-01T23:59:59.000Z

    with the use of a Fourier transform infrared (FT-IR) spectrometer to obtain both a complete qualitative and quantitative analysis of the reaction products. A urea/water solution was tested in a decomposition study in a temperature range between 800 and 1300 K...

  19. Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts

    E-Print Network [OSTI]

    Sharma, Giriraj

    2005-11-01T23:59:59.000Z

    values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NOx emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described...

  20. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory BoardSecuringSee theEnergy3at the|

  1. NH3-Selective Catalytic Reduction over Ag/Al2O3 Catalysts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThisAbandonedDepartment ofDepartment

  2. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  3. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  4. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D. (ed.)

    1988-09-01T23:59:59.000Z

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  5. Selective hydrogenation of 1,5,9-cyclododecatriene in up-flow and down-flow fixed bed reactors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Selective hydrogenation of 1,5,9-cyclododecatriene in up-flow and down-flow fixed bed reactors, trickle-bed, modeling, selective hydrogenation. INTRODUCTION For many years fixed bed reactors with co and flooded bed reactors has been investigated and compared for an exothermic multi- step catalytic reaction

  6. Anthrax Sampling and Decontamination: Technology Trade-Offs

    E-Print Network [OSTI]

    Price, Phillip N.

    2009-01-01T23:59:59.000Z

    6 Decontamination6.1 Decontamination Technologies . . . . . .6.2.4 Other anthrax decontamination experience 6.3 Selecting

  7. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    SciTech Connect (OSTI)

    Liu, Zheng; Li, Zhilin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China) [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Feng, E-mail: wangf@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China) [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Jingjun; Ji, Jing [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China) [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Park, Ki Chul [Institute of Carbon Science and Technology (ICST), Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)] [Institute of Carbon Science and Technology (ICST), Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Endo, Morinobu [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)] [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)

    2012-02-15T23:59:59.000Z

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  8. Preface: Special Issue on Catalytic Control of Lean-Burn Engine Exhaust Emissions

    SciTech Connect (OSTI)

    Yezerets, Aleksey; Peden, Charles HF; Szanyi, Janos; Nova, Isabella; Epling, Bill

    2012-04-30T23:59:59.000Z

    This issue of Catalysis Today includes original research articles based on select presentations from the Mobile Emissions Control Symposium at the 22nd North American Catalysis Society (NACS) Meeting held in Detroit in June 2011, with a particular focus on catalyzed diesel emissions control. The Symposium was dedicated to the memory of Dr. Haren Gandhi, a visionary technology leader and a passionate environmental advocate.

  9. INFORMATION TECHNOLOGY SECURITY SERVICES: HOW TO

    E-Print Network [OSTI]

    June 2004 INFORMATION TECHNOLOGY SECURITY SERVICES: HOW TO SELECT, IMPLEMENT, AND MANAGE Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute the security of their information tech nology (IT) systems. Whether they get this assistance from internal

  10. Scaling Issues of Micro Catalytic Reactors Tzong-Shyng Leu1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    combustor, Microscale combustion, Power MEMS Abstract. Micro catalytic combustors are studied experimentally thermal management. For example, "Swiss Roll" [4] and multi-quartz tubes[5] utilized insulated conditions

  11. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01T23:59:59.000Z

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  12. New sub-family of lysozyme-like proteins shows no catalytic activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close...

  13. Copper- and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide

    SciTech Connect (OSTI)

    Koeppel, R.A.; Stoecker, C.; Baiker, A. [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry

    1998-10-25T23:59:59.000Z

    Copper- and silver-zirconia aerogels containing 10 at% IB metal were prepared from tetra-n-butoxy zirconium(IV) and IB metal acetates using the solution sol-gel method and ensuring high-temperature (HT) and low-temperature (LT) supercritical drying, respectively. The influence of preparation parameters and calcination on the structural and catalytic properties of the aerogels for the synthesis of methanol from carbon dioxide and hydrogen was investigated. After calcination in air at 573 K, the catalysts had BET surface areas in the range of 100--143 m{sup 2}/g (Cu/ZrO{sub 2}) and 77--125 m{sup 2}/g (Ag/ZrO{sub 2}), respectively. Due to the reductive alcoholic atmosphere during high-temperature supercritical drying, metallic copper and silver existed in all raw HT-aerogels. The mean size of the copper crystallites wa/s 30 nm. The silver crystallite size for the HT-aerogel prepared with nitric acid was 10 nm, whereas for samples prepared with acetic acid it was 5--7 nm. Calcination in air at 573 K led to the formation of highly dispersed amorphous copper oxide and silver. Comparing the catalytic behavior of the calcined copper-zirconia aerogels with corresponding xerogels prepared by coprecipitation revealed highest activity for the LT-aerogel, whereas the HT-aerogels were least active. In contrast, similar catalytic behavior was observed for the differently dried silver-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia aerogels was markedly higher than that of the corresponding silver-zirconia aerogels, whereas methanol selectivity was similar.

  14. Method and apparatus for decoupled thermo-catalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2006-07-11T23:59:59.000Z

    A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.

  15. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30T23:59:59.000Z

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  16. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22T23:59:59.000Z

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  17. Catalytic Filter for Diesel Exhaust Purification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions,Department ofConversionCatalytic

  18. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum organometallic species

    DOE Patents [OSTI]

    Voges, Mark (Leverkusen, DE); Bullock, R. Morris (Wading River, NY)

    2000-01-01T23:59:59.000Z

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes. The functional group is selected from groups represented by the formulas R(C.dbd.O)R' and R(C.dbd.O)H, wherein R and R' are selected from hydrogen or any alkyl or aryl group. The active catalyst for the process has the form: [CpM(CO).sub.2 (PR*.sub.3) L].sup.+ A.sup.-, where Cp=.eta..sup.5 -R.sup..tangle-solidup..sub.m C.sub.5 H.sub.5-m and R.sup..tangle-solidup. represents an alkyl group or a halogen (F, Cl, Br, I) or R.sup..tangle-solidup. =OR' (where R'=H, an alkyl group or an aryl group) or R.sup..tangle-solidup. =CO.sub.2 R' (where R'=H, an alkyl group or an aryl group) and m=0 to 5; M represents a molybdenum atom or a tungsten atom; R*.sub.3 represents three hydrocarbon groups selected from a cyclohexyl group (C.sub.6 H.sub.11), a methyl group (CH.sub.3), and a phenyl group (C.sub.6 H.sub.5) and all three R* groups can be the same or different or two of the three groups can be the same; L represents a ligand; and A.sup.- represents an anion. In another embodiment, one, two or three of the R* groups can be an OR*.

  19. Catalytic ionic hydrogenation of ketones using tungsten or molybdenum catalysts with increased lifetimes

    DOE Patents [OSTI]

    Bullock, R. Morris; Kimmich, Barbara F.; Fagan, Paul J.; Hauptman, Elisabeth

    2003-09-02T23:59:59.000Z

    The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes and the catalyst used in the process. The reactants include a functional group which is selected from groups represented by the formulas R*(C.dbd.O)R' and R*(C.dbd.O)H, wherein R* and R' are selected from hydrogen or any alkyl or aryl group. The process includes reacting the organic compound in the presence of hydrogen and a catalyst to form a reaction mixture. The catalyst is prepared by reacting Ph.sub.3 C.sup.+ A.sup.- with a metal hydride. A.sup.- represents an anion and can be BF.sub.4.sup.-, PF.sub.6.sup.-, CF.sub.3 SO.sub.3.sup.- or Bar'.sub.4.sup.-, wherein Ar'=3,5-bis(trifluoromethyl)phenyl. The metal hydride is represented by the formula: HM(CO).sub.2 [.eta..sup.5 :.eta..sup.1 --C.sub.5 H.sub.4 (XH.sub.2).sub.n PR.sub.2 ] wherein M represents a molybdenum (Mo) atom or a tungsten (W) atom; X is a carbon atom, a silicon atom or a combination of carbon (C) and silicon (Si) atoms; n is any positive integer; R represents two hydrocarbon groups selected from H, an aryl group and an alkyl group, wherein both R groups can be the same or different. The metal hydride is reacted with Ph.sub.3 C.sup.+ A.sup.- either before reacting with the organic compound or in the reaction mixture.

  20. Function Specific Analysis of the Thermal Durability of Cu-Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519 Degradation Mechanisms of Urea Selective Catalytic Reduction Technology...

  1. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

    2008-12-16T23:59:59.000Z

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  2. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation over platinum group metals has been investigated for some eight decades by many researchersCatalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures A Catalytic oxidation of CO over platinum group metals (Pt, Ir, Rh and Pd) has been the subject of many

  3. Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1

    E-Print Network [OSTI]

    Peng, Huei

    Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell the anode field of fuel cell stack is considered. The first reactor that generates the majority in the fuel cell anode and (ii) the temperature of the catalytic partial oxidation reactor during transient

  4. Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based S. Al-Khattaf*

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based Catalyst S. Al Abstract Catalytic transformation of toluene has been investigated over Y-zeolite based catalysts in the temperature range of 400-500o C to understand the transformation of toluene over high acidity Y-based zeolite

  5. Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni,

    E-Print Network [OSTI]

    Linninger, Andreas A.

    Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni, Jeonghwa phenomena in catalytic pellet reactors are often difficult to analyze because of coupling between heat at the macroscopic level as well as the catalyst pellets at the microscopic level. The resulting approach yields

  6. ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT

    E-Print Network [OSTI]

    ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts, catalytic, steam-reforming reactor was then successfully operated on methane and peanut shell pyrolysis

  7. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

    2011-08-09T23:59:59.000Z

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  8. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR Study. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR...

  9. Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. © 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis

  10. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture, and the size is

  11. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture, and the size

  12. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho |EnergyCommunicationparte memorandum

  13. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012||ImprovingofIn| Department

  14. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department ofTransportation4Pyrolysis |

  15. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department ofTransportation4PyrolysisPyrolysis |

  16. The integration of low NOx control technologies at the Southern Energy, Inc. Birchwood Power Facility

    SciTech Connect (OSTI)

    Lauber, J.A. [Southern Energy, Inc. (United States); Cohen, M.B.; Donais, R.E. [ABB Combustion Engineering, Inc. (United States)

    1997-12-31T23:59:59.000Z

    The Southern Energy, Inc. (SEI) Birchwood Power Facility, a cogeneration unit, represents the first application worldwide of the TFS 2000{trademark} firing system and selective catalytic reduction (SCR). The installation of these state-of-the-art NOx control technologies was necessary to meet strict Commonwealth of Virginia environmental regulations requiring a 0.10 lbs/10{sup 6} Btu (0.043 g/MJ) NOx emission rate based upon a 30-day rolling average. The plant successfully completed all performance and emission testing on September 24, 1996. Commercial operation began November 14, 1996. Stack NOx emission rates are consistently maintained below 0.10 lbs/10{sup 6} Btu. The paper describes the integration of both in-furnace and post-combustion NOx control technologies into the overall boiler design. Operational data depicting boiler outlet NOx, stack NOx and loss on ignition (LOI) are presented across the design load range from 32% to 100% boiler output. The description, arrangement, design parameters and operation of the NOx control equipment are discussed. Novel design features include a split economizer, an air heater suitable for ammonia applications, Dynamic{trademark} classifiers, and a multi-zone secondary air flow control system utilized for the TFS 2000{trademark} firing system.

  17. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01T23:59:59.000Z

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  18. Effects of dispersion and support on adsorption, catalytic and electronic properties of cobalt/alumina Co hydrogenation catalysts. Final progress report, August 1, 1987--July 31, 1990

    SciTech Connect (OSTI)

    Bartholomew, C.H.

    1990-09-29T23:59:59.000Z

    An investigation of the effects of surface structure, dispersion, and support on the adsorption, catalytic, and electronic properties of cobalt/alumina is described, the objectives of which were to determine (1) the effects of surface structure and metal dispersion on the adsorption and catalytic properties of cobalt and (2) the effects of direct electronic interactions between metal clusters and support, on the adsorption, catalytic and electronic properties of cobalt supported on alumina. Effects of surface structure and dispersion on the adsorption, activity/selectivity, and electronic properties of Co/W single crystal surfaces and alumina-supported cobalt were investigated in a surface investigation, lab reactor studies, TPD/TPSR studies, and a Moessbauer spectroscopy study. The structure, stability, surface electronic properties, and chemisorptive properties of vapor-deposited cobalt overlayers (0-4 ML) on W(110) and W(100) were studied by Auger electron spectroscopy, low energy electron diffraction, work function changes, and temperature programmed desorption (TPD) of cobalt, hydrogen, and carbon monoxide. The CO chemisorptive properties of the two cobalt overlayers are quite different, CO adsorption being dissociative on the W(100) surface and nondissociative on the W(110) surface; comparison of the results with those for Ni/W(100) indicate that Co/W(100) dissociates CO as a result of electronic interaction with the tungsten substrate.

  19. Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Solantausta, Yrjo

    2012-06-01T23:59:59.000Z

    Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. The paper describes the experimental methods used and relates the results of the product analyses. A range of operating parameters including temperature, and flow-rate were tested with bio-oil derived from pine wood as recovered and pyrolyzed in the pilot pyrolyzer of Metso Power in Tampere, Finland. Effects of time on stream and catalyst activity were assessed. Details of the process results were presented included product yields and hydrogen consumption. Detailed analysis of the products were provided including elemental composition and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.

  20. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01T23:59:59.000Z

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  1. Catalytic conversion of light alkanes - phase V. Topical report, February 1993--October 1994

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    We have made excellent progress toward a practical route from field butanes to MTBE, the oxygenate of choice for high-octane, clean-burning, environmentally acceptable reformulated gasoline. We have evaluated two proprietary process possibilities with a potential commercial partner and have conducted a joint catalyst evaluation program. The first of the two potential processes considered during the past quarter utilizes a two-step route from isobutane to tert-butyl alcohol, TBA. Not only is TBA an intermediate for MTBE production but is equally applicable for ETBE-an oxygenate which utilizes renewable ethanol in its` manufacture. In the two-step process, isobutane is oxidized in a non-catalytic reaction to a roughly equal mixture of TBA and tert-butyl hydroperoxide. TBHP, eq. 1. We have developed an inexpensive new catalyst system based on an electron-deficient macrocyclic metal complex that selectively converts TBHP to TBA, eq. 2, and meets or exceeds all of the process criteria that we have set.

  2. Immobilization of vanadia deposited on catalytic materials during carbo-metallic oil conversion

    SciTech Connect (OSTI)

    Beck, H.W.; Carruthers, J.D.; Cornelius, E.B.; Hettinger, Jr., W.P.; Kovach, S.M.; Palmer, J.L.; Zandona, O.J.

    1988-06-14T23:59:59.000Z

    This patent describes a process for the cracking of a hydrocarbon oil feed having a significant content of at least 0.1 ppm vanadium to lighter oil products. The process consists of contacting the feed under conversion conditions in a conversion zone with a catalyst containing a precipitated metal additive to immobilize vanadium compounds by forming compounds therewith that have melting points above temperatures found in regenerating a coked catalyst; and having catalytic cracking characteristics, coke and vanadium being deposited on the catalyst by the contact; regenerating the coked catalyst in the presence of an oxygen containing gas at a temperature sufficient to remove at least some of the coke, and, recycling the regenerated catalyst to the conversion zone for contact with fresh feed; the metal additive being present on the catalyst in an amount sufficient to immobilize at least a portion of the vanadium compound in the presence of the oxygen containing gas at the catalyst regeneration temperature; wherein the metal additive to immobilize vanadium compounds deposited on the catalyst is selected from the group consisting of Sr, Sc, Y, Nb, and Ta elements, and an element in the actinide series, or a combination of two or more of the elements.

  3. Catalytic hydrogenation and gas permeation properties of metal-containing poly(phenylene oxide) and polysulfone

    SciTech Connect (OSTI)

    Hanrong Gao; Yun Xu; Shijian Liao; Ren Liu; Daorong Yu (Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics)

    1993-11-10T23:59:59.000Z

    Metal-containing polymers, PPL-DPP-Pd, PPO-CPA-Pd, PSF-DPP-Pd, PSF-CPA-Pd (PDD = diphenylphosphinyl, CPA = o-carboxy phenyl amino), PPO-M (M = Pd,Cu,Co,Ni), and PSF-Pd, were prepared by incorporating metal chloride with either modified or unmodified poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polysulfone (PSF). The Pd-containing polymers exhibit catalytic activity in the hydrogenation of cyclopentadiene under mild conditions both in alcohol solution and in the gas phase. The selectivity in the hydrogenation of diene to monoene in the gas phase can be controlled by adjusting the hydrogen partial pressure. The metal-containing polymers, PPL-M and PSF-Pd, can be cast easily into the membranes. The H[sub 2]/N[sub 2] permselectivity for PPO-M is higher than that for unmodified PPO, whereas the permeability of H[sub 2] changes slightly. The H[sub 2] permeability and H[sub 2]/N[sub 2] permselectivity for the PPO-Pd membrane are up to 67.5 barrers and 135, respectively.

  4. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18T23:59:59.000Z

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  5. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    SciTech Connect (OSTI)

    Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

    2014-06-01T23:59:59.000Z

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300?) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  6. Author Select

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasionAuthor Select Last Name

  7. Author Select

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasionAuthor Select Last

  8. Selected Programs College Program

    E-Print Network [OSTI]

    Rosen, Jay

    Technology Radiologic Technology Community Health Nuclear Medicine Technology Nursing - RN Nursing - LPN / Rehabilitation / School Counseling Community Health Speech-Language Pathology Medical Laboratory Technology Medical Laboratory Technology Nursing Mental Health Counselling Social Work Bronx CC Medical Laboratory

  9. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01T23:59:59.000Z

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal's structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  10. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01T23:59:59.000Z

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal`s structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  11. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

    1983-01-01T23:59:59.000Z

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  12. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14T23:59:59.000Z

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  13. Catalytic carbon membranes for hydrogen production. Final report

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  14. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1991-04-30T23:59:59.000Z

    This research program is directed toward developing a fundamental understanding of how catalyst composition, redox ability, and structure control the catalytic properties of metal oxides. Oxide systems that permit examination of the role of metal oxide cations separately and in pairwise combinations are being developed. Organometallic complexes containing C{sub 3}-allyl, cyclopentadienyl, or carbonyl ligands are exchanged with the hydroxide ligands of silica, alumina, titania, zirconia and magnesia supports. The exchange technique is used to achieve high metal oxide loadings without the formation of supported crystallites over silica. The organometallic route may also lead to oxygen-bridged cations and/or cation pairs over the supports prior to full oxidation. The anchored complex is subsequently oxidized to generate a supported oxide. 2 refs., 1 tab.

  15. Fabrication of fuel cell electrodes and other catalytic structures

    DOE Patents [OSTI]

    Smith, J.L.

    1987-02-11T23:59:59.000Z

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  16. Efficient and Selective Formation of Macrocyclic Disubstituted Z Alkenes by Ring-Closing Metathesis (RCM) Reactions Catalyzed by Mo- or W-Based Monoaryloxide Pyrrolide (MAP) Complexes: Applications to Total Syntheses of Epilachnene, Yuzu Lactone, Ambrettolide, Epothilone C, and Nakadomarin A

    E-Print Network [OSTI]

    Wang, Chenbo

    The first broadly applicable set of protocols for efficient Z-selective formation of macrocyclic disubstituted alkenes through catalytic ring-closing metathesis (RCM) is described. Cyclizations are performed with 1.2–7.5?mol?% ...

  17. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect (OSTI)

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01T23:59:59.000Z

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  18. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01T23:59:59.000Z

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  19. Synthesis of selected aminohexanols

    E-Print Network [OSTI]

    Stout, Jack Lynn

    1965-01-01T23:59:59.000Z

    -hexanol 2- a min o - 3-he xano1 The previously unreported 5-amino-2-hexanol was prepared in a three step synthesis. Nitroethane in ether was treated with methyl vinyl ketone in the presence of a catalytic amount of Triton 9 B to give 5-nitro-2.... For the synthesis of the previously unreported 6-amino-3- hexanol a procedure similar to that required for 5-amino-2-hexanol r was used. A large excess of nitromethane in ether was treated with ethyl vinyl ketone in the pr'esence of a catalytic amount of Triton...

  20. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    SciTech Connect (OSTI)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29T23:59:59.000Z

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas).