Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PV-TONS: A photovoltaic technology ontology system for the design of PV-systems  

Science Conference Proceedings (OSTI)

The impacts of climate change, the increasing demand for energy and the diminishing fossil fuel resources have resulted in the development and use of a large number of renewable energy technologies in building development. These technologies are generating ... Keywords: Climate change, Ontology, PV-system, Renewable energy, Semantic Web

F. H. Abanda; J. H. M. Tah; D. Duce

2013-04-01T23:59:59.000Z

2

Stabilized PV system  

DOE Patents (OSTI)

A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

Dinwoodie, Thomas L. (Piedmont, CA)

2002-12-17T23:59:59.000Z

3

Zhonghuite PV Technology Co | Open Energy Information  

Open Energy Info (EERE)

Zhonghuite PV Technology Co Jump to: navigation, search Name Zhonghuite PV Technology Co Place Jiangxi Province, China Sector Solar Product Jiangxi-based solar project developer....

4

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

DOE Green Energy (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

5

PV System Performance and Standards  

DOE Green Energy (OSTI)

This paper presents a brief overview of the status and accomplishments during fiscal year (FY) 2005 of the Photovoltaic (PV) System Performance and Standards Subtask, which is part of the PV Systems Engineering Project (a joint NREL-Sandia project).

Osterwald, C. R.

2005-11-01T23:59:59.000Z

6

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunpu Solar PV Technology Co Ltd Jump to: navigation, search Name Beijing Sunpu Solar PV Technology Co Ltd Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar...

7

Overview of PV balance-of-systems technology: Experience and guidelines for utility ties in the United States of America  

DOE Green Energy (OSTI)

The U.S. National Photovoltaic Program began in 1975 by supporting the development of terrestrial PV modules and hardware associated with grid-connected PV systems. Early PV-system demonstration programs were also supported and cost shared by the U.S. Department of Energy (DOE). A wide variety of PV systems were deployed, usually with utility participation. The early demonstration projects provided, and continue to provide, valuable PV system experience to utilities, designers and suppliers. As a result of experience gained, several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have been completed. These code and standard activities were conducted through collaboration of participants from all sectors of the PV industry, utilities and the US DOE National Photovoltaic Program. Codes and standards that have been proposed, written, or modified include changes and additions for the 1999 National Electric Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, field acceptance, component qualification, and utility interconnection. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for component qualification and were further adapted for standards used to list PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc., with the American Society for Testing and Materials, and through critical input and review for international standards with the International Electrotechnical Commission have resulted in new and revised domestic and international standards for PV applications. Activities related to work on codes and standards through the International Energy Agency are also being supported by the PV industry and the US DOE. The paper shows relationships between activities in standards writing.

Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, C. [Endecon Engineering, San Ramon, CA (United States)

1997-10-01T23:59:59.000Z

8

Review of PV Inverter Technology Cost and Performance Projections  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

9

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

10

Shanghai JTU PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

JTU PV Technology Co Ltd JTU PV Technology Co Ltd Jump to: navigation, search Name Shanghai JTU PV Technology Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200240 Sector Solar Product Spun off from Shanghai Jiaotong University, the company manufactures control systems and testing equipments for solar water heaters. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Variability of PV on Distribution Systems  

Science Conference Proceedings (OSTI)

In 2010, the Electric Power Research Institute (EPRI) along with several utilities began collecting high-resolution monitoring data on distributed solar photovoltaic (PV) systems throughout the United States. Included in these monitoring data are single-module PV systems distributed along selected feeders as well as several larger PV systems (up to 1.4 MW). Utilizing data from these sites, this report focuses specifically on examining the measured variability of solar PV distributed throughout a ...

2012-12-13T23:59:59.000Z

12

Solar America Initiative (SAI) PV Technology Incubator Program: Preprint  

DOE Green Energy (OSTI)

The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

2008-05-01T23:59:59.000Z

13

PV FAQs: What Is the Energy Payback for PV? Solar Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is clean, abundant, reliable, and affordable Reaping the environmental benefits of solar energy requires spending energy to make the PV system. But as this graphic shows,...

14

Solar Resource and PV Systems Performance  

E-Print Network (OSTI)

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test

15

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

16

Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)  

Science Conference Proceedings (OSTI)

The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

2011-02-01T23:59:59.000Z

17

Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint  

DOE Green Energy (OSTI)

This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

von Roedern, B.; Ullal, H. S.

2008-05-01T23:59:59.000Z

18

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

19

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

20

Jebel Ali Hotel PV lighting systems  

SciTech Connect

A large stand-alone PV lighting project was installed in June 1983 at the Jebel Ali Hotel in Dubai, United Arab Emirates. A high mast lighting system provides illumination for a 130 meter diameter traffic roundabout. The high mast system is powered by a 15 kilowatt peak array of Mobil Solar ribbon PV modules. Along the 700 meter access road leading to the hotel entrance, twenty-one PV powered streetlights provide low-level lighting. Each streetlight consists of a 20 watt fluorescent tube powered by two 35 Wp modules. Operation of both systems is completely automatic. Design, installation, and operating experience to date are reviewed.

Ellis, M.

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Blocking diodes and fuses in low-voltage PV systems  

DOE Green Energy (OSTI)

Instructions and labels supplied with listed PV modules and the requirements of the National Electrical Code (NEC) dictate that a series fuse shall be used to protect the module against backfeed currents. Few of the hundreds of thousands of low-voltage (12, 24, and 48-volt) stand-alone photovoltaic (PV) power systems use series fuses on each module or string of modules. Tests and simulations at the Southwest Technology Development Institute (TDI) and at Sandia National Laboratories (SNL) have established that the absence of these fuses can pose significant fire and safety hazards even on 12-volt PV systems. If the system has sufficient backfeed voltage and current, it is possible that a ground fault in the wiring or inside a module can result in the destruction of a PV module.

Wiles, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; King, D.L. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic Systems R and D

1997-11-01T23:59:59.000Z

22

Report to California Energy Commission on route to scale-up of polymer based PV: Funding suggestions for research and technology  

E-Print Network (OSTI)

production potential for solar vent pre- heating, PV, and wind technologies. #12;6 These facilities should for a solar PV system in this report, has many near-ideal areas in which to implement a PV system solar resource, and excellent incentives, a government-owned PV system provides a reasonable payback

Islam, M. Saif

23

A standardized approach to PV system performance model validation.  

DOE Green Energy (OSTI)

PV performance models are used to predict how much energy a PV system will produce at a given location and subject to prescribed weather conditions. These models are commonly used by project developers to choose between module technologies and array designs (e.g., fixed tilt vs. tracking) for a given site or to choose between different geographic locations, and are used by the financial community to establish project viability. Available models can differ significantly in their underlying mathematical formulations and assumptions and in the options available to the analyst for setting up a simulation. Some models lack complete documentation and transparency, which can result in confusion on how to properly set up, run, and document a simulation. Furthermore, the quality and associated uncertainty of the available data upon which these models rely (e.g., irradiance, module parameters, etc.) is often quite variable and frequently undefined. For these reasons, many project developers and other industry users of these simulation tools have expressed concerns related to the confidence they place in PV performance model results. To address this problem, we propose a standardized method for the validation of PV system-level performance models and a set of guidelines for setting up these models and reporting results. This paper describes the basic elements for a standardized model validation process adapted especially for PV performance models, suggests a framework to implement the process, and presents an example of its application to a number of available PV performance models.

Stein, Joshua S.; Jester, Terry (Hudson Clean Energy Partners); Posbic, Jean (BP Solar); Kimber, Adrianne (First Solar); Cameron, Christopher P.; Bourne, Benjamin (SunPower Corporation)

2010-10-01T23:59:59.000Z

24

Updating Interconnection Screens for PV System Integration  

DOE Green Energy (OSTI)

This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

2012-02-01T23:59:59.000Z

25

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Pico Solar PV Systems for Remote  

E-Print Network (OSTI)

A new generation of small PV systems for lighting and communication Report IEA-PVPS T9-12:2012INTERNATIONAL ENERGY AGENCY

unknown authors

2013-01-01T23:59:59.000Z

26

Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Cineng PV Science Technology Co Ltd Cineng PV Science Technology Co Ltd Jump to: navigation, search Name Zhejiang Cineng PV Science & Technology Co Ltd Place Cixi, Zhejiang Province, China Sector Solar Product A Chinese tandem thin-film solar cell manufacturer Coordinates 30.168501°, 121.235023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.168501,"lon":121.235023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Toward integrated PV panels and power electronics using printing technologies  

SciTech Connect

In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

2010-07-15T23:59:59.000Z

28

Distribution System Analysis Tools for Studying High Penetration of PV  

E-Print Network (OSTI)

Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

29

NREL PV System Performance and Standards Technical Progress  

DOE Green Energy (OSTI)

This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) System Performance & Standards Subtask, which is part of PV Systems Engineering Project (a joint NREL-Sandia project).

Osterwald, C. R.

2005-01-01T23:59:59.000Z

30

PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards  

DOE Green Energy (OSTI)

This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

Basso, T. S.; Chalmers, S.; Barikmo, H. O.

2005-11-01T23:59:59.000Z

31

Practical Issues when Selecting PV Technologies (Presentation)  

DOE Green Energy (OSTI)

Presentation highlighting practical considerations for photovoltaic technologies and strategies for future reductions in cost and increases in efficiency.

Kurtz, S.

2010-09-09T23:59:59.000Z

32

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

33

Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies  

DOE Green Energy (OSTI)

This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

Zhang, Yabei; Smith, Steven J.

2007-08-16T23:59:59.000Z

34

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

DOE Green Energy (OSTI)

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

35

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network (OSTI)

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh per day. The effect of varying the size of the pv array and the battery bank in such systems on both

36

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

and federal policymakers. Solar PV investments are sizable,investment in PV and thereby slow solar deployment. Statenew home solar homes, the been sufficient to the PV systems.

Hoen, Ben

2013-01-01T23:59:59.000Z

37

Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV  

E-Print Network (OSTI)

and about 125 rooftop residential PV systems and two large scale PV systems. The total installed PV capacity electronics and grid integration of renew- able resources mainly solar PV and wind. Dr. Ayyanar received

Van Veen, Barry D.

38

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

DOE Green Energy (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

39

Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report  

DOE Green Energy (OSTI)

The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

NONE

1997-03-01T23:59:59.000Z

40

Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint  

DOE Green Energy (OSTI)

Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Training on PV Systems: Design, Construction, Operation and Maintenance |  

Open Energy Info (EERE)

Training on PV Systems: Design, Construction, Operation and Maintenance Training on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation and Maintenance Agency/Company /Organization: Leonardo Energy Sector: Energy Focus Area: Renewable Energy, Solar Website: www.leonardo-energy.org/node/5948 Training on PV Systems: Design, Construction, Operation and Maintenance Screenshot References: PV Training [1] Overview "A free series of six webinars will be delivered to provide the required knowledge to design a high performance photovoltaic (PV) installation, entering into economic evaluation and project cash-flow. Additionally, very practical aspects such as the construction, start-up, quality management and testing will be reviewed. Plant operation is described in detail, with

42

Testing to Support Improvements to PV Components and Systems  

DOE Green Energy (OSTI)

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

2000-07-15T23:59:59.000Z

43

Testing to Support Improvements to PV Components and Systems  

SciTech Connect

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

2000-07-15T23:59:59.000Z

44

Long-Term Performance of the SERF PV Systems  

SciTech Connect

This paper provides the changes in performance ratings of two photovoltaic (PV) systems located on the roof of the Solar Energy Research Facility (SERF) building at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. For the period of May 1994 to April 2002, the performance rating of the two PV systems decreased at the rate of 1% per year. Most of the changes in performance rating are attributed to changes in the performance of the PV arrays. But about a fifth of the observed changes were from the inverter not tracking the peak-power as effectively as the PV arrays aged.

Marion, B.; Adelstein, J.

2003-05-01T23:59:59.000Z

45

Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities  

DOE Green Energy (OSTI)

In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

1999-01-20T23:59:59.000Z

46

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

47

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

of the Effects of Photovoltaic Energy Systems on Residentialmarginal impacts of photovoltaic (PV) energy systems on homeThe market for photovoltaic (PV) energy systems is expanding

Hoen, Ben

2013-01-01T23:59:59.000Z

48

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

PV system components and installations meet minimum industry standards related to safety, reliability, andPV Systems Rated Output Modules Inverters Systems (grid-connected) Product Reliability

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

49

Codes, standards, and PV power systems. A 1996 status report  

SciTech Connect

As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

Wiles, J

1996-06-01T23:59:59.000Z

50

PV Supply Chain and Cross-Cutting Technologies: Upcoming Funding Opportunity  

DOE Green Energy (OSTI)

Summarizes the Solar Program's upcoming funding opportunity, called PV Supply Chain and Cross-Cutting Technologies, which is expected to be open by the end of October 2008.

Not Available

2008-10-01T23:59:59.000Z

51

Interconnecting PV on New York City's Secondary Network Distribution System  

DOE Green Energy (OSTI)

This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

2009-12-01T23:59:59.000Z

52

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

DOE Green Energy (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

53

Technology and Climate Trends in PV Module Degradation (Presentation)  

DOE Green Energy (OSTI)

To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

Jordan, D.; Wohlgemuth, J.; Kurtz, S.

2012-10-01T23:59:59.000Z

54

Technology and Climate Trends in PV Module Degradation: Preprint  

DOE Green Energy (OSTI)

To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

2012-10-01T23:59:59.000Z

55

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

SciTech Connect

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

56

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

DOE Green Energy (OSTI)

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

57

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

Science Conference Proceedings (OSTI)

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL; Xu, Yan [ORNL; Adhikari, Sarina [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Irminger, Philip [ORNL

2012-01-01T23:59:59.000Z

58

Interconnecting PV on New York City's Secondary Network Distribution System  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

59

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg PV System Components  

E-Print Network (OSTI)

· Batteries required if (1) load profile solar radiation profile and (2) to mitigate effect of variability · PV System components: ­ PV Modules ­ Batteries ­ Power Conditioning ­ Loads ­ Balance of systems #12

Honsberg, Christiana

60

High Penetration PV Deployment in the Arizona Public Service System  

DOE Green Energy (OSTI)

In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service (APS) and its partners have begun work on a multi-year project to develop the tools and knowledgebase needed to safely and reliably integrate high penetrations of utility and residential scale PV. Building upon the APS Community Power Project - Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.5 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. The goal of this paper is to provide insight and lessons learned on the early stages of high penetration PV deployment. Primarily focusing on modeling and data acquisition, this paper describes the overall project, early results, and plans for future phases of the project.

Narang, D.; Hambrick, J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Instrumentation for Evaluating PV System Performance Losses from Snow  

DOE Green Energy (OSTI)

When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-01-01T23:59:59.000Z

62

A Monolithic Microconcentrator Receiver For A Hybrid PV?Thermal System: Preliminary Performance  

Science Conference Proceedings (OSTI)

An innovative hybrid PV?thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc.

D. Walter; V. Everett; M. Vivar; J. Harvey; R. Van Scheppingen; S. Surve; J. Muric?Nesic; A. Blakers

2010-01-01T23:59:59.000Z

63

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

Science Conference Proceedings (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

64

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

65

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

66

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance  

DOE Green Energy (OSTI)

This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

67

Amp-hour counting control for PV hybrid power systems  

SciTech Connect

The performance of an amp-hour (Ah) counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based PV hybrid charge controller. This work included extensive field testing of the charge algorithm on flooded lead-antimony and valve regulated lead-acid (VRLA) batteries. The test results after one-year have demonstrated that PV charge utilization, battery charge control, and battery state of charge (SOC) has been significantly improved by providing maximum charge to the batteries while limiting battery overcharge to manufacturers specifications during variable solar resource and load periods.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-06-01T23:59:59.000Z

68

Economic analysis of PV hybrid power system: Pinnacles National Monument  

DOE Green Energy (OSTI)

PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

Rosenthal, A.; Durand, S. [Southwest Technology Development Institute, Las Cruces, NM (United States); Thomas, M.; Post, H. [Sandia National Labs., Albuquerque, NM (United States)

1997-11-01T23:59:59.000Z

69

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network (OSTI)

factor satisfies aesthetic demands for general rooftop solar technologies, and is a marked departure fromA 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter has been developed specifically for urban rooftop environments. The light- weight, low-profile form

70

Incorporating Aggregated PV Systems into the Power Grid | Open Energy  

Open Energy Info (EERE)

Incorporating Aggregated PV Systems into the Power Grid Incorporating Aggregated PV Systems into the Power Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Incorporating_Aggregated_PV_Systems_into_the_Power_Grid&oldid=514463

71

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

DOE Green Energy (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

72

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

73

Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel  

E-Print Network (OSTI)

1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

Pedram, Massoud

74

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network (OSTI)

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

75

Berkeley Program Offers New Option for Financing Residential PV Systems  

Science Conference Proceedings (OSTI)

Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

Bolinger, Mark A

2008-07-06T23:59:59.000Z

76

Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001  

DOE Green Energy (OSTI)

This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

Ellison, T.

2002-04-01T23:59:59.000Z

77

205 kW Photovoltaic (PV) System Installed on the U.S. Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's...

78

A software tool for optimal sizing of PV systems in Malaysia  

Science Conference Proceedings (OSTI)

This paper presents a MATLAB based user friendly software tool called as PV. MY for optimal sizing of photovoltaic (PV) systems. The software has the capabilities of predicting themetrological variables such as solar energy, ambient temperature and wind ...

Tamer Khatib; Azah Mohamed; K. Sopian

2012-01-01T23:59:59.000Z

79

A methodology for optimal sizing of autonomous hybrid PV/wind system  

E-Print Network (OSTI)

system reliability requirements, with the lowest value of levelised cost of energy. Modelling a hybrid PV mathematical models for characterizing PV module, wind generator and battery are proposed. The second step of the hybrid PV/wind system are the reliable power supply of the consumer under varying atmospheric conditions

Paris-Sud XI, Université de

80

Evaluation of the Performance of the PVUSA Rating Methodology Applied to Dual Junction PV Technology: Preprint (Revised)  

DOE Green Energy (OSTI)

The PVUSA (Photovoltaics for Utility Scale Applications) project in the 1990's developed a rating methodology for PV performance evaluation which has become popular, and even incorporated into concentrating PV rating standards This report apply that method to rack-mounted dual-junction PV system, and produces a system rating.

Myers, D. R.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Distributed Power Electronics for PV Systems (Presentation)  

DOE Green Energy (OSTI)

An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

Deline, C.

2011-12-01T23:59:59.000Z

82

NREL Mesa Top PV System | Open Energy Information  

Open Energy Info (EERE)

NREL Mesa Top PV System NREL Mesa Top PV System Jump to: navigation, search Name NREL Mesa Top PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable Energy Laboratory Address 15500 Denver West Parkway Location Golden, CO Coordinates 39.744550202°, -105.174608231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.744550202,"lon":-105.174608231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Market Assessment of Residential Grid-Tied PV Systems in Colorado  

DOE Green Energy (OSTI)

This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

Farhar, B.; Coburn, T.

2000-09-29T23:59:59.000Z

84

A Market Assessment of Residential Grid-Tied PV Systems in Colorado: Executive Summary  

DOE Green Energy (OSTI)

This is the Executive Summary of a report that presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries--$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeowners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions--primarily its state government and its utility companies, and also its homebuilders--if they are ready to move forward on GPV technology.

Farhar, B.; Coburn, T.

2000-09-13T23:59:59.000Z

85

Market Assessment of Residential Grid-Tied PV Systems in Colorado  

SciTech Connect

This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

Farhar, B.; Coburn, T.

2000-09-29T23:59:59.000Z

86

Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base  

SciTech Connect

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-01-01T23:59:59.000Z

87

Assessment of Rooftop and Building-Integrated PV Systems for Distributed Generation  

Science Conference Proceedings (OSTI)

Photovoltaics (PV) is the technology of solar cells -- solid-state devices that directly, silently, and cleanly convert solar energy into electricity. Although commercially available for many years, PV technology has only recently become sufficiently affordable and efficient to be a practical alternative or supplement to conventional grid power. PV devices are commonly mounted on a structure's rooftop, but are increasingly integrated into building components such as siding, glass, or roof tiles. This rep...

2003-03-04T23:59:59.000Z

88

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

DOE Green Energy (OSTI)

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

89

Rooftop PV system. Final technical progress report, Phase II  

SciTech Connect

Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

1995-08-01T23:59:59.000Z

90

Rooftop PV system. PV:BONUS Phase 3B, final technical report  

SciTech Connect

Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

1998-11-01T23:59:59.000Z

91

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

a transformative technology. Solar PV, wind, geothermal, andon the whole. Thus, solar CHP and PV systems can be comparedevaluate whether solar CHP and PV systems perform similarly

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

92

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Final Subcontract Report, June 2007  

SciTech Connect

This report describes PowerLight Corporation's significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems.

Botkin, J.

2007-12-01T23:59:59.000Z

93

Partially Shaded Operation of a Grid-Tied PV System: Preprint  

SciTech Connect

This paper presents background and experimental results from a single-string grid-tied PV system, operated under a variety of shading conditions.

Deline, C.

2009-06-01T23:59:59.000Z

94

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Final Subcontract Report, June 2007  

DOE Green Energy (OSTI)

This report describes PowerLight Corporation's significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems.

Botkin, J.

2007-12-01T23:59:59.000Z

95

Bulk Electricity System Impacts of Distributed and Transmission System Connected Solar PV  

Science Conference Proceedings (OSTI)

This report describes research examining how increased levels of photovoltaic (PV) can impact the bulk electricity system. Previous modeling of both bulk and distributed systems was extended to include more realistic assumptions, further sensitivities, and greater explanation of results. It was shown that high penetrations of distributed PV without low-voltage ride-through (LVRT) will increase voltage recovery time after a fault. The impact is exacerbated when the potential for residential ac ...

2012-12-31T23:59:59.000Z

96

Technology Overview: Concentrator PV 2010 Boot Camp (CPV) (Presentation)  

DOE Green Energy (OSTI)

The presentation introduces the various types of CPV technologies and provides a status report of today's CPV companies. Six different architectures of multijunction cells are shown to near or surpass 40% in efficiency. The design space for CPV is quite complex, which is a curse for those trying to narrow it down for the first prototype, but a blessing for those who want multiple pathways for product improvement in coming years.

Kurtz, S.; Bett, A.; Hartsoch, N.

2010-10-11T23:59:59.000Z

97

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis  

DOE Green Energy (OSTI)

As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

98

Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report  

DOE Green Energy (OSTI)

This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

1998-10-06T23:59:59.000Z

99

PV and PV/hybrid products for buildings  

DOE Green Energy (OSTI)

Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

2000-05-15T23:59:59.000Z

100

A control system for improved battery utilization in a PV-powered peak-shaving system  

SciTech Connect

Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance Parameters for Grid-Connected PV Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 B. Marion, J. Adelstein, and K. Boyle National Renewable Energy Laboratory H. Hayden, B. Hammond, T. Fletcher, B. Canada, and D. Narang Arizona Public Service Co. D. Shugar, H. Wenger, A. Kimber, and L. Mitchell PowerLight Corporation G. Rich and T. Townsend First Solar Prepared for the 31 st IEEE Photovoltaics Specialists Conference and Exhibition Lake Buena Vista, Florida January 3-7, 2005 February 2005 * NREL/CP-520-37358 Performance Parameters for Grid-Connected PV Systems

102

Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint  

DOE Green Energy (OSTI)

There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savings that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.

VanGeet, O.; Brown, E.; Blair, T.; McAllister, A.

2008-05-01T23:59:59.000Z

103

Solar San Diego: The Impact of Binomial Rate Structures on Real PV-Systems  

Science Conference Proceedings (OSTI)

There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savings that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rates structures is presented. The data revealed that actual demand and energy use benefits of bionomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007. Future work will include combining demand and electricity charges and increasing the breadth of rate structures tested, including the impacts of non-coincident demand charges.

Van Geet, O.; Brown, E.; Blair, T.; McAllister, A.

2008-01-01T23:59:59.000Z

104

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time  

E-Print Network (OSTI)

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time Yu Ru, Jan Kleissl, and Sonia Martinez Abstract-- In this paper, we study a battery sizing problem for grid-connected photovoltaic (PV) systems assuming that the battery charging/discharging limit scales linearly with its

Martínez, Sonia

105

Remote performance check and automated failure identification for grid-connected PV systems  

E-Print Network (OSTI)

energy yield against an expected, simulated value. A PV simulation model, which employs inexpensiveRemote performance check and automated failure identification for grid-connected PV systems reliable operation of small systems up to 5 kWp. The detection and identification of a failure is strongly

Heinemann, Detlev

106

Development of a low-cost integrated 20-kW ac solar tracking sub- array for grid-connected PV power system applications. Phase 1, Annual technical report, 11 July 1995--31 July 1996  

DOE Green Energy (OSTI)

The overall goal of this effort is to reduce the installed cost of utility scale grid connected photovoltaic power systems. The focus of the effort is on ``BOS`` (Balance-Of-System) component manufacturing technology, which essentially involves all PV power system engineering, manufacturing, assembly and construction tasks from the receipt of a PV module to the deliver of grid connected electricity.

Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G. [Utility Power Group, Chatsworth, CA (United States)

1997-06-01T23:59:59.000Z

107

Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint  

DOE Green Energy (OSTI)

The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

Al-Karaghouli, A.; Kazmerski, L. L.

2010-10-01T23:59:59.000Z

108

Blanc, I., Beloin-Saint-Pierre, D., Payet, J., Jacquin, P., Adra, N., Mayer, D., Espace-PV: key sensitive parameters for environmental impacts of grid-connected PV systems with LCA , In Proceedings of the 23rd  

E-Print Network (OSTI)

of Philadelphia uses an 85 kW rooftop PV installation. (Mercury Solar Solutions/ PIX 18064) #12;Solar Powering technologies fall into these main categories: photovoltaics (PV), concentrating solar power (CSP), solar water heating (SWH), and solar space heating and cooling.1 PV and CSP technologies produce electricity; SWH

Paris-Sud XI, Université de

109

INTEGRATING THE DESIGN AND RELIABILITY ASSESSMENT OF A HYBRID PV-THERMAL MICROCONCENTRATOR SYSTEM  

E-Print Network (OSTI)

INTEGRATING THE DESIGN AND RELIABILITY ASSESSMENT OF A HYBRID PV-THERMAL MICROCONCENTRATOR SYSTEM M that the materials from the power electronics industry are also reliable when used in a concentrator PV module and reliability testing have been integrated as concurrent processes, enabling the early optimisation

110

Load Sharing in a Hybrid Power System with a PV Panel and a PEM Fuel-Cell  

E-Print Network (OSTI)

varies with the time of the day. In order to improve the reliability of PV energy and at the same timeLoad Sharing in a Hybrid Power System with a PV Panel and a PEM Fuel-Cell Dachuan Yu S. Yuvarajan power system with PV panels and a PEM fuel cell is described. The system draws the maximum power

Yuvarajan, Subbaraya

111

Development of A Fully Integrated PV System for Residential Applications: PVMaT5a Final Report, 18 December 2001  

DOE Green Energy (OSTI)

This report describes both the Utility Power Group (UPG), a wholly owned subsidiary of Kyocera Solar, Inc., and Xantrex Technology Inc., have designed, assembled, and tested a new photovoltaic (PV) power system for residential rooftops to meet the goal of a readily manufacturable product that will increase US domestic PV power system production and installed capacity, by reducing the total installed cost and increasing the reliability of residential rooftop mounted PV power systems. A new factory pre-fabricated PV array system was developed, and 80 have been installed on the residential rooftops using standard metal parts. The direct material and labor cost of the array installation has been reduced to $3.79 per square foot for a 2400W installation. A modular, maintenance free, battery-based Power Unit and Energy Storage Unit (power conditioning and control) have also been developed. The design, fabrication, and testing have been completed for two prototypes of this system. These products have been evaluated for their structural integrity, electrical performance, reliability, cost, and manufacturability. The direct material and labor cost of the Power Unit has been reduced to $0.34 per watt. The 13 kW-hr Energy Storage Unit (ESU) has been UL listed.

Oatman, J.; West, R.

2002-10-01T23:59:59.000Z

112

Economics and performance of PV hybrid power systems: Three case studies  

DOE Green Energy (OSTI)

The Photovoltaic Systems Assistance Center (PVSAC) of Sandia National Laboratories (SNL) has been supporting the development and implementation of off-grid PV hybrid power systems for many years. Technical support has included: refining hardware; understanding system design techniques; obtaining operation and maintenance data; studying use of energy produced. As part of the program, the PVSAC has provided technical expertise on hybrid systems to many federal agencies including the National Park Service, the Forest Service, the Bureau of Land Management, and the Department of Defense. The goal of these partnerships has been to ensure that reliable and safe PV hybrid systems are specified and procured. At present, a critical review of performance and costs of several representative PV hybrid systems is underway. This paper presents a summary of the performance and economical analyses conducted on three PV hybrid systems.

Rosenthal, A.L.; Durand, S.J. [Southwest Technology Development Inst., Las Cruces, NM (United States); Thomas, M.G.; Post, H.N. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

113

Optimal Design of Integration of Intelligent, Adaptive Solar (PV) Power Generator with Grid for Domestic Energy Management System  

Science Conference Proceedings (OSTI)

This paper introduces a novel system based on integration of solar power generator with grid for optimal utilization of energy by minimizing the power drawn from grid. A prototype grid integrated PV system comprising of PV module (2*75Wp), battery bank ... Keywords: Solar power Generator (SPG), Domestic Energy Management, Bi-directional Inverter, Photovoltaic(PV), Total Harmonic Distortion (THD)

S. N. Singh; Pooja Singh; Swati Kumari; Swati

2010-03-01T23:59:59.000Z

114

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Duration 2:01 Topic Solar Energy Economy Credit Energy Department Video MR. : All right, we all know that the sun's energy creates heat and light. But it can also be converted to make electricity, and lots of it. One technology is called solar photovoltaics or PV for short. You've probably seen PV panels around for years, but recent advancements have greatly improved their efficiency and electrical output. Enough energy from the sun hits the earth every hour to power the planet for an

115

Wind and Solar-Electric (PV) Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Wind and Solar-Electric (PV) Systems Exemption Wind and Solar-Electric (PV) Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate None Program Info State Minnesota Program Type Property Tax Incentive Rebate Amount Solar: 100% exemption from real property taxes Wind: 100% exemption from real and personal property taxes Provider Minnesota Department of Commerce Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is exempt from the state's property tax.* However, the land on which a PV or wind system is located remains taxable.

116

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network (OSTI)

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

117

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

for interconnection or net metering, or by lawmakers andi.e. , separate from net metering of the facilitys load (knowledge and capabilities. Net metering provides PV system

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

118

205 kW Photovoltaic (PV) System Installed on the U.S. Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The...

119

AC Solar Cells: An Embedded All in One PV Power System  

Science Conference Proceedings (OSTI)

Grid-tied power converters in a photovoltaic (PV) system constructed from discrete components are difficult to mass produce, and the installation involves a significant labor cost to have the proper interconnection among the panel, the inverter, and the grid. Several critical applications such as portable power stations in a battlefield or any scientific expedition will require several key attributes from a PV-based power system, such as modularity, high reliability, and quick setup time. Therefore, a ...

2013-12-18T23:59:59.000Z

120

Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007  

SciTech Connect

Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

Rowell, D.

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007  

DOE Green Energy (OSTI)

Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

Rowell, D.

2008-04-01T23:59:59.000Z

122

IAEI NEWS January.February 2008 www.iaei.org ground-fault protection for pv systems  

E-Print Network (OSTI)

technologies which do not require transmission, such as photovoltaic (PV) generation in urban areas efficiency and clean distributed generating technologies, including PV in urban areas. But even optimistic, geothermal, solar and wind energy development. CREZ identification respected areas specified by RETI

Johnson, Eric E.

123

Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice  

SciTech Connect

Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than the rated capacity of the modules or system, are often suggested as one possible strategy. Somewhat less recognized are the many other program design options also available, each with its particular advantages and disadvantages. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance - including, but not limited to, PBIs - used by 32 prominent PV incentive programs in the U.S. (see Table 1).1 We focus specifically on programs that offer an explicit subsidy payment for customer-sited PV installations. PV support programs that offer other forms of financial support or that function primarily as a mechanism for purchasing renewable energy credits (RECs) through energy production-based payments are outside the scope of our review.2 The information presented herein is derived primarily from publicly available sources, including program websites and guidebooks, programs evaluations, and conference papers, as well as from a limited number of personal communications with program staff. The remainder of this report is organized as follows. The next section presents a simple conceptual framework for understanding the issues that affect PV system performance and provides an overview of the eight general strategies to encourage performance used among the programs reviewed in this report. The subsequent eight sections discuss in greater detail each of these program design strategies and describe how they have been implemented among the programs surveyed. Based on this review, we then offer a series of recommendations for how PV incentive programs can effectively promote PV system performance.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-11-12T23:59:59.000Z

124

Impact of High-Penetration PV on Distribution System Performance: Assessment of Regulation Control Options for Voltage Mitigation  

Science Conference Proceedings (OSTI)

Photovoltaics are beginning to challenge distribution system power engineers nationwide. The impact photovoltaics (PV) has on the power system is directly tied to system characteristics which include but are not limited to voltage class, load, regulation, and short circuit capacity. In addition to the system characteristics, the solar characteristics also play a key role. These include details on the PV systems themselves in addition to the solar irradiance data. The correlation of PV output and ...

2012-12-31T23:59:59.000Z

125

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

126

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

2006. Celentano, Ron. 2005. SDF Solar PV Grant Program inSolar Rewards Program Solar PV Rebate Program (Small PVSolar Electric Program Solar PV Grant Program ** Residential

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

127

High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint  

DOE Green Energy (OSTI)

In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

Hambrick, J.; Narang, D.

2012-06-01T23:59:59.000Z

128

The influence of utility - interactive PV system characteristics to AC power network  

SciTech Connect

Two experimental PV systems are constructed and operated. One is a system with a line-commutated inverter and another uses a self-commutated inverter and is operated alone as an independent power source when the power network is in trouble. Operating and generating characteristics have been measured for the line-commutated inverter system and for the self-commutated inverter system connected to the Ac simulated network which simulates the actual power distribution system. For the system voltage fluctuation, amplitude of variation in AC voltage was measured at the joining point of the simulated distribution network connected to the PV system by changing the system short circuit current ration. For the harmonics characteristics, the line-commutated inverter system is a harmonic current power source and the self-commutated inverter system is a harmonic voltage power source. The protective sequence for failures in the power system or PV system is also studied. An optimum protection control method with an emphasis on safety is proposed for the self-commutated inverter system. This paper also describes examples of failures in solar cell arrays during the operation of these PV systems and proposes data for improving the reliability of solar cell arrays.

Takeda, Y.; Kaminosono, H.; Takigawa, K.

1982-09-01T23:59:59.000Z

129

Capacity Value of PV and Wind Generation in the NV Energy System  

Science Conference Proceedings (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2012-09-01T23:59:59.000Z

130

A Study on the PV System for Simulation Representing Characteristics of DSSC  

Science Conference Proceedings (OSTI)

It is an important factor for the honeypot decoy system to accurately analyze on intrusion information and precisely locate them. As there are some conflict and cooperation relationship among the collected data by honeypot system, it needs to fuse the ... Keywords: Dye-Sensitized Solar Cell, PV system, DLL block, Microsoft Visual C++, PSIM

Won-Yong Chae; Kyoung-Jun Lee; Ho-Sung Kim; Dong-Gil Lee; Hee-Je Kim

2010-05-01T23:59:59.000Z

131

Southern Company Photovoltaic Evaluation in Atlanta: Analysis of Field Data from Seven 4-kW PV Systems at Georgia Power Headquarters During 20102012  

Science Conference Proceedings (OSTI)

Seven photovoltaic (PV) power systems using different module technologies were installed on the rooftop of Georgia Powers headquarters in Atlanta. This report describes the output performance of these small-scale systems (about 4 kW each) relative to the available solar resource at the site. The main objective of this evaluation has been to assess performance characteristics of commercially available module technologies in a southeastern U.S. climate. To ensure a reliable comparison, all ...

2013-01-28T23:59:59.000Z

132

Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment  

DOE Green Energy (OSTI)

The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

Farhar, B. C.; Buhrmann, J.

1998-07-01T23:59:59.000Z

133

Techno-economics analysis of a wind/PV hybrid system to provide electricity for a household in Malaysia  

Science Conference Proceedings (OSTI)

This paper is study on techno-economics analysis of a wind/PV hybrid system for a household in Malaysia. One year recorded wind speed and solar radiation are used for the design of a hybrid energy system. In 2004 average annual wind speed in Kuala Terengganu ... Keywords: electrical load, techno-economics analysis, wind/PV hybrid system

Ahmad Fudholi; Mohd Zamri Ibrahim; Mohd Hafidz Ruslan; Lim Chin Haw; Sohif Mat; Mohd Yusof Othman; Azami Zaharim; Kamaruzzaman Sopian

2012-01-01T23:59:59.000Z

134

Short-Term PV Generation System Direct Power Prediction Model on Wavelet Neural Network and Weather Type Clustering  

Science Conference Proceedings (OSTI)

With the increase of the capacity of PV generated systems, how to eliminate the problem caused by the randomness of power output for photovoltaic system becomes more significant. Most of the existing photovoltaic prediction is Based on the solar radiation. ... Keywords: PV generation system, Wavelet neural network, Weather type clustering, Direct prediction

Ying Yang, Lei Dong

2013-08-01T23:59:59.000Z

135

A MPPT Control Method of PV System Based on Fuzzy Logic and Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

In the view of the fact that if crystalline silicon cell's photovoltaic system used for power output can not be controlled, it is hard to grantee the maximum power output, which will cause energy dissipation and high cost. Regarding the PV inverter system ... Keywords: MPPT, Fuzzy Logic, Particle Swarm Optimization

Yufeng Hu; Jun Liu; Bin Liu

2012-01-01T23:59:59.000Z

136

The comparison of three photovoltaic system designs using the photovoltaic reliability and performance model (PV-RPM).  

SciTech Connect

Most photovoltaic (PV) performance models currently available are designed to use irradiance and weather data and predict PV system output using a module or array performance model and an inverter model. While these models can give accurate results, they do so for an idealized system. That is, a system that does not experience component failures or outages. We have developed the Photovoltaic Reliability and Performance Model (PV-RPM) to more accurately model these PV systems by including a reliability component that simulates failures and repairs of the components of the system, as well as allow for the disruption of the system by external events such as lightning or grid disturbances. In addition, a financial component has also been included to help assess the profitability of a PV system.

Miller, Steven P.; Granata, Jennifer E.; Stein, Joshua S.

2012-12-01T23:59:59.000Z

137

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners  

DOE Green Energy (OSTI)

Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

Kollins, K.; Speer, B.; Cory, K.

2009-11-01T23:59:59.000Z

138

Study of photovoltaic cost elements. Volume 4. Installation cost model for residential PV systems: users manual. Final report  

SciTech Connect

A quantitative methodology is presented for estimating installation costs of residential photovoltaic systems. The Installation Cost Model for Residential PV Systems is comprised of 144 estimating equations selectively exercised, based on user definition of the system. At the input stage, Residential PV systems can be fully described by 9 design option categories and 9 system specification categories. All assumptions have been validated with installers of solar thermal systems and with TB and A's Architects and Engineers Division. A discussion of the model is included as well as an example of its use with an 8 KW PV system for a Southwest All-Electric Residential design.

1981-07-01T23:59:59.000Z

139

Battery and charge controller evaluations in small stand-alone PV systems  

SciTech Connect

We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

140

S30-A2-02 PROPOSAL OF UNIQUE PV SYSTEM FOR LARGE-SCALE PHOTOVOLTAIC POWER GENERATION SYSTEM  

E-Print Network (OSTI)

In order to make a PV power generation system survive as an economically viable option against other renewable energy sources, drastic reduction of energy cost is inevitable. The authors have been working on the development of a unique PV system to reduce total system cost including solar panel, power conversion unit and installation work [I]. In the proposed concept, AC photovoltaic device and adhesive mounting method were introduced for the dedicated use in power station. By introducing this concept, it is feasible that the system cost will be reduced to 113 compared to the conventional system. The authors believe that the concept is suitable for very large-scale PV systems in desert areas. 1.

Kimitoshi Fukae; Akiharu Takabayashi; Shigenori Itoyama; Ichiro Kataoka; Hidehisa Makita; Masaaki Matsushita; Takaaki Mukai; Nobuyoshi Takehara; Masaki Konishi

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +  

E-Print Network (OSTI)

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann will highly benefit from forecast information on the expected power production. This forecast information and evaluate an approach to forecast regional PV power production. The forecast quality was investigated

Heinemann, Detlev

142

DOE Hydrogen Analysis Repository: PV-Hydrogen System Simulator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach: The photovoltaic hydrogen system has a photovoltaic array with an optional maximum power point tracker that supplies electrical energy to the system. This electrical...

143

Going Solar in Record Time with Plug-and-Play PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. Kevin Lynn Systems Integration Lead, SunShot Initiative What does this project do? The Energy Department is investing up to $5 million this year to

144

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

3% of the total sales price of non-PV homes. In the absenceModels Fig. 1: CA PV home sale price premiums expressed inthe selling prices of 329 homes with PV installed in the San

Hoen, Ben

2013-01-01T23:59:59.000Z

145

Development of standardized, low-cost AC PV systems. Phase I annual report, 7 September 1995--7 November 1996  

DOE Green Energy (OSTI)

The objectives of this two-year program are to improve the reliability and safety and reduce the cost of installed grid-connected PV systems by creating standardized, pre-engineered components and an enhanced, low-cost, 250-Watt micro inverter. These advances will be combined with the new, large area Solarex MSX-240 PV module resulting in standard, modular AC PV {open_quotes}building blocks{close_quotes} used to create utility-interactive PV systems as small as one module to many thousands of modules to suit virtually any application. AC PV building blocks will be developed to meet the requirements of the U.S., Japanese and European markets.

Strong, S.J.; Wohlgemuth, J.H.; Kaelin, M.

1997-06-01T23:59:59.000Z

146

Carmanah Technologies Corporation | Open Energy Information  

Open Energy Info (EERE)

Canadian manufacturer of solar balance of systems (mounts, converters, inverters), battery chargers, and distributor of PV modules. References Carmanah Technologies...

147

Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)  

DOE Green Energy (OSTI)

This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

2013-05-01T23:59:59.000Z

148

Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations  

SciTech Connect

There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics, and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.

Sabnani, L.; Skumanich, A.; Ryabova, E.; Noufi, R.

2011-01-01T23:59:59.000Z

149

Solar PV Market Update: Volume 1 - Spring  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Solar PV Market Update provides a snapshot of photovoltaic (PV) market information, along with brief EPRI analyses, to inform EPRI members about economic-, policy-, and technology-related developments in the segment. Delivered on a quarterly basis, the document synthesizes data reporting gleaned from a variety of primary and secondary sources, highlighting specific industry issuesincluding market outlooks, equipment cost and pricing trends, system design and e...

2012-05-21T23:59:59.000Z

150

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

23 23 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46723 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory

151

Edison Systems Technology Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Documentation Systems Technology Documentation Downloads CrayXC30Networking.pdf | Adobe Acrobat PDF file Cray XC30 Networking SonexionBrochure.pdf | Adobe Acrobat PDF...

152

World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden  

E-Print Network (OSTI)

. Life cycle inventories are based on manufacturers' data combined with additional calculations, in addition to modules manufacturing process energy inputs. Keywords: Environmental impacts, LCA, PV installations, modules manufacturing electricity use and its corresponding fuel hal-00668178,version1-9Feb2012

Paris-Sud XI, Université de

153

SMA Solar Technology AG 24.07.2012 Wirtschaftlichkeit von PV Hybridsystemen  

E-Print Network (OSTI)

is being applied to develop low-cost micro- concentrators for PV modules. Solar Codes and StandardsThe National Solar Thermal Test Facility at Sandia Sandia National Laboratories conducts research and development (R&D) in solar power, including photovoltaics and concentrating solar power, to strengthen the U

Noé, Reinhold

154

Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report  

DOE Green Energy (OSTI)

This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R. [Utility Power Group, Chatsworth, CA (US)

1998-06-01T23:59:59.000Z

155

Benchmarking Soft Costs for PV Systems in the United States (Presentation)  

SciTech Connect

This paper presents results from the first U.S. based data collection effort to quantify non-hardware, business process costs for PV systems at the residential and commercial scales, using a bottom-up approach. Annual expenditure and labor hour productivity data are analyzed to benchmark business process costs in the specific areas of: (1) customer acquisition; (2) permitting, inspection, and interconnection; (3) labor costs of third party financing; and (4) installation labor.

Ardani, K.

2012-06-01T23:59:59.000Z

156

Measured Performance of California Buydown Program Residential PV Systems  

E-Print Network (OSTI)

, on average, 62 percent of nominal DC module size. For non-tracking systems, average annual energy production annual energy production per unit of nominal DC module size is approximately 1,100 kWh/year. Both Economic Research, Inc. Sanford Miller, California Energy Commission ABSTRACT More than two thousand small

157

Robust control strategy for PV system integration in distribution systems M.J. Hossain a,  

E-Print Network (OSTI)

(PV) near Baker Application complete POD received. EIS required 5101 pending CACA 48742 9,600 MUC: Moderate 1,000 Mw Photovoltaic (PV) Silurian Valley Application complete POD received. EIS required 5101 POD received. EIS required 5101 pending Pending Solar Investments LLC (G-S) 01/18/2007 8,000 MUC

Pota, Himanshu Roy

158

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

Emerging Applications Sandia National Laboratory, SAND2001-Impact on PV System Design, Sandia National Laboratories.

Stadler, Michael

2009-01-01T23:59:59.000Z

159

Design, fabrication, and certification of advanced modular PV power systems. Annual technical progress report, 8 September 1995--7 September 1996  

DOE Green Energy (OSTI)

This report summarizes the activities performed during the first year of a nominal 2-year effort by Solar Electric Specialties Company (SES) under the Photovoltaic Manufacturing Technology (PVMaT) project of the National Photovoltaic Program. The goal of the SES contract is to reduce the installed system life-cycle costs by developing certified and standardized prototype products for two SES product lines--MAPPS{trademark} and Photogenset{trademark}. The MAPPS (modular autonomous PV power supply) systems are used for DC applications up to about a thousand watt-hours. The Photogensets are hybrid PV/generator systems for AC applications. SES expects these products to provide the basis for future commercial product lines of standardized certified, packaged systems.

Lambarski, T.; Minyard, G. [Solar Electric Specialties, Willits, CA (United States)

1997-03-01T23:59:59.000Z

160

Updating Technical Screens for PV Interconnection: Preprint  

DOE Green Energy (OSTI)

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PV performance modeling workshop summary report.  

DOE Green Energy (OSTI)

During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

2011-05-01T23:59:59.000Z

162

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

SciTech Connect

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

163

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

DOE Green Energy (OSTI)

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

164

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

165

Program on Technology Innovation: Distributed Photovoltaic Power Applications for Utilities  

Science Conference Proceedings (OSTI)

Emerging PV technology brings significant opportunities for many stakeholders including electric utilities, electric customers, energy-service providers and PV equipment vendors. The opportunities for utilities range from owning and deploying various PV generation resources and related products to incentivizing other owners to install PV systems and technology that provide benefits to the power system. This technical update describes PV power system concepts that utilities may want to consider as they pl...

2009-12-30T23:59:59.000Z

166

Realisation of the full potential of PV Extract of report from workgroup 4 in EU's PV Technology Platform by Peter Ahm.  

E-Print Network (OSTI)

. Realisation of the full potential of PV as an important and integral part of our energy supply exploitation and to continue to innovate as the industry moves towards being a major contributor to energy of the use of energy from renewable sources recognises this (box right)2 . This chapter considers

167

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

Clean Energy Group), Mike Taylor Designing PV IncentiveClean Energy States Alliance C ASE S TUDIES OF S TATE S UPPORT FOR R ENEWABLE E NERGY Designing PV Incentive

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

168

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

Utility District (SMUD) Xcel Energy Connecticut Clean EnergyCA LADWP CA SMUD CO Xcel CT CCEF Small PV ProgramCA LADWP CA SMUD CO Xcel CT CCEF Small PV Program

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

169

Technology reviews: Lighting systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize lighting system in the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

170

Technology reviews: Shading systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

171

Technology reviews: Glazing systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

172

Advanced Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Advanced Green Technologies Place Fort Lauderdale, Florida Zip 33311 Product Advanced Green Technologies is a US-based distributor of PV systems. It is owned by Advanced Roofing...

173

Austrian Enviro Technologies | Open Energy Information  

Open Energy Info (EERE)

Zip A-2372 Product Austria and Spain-based PV system installer and manufacturer of gasification technology. References Austrian Enviro Technologies1 LinkedIn Connections...

174

Pv =PYv  

Science Conference Proceedings (OSTI)

... Where pv is partial pressure of vapor, yv is mole fraction of vapor, and P ... Therefore, the organic compound should be stored in the liquid form in the ...

2011-10-04T23:59:59.000Z

175

DOE High Performance Concentrator PV Project  

DOE Green Energy (OSTI)

Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

McConnell, R.; Symko-Davies, M.

2005-08-01T23:59:59.000Z

176

PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

177

Integrated Building Energy Systems Design Considering Storage Technologies  

Science Conference Proceedings (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

2009-04-07T23:59:59.000Z

178

Modeling, analysis and neural MPPT control design of a PV-generator powered dc motor-pump system  

Science Conference Proceedings (OSTI)

This paper presents the optimization of a photovoltaic (PV) water pumping system using maximum power point tracking technique (MPPT). The optimization is suspended to reference optimal power. This optimization technique is developed to assure the optimum ... Keywords: artificial neural network controller, drive systems, maximum power point tracking, photovoltaic

Ahmed. M. Kassem

2011-12-01T23:59:59.000Z

179

Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint  

DOE Green Energy (OSTI)

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

Mather, B.; Neal, R.

2012-08-01T23:59:59.000Z

180

Development of a model for physical and economical optimization of distributed PV systems.  

E-Print Network (OSTI)

?? There are a number of factors that influence both the physical and the economical performance of a photovoltaic solar energy (PV) installation. The aim (more)

Nsvall, David

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

DOE Green Energy (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

Goodrich, A.; James, T.; Woodhouse, M.

2012-02-01T23:59:59.000Z

182

New codes and standards for utility - interconnection of AC PV modules  

DOE Green Energy (OSTI)

Photovoltaic (PV) modules that provide only ac power give new dimensions to the use of, and utility interface of, PV systems because all of the dc issues are virtually eliminated. These AC PV modules offer the important advantage that customers may now purchase a PV system without hiring a design engineer. A qualified electrician will be able to install a complete PV system that performs as expected and meets local electrical codes. Simple installations of additional AC PV modules will be possible once the proper branch circuit wiring and protection have been installed. Codes and standards are currently being written to address the utility-interconnect issues for AC PV modules and other interactive inverters. An industry-supported Task Group has recently written and submitted proposals for changes to bring Article 690 of the 1999 National Electrical Code{reg_sign} (NEC{reg_sign}) up to the state-of-the-art for PV devices such as AC PV modules. This paper summarizes the proposed code changes and standards related to the evolving AC PV module technology in the United States. Topics such as the need for dedicated branch circuits for AC PV modules in residential applications are discussed and analyzed. Requirements for limiting the number of AC modules on a branch circuit and the listing requirements that make safe installations are discussed. Coordination of all standards activities for AC module installations, the building-integrated perspectives, and utility-interface issues is discussed.

Bower, W.

1997-10-01T23:59:59.000Z

183

System and Battery Charge Control for PV-Powered AC Lighting Systems  

DOE Green Energy (OSTI)

This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

Kern, G.

1999-04-01T23:59:59.000Z

184

Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008  

DOE Green Energy (OSTI)

Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

West, R.

2008-08-01T23:59:59.000Z

185

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Global, average PV module prices, all PV technologies, 1980Global, average PV module prices, all PV technologies, 1980to mid-1980s. The price of PV by 1987 was approximately $

Price, S.

2010-01-01T23:59:59.000Z

186

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

187

Evolutionary algorithms for the design of grid-connected PV-systems  

Science Conference Proceedings (OSTI)

The sale of electric energy generated by photovoltaic (PV) plants has attracted much attention in recent years. The installation of PV plants aims to obtain the maximum benefit of captured solar energy. The current methodologies for planning the design ... Keywords: Differential evolution, Evolutionary algorithms, Numerical optimization, Photovoltaic plants

Daniel Gmez-Lorente; Isaac Triguero; Consolacin Gil; A. Espn Estrella

2012-07-01T23:59:59.000Z

188

Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate  

SciTech Connect

This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells. All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices. (author)

Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina [Universita degli Studi di Palermo, Palermo (Italy)

2009-10-15T23:59:59.000Z

189

PV Cz silicon manufacturing technology improvements. Annual subcontract report, 1 April 1992--31 March 1993  

DOE Green Energy (OSTI)

This report describes work performed under a 3-year contract to demonstrate significant cost reductions and improvements in manufacturing technology. The work focused on near-term projects for implementation in the Siemens Solar Industries Czochralski (Cz) manufacturing facility in Camarillo, California. The work was undertaken to increase the commercial viability and volume of photovoltaic manufacturing by evaluating the most significant cost categories and then lowering the cost of each item through experimentation, materials refinement, and better industrial engineering. The initial phase of the program concentrated on the areas of crystal growth; wafer technology; and environmental, safety, and health issues.

Jester, T. [Siemens Solar Industries, Camarillo, CA (United States)

1994-01-01T23:59:59.000Z

190

PV FAQs: What Is the Energy Payback for PV?  

DOE Green Energy (OSTI)

How long does a PV system have to operate to recover the energy-and the associated generation of pollution and CO2- that went into making the system? Energy paybacks for rooftop systems range from 1 to 4 years, depending on the system. Based on models and real data, the idea that PV cannot pay back its energy investment is simply a myth.

Not Available

2004-01-01T23:59:59.000Z

191

Advanced polymer PV system: PVMaT 4A1 annual report, September 1995--September 1996  

DOE Green Energy (OSTI)

Purpose of this subcontract was to produce lower module and systems costs through the innovative use of polymeric materials. The Innovative Mounting System (IMS) was developed and testing begun during the first year of this contract. IMS reduces the cost of installed PV systems by reducing labor and materials costs both in the factory and in field installation. It incorporates several advances in polymers, processing methods and product design. An advanced backskin material permits elimination of the conventional Al perimeter frame by protecting and sealing the edge and by direct bonding of multifunctional mounting bars. Electrical interconnection is easier and more reliable with a new junction box. Feasibility of a non-vacuum, high-throughput lamination method was also demonstrated, involving a novel transparent encapsulant with UV stabilization package that can be laminated in air and which should lead to longer field life than conventional designs. The first-year program culminated in the fielding of prototype products with the new encapsulant, backskin, junction box, frameless edge seal, and IMS. Feedback and marketing information from potential customers were solicited. Result promises a $0.50/watt manufacturing and system cost reductions as well as increased system lifetime. The second year will complete refinement and test of the encapsulant and backskin, complete the new lamination method, and refine product designs.

Hanoka, J.; Chleboski, R.; Farber, M.; Fava, J.; Kane, P.; Martz, J. [Evergreen Solar, Inc., Waltham, MA (United States)

1997-06-01T23:59:59.000Z

192

Technology Choices for the PV Industry: A Comparative Life Cycle Assessment  

E-Print Network (OSTI)

analysis is for pumped hydro energy storage. This is to beinto micro-hydro powered energy storage. Although there isa grid tied system, a hydro-powered energy storage system

Boyd, Sarah; Dornfeld, David A

2005-01-01T23:59:59.000Z

193

System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test: Preprint  

DOE Green Energy (OSTI)

Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

2011-07-01T23:59:59.000Z

194

IBM Systems and Technology Electronics IBM CMOS 7HV for  

E-Print Network (OSTI)

of wireless communication in PV systems can improve reliability, reduce cost and increase the granularity, reliability, and safety of PV systems. Specific application areas include optimization of energy generation, intelligent power control and wireless monitoring of PV modules for health and reliability. IBM CMOS 7HV

195

Impact of High-Penetration PV on Distribution System Performance: Example Cases and Analysis Approach  

Science Conference Proceedings (OSTI)

High penetration of distributed photovoltaic (PV) generation in the electric grid is beginning to challenge distribution planners and engineers. This technical update discusses the factors that can have a significant impact on a distribution feeder's response to PV generation. The report considers both the circuit and the photovoltaic generation characteristics. The circuit types and characteristics span the expected range of power delivery and control elements. Photovoltaic characteristics include syste...

2011-12-30T23:59:59.000Z

196

Plug and Play Components for Building-Integrated PV Systems: Phase I--Final Report, 20 February 2002--19 February 2003  

Science Conference Proceedings (OSTI)

This report describes the development by RWE Schott Solar, Inc., of innovative new products to facilitate the broad use of its PV systems in the current markets. RWE manufactures and sells the 300-watt ASE-300 PV module and also provides complete photovoltaic system engineering, design, and turnkey PV system installation services. RWE Schott Solar has many years of experience designing PV arrays and installing them on flat roofs and pitched roofs, and had plans to improve these designs. Specifically, wind-tunnel testing and analyses were needed for the new flat-roof PV array mounting system that avoids roof penetrations. In addition, to simplify large grid-tied PV systems for flat-roof applications, the company's line of wiring junction boxes needed to be updated with new components and higher-power multi-circuit configurations. For pitched-roof residential applications, testing was planned to determine the holding power of three different fasteners in a wide range of wood-sheathing types found in residential construction to help optimize fastening methods. A device for connecting PV to the grid at a meter socket was innovated and is also being developed.

Russell, M. C.

2004-07-01T23:59:59.000Z

197

Improving grid reliability through integration of distributed PV and energy storage  

Science Conference Proceedings (OSTI)

Several emerging technologies, namely, high penetration grid-connected distributed photovoltaics (PV), energy storage, and smart grid have seen tremendous growth in recent years. Because of their interconnected nature, the deployed systems are fairly ...

Guohui Yuan

2012-01-01T23:59:59.000Z

198

Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.  

DOE Green Energy (OSTI)

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

2011-11-01T23:59:59.000Z

199

205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

200

PV FAQs: What's New in Concentrating PV?  

DOE Green Energy (OSTI)

This publication, one in a series of PV FAQs, addresses concentrating PV: what it is, how it works, the challenges it faces, recent breakthroughs, and its future direction.

Not Available

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Three-phase power conversion system for utility-interconnected PV applications. Phase 1 technical progress report, 1 October 1995--17 April 1997  

DOE Green Energy (OSTI)

This report describes work performed by Omnion Power Corporation under Phase 1 of a two-phase subcontract. During this phase, Omnion researchers: designed an advanced product specification to guide prototype design and development; analyzed field failure data with Omnion`s hard-switched insulated-Gate Bipolar Transistor technology hardware to better understand where design improvements were needed; presented and reviewed product specifications with key customers/users; drafted a working product specification to serve as a baseline in developing the new power conversion system; developed the core-resonant converter technology in conjunction with Soft Switching Technologies Corp.; designed a 100-kW prototype power conversion system; designed a prototype system package; initiated interaction with vendors to optimize component selection and specifications; initiated the preparation of design documentation; built the prototype core-resonant converter and initiated preliminary testing; and initiated the assembly of a 1-kW prototype power conversion system. This work has demonstrated the potential of the soft-switching resonant DC link (RDCL) inverter and its application to a three-phase utility-interconnected PV power conversion system. The RDCL inverter has demonstrated its advantage over hard-switching pulse-width modulated inverters in terms of efficiency and audible noise. With proper package design and manufacturing process design and implementation, the RDCL power conversion system has the potential to be low-cost and reliable with superior performance.

Porter, D.G.; Meyer, H.; Leang, W. [Omnion Power Engineering Corp., East Troy, WI (United States)

1998-02-01T23:59:59.000Z

202

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

203

City of Sunset Valley- PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

204

Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results  

SciTech Connect

This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

2012-11-01T23:59:59.000Z

205

Improved PV system reliability results from surge evaluations at Sandia National Laboratories  

DOE Green Energy (OSTI)

Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia.

Russell H. Bonn; Sigifredo Gonzalez

2000-04-11T23:59:59.000Z

206

PV Module Reliability R&D Project Overview  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program includes a sub-key activity entitled ''Photovoltaic Module Reliability R&D''. This activity has been in existence for several years to help ensure that the PV technologies that advance to the commercial module stage have acceptable service lifetimes and annual performance degradation rates. The long-term (2020) goal, as stated in the Solar Program Multi-Year Technical Plan [1], is to assist industry with the development of PV systems that have 30-year service lifetimes and 1% annual performance degradation rates. The corresponding module service lifetimes and annual performance degradation rate would have to be 30 years lifetime and approximately 0.5% (or less, depending on the type of PV system) annual performance degradation. Reaching this goal is critical to achieving the PV technology Levelized Energy Cost Targets, as listed and described in the Solar Program Multi-Year Technical Plan. This paper is an overview of the Module Reliability R&D sub-key activity. More details and the major results and accomplishments are covered in the papers presented in the PV Module Reliability Session of the DOE Solar Energy Technology Review Meeting, October 25-28, 2004, in Denver, Colorado.

Hulstrom, R. L.

2005-01-01T23:59:59.000Z

207

NREL PV working with industry, 1st Quarter 1999  

SciTech Connect

This issue of PV Working with Industry profiles the participants in the Photovoltaic Manufacturing Technology (PVMaT) project.

Moon, S.

1999-05-20T23:59:59.000Z

208

Grid integrated distributed PV (GridPV).  

SciTech Connect

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

209

PV FAQs: What is the Energy Payback for PV?  

DOE Green Energy (OSTI)

How long does a PV system have to operate to recover the energy--and the associated generation of pollution and CO{sub 2}--that went into making the system? Energy paybacks for rooftop systems range from 1 to 4 years, depending on the system. Based on models and real data, the idea that PV cannot pay back its energy investment is simply a myth.

Not Available

2004-12-01T23:59:59.000Z

210

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

2013-01-01T23:59:59.000Z

211

PV ENERGY ROI Tracks Efficiency Gains  

E-Print Network (OSTI)

PV ENERGY ROI Tracks Efficiency Gains the state of PV today E nergy payback time (EPBT) is the time it takes for a photovoltaic (PV) system to produce all the energy used through- out its life cycle. A short EPBT corre- sponds to a high energy return on energy invest- ment

212

EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing: Annual Subcontract Report, 1 July 2003--30 June 2004  

DOE Green Energy (OSTI)

The objective of this subcontract over its duration was to carry out R&D to advance RWE Schott Solar Inc. (formerly ASE Americas)--''RSSI''--manufacturing technology, processes and capabilities of wafer, cell, and module manufacturing lines, which will help configure them for scaling up of EFG ribbon technology to the 50-100 MW PV factory level. The basic EFG technology principles have already been established and are being demonstrated on the scale of 10-20 MW manufacturing lines. By the successful completion of this effort, RSSI is planning to reduce overhead costs of production and of direct, variable manufacturing costs with the scale up of EFG processes and equipment currently in use. To achieve these objectives, RSSI needs to maintain or enhance yield, quality, process control, and throughput relative to present levels throughout the three areas of wafer, cell, and module manufacture.

Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Gonsiorawski, R; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum. M.; Southimath, S.; Xavier, G.

2005-01-01T23:59:59.000Z

213

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity  

E-Print Network (OSTI)

University: Solar Cells Lecture 9: PV Systems Several types of operating modes · Centralized power plant or wanted Montana State University: Solar Cells Lecture 9: PV Systems 2 Residential Side Mounted Montana State University: Solar Cells Lecture 9: PV Systems 3 Could have future issues when the tree matures

214

How Can We Make PV Modules Safer?: Preprint  

SciTech Connect

Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

Wohlgemuth, J. H.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

215

The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the  

E-Print Network (OSTI)

Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV.3.4.5 Quality Assurance and Certification for Solar PV Installation.................46 2.3.5 References

Oregon, University of

216

Technologies for exascale systems  

Science Conference Proceedings (OSTI)

To satisfy the economic drive for ever more powerful computers to handle scientific and business applications, new technologies are needed to overcome the limitations of current approaches. New memory technologies will address the need for greater amounts ...

P. W. Coteus; J. U. Knickerbocker; C. H. Lam; Y. A. Vlasov

2011-09-01T23:59:59.000Z

217

Photovoltaic Systems Assessment: An Integrated Perspective  

Science Conference Proceedings (OSTI)

Information from recent photovoltaic (PV) research and technology assessments was synthesized into a review of key planning, hardware, institutional, and operational issues. Researchers reviewed PV cell and module technologies, results from ongoing field tests of intermediate-size systems, and balance-of-system (non-PV components) costs for residential, intermediate, and central station applications. Cost-performance targets for PV systems in various locations were developed.

1983-09-01T23:59:59.000Z

218

Technology reviews: Daylighting optical systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends.Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

219

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

Kenmos PV Kenmos PV Jump to: navigation, search Name Kenmos PV Place Tainan, Taiwan Sector Solar Product Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV cells. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Hardware Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results November 2012 Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 LBNL's work was supported by the U.S. Department of Energy SunShot program under Contract No. DE-AC02-05CH11231 Technical Report DOE/GO-10212-3834 * November 2012 National Renewable Energy Laboratory 15013 Denver West Parkway

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Technology and Urban Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior and infrared thermograph Office building exterior and infrared thermograph Building Technology and Urban Systems Building Technology and Urban Systems application/pdf icon btus-org-chart-03-2013.pdf In the areas of Building Technology and Urban Systems, EETD researchers conduct R&D and develop physical and information technologies to make buildings and urban areas more energy- and resource-efficient. These technologies create jobs and products for the marketplace in clean technology industries. They improve quality of life, and reduce the emissions of pollutants, including climate-altering greenhouse gases. BTUSD's goal is to provide the technologies needed to operate buildings at 50 to 70 percent less energy use than average today. BTUS develops, demonstrates and deploys: Information technologies for the real-time monitoring and control of

222

Solar PV Market Update, October 2013  

Science Conference Proceedings (OSTI)

Volume 7 of EPRIs quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report investigates some of the recent PV market and policy developments that ...

2013-10-15T23:59:59.000Z

223

Direct Use of Solar Photovoltaic (PV) Energy  

Science Conference Proceedings (OSTI)

PV-DC refers to the direct use of photovoltaic (PV) energy in an appliance or other equipment without a grid connection. Most (over 90) of the new deployments of PV solar panels connect to the ac electric grid and do not use dc energy directly. These grid-connected PV systems use an electronic inverter to convert the dc array output to ac power for interfacing with the grid. However, with double-digit growth in all types of PV applications, the direct use of solar for powering end-use loads needs to be m...

2010-12-31T23:59:59.000Z

224

Key technology trends - Satellite systems  

Science Conference Proceedings (OSTI)

This paper is based on material extracted from the WTEC Panel Report Global Satellite Communications Technology and Systems, December 1998. It presents an overview of key technology trends in communications satellites in the last few years. After the ... Keywords: Communications satellites, Satellite communications, Satellite technology overview

Charles W. Bostian; William T. Brandon; Alfred U. Mac Rae; Christoph E. Mahle; Stephen A. Townes

2000-08-01T23:59:59.000Z

225

A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design  

SciTech Connect

Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

Stevens, J.W.; Corey, G.P.

1996-07-01T23:59:59.000Z

226

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.  

Science Conference Proceedings (OSTI)

Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

2011-06-01T23:59:59.000Z

227

Modeling High-Penetration PV for Distribution Analysis  

Science Conference Proceedings (OSTI)

The number of new solar PV interconnections to the distribution system has increased exponentially in recent years. The total installed capacity of PV worldwide increased from 20,000 to 40,000 during 2010. In some areas distribution planners are inundated with interconnection requests for both small-scale residential PV as well as larger, commercial, and centralized PV systems. Many utility companies that have not traditionally experienced a lot of distributed PV requests have within the past few years s...

2011-12-30T23:59:59.000Z

228

Flat-Plate Photovoltaic Performance Testing at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

The flat-plate photovoltaic (PV) performance testing project at the Solar Technology Acceleration Center (SolarTAC) is a multi-year, data-driven effort to provide unbiased field testing of a variety of commercial-scale solar PV systems under different environmental and seasonal conditions. Its core aim is to assess and characterize the operation of both well-established as well as less mature PV module technologies to ultimately inform future PV product investment decisions by electric utilities and ...

2013-10-30T23:59:59.000Z

229

Furnace Systems Technology Workshop  

Science Conference Proceedings (OSTI)

TMS Networking and Online Tools, X ... TMS Social Network and Site Tools .... furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory ... Sutton - Harbison-Walker Refractories; Jon Gillespie - Gillespie & Powers...

230

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

231

Definition: PV array | Open Energy Information  

Open Energy Info (EERE)

PV array PV array Jump to: navigation, search Dictionary.png PV array An interconnected system of PV modules that function as a single electricity-producing unit. In smaller systems, an array can consist of a single module.[1][2] View on Wikipedia Wikipedia Definition A Photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. PV systems may be built in various configurations: Off-grid without battery (Array-direct) Off-grid with battery storage for DC-only appliances Off-grid with battery storage for AC & DC appliances Grid-tie without battery Grid-tie with battery storage A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually

232

Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications  

SciTech Connect

Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G. [Utility Power Group, 9410 G De Soto Avenue, Chatsworth, California 91311 (United States)

1997-02-01T23:59:59.000Z

233

Dynamic Safety Systems (DSS) Technology  

Science Conference Proceedings (OSTI)

This report considers several aspects of Dynamic Safety System (DSS) technology and its use in United States (U.S.) light-water reactor (LWR) safety systems. The topics include: the capability of DSS technology to function in an LWR protection system, the feasibility of licensing DSS technology under Code of Federal Regulations 10 CFR 50.59 for use in a reactor protection system (RPS), and the possibility of extending the automatic self-testing regime to include the front-end neutron sensors that feed si...

1998-05-27T23:59:59.000Z

234

Extending Performance and Evaluating Risks of PV Systems Failure Using a Fault Tree and Event Tree Approach: Analysis of the Possible Application  

DOE Green Energy (OSTI)

Performance and reliability of photovoltaic (PV) systems are important issues in the overall evaluation of a PV plant and its components. While performance is connected to the amount of energy produced by the PV installation in the working environmental conditions, reliability impacts the availability of the system to produce the expected amount of energy. In both cases, the evaluation should be done considering information and data coming from indoor as well as outdoor tests. In this paper a way of re-thinking performance, giving it a probabilistic connotation, and connecting the two concepts of performance and reliability is proposed. The paper follows a theoretical approach and discusses the way to obtaining such information, facing benefits and problems. The proposed probabilistic performance accounts for the probability of the system to function correctly, thus passing through the complementary evaluation of the probability of system malfunctions and consequences. Scenarios have to be identified where the system is not functioning properly or at all. They are expected to be combined in a probabilistic safety analysis (PSA) based approach, providing not only the required probability, but also being capable of giving a prioritization of the risks and the most dominant scenario associated to a specific situation. This approach can offer the possibility to highlight the most critical parts of a PV system, as well as providing support in design activities identifying weak connections.

Colli A.

2012-06-03T23:59:59.000Z

235

Fault Current Contribution from Single-Phase PV Inverters  

DOE Green Energy (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

236

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections  

Science Conference Proceedings (OSTI)

This report helps to clarify the confusion surrounding different estimates of system pricing by distinguishing between past, current, and near-term projected estimates. It also discusses the different methodologies and factors that impact the estimated price of a PV system, such as system size, location, technology, and reporting methods.These factors, including timing, can have a significant impact on system pricing.

Feldman, D.; Barbose, G.; Margolis, R.; Wiser, R.; Darghouth, N.; Goodrich, A.

2012-11-01T23:59:59.000Z

237

EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005  

DOE Green Energy (OSTI)

The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

2005-10-01T23:59:59.000Z

238

Fuel Cell Technologies Office: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration to someone by E-mail Share Fuel Cell Technologies Office: Systems Integration on Facebook Tweet about Fuel Cell Technologies Office: Systems Integration on...

239

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume IV. Design analysis and trade-off study  

DOE Green Energy (OSTI)

Detailed reference designs developed for optimally sized photovoltaic-thermal (PV-T) systems are presented for three selected applications. The results of trade-off analyses to determine the effects of load variations, new components, changes in location, and variations in array cost are also discussed.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

240

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network (OSTI)

on innovations in technology that drive PV industry growth. The NCPV is directed to use U.S. national laboratories and universities to accelerate PV as a viable energy option in the United States. #12;Sustainable generations to meet their own needs. ­ UN Bruntland Commission Our Focus: Making PV More Sustainable

Oregon, University of

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999  

SciTech Connect

This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

West, R.; Mackamul, K.; Duran, G.

2000-03-06T23:59:59.000Z

242

Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999  

DOE Green Energy (OSTI)

This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

West, R.; Mackamul, K.; Duran, G.

2000-03-06T23:59:59.000Z

243

solar PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

244

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

245

Outdoor PV Degradation Comparison  

DOE Green Energy (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

246

The Impact of Retail Rate Structures on the Economics of Customer-Sited PV: A Study of Commercial Installations in California  

E-Print Network (OSTI)

the PV production profile, increases with the price ratio.off-peak prices. Customers who plan to install PV systems (

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2008-01-01T23:59:59.000Z

247

94 IAEI NEWS November.December 2008 www.iaei.org a top to bottom perspective on a pv system  

E-Print Network (OSTI)

by professional engineers. PV arrays may add up to 4­5 pounds per square foot of dead weight to the roof struc inverters (lower cost, less weight, higher efficiency) (NEC 690.35). Although the electrical connectors

Johnson, Eric E.

248

Photovoltaic energy program overview, fiscal year 1991. Programs in utility technologies  

SciTech Connect

The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers` immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

1992-02-01T23:59:59.000Z

249

Energy information systems (EIS): Technology costs, benefit,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy information systems (EIS): Technology costs, benefit, and best practice uses Title Energy information systems (EIS): Technology costs, benefit, and best practice uses...

250

PhD Scholarship: Performance and reliability of Photovoltaic (PV) Systems  

E-Print Network (OSTI)

less than those of alternative future energy-options. Different photovoltaic technologies pose (99.32-99.35 %) compared 27th European Photovoltaic Solar Energy Conference and Exhibition 4354 #12;to for the fate of end-of-life modules. 27th European Photovoltaic Solar Energy Conference and Exhibition 4355 #12

New South Wales, University of

251

Requirements for a Standard Test to Rate the Durability of PV Modules at System Voltage (Presentation)  

DOE Green Energy (OSTI)

Degradation modes in photovoltaic modules under system bias voltage stress are described and classified.

Hacke, P.; Terwilliger, K.; Glick, S.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

2011-02-01T23:59:59.000Z

252

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005  

DOE Green Energy (OSTI)

During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

Botkin, J.

2006-07-01T23:59:59.000Z

253

Photovoltaic Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies October 7, 2013 - 9:22am Addthis Graphic of the eTraining logo Training Available Selecting, Implementing, and Funding Photovoltaic Systems in Federal Facilities: Learn how to select, implement, and fund a photovoltaic system by taking this FEMP eTraining course. This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector. Overview Photovoltaic cells convert sunlight into electricity. Systems typically include a PV module or array made of individual PV cells installed on or near a building or other structure. A power inverter converts the direct current (DC) electricity produced by the PV cells to alternative current

254

NREL: Photovoltaics Research - PV News  

NLE Websites -- All DOE Office Websites (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

255

PV based solar insolation measuring device  

Science Conference Proceedings (OSTI)

The aim of the project is to develop mathematical model of the relationship between incoming solar insolation and PV module output current and temperature. Solar insolation need to be measured in order to optimize the design of solar electricity generating system (SEGS). PV module sizing

Balbir Singh Mahinder Singh; Nor Athirah Zainal

2012-01-01T23:59:59.000Z

256

Field investigation of the relationship between battery size and PV system performance  

SciTech Connect

Four photovoltaic-powered lighting systems were installed in a National Forest Service campground in June of 1991. These systems have identical arrays, loads and charge controllers. The only difference was in the rated capacity of the battery bank for each system. The battery banks all use the same basic battery as a building block with the four systems utilizing either one battery, two batteries, three batteries or four batteries. The purpose of the experiment is to examine the effect of the various battery sizes on the ability of the system to charge the battery, energy available to the load, and battery lifetime. Results show an important trend in system performance concerning the impact of charge controllers on the relation between array size and battery size which results in an inability to achieve the days of battery storage originally designed for.

Stevens, J.; Kratochvil, J. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S. [Ktech Corp., Albuquerque, NM (United States)

1993-07-01T23:59:59.000Z

257

Dependence of delivered energy on power conditioner electrical characteristics for utility-interactive PV systems  

SciTech Connect

In a utility-interactive photovoltaic system, the electrical characteristics of the dc-to-ac power-conditioning unit (inverter) influence the quantity of electrical energy delivered by the system, and therefore, affect the user worth of the system. An analysis of the effect of relevant inverter electrical characteristics on the quantity of system-delivered energy is undertaken using computer simulations of system behavior. Significant conclusions are that: (1) the annual system performance advantage of maximum-power-point voltage tracking is small compared with fixed-dc-input voltage operation; (2) low levels of inverter ac-power consumption during times of zero insolation can significantly degrade system performance; (3) the effect of small changes in the array-to-inverter size ratio on the user worth of the system is small; and (4) most of the system energy is delivered at power levels greater than one-half of the nominal array rating, and consequently, the inverter low-power efficiency is less important than is its full-power efficiency. A formula that approximates the inverter annual throughput efficiency with only four laboratory measurements on the inverter is presented.

Rasmussen, N.E.; Branz, H.M.

1981-01-01T23:59:59.000Z

258

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

259

Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint  

DOE Green Energy (OSTI)

Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

2012-07-01T23:59:59.000Z

260

Building Integrated PV System at Lahaina Civic Center Gymnasium Complex, Maui, Hawaii (MECO)  

Science Conference Proceedings (OSTI)

A 1.2kW building integrated photovoltaic system was designed by Maui Electric Company Ltd (MECO) and installed at the Lahaina Civic Center Gymnasium on the island of Maui, Hawaii. The BIPV structure serves as an extension to an existing covered walkway. The system is powered by the photovoltaic modules and the energy is stored in four gel cell type batteries. An entryway structure was constructed to house the system equipment, an LED display sign and lighted message board. A parking lot light is also pow...

2004-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis and Design of Smart PV Module  

E-Print Network (OSTI)

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane of the module. An auto-connected flyback converter topology processing less than full power is used to provide high gain and perform maximum power point tracking (MPPT). These dc-dc converters interface with cascaded H-bridge inverter modules operating on feed forward control for dc-link voltage ripple rejection. By means of feed forward control, a significant reduction in dc link capacitance is achieved by enduring higher dc link ripple voltages. The dc link electrolytic capacitors are replaced with film capacitors thus offering an improvement in the reliability of the smart PV module. The proposed configuration is capable of producing 120V/ 240V AC voltage. The PV module now becomes a smart AC module by virtue of embedded intelligence to selectively actuate the individual dc-dc converters and control the output AC voltages directly, thus becoming a true plug and power energy system. Such a concept is ideal for curved surfaces such as building integrated PV (BIPV) system applications where gradients of insolation and temperature cause not only variations from PV module-to-PV module but from group-to-group of cells within the module itself. A detailed analysis along with simulation and experimental results confirm the feasibility of the proposed system.

Mazumdar, Poornima

2012-12-01T23:59:59.000Z

262

Furnace Systems Technology Workshop Brochure (PDF)  

Science Conference Proceedings (OSTI)

To register, visit the furnace systems technology ... transfer, atmospheres and purging requirements, effective control systems, and fuel efficiency, production...

263

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

264

Building Technologies Office: Energy Systems Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Energy Systems Innovations to someone by E-mail Share Building Technologies Office: Energy Systems Innovations on Facebook Tweet about Building Technologies Office: Energy Systems Innovations on Twitter Bookmark Building Technologies Office: Energy Systems Innovations on Google Bookmark Building Technologies Office: Energy Systems Innovations on Delicious Rank Building Technologies Office: Energy Systems Innovations on Digg Find More places to share Building Technologies Office: Energy Systems Innovations on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

265

NREL: Energy Analysis - Electric Infrastructure Systems Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Infrastructure Systems Technology Analysis Models and Tools The following is a list of models and tools that can assist in learning more about the listed technologies and...

266

Interconnecting PV on New York City's Secondary Network  

E-Print Network (OSTI)

66 IAEI NEWS January.February 2007 www.iaei.org inspectors demand more answers Perspectives on PV A series of articles on photovoltaic (PV) power systems and the National Electrical Code Inspectors DemandPVsystemorinspectingsuchasystem, therearemanynewfeaturesthatareworthquestioning.Herearesome of the questions that inspectors have raised via e-mail, telephone calls, andduringmyPV

267

High Resolution PV Power Modeling for Distribution Circuit Analysis  

DOE Green Energy (OSTI)

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

268

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network (OSTI)

Connected PV Systems Rated Output Product Reliability SafetyPV system components and installations meet minimum industry standards related to safety, reliability, and

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

269

UNEP Collaborating Centre on Energy and Environment Renewable Energy Technologies  

E-Print Network (OSTI)

systems (SIPHS) · PV Electric (for remote area) * · PV- Pumps · Large scale biogas systems * · Cotton, but potential exists. - Large Scale Biogas Systems ­ Financial: High capital costs, no financing facilities: · biomass fired dryers, sawdust briquetting, sawdust stoves and biogas* - Solar Technologies: · solar crop

270

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

271

Energy, Personal Health and Consumer Systems- Research Themes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy management technologies in the context of Smart Grid PV materials and systems for residential and utility deployments Wearable consumer friendly health monitoring and...

272

Integrating Photovoltaic Systems into Low-Income Housing Developments...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Financing Model and Low-Income Resident Job Training Program SEPTEMBER 2011 SOLAR ENERGY TECHNOLOGIES PROGRAM II Integrating PV Systems into Low-Income Housing...

273

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

274

Optimal Inverter VAR Control in Distribution Systems with High PV Penetration  

E-Print Network (OSTI)

The intent of the study detailed in this paper is to demonstrate the benefits of inverter var control on a fast timescale to mitigate rapid and large voltage fluctuations due to the high penetration of photovoltaic generation and the resulting reverse power flow. Our approach is to formulate the volt/var control as a radial optimal power flow (OPF) problem to minimize line losses and energy consumption, subject to constraints on voltage magnitudes. An efficient solution to the radial OPF problem is presented and used to study the structure of optimal inverter var injection and the net benefits, taking into account the additional cost of inverter losses when operating at non-unity power factor. This paper will illustrate how, depending on the circuit topology and its loading condition, the inverter's optimal reactive power injection is not necessarily monotone with respect to their real power output. The results are demonstrated on a distribution feeder on the Southern California Edison system that has a very ...

Farivar, Masoud; Clarke, Christopher; Low, Steven

2011-01-01T23:59:59.000Z

275

Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999  

DOE Green Energy (OSTI)

This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

Izu, M.

1999-11-09T23:59:59.000Z

276

Fuel Cell Technologies Office: Systems Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Systems Analysis Search Search Help Systems Analysis EERE Fuel Cell Technologies Office Systems Analysis Printable Version Share this resource Send...

277

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

278

Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007  

DOE Green Energy (OSTI)

The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

Wohlgemuth, J.

2009-05-01T23:59:59.000Z

279

Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions  

E-Print Network (OSTI)

from the solar cell. PV has widespread use in niche markets such as consumer electronics, remote area onto a small number of highly efficient solar cells. PV systems mounted on house roofs can be used. Hybrid PV/thermal micro concentrator systems on building roofs are being developed to provide solar PV

Lehman, Brad

280

Solar Technology and Policy Analysis to Support the Systems-Driven Approach  

SciTech Connect

The primary focus of the Systems-Driven Approach (SDA) analysis team is to improve the analytical basis for understanding the system and policy drivers of solar technologies in various markets. Analysis activities during the past year have focused in three inter-related areas: (1) developing long-term market penetration projections for the full set of technologies funded within the Solar Energy Technologies Program, (2) reviewing the Program's out-year cost and performance targets for photovoltaic (PV) technology, and (3) evaluating policies, as well as other factors, that impact the value of solar energy technologies in various markets. This paper will summarize the results of these activities and describe how they relate to the overall SDA effort.

Margolis, R. M.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Technology and Policy Analysis to Support the Systems-Driven Approach  

DOE Green Energy (OSTI)

The primary focus of the Systems-Driven Approach (SDA) analysis team is to improve the analytical basis for understanding the system and policy drivers of solar technologies in various markets. Analysis activities during the past year have focused in three inter-related areas: (1) developing long-term market penetration projections for the full set of technologies funded within the Solar Energy Technologies Program, (2) reviewing the Program's out-year cost and performance targets for photovoltaic (PV) technology, and (3) evaluating policies, as well as other factors, that impact the value of solar energy technologies in various markets. This paper will summarize the results of these activities and describe how they relate to the overall SDA effort.

Margolis, R. M.

2005-01-01T23:59:59.000Z

282

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

Sunshine PV Jump to: navigation, search Name Sunshine PV Place Taiwan Sector Solar Product Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References...

283

NanoPV Corporation | Open Energy Information  

Open Energy Info (EERE)

NanoPV Corporation NanoPV Corporation Jump to: navigation, search Name NanoPV Corporation Place Ewing, New Jersey Zip 8618 Product A New Jersey-based thin film PV cell producer and technology provider. Coordinates 36.638474°, -83.428453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.638474,"lon":-83.428453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Austin Energy- Commercial PV Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

285

Austin Energy- Residential Solar PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

286

Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application  

DOE Green Energy (OSTI)

The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

2010-12-06T23:59:59.000Z

287

Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application  

SciTech Connect

The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

2010-12-06T23:59:59.000Z

288

DC Arc Fault Detection and Circuit Interruption Technologies for Photovoltaic Systems  

Science Conference Proceedings (OSTI)

In the United States, much like the rest of the world, rapid growth in photovoltaic (PV) systems is currently taking place. These systems are being installed in open fields, on parking structures, and on residential or commercial rooftops. Unfortunately, electrical arcing within a PV systems DC circuits has caused some fires. DC-sourced electrical fires are difficult to extinguish if arcing originates from unprotected source circuits within a PV array. Several high-visibility structural fires ...

2013-12-20T23:59:59.000Z

289

CdTe PV: Real and Perceived EHS Risks  

DOE Green Energy (OSTI)

As CdTe photovoltaics reached commercialization, questions have been raised about potential cadmium emissions from CdTe PV modules. Some have attacked the CdTe PV technology as unavoidably polluting the environment, and made comparisons of hypothetical emissions from PV modules to cadmium emissions from coal fired power plants. This paper gives an overview of the technical issues pertinent to these questions and further explores the potential of EHS risks during production, use and decommissioning of CdTe PV modules. The following issues are discussed: (a) The physical and toxicological properties of CdTe, (b) comparisons of Cd use in CdTe PV with its use in other technologies and products, and the (c) the possibility of CdTe releases from PV modules.

Fthenakis, V.; Zweibel, K.

2003-05-01T23:59:59.000Z

290

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

The interactions among PV, solar thermal, and storageseen from Table 8, huge PV, solar thermal as well as storagetechnology as well as PV and solar thermal adoption, two

Stadler, Michael

2009-01-01T23:59:59.000Z

291

Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint  

DOE Green Energy (OSTI)

This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

Bank, J.; Mather, B.

2013-03-01T23:59:59.000Z

292

DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010  

DOE Green Energy (OSTI)

This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

Not Available

2010-02-01T23:59:59.000Z

293

Building Technologies Office: Simplified Space Conditioning Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simplified Space Conditioning Systems for Energy Efficient Homes Expert Meeting to someone by E-mail Share Building Technologies Office: Simplified Space Conditioning Systems for...

294

The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1  

DOE Green Energy (OSTI)

This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

Long, R.C.

1996-12-31T23:59:59.000Z

295

Utility-scale grid-tied PV inverter reliability workshop summary report.  

DOE Green Energy (OSTI)

A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

2011-07-01T23:59:59.000Z

296

Utility-scale grid-tied PV inverter reliability workshop summary report.  

SciTech Connect

A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

2011-07-01T23:59:59.000Z

297

System dynamic model and charging control of lead-acid battery for stand-alone solar PV system  

SciTech Connect

The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m{sup 2}. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). (author)

Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y. [New Energy Center, Department of Mechanical Engineering, National Taiwan University, Taipei (China)

2010-05-15T23:59:59.000Z

298

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

299

Report on PV Test Sites and Test Prepared for the  

E-Print Network (OSTI)

Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test

300

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...  

Open Energy Info (EERE)

is in addition to the existing standards for residential and commercial PV systems. Local solar installers have reported that being able to refer permitting officials to these MAG...

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network (OSTI)

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

302

CEFIA - Residential Solar PV Rebate Program (Connecticut) | Open...  

Open Energy Info (EERE)

project. Factors considered in calculating the rebate include: PV panel selection, inverter efficiency, system orientation and tilt, and shading on the site. Participation by...

303

CCEF - Affordable Housing Initiative Solar PV Rebate Program...  

Open Energy Info (EERE)

project. Factors considered in calculating the rebate include: PV panel selection, inverter efficiency, system orientation and tilt, and shading on the site. For multi-family...

304

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

305

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

306

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

DOE Green Energy (OSTI)

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

307

PV array simulator development and validation.  

Science Conference Proceedings (OSTI)

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

308

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

DOE Green Energy (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

309

Augmented reality technologies, systems and applications  

Science Conference Proceedings (OSTI)

This paper surveys the current state-of-the-art of technology, systems and applications in Augmented Reality. It describes work performed by many different research groups, the purpose behind each new Augmented Reality system, and the difficulties and ... Keywords: AR, Augmented reality, Augmented reality applications, Augmented reality iphone4, Augmented reality on mobile devices, Augmented reality systems, Augmented reality technologies

Julie Carmigniani; Borko Furht; Marco Anisetti; Paolo Ceravolo; Ernesto Damiani; Misa Ivkovic

2011-01-01T23:59:59.000Z

310

Available Technologies: Dynamic Solar Glare Blocking System  

Dynamic Solar Glare Blocking System IB-2415. APPLICATIONS OF TECHNOLOGY: ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE UNIVERSITY OF CALIFORNIA.

311

NREL: Energy Analysis - Electric Infrastructure Systems Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Analysis NREL's energy analysis supports distribution and interconnection R&D, which is responsible for distributed resources' system integration. Industrial...

312

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Conference Proceedings (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

313

Gulf Power - Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

314

Interline photovoltaic (I-PV) power plants for voltage unbalance compensation  

E-Print Network (OSTI)

This paper proposes a stationary-frame control method for voltage unbalance compensation using Interline Photovoltaic (I-PV) power system. I-PV power systems are controlled to compensate voltage unbalance autonomously. The ...

Moawwad, Ahmed

315

Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies | Open  

Open Energy Info (EERE)

Fuel Systems Technologies Worldwide Inc Quantum Technologies Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place Irvine, California Zip CA 92614 Sector Hydro, Hydrogen, Solar, Vehicles, Wind energy Product A California-based company with new energy activities in powertrains for hybrid vehicles, gas and hydrogen storage equipment manufacturing, and wind and solar energy. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

317

Concentrator Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use...

318

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network (OSTI)

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

319

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network (OSTI)

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research (unrecuperated) with an ultra- low nitrous oxide (NOx) boiler burner for firetube boilers. The project goals

320

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

Research Energy Systems Integration Environmentallyenergy use, combined with the capability of the BMS system, including alarms to identify anomalies. Integration

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessing the impacts of feed in tariffs and metering configuration (gross or net), on the payback period for an average solar PV system in metropolitan Melbourne.  

E-Print Network (OSTI)

??With an increasing customer focus on renewable energy and the perceived benefits from widespread solar photovoltaic (PV) generation there has been a rapid increase in (more)

Bailey, Darren

2009-01-01T23:59:59.000Z

322

An overview of NREL's PV solar radiation research task activities and results  

SciTech Connect

This paper presents an overview of the recent activities and results of the Photovoltaics (PV) Solar Radiation Research task of NREL's PV Advanced Research and Development (PVAR D) Project. Topics covered include the Atmospheric Optical Calibration System (AOCS) and instrumentation systems for monitoring and characterizing the solar irradiance available to PV systems. Both types of instrumentation systems and activities are required for a thorough understanding of PV device performance and design.

Hulstrom, R.L.; Cannon, T.W.; Stoffel, T.; Riordan, C.J. (National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, Colorado 80401 (United States))

1992-12-01T23:59:59.000Z

323

Bosch Solar Sustainable Energy Technologies JV | Open Energy...  

Open Energy Info (EERE)

JV Jump to: navigation, search Name Bosch Solar & Sustainable Energy Technologies JV Place Ontario, Canada Product Canada-based JV to distribute thin-film PV systems in the Ontario...

324

Photovoltaic Technology Incubator Awards  

SciTech Connect

This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

2007-06-01T23:59:59.000Z

325

Building Energy Software Tools Directory: PV*SOL  

NLE Websites -- All DOE Office Websites (Extended Search)

PV*SOL PV*SOL PV*SOL logo. PV*SOL Pro is a program for the design and simulation of grid-connected and off-grid photovoltaic systems. You can create your system using a wide range of modules (including thin-film and crystalline) and the program determines the size of the system with the roof layout tool. After testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for engineers, designers, installers, roofing specialists, and electrical contractors or building technicians. Screen Shots Keywords photovoltaic systems simulation, planning and design software, grid-connected systems, stand-alone systems Validation/Testing N/A Expertise Required No special expertise or training needed.

326

Progress in photovoltaic system and component improvements  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

327

Progress in photovoltaic system and component improvements  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

328

Experimental investigation and modeling of a direct-coupled PV/T air collector  

Science Conference Proceedings (OSTI)

Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

2010-11-15T23:59:59.000Z

329

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLARIZE GUIDEBOOK: SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems 1 ACKNOWLEDGEMENTS This guide is an updated version of the original The Solarize Guidebook, published in February 2011 (see www.nrel.gov/docs/fy11osti/50440.pdf), which was developed for the National Renewable Energy Laboratory and the City of Portland. The original Solarize campaigns were initiated and replicated by Portland's Neighborhood Coalition network with help from the Energy Trust of Oregon, City of Portland, and Solar Oregon. AUTHORS Linda Irvine, Alexandra Sawyer and Jennifer Grove, Northwest Sustainable Energy for Economic Development (Northwest SEED). Northwest SEED is solely responsible for errors and omissions. CONTRIBUTORS Lee Rahr, Portland Bureau of Planning and Sustainability

330

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint  

DOE Green Energy (OSTI)

We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

Ullal, H. S.; von Roedern, B.

2007-09-01T23:59:59.000Z

331

Thermal and Electrical Performance Evaluation of PV/T Collectors in UAE.  

E-Print Network (OSTI)

?? Photovoltaic Thermal/Hybrid collectors are an emerging technology that combines PV and solar thermal collectors by producing heat and electricity simultaneously. In this paper, thermal (more)

Kaya, Mustafa

2013-01-01T23:59:59.000Z

332

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

333

Status of High Performance PV: Polycrystalline Thin-Film Tandems  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

Symko-Davies, M.

2005-02-01T23:59:59.000Z

334

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

refrigeration, and fire protection systems. Figure 2.1.2-1: CalSTRS Headquarters, Sacramento, CA (Mechanical design

2013-01-01T23:59:59.000Z

335

NREL: Energy Analysis - Solar Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Technology Analysis Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate PV system configurations and applications. R&D goals, which are supported by solar technology analysis, include: Investigating the steps needed to improve the impact of PV technologies in the marketplace through technical R&D, market analyses, and value and policy analyses

336

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

Figure 5. Low Storage and PV Price (run 3) Diurnal Heat6. Low Storage and PV Price (run 3) Diurnal ElectricityFigure 9. Low Storage and PV Price (run 3) Diurnal Heat

Stadler, Michael

2009-01-01T23:59:59.000Z

337

BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE  

E-Print Network (OSTI)

installed over 1.5 MW of rooftop PV [2]. These systems generate value primarily through the energy produced and the intermittent nature of the solar resource create challenges to realizing the capacity value of PV installations

Perez, Richard R.

338

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

provide to PV system purchasers? And what implications might they hold for stateutility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report...

339

Ambiental PV | Open Energy Information  

Open Energy Info (EERE)

Ambiental PV Ambiental PV Jump to: navigation, search Name Ambiental PV Place Bahia, Brazil Zip 40140-380 Sector Carbon Product Bahia-based carbon consultancy firm. References Ambiental PV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ambiental PV is a company located in Bahia, Brazil . References ↑ "Ambiental PV" Retrieved from "http://en.openei.org/w/index.php?title=Ambiental_PV&oldid=342095" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 186306960

340

PMMA Acrylic in a Stress-Response Framework for PV Materials  

E-Print Network (OSTI)

PMMA Acrylic in a Stress-Response Framework for PV Materials Laura S. Bruckman Materials Science, VuGraph 2 Motivation: Lifetime & Degradation Science for Photovoltaics Need scientific basis for PV, components, systems for PV · System lifetime performance Determine degradation modes, mechanisms and rates

Rollins, Andrew M.

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

342

Overview of Capabilities Conversion System Technology  

E-Print Network (OSTI)

-scale composite structures Advanced coatings Laser processing Distributed Generation & Smart Grid Broad in technology demonstration and transition to application. Modeling and control architecture of the SmartGrid - Condition Based Maintenance - Integrated Health Management System Design & Optimization - Automated

Lee, Dongwon

343

Scanning the Technology Energy Infrastructure Defense Systems  

E-Print Network (OSTI)

of their own telecommunications systems, which often consist of backbone fiber-optic or microwave connectingScanning the Technology Energy Infrastructure Defense Systems MASSOUD AMIN, SENIOR MEMBER, IEEE systems and to develop de- fense plans to protect the network against extreme contingencies caused

Amin, S. Massoud

344

Production techniques of PV's and polycrystalline PV performance analyses for permanent resistive load  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) panels which are used to convert solar energy to electrical energy one of the fastest growing source on energy sector. Their efficiencies are increasing day by day with new technologies. Photovoltaic's average efficiencies are still ... Keywords: D.C. loads, energy consumption, photovoltaic, production techniques

Safak Sa?lam; Gkhan Koyi?it; Nevzat Onat

2009-07-01T23:59:59.000Z

345

Ukiah Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 7,000; Commercial: 20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive Rate for systems installed between 7/1/12 and 6/30/13: $1.40/watt AC; incentive may be reduced based on expected performance Provider City of Ukiah Through Ukiah Utilities' PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of 1 MW. In keeping with SB1, the incentive level will decrease annually on July 1 over the 10 year life of the program. Rebates are available on a first come, first

346

City of Palo Alto Utilities - PV Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Partners PV Partners City of Palo Alto Utilities - PV Partners < Back Eligibility Commercial Local Government Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate Incentives available for first 1 MW Program Info Start Date July 2007 State California Program Type Utility Rebate Program Rebate Amount Systems Systems 30 kW and larger: Performance-based incentive (PBI), based on actual monthly energy produced (kWh) for 60 month term. For current rebate levels, visit the program website below. Provider City of Palo Alto Utilities The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10 years, is divided

347

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

348

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

349

U.S. Department of Energy PV Roadmaps | Open Energy Information  

Open Energy Info (EERE)

PV Roadmaps PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Resource Type Publications, Guide/manual Website http://www1.eere.energy.gov/so References U.S. Department of Energy PV Roadmaps[1] Abstract Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from universities and private industry. "Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from

350

LBNL-6484E Exploring California PV Home Premiums Ben Hoen, Geoffrey T. Klise, Joshua Graff-Zivin, Mark  

NLE Websites -- All DOE Office Websites (Extended Search)

484E 484E Exploring California PV Home Premiums Ben Hoen, Geoffrey T. Klise, Joshua Graff-Zivin, Mark Thayer, Joachim Seel and Ryan Wiser Environmental Energy Technologies Division December 2013 Download from: http://emp.lbl.gov/publications/exploring-california-pv-home-premiums This research builds on work published in 2011 entitled "An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California," LBNL- 4476E, which can be downloaded here: http://eetd.lbl.gov/ea/emp/reports/lbnl-

351

SunShot Initiative: Regional Test Centers for Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Get the Adobe Flash Player to see this video. Text Alternative At the Regional Test Centers (RTCs) throughout the United States, DOE provides photovoltaic (PV) and concentrating photovoltaic (CPV) validation testing and systems monitoring for businesses and other industry stakeholders. The primary mission of the RTCs is to develop standards and guidelines for validating the performance and operation of PV modules and systems. The RTCs also serve as test beds for large-scale systems and provide independent validation of PV performance and reliability. By establishing the technical basis for bankability, the RTCs serve to increase investor confidence in PV technologies. These efforts support the SunShot Initiative's goal to increase the penetration of large-scale solar energy systems to enable solar-generated power to account for 15% to 18% of America's electricity generation by 2030.

352

The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

Hughes, K.R.; Moore, N.L.

1994-09-01T23:59:59.000Z

353

PV Powered Inc | Open Energy Information  

Open Energy Info (EERE)

PV Powered Inc PV Powered Inc Place Bend, Oregon Zip 97702 Product Oregon-based manufacturer of inverters for PV systems. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Gansu PV Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Gansu PV Co Ltd Gansu PV Co Ltd Place Lanzhou, Gansu Province, China Zip 730000 Sector Solar Product Gansu PV Co Ltd is active in manufacturing, installing and servicing SHS and small portable solar lighting systems. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

356

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energys electric grid system in southern Nevada. It analyzes the ability of NV Energys generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

357

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

358

New and Underutilized Technology: Integrated Daylighting Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Daylighting Systems Integrated Daylighting Systems New and Underutilized Technology: Integrated Daylighting Systems October 4, 2013 - 4:56pm Addthis The following information outlines key deployment considerations for integrated daylighting systems within the Federal sector. Benefits Integrated daylighting systems can be combined with electronic dimmable fluorescent ballasts, photo sensors, and occupancy sensors where appropriate. Network components, workstation controls, and building management options can also be integrated to provide significant savings on applied systems. Application Integrated daylighting systems are applicable in perimeter and interior spaces with daylight exposure via windows and skylights. Key Factors for Deployment Acceptable levels of daylight are required and must be factored into

359

Most new residential solar PV projects in California program ...  

U.S. Energy Information Administration (EIA)

In 2012 and 2013, more than two ... leasing company, as the PV system's ... having someone else build and maintain the system by having to share some of the available ...

360

Colton Public Utilities - PV Rebate Program (California) | Open...  

Open Energy Info (EERE)

of more than 10% of the system's rated output. 5 year or better warranty on the inverter. Must comply with California Energy Commission Standards for PV systems and all...

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Home | Buildings Technology & Urban Systems Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Buildings & Urban Systems Buildings Lab Buildings & Urban Systems Buildings Technology & Urban Systems Department Search Search Home About Us Groups Tools & Guides Facilities Publications News Links Contact Us Staff The Building Technology and Urban Systems Department (BTUS) works closely with industry to develop technologies for buildings that increase energy efficiency, and improve the comfort, health, and safety of building occupants. Berkeley Lab Hosts 5 Emerging Leaders During TechWomen 2013 As part of TechWomen 2013, emerging leaders from around the world toured a number of scientific facilities in the Bay Area, including the Advanced Light Source at Berkeley Lab. Pho Read More The Retrocommissioning Sensor Suitcase Brings Energy Efficiency to Small Commercial Buildings The data module communicates wirelessly with the smart pad, which launches

362

Mixed-Technology System-Level Simulation  

Science Conference Proceedings (OSTI)

This paper describes a computationally efficient method to simulate mixed-domain systems under the requirements of a system-level framework. The approach is the combined use of Modified Nodal Analysis (MNA) for the representation of a mixed-technology ... Keywords: MEM simulation, microsystem modeling and simulation, modified nodal analysis (MNA), optical MEM CAD tool, optoelectronic simulation, piecewise linear simulation (PWL)

J. A. Martinez; T. P. Kurzweg; S. P. Levitan; P. J. Marchand; D. M. Chiarulli

2001-10-01T23:59:59.000Z

363

Common Mode Voltage in case of Transformerless PV Inverters Connected to the Grid  

E-Print Network (OSTI)

through the parasitic capacitance of the PV panels, can reach very high values. A common-mode model based grid connected PV system with the modeled parasitic capacitances, marked with grey lines, presentCommon Mode Voltage in case of Transformerless PV Inverters Connected to the Grid T. KEREKES* R

Kerekes, Tamas

364

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration to someone by E-mail Share Vehicle Technologies Office: Thermal Control and System Integration on Facebook Tweet about Vehicle Technologies...

365

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

City of Healdsburg - PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Healdsburg - PV Incentive Program Healdsburg - PV Incentive Program City of Healdsburg - PV Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $3,280 Commercial: $15,600 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $0.82/watt AC Commercial: $0.78/watt AC Provider City of Healdsburg Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities put into place programs to assure that 3000 megawatts (MW) of solar installations on homes is in place within 10 years) the incentive level will decrease annually over the 10 year life of the program. The

367

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

368

Technology support for initiation of high-throughput processing of thin-film CdTe PV modules. Phase 1 technical report, March 14, 1995--March 13, 1996  

DOE Green Energy (OSTI)

Progress has been made in the important areas of stability, advanced deposition techniques, efficiency, the back contact, no-contact film diagnostics (photoluminescence) and Cd waste control. The progress in stability has been in both the demonstration of devices maintaining at least 90% of the initial efficiency for over 19,000 hours of continuous light soak and the development of methods which can accurately predict long term behavior based on the first 5,000--10,000 hours of life. Experiments were conducted to determine if device behavior could be accelerated with thermal or voltage stresses. Notable achievements in deposition technology include depositing CdTe on a 3,600 cm{sup 2} substrate at 600 torr and designing and fabricating a new deposition feed system with a remote semiconductor source. The efficiency has been increased on small area devices to 13.3% by decreasing the thickness of the CdS and of the glass substrate. Work also focused on using a high resistivity SnO{sub 2} buffer layer between the TCO and thin CdS to help preserve the open-circuit voltage while increasing the current-density. The back contacting process has been simplified by replacing the wet post-deposition etch with a vapor Te deposition step on small area devices. Results show that the devices perform comparably in efficiency but better in stability under light-soaking and open-circuit conditions. Preliminary studies of the correlation between CdS photoluminescence after the chloride treatment and the final device efficiency have shown a positive correlation which may be applicable for in-line quality control. The final area of progress was through the successful demonstration of preventing at least 99.9% of all incoming Cd from leaving in an uncontrolled manner through the land, air or water.

Sasala, R.; Powell, R.; Dorer, G. [Solar Cells, Inc., Toledo, OH (United States)

1996-06-01T23:59:59.000Z

369

PNNL Technology Systems Analysis Group | Open Energy Information  

Open Energy Info (EERE)

Technology Systems Analysis Group Technology Systems Analysis Group Jump to: navigation, search Logo: Technology Systems Analysis Name Technology Systems Analysis Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tsa.pnl.gov/ References Technology Systems Analysis [1] "The Technology Systems Analysis group is part of the Pacific Northwest National Laboratory's Energy Environment Directorate. Our signature capabilities include sustainable design and development, building systems and energy technology analysis, and carbon management. We work with government and private sector clients to solve energy, environmental, and economic systems challenges, such as global climate change, sustainable development, energy systems. Examples of our current work include

370

TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM  

Science Conference Proceedings (OSTI)

A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

H. KIM; H. CHA; ET AL

2001-02-01T23:59:59.000Z

371

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

372

Kauai Island Utility Co-op (KIUC) PV integration study.  

DOE Green Energy (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

373

DOE/NREL Inner Mongolia PV/Wind Hybrid Systems Pilot Project: A Post-Installation Assessment  

DOE Green Energy (OSTI)

This report assesses the Inner Mongolia Pilot Project, which disseminates wind-solar hybrid systems to a rural and remote population.

Stroup, K. K.

2005-02-01T23:59:59.000Z

374

Energy Systems and Population Health  

E-Print Network (OSTI)

small (20 - 100 Wp) solar PV systems have been commerciallyGasification-based) PV (Residential) Solar Thermal (Power

2004-01-01T23:59:59.000Z

375

Technology support for initiation of high-throughput processing of thin-film CdTe PV modules. Phase 3 final technical report, 14 March 1997--1 April 1998  

SciTech Connect

Thin-film PV devices based on cadmium telluride have been identified as one of the candidates for high-performance, low-cost source of renewable electrical energy. Roadblocks to their becoming a part of the booming PV market growth have been a low rate of production and high manufacturing cost caused by several rate-limiting process steps. Solar Cells Inc. has focused on the development of manufacturing processes that will lead to high volume and low-cost manufacturing of solar cells and on increasing the performance of the present product. The process research in Phase 3 was concentrated on further refinement of a newly developed vapor transport deposition (VTD) process and its implementation into the manufacturing line. This development included subsystems for glass substrate transport, continuous feed of source materials, generation of source vapors, and uniform deposition of the semiconductor layers. As a result of this R and D effort, the VTD process has now achieved a status in which linear coating speeds in excess of 8 ft/min have been achieved for the semiconductor, equal to about two modules per minute, or 144 kW per 24 hour day. The process has been implemented in a production line, which is capable of round-the-clock continuous production of coated substrates 120 cm x 60 cm in size at a rate of 1 module every four minutes, equal to 18 kW/day. Currently the system cycle time is limited by the rate of glass introduction into the system and glass heating, but not by the rate of the semiconductor deposition. A new SCI record efficiency of 14.1% has been achieved for the cells.

Powell, R.C.; Dorer, G.L.; Jayamaha, U.; Hanak, J.J. [Solar Cells, Inc., Toledo, OH (United States)

1998-09-01T23:59:59.000Z

376

Small Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

377

Small Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

378

City of Lompoc Utilities - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program City of Lompoc Utilities - PV Rebate Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% the system cost, up to $50,000 Program Info Funding Source utility surcharge State California Program Type Utility Rebate Program Rebate Amount $2.00 per watt Provider Customer Service City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the cost of the system, up to a maximum of $50,000. To qualify for the rebate the system must meet all the criteria as defined by the Lompoc City Electric interconnection agreement for self-generating electric systems and the requirements set forth by the California Energy

379

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

380

Technipower Systems formerly Solomon Technologies | Open Energy Information  

Open Energy Info (EERE)

Technipower Systems formerly Solomon Technologies Technipower Systems formerly Solomon Technologies Jump to: navigation, search Name Technipower Systems (formerly Solomon Technologies) Place Danbury, Connecticut Zip 6810 Sector Solar, Vehicles Product Connecticut-based manufacturer of electromechanical power systems. The firm provides solar ground mounted systems and electric hybrid technologies for electric vehicles. References Technipower Systems (formerly Solomon Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technipower Systems (formerly Solomon Technologies) is a company located in Danbury, Connecticut . References ↑ "Technipower Systems (formerly Solomon Technologies)" Retrieved from

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Techno-Economic Assessment of Solar PV/Thermal System for Power and Cooling Generation in Antalya, Turkey.  

E-Print Network (OSTI)

?? In this study a roof-top PVT/absorption chiller system is modeled for a hotel building in Antalya, Turkey to cover the cooling demand of the (more)

Kumbasar, Serdar

2013-01-01T23:59:59.000Z

382

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings  

E-Print Network (OSTI)

In the market, the embodied energy payback time (EPBT) is the scale to measure and compare the viability of PV systems against other technologies. Although the impact of PV panels on the operational energy is significant, it is not considered at the time of EPBT estimation. Including savings in operational energy gained over the PV system life leads to shortening the total EPBT. This study shows that the ratio between PV outputs and savings in energy due to PV panels is about 1:3. For the southern and western PV facades of the UAE office buildings, the embodied energy payback time is 12-13 years. When reductions in operational energy are considered the payback time can be reduced to 3 years. It is obvious that the reduction in the operational energy due to the PV panels represents an important factor when the EPBT is estimated.

Radhi, H.

2010-01-01T23:59:59.000Z

383

BRC-Systems and Emerging Technologies Security Research ...  

Science Conference Proceedings (OSTI)

... Systems and Emerging Technologies Security Research Group Biometric Standards and Related Technical Developments. ...

2013-08-01T23:59:59.000Z

384

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Advisory Committee Technology Development Transmission Planning Smart Grid Energy Delivery Systems Cybersecurity Control Systems Security News Archive Control...

385

Austin Energy - Residential Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a 1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to 15,000 per home installation and...

386

Merced Irrigation District - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

387

Perspective on International PV Challenge & Opportunities for Rural Development  

DOE Green Energy (OSTI)

International market opportunities for the sale and deployment of photovoltaic (PV) systems abound and will continue to out-pace domestic, grid-connected opportunities for the foreseeable future.

Taylor, R. W.

2000-01-01T23:59:59.000Z

388

City of Sunset Valley - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 1.00W up to 3,000 W The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as...

389

Potential Vorticity (PV) Thinking in Operations: The Utility of Nonconservation  

Science Conference Proceedings (OSTI)

The use of the potential vorticity (PV) framework by operational forecasters is advocated through case examples that demonstrate its utility for interpreting and evaluating numerical weather prediction (NWP) model output for weather systems ...

Michael J. Brennan; Gary M. Lackmann; Kelly M. Mahoney

2008-02-01T23:59:59.000Z

390

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

391

Technology support for high-throughput processing of thin-film CdTe PV modules: Annual technical report, Phase 1, 1 April 1998--31 March 1999  

DOE Green Energy (OSTI)

This report describes work performed by First Solar, L.L.C., during Phase 1 of this 3-year subcontract. The research effort of this subcontract is divided into four areas: (1) process and equipment development, (2) efficiency improvement, (3) characterization and analysis, and (4) environmental, health, and safety. As part of the process development effort, the output of the pilot-production facility was increased. More than 6,200 8-ft{sup 2} CdS/CdTe plates were produced during Phase 1--more than double the total number produced prior to Phase 1. This increase in pilot-production rate was accomplished without a loss in the PV conversion efficiency: the average total-area AM1.5 efficiency of sub-modules produced during the reporting period was 6.4%. Several measurement techniques, such as large-area measurement of CdS thickness, were developed to aid process improvement, and the vapor-transport deposition method was refined. CdTe thickness uniformity and reproducibility were improved. From a population of more than 1,100 plates, the mean standard deviation within a plate was 7.3% and the standard deviation of individual-plate averages was 6.8%. As part of the efficiency-improvement task, research was done on devices with thin-CdS and buffer layers. A cell with 13.9% efficiency was produced on a high-quality substrate, and higher than 12% efficiency was achieved with a cell with no CdS layer. A number of experiments were performed as part of the characterization and analysis task. The temperature dependence of CdTe modules was investigated; the power output was found to be relatively insensitive (<5%) to temperature in the 25 to 50 C range. As part of the characterization and analysis task, considerable effort was also given to reliability verification and improvement. The most carefully monitored array, located at the NREL, was found to have unchanged power output within the margin of error of measurement (5%) after 5 years in the field. The first round of National CdTe Team stability tests were concluded. One back-contact formulation resulted in cells that increased in efficiency as a result of 9,700 hours of light soaking. As part of the environmental, health, and safety task, an emissions survey was performed for the pilot-production facility. For production of 360 modules/day, it was predicted that the cadmium emissions would be only 0.015% of the level that would require any permitting; however, methanol emissions may require permitting if anticipated process changes are not implemented. Process improvements in edge delete, CdS material preparation, waste compaction, CdCl{sub 2}-vapor collection, and wastewater treatment were made, resulting in reduced costs, reduced emissions, and improved operator safety.

Rose, D.H.; Powell, R.C.; Grecu, D.; Jayamaha, U.; Hanak, J.J.; Bohland, J.; Smigielski, K.; Dorer, G.L.

1999-10-25T23:59:59.000Z

392

Technology Evaluation and Integration Group: Center for Transportation Technologies and Systems  

DOE Green Energy (OSTI)

Fact sheet describes the specialized work done by NREL's Technology Evaluation and Integration Group in the Center for Transportation Technologies and Systems.

Not Available

2008-08-01T23:59:59.000Z

393

Continuous Circulation System: a new enabling technology  

E-Print Network (OSTI)

Wellbore problems have existed since the very first oil well was drilled. These problems have cost the oil industry millions of dollars because they lead to substantial loss of valuable rig time, or even loss of the well. Some of these problems are caused by the interruption of the drilling-fluid circulation. This interruption normally occurs when making drillpipe connections. Interruption of circulation causes wellbore problems like ballooning of the well, gelation of drilling mud, and settling of drilled cuttings. It also causes some operating problems in underbalanced drilling. A new technology in drilling has been introduced through a joint industry project to overcome problems caused by interruption of circulation. This technology is the Continuous Circulation System (CCS). The CCS is capable of achieving continuous circulation while making/breaking drillpipe connections. This research highlights the significance of the new technology by investigating the problems caused by interruption of circulation. It presents some potential operational problems regarding the new system and discusses the possibility to achieve continuous drilling. The economics of the new technology is presented. This study found that the CCS would prevent significant wellbore problems from occurring, hence saving valuable rig time and money. It also showed that CCS would be a valuable addition to the equipment used in underbalanced drilling. Continuous drilling while making connections can be achieved using mud-motors. On the other hand, it is not feasible through rotation of the drillstring under the current technology. Finally, the suitable marketing strategy for this phase of the new technology is to offer it for lease rather than for sale.

Kenawy, Walid F.

2002-01-01T23:59:59.000Z

394

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

395

PV Manufacturing R&D Accomplishments and Status  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) PV Manufacturing Research and Development Project has worked for 11 years in partnership with the U.S. photovoltaic industry to reduce manufacturing costs while significantly scaling up production capacity. Over this period, the PV Manufacturing R&D Project has issued seven solicitations for partnerships that have resulted in over 50 cost-shared R&D subcontracts that addressed the cost and capacity goals of the Project, including 10 that are currently active. The previous and current contracts have typically focused on addressing Project goals in one of two areas: module manufacturing and balance-of-systems (BOS)/systems work. The majority of the DOE investment has been targeted toward module manufacturing. The partnerships have resulted in a significant and measurable increase in PV module/systems production capacity, a decrease in PV manufacturing costs, and a subsequent return on the joint public and private investments facilitated by the Project.

Mooney, D.; Mitchell, R.; Witt, E.; King, R.; Ruby, D.

2003-11-01T23:59:59.000Z

396

Lassen Municipal Utility District - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

397

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

398

Full Steam Ahead for PV in US Homes?  

Science Conference Proceedings (OSTI)

In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

2009-01-15T23:59:59.000Z

399

Riverside Public Utilities - Residential PV Incentive Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentive Program PV Incentive Program Riverside Public Utilities - Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 13,000 or 50% of project cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. ''''' The Residential Photovoltaic (PV) System rebate program provides incentives to Riverside Public Utilities customers who purchase and install qualifying photovoltaic systems on their homes. For Fiscal Year 2013, the rebate amount was $2.00 per watt AC and cannot exceed 50% of the total system cost

400

PNNL Technology Systems Analysis Group | Open Energy Information  

Open Energy Info (EERE)

Analysis Group Analysis Group (Redirected from Technology Systems Analysis) Jump to: navigation, search Logo: Technology Systems Analysis Name Technology Systems Analysis Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tsa.pnl.gov/ References Technology Systems Analysis [1] "The Technology Systems Analysis group is part of the Pacific Northwest National Laboratory's Energy Environment Directorate. Our signature capabilities include sustainable design and development, building systems and energy technology analysis, and carbon management. We work with government and private sector clients to solve energy, environmental, and economic systems challenges, such as global climate change, sustainable development, energy systems. Examples of our current work include

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Integrating High Penetrations of PV into Southern California  

Science Conference Proceedings (OSTI)

California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

2011-01-01T23:59:59.000Z

402

Transmission System Efficiency Technology and Methodology Assessment  

Science Conference Proceedings (OSTI)

Reducing the carbon footprint of the electric power industry and increasing the role of renewable energy are crucial parts of a strategy for the greening of electric energy supply. This work describes the technological options available to reduce losses in transmission systems. It presents a comprehensive framework that can be applied consistently and uniformly to all energy efficiency demonstration projects to identify and quantify the various types of benefits in a standardized manner. The framework id...

2010-12-15T23:59:59.000Z

403

Urban Network Systems - Technologies and Best Practices  

Science Conference Proceedings (OSTI)

This report describes the results of Phase II of a multiyear effort to identify noteworthy practices in managing urban network systems. The report profiles the practices (people, processes, and technology) in place at one host utility, The Illuminating Company (CEI), a FirstEnergy company serving the greater Cleveland area. In addition, this report highlights the similarities and differences in practices in place at The Illuminating Company and at two other utilities, Seattle City Light (SCL) and Con Edi...

2009-06-30T23:59:59.000Z

404

Chemical partitioning technologies for an ATW system  

Science Conference Proceedings (OSTI)

A roadmap for the development of the technology of an Accelerator Transmutation of Waste (ATW) system was recently submitted to the U.S. Congress by the U.S. Department of Energy. One element of this roadmap was a development plan for the separations technologies that would be required to support an ATW system operating with a sustained feed of 1,450 tonnes of commercial light water reactor spent fuel per year. A Technical Working Group was constituted to identify appropriate separations processes and prepare a plan for their development. The baseline process selected combines aqueous and pyrochemical processes to enable efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel in the head-end step. For the recycle of unburned transuranics and newly-generated technetium and iodine from irradiated ATW transmuter assemblies, which were given to be metallic in form, a second and quite different pyrochemical process was identified. The diversity of processing methods was chosen for both technical and economic factors; aqueous methods are deemed to be better suited to large tonnages of commercial oxide spent fuel, while it is considered that pyrochemical processes can be exploited effectively in smaller-scale operations, particularly when the application is to metallic fuels or targets. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

Laidler, James J. (VISITORS); Burris, Leslie (VISITORS); Collins, Emory D. (TANKS ADVISORY PANEL); Duguid, James (Duke Engineering); Henry, Roger N. (UNKNOWN); Hill, Julian G. (BATTELLE (PACIFIC NW LAB)); Karell, Eric J. (UNKNOWN); Mcdeavitt, Sean M. (..); Thompson, Major C. (WESTINGHOUSE SAVANNAH RIV); Williamson, Mark A. (Los Alamos National Lab); Willitt, James L. (Argonne National Laboratory)

2000-11-01T23:59:59.000Z

405

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

406

Plumas-Sierra REC - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Plumas-Sierra REC - PV Rebate Program < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $6,000 for residential; $12,000 for small commercial, agricultural and non-profit applications; $20,000 for large commercial and industrial applications Program Info State California Program Type Utility Rebate Program Rebate Amount 2012 rebate level: $2.09/watt (AC) Incentives will be adjusted based on expected performance. Provider Plumas-Sierra REC Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25 kW; the rebate amount is based on the installed capacity. The rebate level will decreases

407

Survey of U.S. Line-Connected Photovoltaic Systems  

Science Conference Proceedings (OSTI)

More than 200 line-connected photovoltaic (PV) systems are now operating in 27 states, totaling more than 11 MW. Experiences at these installations provide background for utility examination of PV technology as an opportunity for pollution-free generation, demand-side management, and potential business investment.

1989-03-15T23:59:59.000Z

408

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

409

Solar PV Market Update, Volume 4: Q4 2012  

Science Conference Proceedings (OSTI)

Volume 4 of EPRIs quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight both macro and micro industry developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report discusses the increasing impact of balance-of-system (BOS) ...

2012-12-31T23:59:59.000Z

410

Advanced Metering Infrastructure (AMI) for Distributed Solar (PV) Integration  

Science Conference Proceedings (OSTI)

This report summarizes the findings from a survey on two-way communication with distributed photovoltaic (PV) generation. The survey focused specifically on exploring how advanced metering infrastructure might be used as the communication means for the integration of residential PV systems. This investigation is one of several data-gathering projects in the Electric Power Research Institutes (EPRIs) Renewables Integration program (P174). Together, these projects and the data they provide will lay the ...

2009-09-09T23:59:59.000Z

411

Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice  

SciTech Connect

Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-06-01T23:59:59.000Z

412

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

413

Innovative technology summary report: Transportable vitrification system  

Science Conference Proceedings (OSTI)

At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

NONE

1998-09-01T23:59:59.000Z

414

PSCAD Modules Representing PV Generator  

SciTech Connect

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

415

Decade of PV Industry R and D Advances in Silicon Module Manufacturing  

DOE Green Energy (OSTI)

The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R. [U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

2001-01-18T23:59:59.000Z

416

Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint  

DOE Green Energy (OSTI)

As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

2012-10-01T23:59:59.000Z

417

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network (OSTI)

E NERGY Shaking Up the Residential PV Market: Implicationsthe Revised Residential Credit ..ITC (capped at $2,000) for residential solar systems. Both

Bolinger, Mark

2008-01-01T23:59:59.000Z

418

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

419

Building integrated PV for commercial and institutional structures, a sourcebook for architects  

Science Conference Proceedings (OSTI)

This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

Eiffert, P.; Kiss, G.

2000-02-14T23:59:59.000Z

420

Plant performance for PV1 and PV2: SMUD (Sacramento Municipal Utility District) PV2, Final report 2, April 1986-March 1987  

SciTech Connect

The Sacramento Municipal Utility Distric (SMUD) photovoltaic project is a phased installation of a 100 megawatt central station photovoltaic (PV) power plant that is being constructed adjacent to the Rancho Seco Nuclear Generating Station, 30 miles southeast of Sacramento, California. SMUD, with cofunding from the U.S. Department of Energy (DOE) and the California State Department of Enrgy has designed, procured, installed, and operated two 1,000 kilowatt power generating plants (PV1 and PV2) as the first two phases of the project (Figure No. 1). PV1 deferred for budgetary reasons and to evaluate new PV technologies. Long-range load projections for the SMUD service area indicate theneed for new peaking power generation. Plans prior to the initiation of this project included coal-fired, hydroelectric and geothermal power plants. Environmental and permitting constraints within California introduced considerable uncertainty into the timing and cost of other generation options. This projectwas, therefore, initiated to proide an economic and technical basis for future electrical generation using solar energy. Ther performance data presented herein was measured, stored, and reduced by the onsite plant control and data acquisition computer.

Collier, D.

1988-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

422

Progress Energy Florida - SunSense Commercial PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate 130,000 per participant Program Info Start Date 03/15/2011 State Florida Program Type Utility Rebate Program Rebate Amount First 10 kW: 2/watt 11 kW - 50 kW: 1.50/watt 51 kW - 100 kW: 1/watt Provider Business Customer Service '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.''''' In March 2011, Progress Energy Florida began offering incentives to commercial customers who install photovoltaic (PV) systems. Incentive rates are based on a tiered structure:

423

Pacific Power - PV Rebate Program (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) < Back Eligibility Agricultural Commercial Fed. Government Industrial Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Commercial: $90,000 Tax-exempt Entities: $277,500 Program Info Start Date 07/01/2011 Expiration Date 07/1/2015 State California Program Type Utility Rebate Program Rebate Amount Incentives may be adjusted based on expected performance. Incentive amounts below are current as of 12/14/12. See program website for current status. Residential: $1.13/W CEC-AC Commercial: $0.36/W CEC-AC Tax-exempt Entities: $1.11/W CEC-AC Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step

424

Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system  

E-Print Network (OSTI)

Risø Energy Report 4 Supply technologies in the future energy system 10 Supply technologies of local and central production and close coupling between supply and end-use. Wind Global wind energy: Energy supply technologies #12;Risø Energy Report 4 Supply technologies in the future energy system4 used

425

OpenEI - PV  

Open Energy Info (EERE)

48/0 en Operational water 48/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

426

Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

Not Available

2009-10-01T23:59:59.000Z

427

PV FAQs: How Much Land Will PV Need to Supply Our Electricity?  

DOE Green Energy (OSTI)

This PV FAQ fact sheet answers the question ''How much land will PV need to supply our electricity?'' The answer is that PV could supply our electricity with little visible impact on our landscape.

Not Available

2004-01-01T23:59:59.000Z

428

Building Technologies Office: Innovative Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating (WMV 49 MB) Heat Pump Water Heater Technology (WMV 12 MB) HVAC Technologies Residential Air Conditioning Fault Detection and Diagnostics (FDD) and Programs to Support...

429

Technology Support for High-Throughput Processing of Thin-Film CdTe PV Modules: Final Technical Report, April 1998 - October 2001  

DOE Green Energy (OSTI)

This report describes the significant progress made in four areas of this subcontract: process and equipment development; efficiency improvement; characterization and analysis; and environmental, health, and safety. As part of the process and equipment development effort, vapor-transport deposition (VTD) was implemented first on a 60-cm-web pilot-production system, then on a 120-cm-web high-throughput coater. Deposition of CdS and CdTe films at a throughput of 3 m2/min was demonstrated, and more than 56,000 plates (each 0.72 m2) were coated -- 16 times the total number coated prior to the start of the contract. Progress was also made in the conversion efficiency and yield of both standard and next-generation modules, with data from more than 3000 sequentially deposited modules having an average total-area conversion efficiency of 7% and next-generation modules produced with efficiency as high as 9.3% (10.15% aperture-area efficiency as measured by NREL). Successful implementation o f in-situ CdS thickness measurements was important to progress in thickness uniformity and control. Net CdTe material utilization of 82% was demonstrated. The ability to raise the utilization further was shown with the demonstration of inherent CdS and CdTe material utilizations of over 90%. Post-CdTe-deposition process development, which included process space exploration and problem diagnosis, was an important part of advances in efficiency and yield. As part of the efficiency-improvement task, research was done on cells and modules with reduced CdS thickness to increase photocurrent.

Rose, D. H.; Powell, R. C.

2002-04-01T23:59:59.000Z

430

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

431

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems and Controlling Exhaust Gases to someone by E-mail Share Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases on Facebook...

432

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the...

433

Case Studies of Energy Information Systems and Related Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings...

434

Soap Manufacturing TechnologyChapter 10 Soap Drying Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 10 Soap Drying Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 10 Soap Drying Systems from ...

435

An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California  

E-Print Network (OSTI)

Market Value of Residential Solar PV. Journal of SustainableConclusions The market for solar PV is expanding rapidly ingrid-connected solar photovoltaic (PV) energy systems were

Hoen, Ben

2011-01-01T23:59:59.000Z

436

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

Markets. Rowlands, I. 2005. Solar PV Electricity and Market2003. Maximizing PV Peak Shaving with Solar Load Control:sited photovoltaic (PV) systems, solar will likely need to

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2007-01-01T23:59:59.000Z

437

PV Industry and Technology in China  

Science Conference Proceedings (OSTI)

Presently, China relies too much on fossil fuels. China's ... energy in total primary energy consumption to 10% by 2010, and to raise this share to 15% by 2020.

438

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

DOE Green Energy (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

439

PV Cell and Module Calibration Activities at NREL  

DOE Green Energy (OSTI)

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

440

Flexible implementation of rigid solar cell technologies.  

Science Conference Proceedings (OSTI)

As a source of clean, remote energy, photovoltaic (PV) systems are an important area of research. The majority of solar cells are rigid materials with negligible flexibility. Flexible PV systems possess many advantages, such as being transportable and incorporable on diverse structures. Amorphous silicon and organic PV systems are flexible; however, they lack the efficiency and lifetime of rigid cells. There is also a need for PV systems that are light weight, especially in space and flight applications. We propose a solution to this problem by arranging rigid cells onto a flexible substrate creating efficient, light weight, and flexible devices. To date, we have created a working prototype of our design using the 1.1cm x 1cm Emcore cells. We have achieved a better power to weight ratio than commercially available PowerFilm{reg_sign}, which uses thin film silicon yielding .034W/gram. We have also tested our concept with other types of cells and verified that our methods are able to be adapted to any rigid solar cell technology. This allows us to use the highest efficiency devices despite their physical characteristics. Depending on the cell size we use, we can rival the curvature of most available flexible PV devices. We have shown how the benefits of rigid solar cells can be integrated into flexible applications, allowing performance that surpasses alternative technologies.

Hollowell, Andrew E.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies pv systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Results from Undergraduate PV Projects at Seven Historically Black Colleges and Universities  

DOE Green Energy (OSTI)

In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program's purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems.

McConnell, R. D.

1999-03-03T23:59:59.000Z

442

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

443

Estimating the environmental and economic effects of widespread residential PV adoption using GIS and NEMS  

Science Conference Proceedings (OSTI)

This paper describes a study of the national effects of widespread adoption of grid-connected residential rooftop photovoltaic (PV) systems. A Geographic Information System (GIS) model is used to estimate potential PV system adoption and PV electricity generation and the National Energy Modeling System (NEMS) is used to estimate the national effects of PV electricity generation. Adoption is assumed to occur if levelized PV system cost is less than the local average retail electricity rate at the country level. An estimate of the current {open_quotes}best{close_quotes} scenario (defined by a 6.5% real interest rate, 30-year loan life, $6{sub 1994}/W system cost, and $4{sub 1994}/month voluntary premium) results in no adoption. Several scenarios designed to stimulate PV adoption are modeled. As an example, if PV system costs are instead assumed to be $3{sub 1994}/W, rooftop systems are found to be cost effective in 16% of detached single-family households in the U.S. by 2015 (assuming full adoption of 4-kW systems), this results in 82.1 TWh of annual PV electricity generation, 170 TWh of avoided electricity transmission, distribution, and generation losses, 6 Mt/a of avoided carbon emissions, 50 kt/a of avoided NOx emissions, and 27.3 GW of avoided electricity generating capacity in place.

Marnay, C.; Richey, R.C.; Mahler, S.A. [and others

1997-10-01T23:59:59.000Z

444

innovati nEncapsulation Advancements Extend Life of Thin-Film PV  

E-Print Network (OSTI)

. In addition to improved performance and reliability, this PTMO technology could make flexible thin-film technology. In addition to developing the PTMO coating technology, NREL also holds the world record--20%--for science of CIGS technology, NREL helps the PV industry accelerate manufacturing capacity

445

PV Frontogenesis and Upper-Tropospheric Fronts  

Science Conference Proceedings (OSTI)

Upper-tropospheric fronts and frontogenesis are viewed from a potental vorticity (PV) perspective. The rudiments of this approach are to regard such a front as a zone of strong PV gradient on isentropic surfaces, and to treat the accompanying ...

H. C. Davies; A. M. Rossa

1998-06-01T23:59:59.000Z

446

Photovoltaics for Buildings: Case Studies of High-Performance Buildings with PV  

SciTech Connect

Energy efficiency maximizes the value of photovoltaics (PV) in buildings systems. A fixed-sizre PV system will offset a much larger part of the electrical load in an energy-efficient building than in a building whose energy design has not been optimized.

Hayter, S. J.; Torcellini, P. A.

2000-01-01T23:59:59.000Z

447

Impact of Time Resolution on the Projected Rates of System Penetration by Intermittent Generation Technologies  

SciTech Connect

To hedge against the limited resources of fossil fuels and to reduce the emissions of green house gases, it is expected that our future electricity system will include more intermittent technologies, including wind and PV. To better understand how to develop energy systems that rely on intermittents, systems models are used to assess the cost at which intermittents become competitive, the degree of penetration as their costs are reduced, their impact on the optimal structure of the balance of the system, and their affect on total system costs. Modeling approaches designed for dispatchable technologies are not entirely appropriate for modeling intermittent technologies, since they, naturally, assume that generation can always be dispatched to meet demand. Intermittent generation cannot be dispatched--its output varies from hour to hour and from day to day on its own schedule, heedless to system needs. This research assesses the difference in results associated with the different approaches to modeling intermittency. The analyses compare cases using the hourly loads and intermittent generation patterns, cases in which the loads and generation were averaged over several hours, and cases in which the loads and/or the generation were represented by the annual averaging scheme used in the National Energy Modeling System developed by the Energy Information Administration. Three significant characteristics of an intermittent generator are the average power production (capacity factor), the coincidence of its power production and loads, and the variation in the magnitude of its power production. Economic models of the energy system represent these characteristics with differing degrees of accuracy. It is expected that different representations of the characteristics of an intermittent generator will give different answers to the sorts of questions posed above. This research assesses the magnitude and types of errors that are introduced by not representing the characteristics of the intermittents accurately. The most accurate representation of an intermittent generator uses its actual output from moment to moment. Here we use a one hour resolution over a full year of generation as the base case. This captures the variations from hour to hour and day-to-day. However, some energy modeling systems are based on a load duration curve approach for characterizing the variation in energy demand. This is quite suitable for dispatchable technologies since the generators can always be dispatched to meet the load whenever it occurs. When an intermittent generator is represented in this structure, it is represented as having a constant output equal to its capacity factor over long intervals (many hours). This approach captures the capacity factor of the intermittent and to some extent it can capture the coincidence of generation and demand, but does not capture the effect of the short term variations in output. In this paper, we evaluate the impacts of time resolution on the economic evaluation of wind and solar PV within a simple energy system. We assess the penetration of each intermittent generator as its cost is decreased. At the same time, the model optimally readjusts the capacities and dispatch of the conventional generators as the intermittent technology penetrates. This investigation compares the trajectories of intermittent penetration under a several different representations of intermittent generation and demand. In the following sections, we first discuss the approach to analysis, for both the load duration curve approach to representing intermittent generation and several averaging schemes. We then present results and conclusions.

Lamont, A; Wu, T

2006-07-18T23:59:59.000Z

448

NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Projects PV Projects FUPWG Meeting: "Going Costal for Energy Efficiency" Bob Westby, NREL FEMP Program Manager and Sustainable NREL Lead April 14-16, 2008 Contents * Mesa Top PV project - CO/utility incentive program - Deal structure/agreements * NREL Phase II proposed projects * Proposal evaluation considerations * Evaluation tools Mesa Top PV Project Mesa Top PV Project * 750 kWdc (1,200,000 kWh) one-axis tracking PV system - Grid connected (NREL "side of the meter") - Milestones  Agreements: January 2008  Operation: August 2008 Solar Rewards Program * CO statute requires solar resource acquisitions by IOU of 20% renewables by 2020 (4% solar "carve out") * Xcel acquisitions made through RFP (bid) process - Selection based on SO-REC* price

449

New York City - Property Tax Abatement for Photovoltaic (PV) Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $62,500 annually or the amount of real property taxes owed during a year Program Info Start Date 08/05/2008 State New York Program Type Property Tax Incentive Rebate Amount Installed from August 5, 2008 to December 31, 2010: 8.75% of system expenditures per year for 4 years (total of 35%); Installed from January 1, 2011 to December 31, 2012: 5% of system expenditures per year for 4 years (total of 20%); Installed from January 1, 2013 to December 31, 2014: 2.5% of system

450

PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS  

E-Print Network (OSTI)

PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS Richard Perez reliability benefits, is to look at PV availability during instances of major grid stress and supply shortfall of these events and show that PV+end-use load control could be 100% reliable with only a minimal end-use impact. 2

Perez, Richard R.

451

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

452

Building Technologies Office: Building-Level Energy Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

453

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

454

MHK Technologies/Oscillating Cascade Power System OCPS | Open Energy  

Open Energy Info (EERE)

Oscillating Cascade Power System OCPS Oscillating Cascade Power System OCPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oscillating Cascade Power System OCPS.jpg Technology Profile Primary Organization New Energy Solutions LLC Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The OCPS generator consists of a cascade of vertical hydrofoils submerged in moving water This array of hydrofoils oscillates in antiphase at resonance flutter in a slow swimming motion resulting in maximum power transfer from flowing water to electricity The system efficiently converts the oscillating mechanical energy into a steady electric current A 60 overall water to wire efficiency was demonstrated at the proof of concept test and 65 or better overall efficiency is projected using the new engineering advances incorporated since the test in the commercial model

455

Modular Power Converters for PV Applications  

DOE Green Energy (OSTI)

This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-05-01T23:59:59.000Z

456

Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others] [and others

1996-12-01T23:59:59.000Z

457

New York Sun Competitive PV Program (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sun Competitive PV Program (New York) Sun Competitive PV Program (New York) New York Sun Competitive PV Program (New York) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Tribal Government Utility Savings Category Solar Buying & Making Electricity Program Info State New York Program Type Renewables Portfolio Standards and Goals Provider New York State Energy Research and Development Authority The New York Sun Competitive Photovoltaic (PV) Program is an expansion of the Renewable Portfolio Standard (RPS) Customer-Sited Tier Regional Program