Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Linden Ranch | Open Energy Information  

Open Energy Info (EERE)

Linden Ranch Linden Ranch Jump to: navigation, search Name Linden Ranch Facility Linden Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SCPPA Developer EnXco Location Klickitat County Coordinates 45.757°, -120.795998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.757,"lon":-120.795998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

DOE - Office of Legacy Management -- Chemical Construction Co Linden Pilot  

Office of Legacy Management (LM)

Chemical Construction Co Linden Chemical Construction Co Linden Pilot Plant - NJ 12 FUSRAP Considered Sites Site: Chemical Construction Co., Linden Pilot Plant (NJ.12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Chemical Construction Corporation Pilot Plant Chemico NJ.12-1 NJ.12-2 Location: Linden , New Jersey NJ.12-3 Evaluation Year: 1987 NJ.12-4 Site Operations: Performed research and development operations under AEC contract to develop a process for recovering uranium, cobalt, nickel, and copper from low grade residues. NJ.12-5 NJ.12-6 NJ.12-7 Site Disposition: Eliminated - Potential for contamination considered remote due to nature and duration of the operations NJ.12-4 NJ.12-8 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.12-6

3

Botanischer Garten aktuell Pilze im Regenwald? Aristolochia arborea LINDEN  

E-Print Network (OSTI)

Botanischer Garten aktuell Pilze im Regenwald? ­ Aristolochia arborea LINDEN Aristolochia arborea dieser Art in Kultur ­ und zwar in den berühmten tropischen Botanischen Garten von Buitenzorg (heute Bogor) auf Java. Von dort aus kamen sie wenig später in den Botanischen Garten Bonn. Von den hier

Reggelin, Michael

4

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

5

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

6

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

7

Coil spring venting arrangement  

DOE Patents (OSTI)

A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

McCugh, R.M.

1975-10-21T23:59:59.000Z

8

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

9

The metallurgical integrity of the frit vent assembly diffusion bond  

DOE Green Energy (OSTI)

Iridium alloy clad vent sets (CVSs) are now being made by Energy Systems at the Oak Ridge Y-12 Plant. These CVSs are being made for the US Department of Energy`s (NE-53) General Purpose Heat Source- Radioisotope Thermoelectric Generator (GPHS-RTG) program, which is to supply electrical power for the National Aeronautics and Space Administration`s Cassini mission to Saturn. A GPHS-RTG has 72 CVSs. Each CVS encapsulates one {sup 238}PuO{sub 2} fuel pellet. The helium gas produced from the alpha decay of the {sup 238}Pu is vented through a nominal 0.45-mm-diam hole in the vent cup of each CVS. A frit vent assembly that is electron beam welded over the vent hole allows helium gas to escape but prevents plutonia fines from exiting. The metallurgical integrity of frit vent assemblies produced by Martin Marietta Energy Systems, Inc. (Energy Systems) were compared with those produced earlier by EG&G-Mound Applied Technology, Inc. (EG&G-MAT). Scanning electron microscope (SEM) photographs were taken (at magnifications of from 126X to 1,000X) of the starting frit vent powder and the diffusion-bonded powder in finished frit vent assemblies produced by Energy Systems and EG&G-MAT. Frit vent assemblies also were metallographically prepared and visually examined/photographed at magnifications of from 50X to 1,000X. The SEM and metallographic examinations of the particle-to-particle and particle-to-foil component diffusion bonds indicated that the Energy Systems-produced and EG&G-MAT-produced frit vent assemblies have comparable metallurgical integrity. Statistical analysis of the Energy Systems production data shows that the frit vent manufacturing yield is 91%.

Ulrich, G.B. [Oak Ridge Y-12 Plant, TN (United States). Process Metallurgy Dept.

1994-06-01T23:59:59.000Z

10

Life and hydrothermal vents  

NLE Websites -- All DOE Office Websites (Extended Search)

Life and hydrothermal vents Life and hydrothermal vents Name: williamh Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Are there biological communities near hydrothermal vents in the ocean? Is there any life inside the hydrothermal vent? Replies: If the presence of microorganisms in hot springs and geysers are any indication, I am certain there is life inside hydrothermal vents. These heat loving organisms are termed "thermophiles" and thrive where other life dies. They are able to survive in extreme heat due to the unique way their proteins are synthesized. The May 1993 Discover has a special article on thermophiles. wizkid Life at high temperature became very interesting to molecular biologists recently. The enormously useful technique known as PCR, (polymerase chain reaction), by which very small amounts of rare DNA can be amplified to large concentrations (Jurassic Park!), depends on having a DNA polymerase (the enzyme that synthesizes complementary DNA strands during replication of chromosomes), that can work at high temperatures, or at least can survive repeated high temperature cycles. PCR depends on synthesis of DNA followed by forced separation of the daughter strands at high temperature, followed by new synthesis, to amplify DNA exponentially. At any rate, normal bacterial polymerase will not work because the high temperature cycles kill it. Enter the now infamous, patented Taq polymerase, isolated from Thermus aquaticus, a hot spring bacterium, which works after heating to up to 94 C! So knowledge of life at high temperature allowed molecular biologists to get PCR to work, with all its benefits in cloning very rare genes and amplifying small amounts of DNA for forensic work etc.

11

Reactor pressure vessel vented head  

DOE Patents (OSTI)

A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

Sawabe, James K. (San Jose, CA)

1994-01-11T23:59:59.000Z

12

Reactor pressure vessel vented head  

DOE Patents (OSTI)

A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

Sawabe, J.K.

1994-01-11T23:59:59.000Z

13

January 2010 Venting Flammable Liquid Storage Cabinets  

E-Print Network (OSTI)

Unless You Have To According to NFPA 30, Flammable and Combustible Liquids Code Handbook, venting exhaust system using rigid metal piping equivalent or better than that used in construction of the cabinet. Cabinets shall NOT be vented directly into the fume hood, through the fume hood work surface. Piping must

Kolner, Brian H.

14

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Natural Gas Vented and Flared Ohio Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

15

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Vented and Flared (Million Cubic Feet) Texas Natural Gas Vented and Flared (Million Cubic Feet) Decade...

16

Monitoring arrangement for vented nuclear fuel elements  

DOE Patents (OSTI)

In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

Campana, Robert J. (Solana Beach, CA)

1981-01-01T23:59:59.000Z

17

ANALYSIS OF VENTING OF A RESIN SLURRY  

SciTech Connect

A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

Laurinat, J.; Hensel, S.

2012-03-27T23:59:59.000Z

18

Composition of gases vented from a condenser  

DOE Green Energy (OSTI)

Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers. An approximation is given that appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture. The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC). More regorous relationships are available for exceptional cases.

Lyon, R.N.

1980-08-01T23:59:59.000Z

19

Vented Cavity Radiant Barrier Assembly And Method  

DOE Patents (OSTI)

A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

Dinwoodie, Thomas L. (Piedmont, CA); Jackaway, Adam D. (Berkeley, CA)

2000-05-16T23:59:59.000Z

20

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

22

Hydrothermal vent complexes associated with sill intrusionsin sedimentarybasins  

E-Print Network (OSTI)

. 477 Discussion on structure and evolution of hydrothermal vent complexes in the Karoo Basin, South the paper by Svensen et al. (2006) on South African hydrothermal vents within the Karoo Basin, particularly for their interest in our paper on hydrothermal vent complexes in the Karoo Basin (Svensen et al. 2006). Based

Podladchikov, Yuri

23

Electrochemical cell having improved pressure vent  

DOE Patents (OSTI)

The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

Dean, Kevin (Pontiac, MI); Holland, Arthur (Troy, MI); Fillmore, Donn (Waterford, MI)

1993-01-01T23:59:59.000Z

24

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

25

Comparative Study of Vented vs. Unvented Crawlspaces  

Science Conference Proceedings (OSTI)

There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate.

Biswas, Kaushik [ORNL; Christian, Jeffrey E [ORNL; Gehl, Anthony C [ORNL

2011-10-01T23:59:59.000Z

26

Why Sequence Bacteria in Deep Sea Hydrothermal Vents?  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria in Deep Sea Hydrothermal Vents? The project focuses on using single-cell genomics to sequence nearly a dozen genomes of uncultivated bacteria that are found in...

27

Staged venting of fuel cell system during rapid shutdown  

DOE Patents (OSTI)

A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

2002-01-01T23:59:59.000Z

28

Final Report on Explosion Tests of Clogged Vented Covers for Con Edison at Lenox  

Science Conference Proceedings (OSTI)

The use of vented manhole covers is a potential way of diminishing the severity of explosive events, but the vents in the covers often become blocked by debris. Manhole covers with blocked vents performed in much the same way as non-vented covers in explosion tests conducted at EPRI's Lenox, Massachusetts facility.

2007-11-12T23:59:59.000Z

29

Assessment of Literature Related to Combustion Appliance Venting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Literature Related to Combustion Appliance Venting Systems Assessment of Literature Related to Combustion Appliance Venting Systems Title Assessment of Literature Related to Combustion Appliance Venting Systems Publication Type Report LBNL Report Number LBNL-5798E Year of Publication 2012 Authors Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray Date Published 06/2012 Abstract In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable

30

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The...

31

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 1,861: 1,120: 808 ...

32

Gas generation results and venting study for transuranic waste drums  

DOE Green Energy (OSTI)

Sixteen waste drums, containing six categories of plutonium-contaminated waste, were monitored for venting and gas generation for six months. The venting devices tested appeared adequate to relieve pressure and prevent hydrogen accumulation. Most of the gas generation, primarily H2 and CO2, was due to radiolytic decomposition of the hydrogenous wastes. Comparison of the gas yields with those obtained previously in laboratory tests showed very reasonable agreement with few exceptions.

Kazanjian, A.R.; Arnold, P.M.; Simmons, W.C.; D'Amico, E.L.

1985-09-23T23:59:59.000Z

33

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

34

Other States Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Other States Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 408 1992 501 530 501 1993 501 522 515 533 536 531 583 546 1994 533 616 623 620 629 654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134 150 148 132 117 126 132 124 121 121 123 1999 754 406 686 588 693 611 708 340 590 811 785 592 2000 147 135 152 163 175 159 187 180 175 179 176 183 2001 166 149 171 206 224 208 221 218 229 222 222 238 2002 172 163 176 196 185 177 191 184 188 180 157 165

35

Building Energy Software Tools Directory: VentAir 62  

NLE Websites -- All DOE Office Websites (Extended Search)

VentAir 62 VentAir 62 VentAir 62 logo. A ventilation airflow calculator that allows easy, accurate compliance with ASHRAE Standard 62-89. The program automates the cumbersome calculations presented by the Standard's Equation 6-1. The Windows-based program helps building designers design multiple-space ventilation systems that meet the requirements of the Standard. This tool analyzes space and system information from the VAV terminal and air handler unit schedules, calculates ventilation airflow requirements (space minimums and system-level required minimum), and provides additional or revised information for the VAV and AHU schedules. Keywords ventilation design, ASHRAE Standard 62 Validation/Testing N/A Expertise Required Knowledge of ASHRAE Standard 62 requirements and ventilation design.

36

Transport characteristics across drum filter vents and polymer bags  

DOE Green Energy (OSTI)

The rate at which hydrogen (H {sub 2}) or a volatile organic compound (VOC) exits a layer of confinement in a vented waste drum is proportional to the concentration difference across the layer. The proportionality constant is the gas transport characteristic. A series of transport experiments were conducted to determine H{sub 2} and VOC transport characteristics across different drum filter vents and polymer bags. This report reviews the methods and results of past investigators in defining transport characteristics across filter vents and polymer bags, describes the apparatus and procedures used in these experiments, compares the reported and estimated transport characteristics with earlier results, and discusses the impact of changing the transport characteristic values used in model calculations.

Liekhus, K.J.

1994-08-01T23:59:59.000Z

37

An overview of BWR Mark-I containment venting risk implications  

Science Conference Proceedings (OSTI)

Venting of boiling water reactors with Mark-I containments has been suggested as a way to prevent catastrophic failure and/or mitigate the consequences resulting from a severe accident. Based on phenomenological, human factors, and risk considerations, the potential benefits and downsides of venting Mark-I containments were analyzed. Several generic venting systems and two proposed utility systems were reviewed. Based on generic considerations, the offsite consequences during risk dominant accidents were qualitatively assessed for four different vent systems. A quantitative risk study of an early venting strategy was performed, based on the existing Peach Bottom hardware and the draft NUREG-1150 results for Peach Bottom. Appendices are also included which contain reviews of the Pilgrim and Vermont Yankee venting submitals, a response to the seven questions from the NRC about the Pilgrim venting strategy, and a review of the venting strategy directed by Revision 4 of the Boiling Water Reactor Emergency Procedures Guidelines. 16 refs., 7 figs., 7 tabs.

Wagner, K.C.; Dallman, R.J.; Galyean, W.J.

1988-11-01T23:59:59.000Z

38

Periodic deep?sea hydrothermal vent activities observed by hydrophones at Mariana, Okinawa, and Mid?Atlantic Ridge  

Science Conference Proceedings (OSTI)

Deep?sea hydrothermal vent activities were studied done by digital OBS/Hs(Ocean Bottom Seismometer / Hydrophone) at three hydrothermal vent areas

Kasahara Junzo; Sato Toshinori; Nishizawa Azusa; Fujioka Kantaro

1996-01-01T23:59:59.000Z

39

Gas Combustion Appliances: Validating VENT-II Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Backdrafting and Spillage for Natural-Draft Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray Environmental Energy Technologies Division April 2013 In Press as: Vi H. Rapp, Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray. 2013. "Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: A Validation of VENT-II". HVAC&R Research, DOI:10.1080/10789669.2013.771948 LBNL-6193E 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof,

40

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Utah Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 3,000: 2,906: 2,802 ...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

42

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

43

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

44

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

45

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

46

Why Sequence Thermoacidophiles of deep-sea hydrothermal vents?  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoacidophiles of Thermoacidophiles of deep-sea hydrothermal vents? Bacteria that live in hydrothermal vents on land and deep underwater need to be able to tolerate high temperatures and harsh, nutrient-poor environments with high concentrations of metals. As a result of living in such environments, however, these bacteria have enzymes that are stable at high temperatures, which could be useful for producing alternative fuels. Thermoacidophiles Photo: University of Delaware Aquificales bacteria are often found in thermal streams and associated with sulfide precipitation. Sequencing some of these bacterial genomes -- specifically, Thermocrinis ruber, S. rodmanii and S. kristjansonnii -- could provide researchers with so-called "anchor genomes" that would be applied in turn to studies already being done on microbial communities in

47

TRANSPORT OF WASTE SIMULANTS IN PJM VENT LINES  

Science Conference Proceedings (OSTI)

The experimental work was conducted to determine whether there is a potential for waste simulant to transport or 'creep' up the air link line and contaminate the pulse jet vent system, and possibly cause long term restriction of the air link line. Additionally, if simulant creep occurred, establish operating parameters for washing down the line. The amount of the addition of flush fluids and mixer downtime must be quantified.

Qureshi, Z

2007-02-21T23:59:59.000Z

48

Assessment of Literature and Simulation Software Related to Combustion Appliance Venting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Literature Related to Assessment of Literature Related to Combustion Appliance Venting Systems V.H. Rapp, B.C. Singer, J.C. Stratton, C.P. Wray Environmental Energy Technologies Division June 2012 LBNL-5798E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

49

Potential VOC Deflagrations in a Vented TRU Drum  

DOE Green Energy (OSTI)

The objective of the analysis is to examine the potential for lid ejection from a vented transuranic (TRU) waste drum due to pressure buildup caused by the deflagration of hydrogen and volatile organic compounds (VOCs) inside the drum. In this analysis, the AICC pressure for a stoichiometric mixture of VOCs is calculated and then compared against the experimental peak pressure of stoichiometric combustion of propane and hexane in a combustion chamber. The experimental peak pressures of propane and hexane are about 12 percent lower than the calculated AICC pressure. Additional losses in the drum are calculated due to venting of the gases, drum bulging, waste compaction, and heat losses from the presence of waste in the drum. After accounting for these losses, the final pressures are compared to the minimum observed pressure that ejects the lid from a TRU drum. The ejection pressure of 105 psig is derived from data that was recorded for a series of tests where hydrogen-air mixtures were ignited inside sealed TRU drums. Since the calculated pressures are below the minimum lid ejection pressure, none of the VOCs and the hydrogen (up to 4 percent) mixtures present in the TRU waste drum is expected to cause lid ejection if ignited. The analysis of potential VOC deflagrations in a vented TRU drum can be applied across the DOE-Complex since TRU waste is stored in drums throughout the complex.

Mukesh, GUPTA

2005-04-07T23:59:59.000Z

50

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

51

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

52

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

53

Clad vent set cup closure-weld-zone grinding evaluation  

DOE Green Energy (OSTI)

Clad vent set (CVS) cups were ground in the closure-weld zone to reduce the wall-thickness variation created by the cup deep-drawing process. A significantly more uniform wall thickness would be beneficial for the CVS closure-weld operation. The goal was to reduce the average within-cup wall-thickness variation (defined as the range of wall thicknesses in the closure-weld zone) approximately 50% from the Cassini production value of 42 {micro}m. This goal was shown to be achievable but, unfortunately, not with the existing blank and formed cup thicknesses.

Ulrich, G.B.; Woods, A.T. [Oak Ridge Y-12 Plant, TN (United States); Ohriner, E.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1996-04-01T23:59:59.000Z

54

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

55

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

56

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

57

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

58

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

59

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

60

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

62

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

63

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

64

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 NA NA NA NA NA NA NA NA NA NA NA NA

65

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

66

Device and method for remotely venting a container  

DOE Patents (OSTI)

Numerous incidents of fire, explosion, and ground contamination have occurred at various facilities over the last several years due to drum rupture on account of overpressurization. These incidents frequently are caused by an ignition source or a reaction between incompatible materials. The incidents may also occur simply as a result of climatic changes causing the drum to be over pressurized. A device for venting a container having a bung includes a saddle assembly securable to a container and having a support extending therefrom. A first arm is rotatably secured to the support, and the first arm extends in a first direction. A second arm has a first end portion drivingly engaged with the first arm, so that rotation of the first arm causes rotation of the second arm. A second end portion of the first arm is positionable proximate the bung of the container. A socket is operably associated and rotatable with the second end portion and is drivingly engageable with the bung, so that rotation of the socket causes corresponding rotation of the bung for thereby venting the container.

Vodila, J.M.; Bergersen, J.A.

1995-12-31T23:59:59.000Z

67

Income Tax Deduction for Solar-Powered Roof Vents or Fans (Indiana...  

Open Energy Info (EERE)

1232012 References DSIRE1 Summary Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home...

68

Vented target elements for use in an isotope-production reactor. [LMFBR  

DOE Patents (OSTI)

A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

69

Income Tax Deduction for Solar-Powered Roof Vents or Fans  

Energy.gov (U.S. Department of Energy (DOE))

Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home that the taxpayer owns or leases. The deduction is for 50%...

70

Rain Shedding and Rainwater Runoff Tests on Cast Iron Vented Manhole Covers for Con Edison  

Science Conference Proceedings (OSTI)

This report documents work EPRIsolutions performed for Con Edison that compares water penetration characteristics of two types of vented manhole covers with a solid cover and a manhole with no cover under typical and very heavy rain conditions.

2007-11-21T23:59:59.000Z

71

A Handheld Sampler for Collecting Organic Samples from Shallow Hydrothermal Vents  

Science Conference Proceedings (OSTI)

We describe here a new handheld sampler, specially designed to be deployed by SCUBA divers, to collect fluid samples from shallow hydrothermal vents. The new sampler utilizes a syringe-like titanium sampling bottle with regulated filling rate to ...

Shi-Jun Wu; Can-Jun Yang; Chen-Tung Arthur Chen

72

Implementation of vented fuel assemblies in the supercritical CO?-cooled fast reactor  

E-Print Network (OSTI)

Analysis has been undertaken to investigate the utilization of fuel assembly venting in the reference design of the gas-cooled fast reactor under study as part of the larger research effort at MIT under Gen-IV NERI Project ...

McKee, Stephanie A

2008-01-01T23:59:59.000Z

73

A Handheld Sampler for Collecting Organic Samples from Shallow Hydrothermal Vents  

Science Conference Proceedings (OSTI)

This study describes a new handheld sampler, specially designed to be deployed by scuba divers, to collect fluid samples from shallow hydrothermal vents. The new sampler utilizes a syringe-like titanium sampling bottle with a regulated filling ...

Shi-Jun Wu; Can-Jun Yang; Chen-Tung Arthur Chen

2013-08-01T23:59:59.000Z

74

InnoVent InfraVest GmbH | Open Energy Information  

Open Energy Info (EERE)

InfraVest GmbH Jump to: navigation, search Name InnoVentInfraVest GmbH Place Varel, Germany Zip 26316 Sector Wind energy Product Wind farm project developer based in Germany....

75

Geochemistry of hydrothermal vent fluids from the northern Juan De Fuca Ridge  

E-Print Network (OSTI)

The presence of aqueous organic compounds derived from sedimentary organic matter has the potential to influence a range of chemical processes in hydrothermal vent environments. For example, hydrothermal alteration experiments ...

Cruse, Anna M. (Anna Marie)

2003-01-01T23:59:59.000Z

76

Application of Multizone HVAC Control Using Wireless Sensor Networks and Actuating Vent Registers  

E-Print Network (OSTI)

Most residential heating, ventilating, and air conditioning (HVAC) systems are designed to treat the home as a single zone. Single zone control consists of one thermostat, in a central area of the house that controls the HVAC operation. In a single zone system all of the vent registers are open, distributing air into all areas of the house at once. Single zone control leads to wasted energy for two reasons - all rooms being conditioned when they are not occupied, and conditioning occupied rooms, without maintaining them at the comfortable temperature for the occupants. Improved control of residential cooling and heating can be attained with a variable HVAC fan, duct, and vent system. Existing single zone systems are expensive to retrofit with the above mentioned features. Current techniques require replacing major components in the HVAC system which are both costly and time consuming, invading the user's home. An alternative to the extensive retrofit is detailed in this work. The experiments in this paper implement an automated vent louver system to solve two problems in heating homes: the problem of temperature stratification between floors and zonification between rooms, and the energy wasted to heat in unoccupied areas of the home. This paper considers the application of replacing the standard vents in each room with wireless controlled louvered vents. These vents allow for simpler, more cost effective retrofits which are also less invasive tithe end user's home. The experiments in this paper implement an automated vent louver system to reduce the energy wasted to heat unoccupied areas of the home. This test house in these experiments was a two story home. Wireless sensor-actuator networks were used to automate the test of closing off vent registers while maintaining the appropriate temperature set point in a control zone. A control zone consists of the house area where the vents are fully open. Controlling the vent registers allowed for reduced zonification between rooms on the same floor, and reduced stratification between the upstairs and downstairs. Energy savings were shown when vents were closed to heat the control zones containing the bedroom, of the office.

Watts, W.; Koplow, M.; Redfern, A.; Wright, P.

2007-01-01T23:59:59.000Z

77

Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste  

DOE Green Energy (OSTI)

The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent.

Callis, E.L.; Marshall, R.S. [Los Alamos National Lab., NM (United States); Cappis, J.H. [DOE, International Safeguards Div., Washington, DC (United States)] [and others

1997-04-01T23:59:59.000Z

78

Vent Stack Liquid N2 RTD Temperature Sensor  

SciTech Connect

This engineering note documents the installation of two temperature sensing RTD's in the BC's. Previously, the temperature sensing device used in all three cryostats consisted of a FNAL designed liquid sensing probe (see EN-168, and drawing ME-273505). This device was necessary because of the concern that overfilling LN2 into the main vent line during cooldown could create an undesirable back pressure on the relief valves or rupture disks. This could possibly hinder the relieving of argon gas at the required flow rate in a safety situation. The probe was installed on the CC, and has been operating perfectly, therefore, this probe will not be changed. Figure 1 shows the location of TS232E, the CC liquid sensing probe. Note that the probe is located downstream of the condenser outlet valve (PV210N), therefore, it effectively operates under atmospheric pressure. On the BC's, however, the probe was originally installed at a different location, upstream of the condenser outlet valve (PV110N or PV310N). This resulted in the probe effectively sensing the condenser pressure, which varied from approximately 30 psia to 60 psia during cooldown. The changing pressure meant that the corresponding temperature at which liquid appeared also changed. The probe then became inaccurate, especially at higher condenser pressures, when the probe would be fail to trip at the higher liquid temperature. The solution was to replace the original probe with an RTD. This involved using the PLC to compare the temperature sensed by the RTD to the liquid saturation temperature, calculated using the measured condenser pressure. A formula was created to calculate the saturation temperature from the condenser pressure. This formula was derived by curve fitting points taken from the NBS Technical Note 129 for nitrogen. A 2nd order equation was used to fit the points, since the accuracy was not very important for temperature comparison. The entire equation was then shifted so that the curve was above all of the actual points. This was done to insure that the formula would provide higher temperatures, so the comparison to the RTD would be conservative, switching before the temperature reached saturation. Figure 2 shows the curve used to fit the data points. The lower curve is the actual data, and the higher curve is the formula to be used. Using the formula derived, the PLC calculates a conservative saturation temperature from the condenser pressure. The condenser pressure is measured by PT110N or PT310N, on the ECN and ECS, respectively. The transmitters are Rosemount 0-75 psia pressure transmitters. The PLC then compares the calculated temperature to the measured temperature from the RTD's, EIl32E and EI332E, which are Omega platinum RTD probes, model PR-14-2-100-1/4-12-E. If the measured temperature drops below the calculated saturation temperature, an alarm signals on the view page, and the PLC automatically closes the two inlet condenser valves (PV 101N and PV102N, or PV301N and PV302N). As a final note, there are various advantages and disadvantages to using the RTD's instead of the original probe. The advantages are that the RTD's provide constant monitoring of the temperature, whereas the probe was basically designed as a switch. The RTD's are more accurate in that they can respond over the range of the condenser pressure. The probe was designed to operate under atmospheric pressure. The only disadvantage of the RTD's is that they sense temperature, therefore, they cannot distinguish saturated GN2 from liquid, while the probe was designed specifically to do so. Overall, however, the RTD's provide an acceptable solution to the problem of liquid sensing in the vent line. Figure 3 shows the final location of the RTD on the ECN. The ECS location is the same.

Wu, J.; /Fermilab

1991-11-27T23:59:59.000Z

79

Venting and Rapid Recompression Increase Survival and Improve Recovery for Red Snapper with Barotrauma  

E-Print Network (OSTI)

Red Snapper, Lutjanus campechanus, are the most economically important reef fish in the Gulf of Mexico. Population assessments that began in the mid-1980s found red snapper to be severely overfished and lead to extensive regulations and harvest restrictions. As a result of these regulations many fish that are captured must be released and are known as regulatory discards. Red snapper live deep in the water column and when captured and rapidly brought to the surface they often suffer pressure-related injuries collectively known as barotrauma. These injuries include a distended abdomen and stomach eversion from the buccal cavity. High mortality of discards due to barotrauma injuries impedes recovery of the fishery. The purpose of this study was to evaluate the efficacy of two techniques designed to minimize barotrauma-related mortality: venting and rapid recompression. In laboratory experiments using hyperbaric chambers, I assessed sublethal effects of barotrauma and subsequent survival rates of red snapper after single and multiple simulated capture events from pressures corresponding to 30 and 60 m. I evaluated the use of rapid recompression and venting to increase survival and improve recovery indices, including the ability to evade a simulated predator. A condition index of impairment, the barotrauma reflex (BtR) score, was used to assess sublethal external barotrauma injuries, reflex responses, and behavioral responses. Greater capture depths resulted in higher BtR scores (more impairment). Non-vented fish had higher BtR scores than vented fish after both single and multiple decompression events. All fish in vented treatments from 30 and 60 m depths had 100% survival after a single capture event. Non-vented fish had 67% survival after decompression from 30 m and 17% survival from 60 m. Behaviorally, non-vented fish showed greater difficulty achieving an upright orientation upon release and less ability to evade a simulated predator than vented fish. Rapid recompression also greatly improved survival compared to surface-released fish with 96% of all rapidly recompressed fish surviving. These results clearly show that venting or rapid recompression can be effective tools for alleviating barotrauma symptoms, improving predator evasion after a catch-and-release event, and increasing survival. Fisheries managers should encourage the use of either of these two techniques to aid in the recovery of this important fishery.

Drumhiller, Karen L

2012-12-01T23:59:59.000Z

80

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: A reconnaissance survey of Hg° was designed to model the 1912 Novarupta vent structure and delineate zones of near-surface high heat

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The potential for photosynthesis in hydrothermal vents: a new avenue for life in the Universe?  

E-Print Network (OSTI)

We perform a quantitative assessment for the potential for photosynthesis in hydrothermal vents in the deep ocean. The photosynthetically active radiation in this case is from geothermal origin: the infrared thermal radiation emitted by hot water, at temperatures ranging from 473 up to 673 K. We find that at these temperatures the photosynthetic potential is rather low in these ecosystems for most known species. However, species which a very high efficiency in the use of light and which could use infrared photons till 1300nm, could achieve good rates of photosynthesis in hydrothermal vents. These organisms might also thrive in deep hydrothermal vents in other planetary bodies, such as one of the more astrobiologically promising Jupiter satellites: Europa.

Perez, Noel; Martin, Osmel; Leiva-Mora, Michel

2013-01-01T23:59:59.000Z

82

Linden, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0213118°, -121.0838313° 0213118°, -121.0838313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0213118,"lon":-121.0838313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Linden, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

44731°, -83.7824526° 44731°, -83.7824526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8144731,"lon":-83.7824526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Dr. Mark O. McLinden  

Science Conference Proceedings (OSTI)

... standard based on fundamental physical properties of ... for a major new DOE-funded project ... ASHRAE Handbook Chapter Revisor, Thermophysical ...

2012-12-12T23:59:59.000Z

85

Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa  

E-Print Network (OSTI)

Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin and hydrothermal vent complexes (HVC) in the Karoo Basin in South Africa. The HVC formed during phreatic eruptions from the lower stratigraphic units of the Karoo Basin shows that the vitrinite reflectance and d15 N

Svensen, Henrik

86

magnesium technology 2007 table of contents  

Science Conference Proceedings (OSTI)

Wim Sillekens and D.C.W. van der Linden. The Effect of Texture on the Mechanical Properties of AZ31 Mg Alloy by Equal Channel Angular Extrusion [pp

87

Bonded carbon or ceramic fiber composite filter vent for radioactive waste  

DOE Patents (OSTI)

Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

1985-02-19T23:59:59.000Z

88

Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry  

DOE Patents (OSTI)

A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

Siminovitch, M.

1998-02-10T23:59:59.000Z

89

Development of a model for predicting transient hydrogen venting in 55-gallon drums  

DOE Green Energy (OSTI)

Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

Apperson, Jason W [Los Alamos National Laboratory; Clemmons, James S [Los Alamos National Laboratory; Garcia, Michael D [Los Alamos National Laboratory; Sur, John C [Los Alamos National Laboratory; Zhang, Duan Z [Los Alamos National Laboratory; Romero, Michael J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

90

Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry  

SciTech Connect

A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

Siminovitch, Michael (El Sobrante, CA)

1998-01-01T23:59:59.000Z

91

Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge  

Science Conference Proceedings (OSTI)

To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

Flores, Gilberto E [Portland State University; Campbell, James H [ORNL; Kirshtein, Julie D [United States Geological Survey, Reston, VA; Meneghin, Jennifer [Portland State University; Podar, Mircea [ORNL; Steinberg, Joshua [Oregon Episcopal School, Portland, OR; Seewald, Jeffrey S [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Tivey, Margaret Kingston [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Voytek, Mary A [United States Geological Survey & National Aeronautics and Space Administration; Reysenbach, Anna-Louise [Portland State University; Yang, Zamin Koo [ORNL

2011-01-01T23:59:59.000Z

92

Biotic and abiotic interactions of deep-sea hydrothermal vent-endemic fish on the East Pacific Rise  

E-Print Network (OSTI)

A study of the ecology of fish endemic to hydrothermal vents on the East Pacific Rise was undertaken utilizing a variety of techniques, focusing on the bythitid Thermichthys hollisi. Stable isotope and gut content analyses ...

Buckman, Kate Lynn

2009-01-01T23:59:59.000Z

93

Multi-slit self-sealing ignition-arrester battery vent  

SciTech Connect

A vented battery cap is provided which is adapted to engage at least one of a plurality of fill holes in an automotive storage battery or similar lead--acid battery and which has pressure release means for venting the combustible gases produced within that storage battery under conditions, such as overcharge conditions, into the atmosphere. The pressure release means comprise a plurality of extremely narrow slits having widths in the order of 0.003 to 0.005 of an inch. The remainder of the battery cap is tightly sealed to prevent any extraneous leaks of battery gases received from the automotive battery from leaking into the atmosphere. The slits are so constructed to facilitate the safe expulsion of any volume of gas normally produced by an automotive storage battery, while virtually eliminating the likelihood that ignition of gases within the atmosphere will result in explosive consequences either within the battery cap or within the battery itself.

Heiser, J.I.; Erb, E.M.

1978-04-25T23:59:59.000Z

94

Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting  

E-Print Network (OSTI)

There is a limited data base on the full scale performance of radiant barrier insulation in attics. The performance of RBS have been shown to be dependent on attic ventilation characteristics. Tests have been conducted on a duplex located in Florida with soffit and ridge venting to measure attic performance. The unique features of these experiments are accurate and extensive instrumentation with heat flow meters, field verification of HFM calibration, extensive characterization of the installed ceiling insulation, ventilation rate measurements and extensive temperature instrumentation. The attics are designed to facilitate experimental changes without damaging the installed insulation. RBS performance has been measured for two natural ventilation levels for soffit and ridge venting. Previously, no full scale data have been developed for these test configurations. Test data for each of the test configurations was acquired for a minimum of two weeks with some acquired over a five week period. The Rl9 insulation performed as expected.

Ober, D. G.; Volckhausen, T. W.

1988-01-01T23:59:59.000Z

95

Energy Efficient Commercial Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Technologies April 11th, 2012 Presented by: Warren Willits Energy Solutions Center (202) 824-7150 www.ESCenter.org Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA Todays Energy Efficient Technologies  Water Heating  Heating  Air Conditioning  Humidity Control  CHP / Cogeneration Atmospheric Direct Vent High Efficiency .7 EF Atmospheric water heaters now available 97 % efficient tank water heaters now available Traditional Tank Style Water Heating  Tankless Water Heaters  EF = .82 Standard Unit  EF = .97 Condensing  Solar Water Heaters  With H.E. gas back up systems Newer Water Heaters Water Heater Life Cycle Cost Life Cycle Costs Electric Tank Water Heater Gas Water Heater

96

Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Vented and Flared (Million Cubic Feet) Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 1,994 1,804 1,837 1,504 1,798 1,541 1,890 1,954 1,742 2,018 1,823 1,711 2002 1,661 1,512 1,693 1,728 1,794 1,738 1,809 1,820 1,523 1,433 1,667 1,714 2003 1,728 1,590 1,801 1,753 1,774 1,675 1,639 1,702 1,612 1,661 1,555 1,617 2004 1,554 1,465 1,600 1,544 1,566 1,463 1,536 1,508 1,194 1,301 1,336 1,339 2005 1,368 1,266 1,430 1,362 1,429 1,351 1,291 1,204 609 607 862 1,021

97

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

98

Whitey Swagelok SCHe ball valves Provide Isolation between SCHe Purge Lines C and D and the Process Vent  

Science Conference Proceedings (OSTI)

These valves are 1/4 inch ball valves fabricated of 316 stainless steel. Packing is TFE (standard). They provide an isolation function betwen SCHe Purge Line C, (PV-V-*079), and Purge Line D, (PV-V-*080), and the Process Vent.

MISKA, C.R.

2000-09-03T23:59:59.000Z

99

COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS  

Science Conference Proceedings (OSTI)

Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The disequilibrium is likely limited to wells screened across the water table (i.e., open to the deep vadose zone) where the depth to water is large or a low-permeability layer occurs in the vadose zone. Such wells are a pathway for air movement between the deep vadose zone and land surface and this sustains the pressure disequilibrium between the well bore and the atmosphere for longer time periods. Barometric over-response was not observed with the absolute pressure transducers because barometric compensation was achieved by directly measuring the air pressure within the well. Users of vented pressure transducers should be aware of the over-response issue in certain Hanford Site wells and ascertain if it will affect the use of the data. Pressure disequilibrium between the well and the atmosphere can be identified by substantial air movement through the wellbore. In wells exhibiting pressure disequilibrium, it is recommended that absolute pressure transducers be used rather than vented transducers for applications that require precise automated determinations of well water-level changes in response to barometric pressure fluctuations.

MCDONALD JP

2011-09-08T23:59:59.000Z

100

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

102

Journal of the Geological Society, London, Vol. 163, 2006, pp. 671682. Printed in Great Britain. Structure and evolution of hydrothermal vent complexes in the Karoo Basin,  

E-Print Network (OSTI)

, formed at c. 183 Ma, is characterized by the presence of voluminous basaltic intrusive complexes within the Karoo Basin, extrusive lava sequences and hydrothermal vent complexes. These last are pipe

Svensen, Henrik

103

Expansion and user study of CoolVent : inclusion of thermal comfort models in an early-design natural ventilation tool  

E-Print Network (OSTI)

CoolVent, a software design tool for architects, has been improved. The work of Maria- Alejandra Menchaca-B. and colleagues has been improved to include a more robust and intuitive building and window dimensioning scheme, ...

Rich, Rebecca E. (Rebecca Eileen)

2011-01-01T23:59:59.000Z

104

The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs  

Science Conference Proceedings (OSTI)

Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

Miller, William A [ORNL

2006-01-01T23:59:59.000Z

105

Engineering work plan for container venting system drill press assembly troubleshooting. Revision 1  

SciTech Connect

This work plan is for troubleshooting the current CVS drill press to ensure that the drill bit assembly doesn`t bind in the press plate. A drill press assembly has been fabricated for the Container Venting System (CVS). The drill bit assembly has bound in the press plate in previous revisions of this design. Initial troubleshooting of the drill press per Rev. 0 of this work plan was performed at the 200W Kaiser Machine Shop under Work Package 2H9401670F, Internal Work Order E20027. The drill press operated without jamming. Then, during the pre-operational test on 11/14/17 and the operational test on 11/17/94, two drum lids were drilled. Immediately after the test on 11/17/94, the drill was again operated, and it jammed. An inspection found shavings at the bottom of the drill bit assembly, between the drill bit sleeve and the press plate bore. This revised work plan provides direction for the machine shop to diagnose and correct this recent problem.

Prather, M.C.

1994-11-01T23:59:59.000Z

106

Engine cooling system air venting arrangement with buoyant air purge valve  

Science Conference Proceedings (OSTI)

An air vent arrangement is described for the cooling system of an automotive type engine having a radiator with a coolant inlet. The engine has coolant passages communicating with the radiator through an outlet essentially horizontally disposed, tubing connecting the radiator inlet and coolant outlet, and a thermostat in the outlet horizontally movable to open and closed positions. A horizontally disposed air bleed bypass passage is located vertically above the thermostat connecting the coolant outlet to a portion of the tubing downstream of the thermostat bypassing the same when the thermostat is in a closed position for bleeding air from the cooling system. The bypass passage has a valve therein moveable between a position blocking flow of coolant through the same and a second position opening the passage permitting the bleed of air therethrough. The valve is buoyant and constructed and arranged to pivot from a non flowblocking air bleed position into a flow blocking position in response to flow of coolant into the bypass passage acting thereagainst.

Schnizlein, M.E.

1987-02-17T23:59:59.000Z

107

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2: 2: Vol. 11, No. 2 FLEXLAB Preview First FLEXLAB Module Takes Shape OpenADR DoD/ESTCP Activities Tracking the Sun Atmospherically Vented Combustion Appliances Unplug and Save Childcare Air Quality Research Highlights Sources and Credits PDF of EETD News Berkeley Lab Opens First Phase of FLEXLAB, a New Laboratory for Energy-Efficient Buildings Lawrence Berkeley National Laboratory (Berkeley Lab) recently opened the first two testbeds of FLEXLAB, the Facility for Low Energy eXperiments in Buildings. FLEXLAB is a set of testbeds for studying and demonstrating energy-efficient building technologies. Constructed within an existing building, they will allow Berkeley Lab researchers and their partners to study and demonstrate energy-efficient lighting systems and to collaborate

108

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

109

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

110

Major transitions in evolution linked to thermal gradients above hydrothermal vents  

E-Print Network (OSTI)

The emergence of the main divisions of today's life: (1) unicellular prokaryotes, (2) unicellular eukaryotes, (3) multicellular eukaryotes, and (4) metazoans, are examples of the--still unexplained--major transitions in evolution. Regarding the origin of life, I have proposed that primordial life functioned as heat engine (thermosynthesis) while thermally cycled in convecting volcanic hot springs. Here I argue for a role of thermal gradients above submarine hydrothermal vents (SHV) in several major transitions. The last decade has witnessed the emergence of phononics, a novel discipline in physics based on controlled heat transport in thermal gradients. It builds thermal analogs to electronic devices: the thermal diode, the thermal transistor, the thermal switch, the thermal amplifier, the thermal memory--the thermal computer has been proposed. Encouraged by (1) the many similarities between microtubules (MT) and carbon nanotubes, which have a very high thermal conductivity, and (2) the recent discovery of a silk protein which also has a very high thermal conductivity, I combine and extend the mentioned ideas, and propose the general conjecture that several major transitions of evolution were effected by thermal processes, with four additional partial conjectures: (1) The first organisms used heat engines during thermosynthesis in convection cells; (2) The first eukaryotic cells used MT during thermosynthesis in the thermal gradient above SHV; (3) The first metazoans used transport of water or in water during thermosynthesis above SHV under an ice-covered ocean during the Gaskiers Snowball Earth; and (4) The first mammalian brain used a thermal machinery based on thermal gradients in or across the cortex. When experimentally proven these conjectures, which are testable by the methods of synthetic biology, would significantly enhance our understanding of life.

Anthonie W. J. Muller

2012-12-03T23:59:59.000Z

111

Report to California Energy Commission on route to scale-up of polymer based PV: Funding suggestions for research and technology  

E-Print Network (OSTI)

production potential for solar vent pre- heating, PV, and wind technologies. #12;6 These facilities should for a solar PV system in this report, has many near-ideal areas in which to implement a PV system solar resource, and excellent incentives, a government-owned PV system provides a reasonable payback

Islam, M. Saif

112

Final Report - Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems  

SciTech Connect

Project Objective was to extend pressure swing adsorption (PSA) technology into previously under-exploited applications such as polyolefin production vent gas recovery and H2 recovery from refinery waste gases containing significant amounts of heavy hydrocarbons, aromatics, or H2S.

Keith Ludwig

2004-06-14T23:59:59.000Z

113

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

114

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

2005-09-01T23:59:59.000Z

115

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

116

LINDEN: linking named entities with knowledge base via semantic knowledge  

Science Conference Proceedings (OSTI)

Integrating the extracted facts with an existing knowledge base has raised an urgent need to address the problem of entity linking. Specifically, entity linking is the task to link the entity mention in text with the corresponding real world entity in ... Keywords: entity linking, fact integration, knowledge base, semantic knowledge, wikipedia

Wei Shen; Jianyong Wang; Ping Luo; Min Wang

2012-04-01T23:59:59.000Z

117

LINDENS: A program for lineament length and density ...  

Science Conference Proceedings (OSTI)

... or horizontal strata, lineaments are related to fractures and faults ... give an idea of the fracture pattern of ... and density analysis of recent fracturing in the ...

2013-07-15T23:59:59.000Z

118

List of Publications Paul F. Linden March 17, 2006  

E-Print Network (OSTI)

, R.R. 1994 Theory and practice ­ natural ventilation modeling. Proc. CIBSE Nat. Conference II, pp.102 driven by the combined forces of buoyancy and wind. Proc. CIBSE National Conference, 1, 101­107. 25. Hunt Services Engineers (CIBSE), January 1997, pp. 1­2. 14 #12;

Linden, Paul F.

119

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

120

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

122

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

123

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

124

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

125

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

126

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

127

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

128

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe

129

Executive Director for Operations CONSIDERATION OF ADDITIONAL REQUIREMENTS FOR CONTAINMENT VENTING SYSTEMS FOR BOILING WATER REACTORS WITH MARK I AND MARK II CONTAINMENTS  

E-Print Network (OSTI)

information, options, and a recommendation from the NRC staff to impose new requirements for containment venting systems for boiling-water reactors (BWRs) with Mark I and Mark II containments. This paper is provided in response to the Commissions staff requirements memorandum (SRM) for SECY-11-0137, Prioritization of Recommended Actions To Be

R. W. Borchardt

2012-01-01T23:59:59.000Z

130

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

131

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

132

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

133

Available Technologies  

The technologys subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE ...

134

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

135

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

136

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

137

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

138

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

139

Available Technologies  

APPLICATIONS OF TECHNOLOGY: Thermal management for: microelectronic devices; solar cells and solar energy management systems ; refrigerators

140

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

142

A Feasibility Study of H{sub 2}S Abatement by Incineration of Noncondensable Gases in Vented Steam Flow from Davies-State 5206-1 Geothermal Steam Well, Geysers Geothermal Steam Field, Lake County, California  

DOE Green Energy (OSTI)

Determine feasibility of using an incineration-type device to accomplish the required reduction in vent steam H{sub 2}S content to meet ICAPCO rules. This approach is to be the only method considered in this feasibility study.

None

2006-08-25T23:59:59.000Z

143

2011 NNSS Review of DAF-JCO Inoperable HEPA Filtered Vent. System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-07-08 NNSS-2011-07-08 Site: Nevada National Security Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Review of DAF-JCO-11-01 for Inoperable HEPA-Filtered Ventilation System Dates of Activity : 06/06/2011 - 07/08/2011 Report Preparer: William Macon Activity Description/Purpose: As an operational awareness activity, the Office of Health, Safety and Security (HSS) site lead reviewed a recent Justification for Continued Operations (JCO) for the Inoperable High Efficiency Particulate Air (HEPA)-Filtered Ventilation System at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS). DAF- JCO-11-01, Revision 2, was prepared by the contractor, National Security Technologies, LLC (NSTec), on May

144

Interim On-Site Storage of Low-Level Waste: Volume 4, Part 3: Waste Container Closures, Seals, and Gas Vents  

Science Conference Proceedings (OSTI)

This volume of the Interim On-Site Storage report series supplements Volume 4, Part 1, which includes an extensive methodology and detailed information on the types and availability of low-level waste (LLW) containers and container coatings for extended storage. Part 2, soon to be published, addresses monitoring and inspection requirements for stored LLW containers. Part 3 continues the series by providing detailed guidance on container closures, seals, and gas vents, including performance goals and key ...

1993-11-11T23:59:59.000Z

145

Preliminary Study of a Vented Attic Radiant Barrier System in Hot, Humid Climates Using Side-by-Side, Full-Scale Test Houses  

E-Print Network (OSTI)

A series of side-by-side tests was performed using two full scale test houses to determine the effectiveness of a Vented Radiant Barrier System (VRBS) in reducing the ceiling heat flux during the summer cooling season in North Florida. Another series of side-by-side tests was conducted to evaluate the effect of a VRBS on ceiling heat losses under typical North Florida winter conditions. The effect of a VRBS on the expected life of roof shingles was also evaluated.

Lear, W. E.; Barrup, T. E.; Davis, K. E.

1987-01-01T23:59:59.000Z

146

Environmental Technology Verification Program  

E-Print Network (OSTI)

,fallingobjects,misuseofequipment,ergonomic/repetitivemotioninjuries, slips, trips, falls, crushes, and cuts. · Explosionand Fire -- Ignition of petroleum products; methane of petroleum hydrocarbons. #12;6 Aerosols were measured with a real-time direct-reading particle meter Source Complex Model (ISCLT3).9 Meteorological dispersion of emissions vented from the warehouse

147

Assessment of H/sub 2/S control technologies for geothermal power plants  

DOE Green Energy (OSTI)

Techniques for controlling hydrogen sulfide (H/sub 2/S) from geothermal development are analyzed. Several technologies for controlling H/sub 2/S emissions from power plants are examined. The Hydrogen Peroxide Combination System, Stretford System and possibly EIC or Coury upstream controls appear capable of compliance with the emission limitations of 100 grams per hour per gross megawatt in 1980 (and 50 q/hr/(g) MW in 1985 or 1990) at the Geysers Dry stream field in Northern California. Unresolved problems still plague all these options. Well field operations result in H/sub 2/S releases from well drilling, well venting and steam stacking. Hydrogen peroxide reduces H/sub 2/S emissions during drilling and venting can be controlled with vent gathering (condensation/reinjection) systems. Steam stacking during power plant outages emit more H/sub 2/S over shorter periods than other field operations. Potential controls for stacking are: (1) upstream abatement, (2) automated well operation, (3) computerized wellfield operation (as of PG and E's Geysers Unit No. 15), and (4) further steamfield interconnection (cross-overs).

Not Available

1980-02-01T23:59:59.000Z

148

Processing Technology  

Science Conference Proceedings (OSTI)

Aug 5, 2013... relevant polymers and hybrid nanocomposite material systems. ... technology to perform lightweight manufacturing of car components.

149

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

150

Technology Transfer  

Science Conference Proceedings (OSTI)

... get started on understanding accessibility in elections and voting technology. ... bibliography was created by the Georgia Tech Research Institute ...

2013-09-17T23:59:59.000Z

151

Technology Strategies  

Science Conference Proceedings (OSTI)

From the Book:PrefaceTechnology as the Strategic AdvantageWhen I began writing this book I struggled with the direction I wanted it to take. Is this book to be about business, technology, or even the business of technology? I ...

Cooper Smith

2001-07-01T23:59:59.000Z

152

Technology '90  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

153

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Technology Research, Standards, and Codes in Emerging Technologies on Facebook Tweet about Building Technologies...

154

Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

155

NETL: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

projects are designed to: enhance domestic oil and natural gas supplies through advanced exploration and production technology; examine water related concerns; investigate...

156

Technology Update  

Science Conference Proceedings (OSTI)

A Novel Solvent Extraction Process With Bottom Gas Injection for Liquid Waste ... Membrane Technology for Treatment of Wastes Containing Dissolved Metals:...

157

Microwave Technology  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... These wastes are found in the market. ... Cherian1; Michael Kirksey1; Sandwip Dey2; 1Spheric Technologies Inc; 2Arizona State University

158

Transmission Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

electronically (shift-by-wire) and performed by a hydraulic system or electric motor. In addition, technologies can be employed to make the shifting process smoother than...

159

Metering Technology  

Science Conference Proceedings (OSTI)

Utilities are looking to replace meters that only measure kilowatt-hours with advanced meters with greater features and functions. This White Paper describes the smart metering technology that is already available or will be available in the near future. It also provides a high-level overview of the wired and wireless communication technologies used in the metering industry.

2008-06-20T23:59:59.000Z

160

Technology Search Results | Brookhaven Technology ...  

BSA 11-30: Enhanced Alkane production by Aldehyde Decarbonylase Fusion Constructs; BSA 12-36: Oil Accumulation in Plant Leaves; Find a Technology.

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technology Search Results | Brookhaven Technology ...  

There are 9 technologies tagged "cancer". BSA 01-02: ... a limited-liability company founded by the Research Foundation for the State University of ...

162

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

163

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

parts Brazing large complex parts The joining and heat-treating technologies in the Thin Film, Vacuum, & Packaging department include brazing, heat-treating, diffusion...

164

Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples  

DOE Green Energy (OSTI)

Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

2002-12-05T23:59:59.000Z

165

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

166

Building Technologies Office: Emerging Technologies Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

167

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

168

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

169

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

170

Vented nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

Grossman, Leonard N. (Livermore, CA); Kaznoff, Alexis I. (Castro Valley, CA)

1979-01-01T23:59:59.000Z

171

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

172

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

173

Fabrication Technology  

SciTech Connect

The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

Blaedel, K.L.

1993-03-01T23:59:59.000Z

174

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

175

National Energy Technology Laboratory Technology Marketing ...  

National Energy Technology Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing from the ...

176

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

177

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

178

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

179

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

180

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

182

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

183

PNNL: Available Technologies - Browse Technologies by Portfolio  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Browse Technologies by Portfolio. Select a technology portfolio to view ...

184

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy; Information Technology; Manufacturing ; Materials; National Security; Non-Nuclear ...

185

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

186

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

187

NETL: Technology Transfer - Available Technologies for Partnership  

Technology Transfer Available Technologies for Partnership Software and Modeling. Month Posted. Partnership Opportunity. Patent Information. 12/2011: ...

188

Evaluation of H/sub 2/S control technology for geothermal energy sources  

DOE Green Energy (OSTI)

This study was conducted to identify processes that are most applicable for control of H/sub 2/S from geothermal sources. Both vapor-dominated and liquid-dominated sources were considered within the electric power generation category. The source characteristics, H/sub 2/S control requirements, and applicable technologies are discussed for the two geothermal sources. An evaluation of the applicable control technology indicates that there are three major approaches for H/sub 2/S removal. These are (a) upstream cleaning (ahead of the power plant), (b) removal of H/sub 2/S from condenser vent emissions, and (c) H/sub 2/S removal from cooling water, including condensate. The most promising processes for these emission points, based on current information, are as follows: the EIC process for upstream cleaning of liquid-dominated sources. For condenser vent emissions, the Stretford process appears to be most applicable; for cooling tower emissions, the iron catalyst process, followed by the H/sub 2/O/sub 2/ process, seems most appropriate.

Not Available

1978-11-21T23:59:59.000Z

189

Healthy technology  

Science Conference Proceedings (OSTI)

One of the biggest struggles user experience teams face is breaking through traditional notions of product strategy, planning and development to bring actionable awareness to the bigger picture around delivering full experiences that people really care ... Keywords: design management, design process, ethnography, experience, healthy technology, industry, lifecycle, metaphor, platform, reliability, research, security, strategy, sustainability

Ashwini Asokan; Michael .J. Payne

2008-04-01T23:59:59.000Z

190

Technologies Applications  

E-Print Network (OSTI)

evaporation systems n Potential mining applications (produced water) nIndustry applications for which silicaLicensable Technologies Applications: n Cooling tower systems n Water treatment systems n Water needed n Decreases the amount of makeup water and subsequent discharged water (blowdown) n Enables

191

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

192

Vacuum Technology  

SciTech Connect

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

193

Pervasive Information Technology Homepage  

Science Conference Proceedings (OSTI)

Pervasive Information Technology. Pervasive information technology is the trend towards increasingly ubiquitous connected ...

2011-07-05T23:59:59.000Z

194

Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney  

Science Conference Proceedings (OSTI)

Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1 T was the first isolate within the phylum ThermusDeinococcus to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1 T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Copeland, A [U.S. Department of Energy, Joint Genome Institute; Gu, Wei [U.S. Department of Energy, Joint Genome Institute; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Pan, Chongle [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

2012-01-01T23:59:59.000Z

195

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

196

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

197

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomassorganic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastesthat can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

198

Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

Moore, J.P.

2000-08-18T23:59:59.000Z

199

Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000  

DOE Green Energy (OSTI)

The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

Moore, J.P.

2000-10-23T23:59:59.000Z

200

TECHNOLOGY ADMINISTRATION  

E-Print Network (OSTI)

This report originated in the authors participation in a multi-country study of national innovation systems and their impact on new technology development, sponsored by the Organization for Economic Cooperation and Development (OECD). Our task was to look at the U.S. national innovation systems impact on the commercial development of Proton Exchange Membrane (PEM) fuel cells for residential power applications. Early drivers of PEM fuel cell innovation were the aerospace and defense programs, in particular the National Aeronautics and Space Administration (NASA), which used fuel cells on its spacecraft. In the early 1990s, deregulation hit the electric utility industry, which made utilities and entrepreneurs see the potential in generating electricity from distributed power. Throughout the 1990s, the Department of Energy funded a significant portion of civilian fuel cell research, while the Department of Defense and NASA funded more esoteric military and space applications. In 1998, the Department of Commerces Advanced Technology Program (ATP) awarded the first of 25 fuel cell projects, as prospects for adoption and commercialization of fuel cell technologies improved.

John M. Nail; Gary Anderson; Gerald Ceasar; Christopher J. Hansen; John M. Nail; Gerald Ceasar; Christopher J. Hansen; Carlos M. Gutierrez; Hratch G. Samerjian; Acting Director; Marc G. Stanley; Director Abstract

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technology disrupted  

SciTech Connect

Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

Papatheodorou, Y. [CH2M Hill (United States)

2007-02-15T23:59:59.000Z

202

Vehicle Technologies Office: Fact #114: January 31, 2000 OPEC...  

NLE Websites -- All DOE Office Websites (Extended Search)

42% 62% Oil Reserves 78% 88% Natural Gas Reserves 44% 80% Vented and Flared Gas 73% 78% Oil production, US DOE Energy Information Administration, International Petroleum Monthly,...

203

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

204

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

205

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

206

Offshore Technology  

E-Print Network (OSTI)

This report, and the roadmapping exercise that produced it, is the result of a series of transparent workshops held across the nation. A wealth of information was produced to compliment internal sources like the Energy Information Administration. The active participation of the Department's stakeholders is greatly appreciated. Walter Rosenbusch, Director of the Minerals Management Service (MMS) deserves special recognition. His partnership, participation and input were instrumental to the success of this effort. I also would like to thank my friend Governor Mark White for his participation and support of this effort. In addition, I thank the following workshop chairs and moderators for their participation and contribution to the roadmapping efforts: Mary Jane Wilson, WZI, Inc.; Ron Oligney, Dr. Michael Economides, and Jim Longbottom, University of Houston; John Vasselli, Houston Advanced Research Center; and Art Schroeder, Energy Valley. This report, however, does not represent the end of such long-range planning by the Department, its national labs, and its stakeholders. Rather it is a roadmap for accelerating the journey into the ultradeepwater Western Gulf of Mexico. The development of new technologies and commercialization paths, discoveries by marine biologists, and the fluctuations of international markets will continue to be important influences. With that in mind, let the journey begin. Emil Pea Deputy Assistant Secretary for Natural Gas and Petroleum Technology OFFSHORE TECHNOLOGY ROADMAP FOR THE ULTRA-DEEPWATER GULF OF MEXICO U.S. Department of Energy Maximumhistm,183 oil product,0 ratd for Gulf of Mexico wells. Taller barsindicat higherproduct44 ratdu The dat show numerous deepwat, oil wells producedat significant2 higherrate tt ever seen in t, Gulf of ...

Roadmap For The; Deepwater Gulf; Of Mexico

2000-01-01T23:59:59.000Z

207

Testing technology  

SciTech Connect

This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

Not Available

1993-10-01T23:59:59.000Z

208

FEMP/NTDP Technology Focus New Technology  

E-Print Network (OSTI)

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy their decision making process relative to energy management systems design, specification, procurement. Future topics will concentrate on more practical aspects including applications software, product

209

Hydrogen Technologies Group  

DOE Green Energy (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

210

Emerging Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps *...

211

Technology and the Box  

E-Print Network (OSTI)

its explorations of technology in partnership with radicalcrowd our daily life. Technology, like the term box, cancommon understanding of technology though, is not as a

Maitland, Padma

2013-01-01T23:59:59.000Z

212

Technology acceptance in organizations.  

E-Print Network (OSTI)

??New technology has changed how people do business. With rapid development of technology, it has been difficult for businesses and organizations to successfully implement technology (more)

Stewart, Laurie

2013-01-01T23:59:59.000Z

213

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

214

LLNL/Linde 875 bar Liquid Hydrogen Pump for High Density Cryogenic...  

NLE Websites -- All DOE Office Websites (Extended Search)

3. Lemmon, E.W., McLinden, M.O., Huber, M.L., "REFPROP: NIST reference fluid thermodynamic and transport properties," National Institute of Standards and Technology, 2004....

215

Technology Transfer: Success Stories: Licensed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

216

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Flow-Through Reactor for the In Situ Assessment of Remediation Technologies in Vadose ...

217

Solar Energy Technologies Program Technology Overview  

Science Conference Proceedings (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

218

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

219

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

220

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technology Name  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To prevent the D&D knowledge and expertise from being lost over time an approach is needed to capture and maintain this valuable information in a universally available and easily usable system. Technical Solution The D&D KM-IT serves as a centralized repository

222

Technology Commercialization and Partnerships |  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

223

Magnesium Technology 2009  

Science Conference Proceedings (OSTI)

Feb 1, 2009 ... Print Book and CD-ROM: Magnesium Technology 2007. Hardcover book and CD set: Magnesium Technology 2008...

224

Engineering Science & Technology Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Cooling, Heating and Power Technologies Electronics and Communications Industrial Energy Efficiency Robotics and Energetic Systems Sensors & Signal...

225

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 3, 2010 ... This program focuses on developing energy storage technologies to ... Ultimately , technologies developed through this program will be...

226

Technology Ventures Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventures Corporation Technology Ventures Corporation (TVC) identifies technologies with commercial potential, coordinates the development of business and management capabilities,...

227

Magnesium Technology Symposium  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2013 ... Scope, The magnesium technology symposium will cover a broad spectrum of theoretical and...

228

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

229

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

230

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

231

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Electrochemical Impedance Spectroscopy. Related Patents: 7088115

232

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Welding Apparatus and Methods for Using Ultrasonic Sensing

233

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Realtime Acoustic Imaging Microscope. Related Patents: 7123364; 6836336

234

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Spray Rolling Metal. Related Patents: 6074194; 5718863

235

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

236

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna Composites PDF format (145 kb) Polymer composite materials are composed of fibers in an organic matrix and can be useful in applications that require a high strength-to-weight ratio. Sandia's MS&T staff will work with you from part design, through mold and tooling design, and on through fabrication. The department is capable of fabricating small and large complex parts and will help you choose the most economical technique for your composite needs. Capabilities: The Center has a comprehensive program on the mechanical engineering design, tooling and fixturing, lay-out, complete processing of the composite structure, and technology transfer of composite structures for a

237

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Engineered Net Shaping(tm) Laser Engineered Net Shaping(tm) PDF format (140 kb) picture of processing blade Processing Blade Sandia National Laboratories has developed a new technology to fabricate three-dimensional metallic components directly from CAD solid models. This process, called Laser Engineered Net ShapingT (LENS®), exhibits enormous potential to revolutionize the way in which metal parts, such as complex prototypes, tooling, and small-lot production items, are produced. The process fabricates metal parts directly from the Computer Aided Design (CAD) solid models using a metal powder injected into a molten pool created by a focused, high-powered laser beam. Simultaneously, the substrate on which the deposition is occurring is scanned under the beam/powder interaction zone to fabricate the desired

238

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

239

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

240

Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills  

DOE Green Energy (OSTI)

Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

2004-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CMM Technology  

SciTech Connect

This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

Ward, Robert C.

2008-10-20T23:59:59.000Z

242

Plasma technology directory  

SciTech Connect

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

243

NETL Technologies Recognized for Technology Development, Transfer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

244

NREL: Technology Transfer - Technologies Available for Licensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

245

National Energy Technology Laboratory National Energy Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

4U.S. Department of Energy U.S. Department of Energy National Energy Technology Laboratory National Energy Technology Laboratory Office of Public Affairs Office of Public Affairs...

246

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Integrated Optical Sensor. Related Patents: 5275327. Contact: David R. Anderson

247

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security Portable Tire Deflation Device. Related Patents: 7,641,417; 5507588

248

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Materials Forming Aluminum Oxynitride. Related Patents: 7,459,122. Contact: Lisa Nate

249

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security Electric Generator Protection. Related Patents: 7,453,674

250

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Method and Apparatus Configured for Identification of a Material

251

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security; Non-Nuclear Energy; Nuclear Energy; Robotics; Transportation;

252

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Modular Friction Stir Welding Tool. Related Patents: 7,357,292

253

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Materials Natural Adhesive Systems. Related Patents: 6987170. Contact: David R. Anderson

254

Living technology: Exploiting life's principles in technology  

Science Conference Proceedings (OSTI)

The concept of living technology---that is, technology that is based on the powerful core features of life---is explained and illustrated with examples from artificial life software, reconfigurable and evolvable hardware, autonomously self-reproducing ... Keywords: Living technology, World Wide Web, autonomous robot, protocell, scientific social responsibility, synthetic biology

Mark A. Bedau; John S. McCaskill; Norman H. Packard; Steen Rasmussen

2010-01-01T23:59:59.000Z

255

Soap Manufacturing Technology  

Science Conference Proceedings (OSTI)

Soap producers as well as anyone with an interest in soap technology will benefit from the new AOCS Press Soap Manufacturing Technology book. Soap Manufacturing Technology Surfactants and Detergents aocs articles Detergents division divisions fabric

256

Emerging Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

257

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

258

Success Stories: Symyx Technologies  

Start-Ups - Symyx Technologies, Inc. Revolutionizing Materials Discovery. Symyx Technologies, Inc. is at home in the heart of Silicon Valley. ...

259

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

260

Technology Zones (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Virginias 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydropower Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

262

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

263

Edison Systems Technology Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Documentation Systems Technology Documentation Downloads CrayXC30Networking.pdf | Adobe Acrobat PDF file Cray XC30 Networking SonexionBrochure.pdf | Adobe Acrobat PDF...

264

Green Purchasing & Green Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

265

Technology Development Loans (Wisconsin)  

Energy.gov (U.S. Department of Energy (DOE))

Technology Development Loans help innovative companies with promising economic futures clear the hurdles associated with bringing new technologies, products, and concepts to market. Loan funds...

266

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

267

Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE))

This document has been developed to guide individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the...

268

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

269

First National Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

9 10 First National Technology First National Technology Center Center The Nature of the Grid - Industrial Age Power - Normal Course Voltage Interruptions: 2-3 seconds Lights and...

270

Morgantown Energy Technology Center, technology summary  

Science Conference Proceedings (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

271

Technologies - Lawrence Livermore National Laboratory  

home \\ technologies. Technologies: Ready-to-Sign Licenses: Software: Patents: Technologies ... for the Department of Energy's National Nuclear Security Administration

272

NREL: Geothermal Technologies - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Research Staff...

273

Vehicle Technologies Office: Educational Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

consumption and lower emissions by using advanced vehicle technologies, such as: hydrogen fuel cells, plug-in hybrid technology, hybrid technology, diesel technology and other...

274

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Fuel Cell Technologies Office: News on Google Bookmark Fuel Cell Technologies Office: News on Delicious Rank Fuel Cell Technologies...

275

Health Information Technology (IT)  

Science Conference Proceedings (OSTI)

... Contact. Kathleen Roberts Information Technology Laboratory kathleen.roberts@nist.gov 301.975.2982. ...

2013-08-12T23:59:59.000Z

276

Partnerships and Technology Transfer  

Search . Browse Available Technologies. Learn About Us. Licensing; Sponsored Research; Economic Development; Industrial Partnerships; University ...

277

Applications of UWB Technology  

E-Print Network (OSTI)

Recent advances in wideband impulse technology, low power communication along with unlicensed band have enabled ultra wide band (UWB) as a leading technology for future wireless applications. This paper outlines the applications of emerging UWB technology in a private and commercial sector. We further talk about UWB technology for a wireless body area network (WBAN).

Ullah, Sana; Hussain, Asdaque; Kwak, Kyung Sup

2009-01-01T23:59:59.000Z

278

Cryogenic Technologies Project  

Science Conference Proceedings (OSTI)

... processes and products involving cryogenic technologies. ... Develop mathematical models for cryogenic ... Assist in development of bibliographic ...

2013-02-04T23:59:59.000Z

279

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

280

Available Technologies: Football Wrench  

Energy Efficiency; Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging ...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

282

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

283

Security Technologies Group  

Science Conference Proceedings (OSTI)

Security Technologies Group. Welcome. Our group develops measurement science in support of performance-based standards ...

2012-10-24T23:59:59.000Z

284

Argonne TDC: Transportation Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

285

Argonne TDC: Engineering Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

286

Argonne TDC: Environmental Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

287

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

288

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

289

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

290

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

291

Pretreatment Technology Plan  

SciTech Connect

This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

Barker, S.A. [Westinghouse Hanford Co., Richland, WA (US); Thornhill, C.K.; Holton, L.K. Jr. [Pacific Northwest Lab., Richland, WA (US)

1993-03-01T23:59:59.000Z

292

Idaho National Laboratory - Technology Transfer - Technologies ...  

The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, Science and Technology by Battelle Energy alliance.

293

Idaho National Laboratory - Technology Transfer - Technologies ...  

Licensing technologies between Battelle Energy Alliance (BEA), the Management and Operating Contractor at the Idaho National Laboratory (INL) and a business or other ...

294

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat....

295

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System...

296

NREL: Technology Transfer - Technologies Available for Licensing  

National Renewable Energy Laboratory Technology Transfer New Amber LEDs for High-Efficiency Solid-State Lighting. NREL is closing the LED "green gap" ...

297

Information Technology Solutions Intelligent Grid Technologies  

energy storage and how to use different forms of energy more efficiently The technologies and methodologies for the Intelligent Grid available for

298

Idaho National Laboratory - Technology Transfer - Technologies ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

299

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Microwave Assisted Centrifuge for Viscous Oil Analysis. Related Patents: 7,775,961

300

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... This site will work and look better in a browser that supports web standards, but it is accessible ...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laser Ablation Technology for Chemical Analysis : Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of gray dots transitioning to a line art drawing of a cityscape and residential houses. Laser Ablation Technology for Chemical Analysis Analyzing materials to determine their...

302

Building Technologies Office: Technology and Implementation  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Flexible Aerogel Insulation Home Energy Management Systems In-Field Applications of Residential Energy Efficiency Technology With Home Energy Management Systems (HEMS) Impact...

303

NREL: Technology Transfer - Technologies Available for Licensing  

NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing.

304

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing A Novel Gas Flow Meter. Related Patents: 7,082,826. Contact: David R. Anderson

305

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

306

NREL: Technology Transfer - Wind Technology Center Installing ...  

Wind Technology Center Installing a Dynamic Duo August 25, 2009. Generating 20 percent of the nation's electricity from clean wind resources will ...

307

Technologies - Lawrence Livermore National Laboratory  

Technology Search. Subscribe to our technology RSS feed. Browse by Industry. Automotive & Transportation; Biotechnology, Medical, & Health ...

308

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

309

SHARED TECHNOLOGY TRANSFER PROGRAM  

DOE Green Energy (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

310

NREL: Technology Transfer - Agreements for Commercializing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements for Commercializing Technology Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly-specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Benefits The benefits of Agreements for Commercializing Technology include: Intellectual Property Rights. ACT provides a more flexible framework for negotiation of intellectual property rights to facilitate moving technology from the laboratory to the marketplace as quickly as possible.

311

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

312

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

313

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

314

Natural Gas Vented and Flared  

U.S. Energy Information Administration (EIA) Indexed Site

143,457 166,909 165,360 165,928 209,439 212,848 1936-2012 143,457 166,909 165,360 165,928 209,439 212,848 1936-2012 Alaska 6,458 10,023 6,481 10,173 10,966 11,769 1967-2012 Alaska Onshore 5,125 7,812 5,271 8,034 9,276 9,244 1992-2012 Alaska State Offshore 1,334 2,212 1,210 2,139 1,690 2,525 1992-2012 Federal Offshore Gulf of Mexico 12,509 14,507 14,754 13,971 15,502 16,296 1997-2012 Louisiana 6,496 4,021 4,336 4,578 6,302 NA 1967-2012 Louisiana Onshore 6,078 3,777 4,121 4,432 6,153 NA 1992-2012 Louisiana State Offshore 418 243 215 146 149 NA 1999-2012 New Mexico 929 803 481 1,586 4,360 12,259 1967-2012 Oklahoma 0 0 0 0 1967-2010 Texas 36,682 42,541 41,234 39,569 35,248 47,530 1967-2012 Texas Onshore 36,682 42,541 41,234 39,569 35,248 47,530 1992-2012

315

Natural Gas Vented and Flared  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1991-2013 Alabama NA NA NA NA NA NA 1996-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1996-2013 Missouri NA NA NA NA NA NA 1991-2013

316

Natural Gas Vented and Flared  

Annual Energy Outlook 2012 (EIA)

1-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013...

317

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies November 1, 2013 - 11:40am Addthis Distributed energy (DE) technologies consist primarily of energy generation and storage systems placed at or near the point of use. DE provides consumers with greater reliability, adequate power quality, and the possibility to participate in competitive electric power markets. DE also has the potential to mitigate congestion in transmission lines, control price fluctuations, strengthen energy security, and provide greater stability to the electricity grid. The use of DE technologies can lead to lower emissions and, particularly in combined heat and power (CHP) applications, to improved efficiency. Example of a thermally activated energy conversion technology (TAT) -- a type of distributed energy technology. Distributed energy technologies consist primarily of energy generation and storage systems placed at or near the point of use. This gas engine-driven heat pump is operating on a rooftop.

318

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

319

Technologies for exascale systems  

Science Conference Proceedings (OSTI)

To satisfy the economic drive for ever more powerful computers to handle scientific and business applications, new technologies are needed to overcome the limitations of current approaches. New memory technologies will address the need for greater amounts ...

P. W. Coteus; J. U. Knickerbocker; C. H. Lam; Y. A. Vlasov

2011-09-01T23:59:59.000Z

320

Introduction to Solidia Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO2 Storage August 21-23,...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Safeguards over sensitive technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards Over Sensitive Technology Safeguards Over Sensitive Technology DOE/IG-0635 January 2004 Program Results and Cost Details of Finding ....................................................................... 1 Recommendations and Comments ........................................... 6 Appendices Prior Reports .............................................................................. 9 Objective, Scope, and Methodology ........................................ 11 Management Comments .......................................................... 12 SAFEGUARDS OVER SENSITIVE TECHNOLOGY TABLE OF CONTENTS Page 1 Background Aspects of sensitive technology protection, along with related impacts on national security, have been addressed in various formats by the Department of Energy and several other Federal agencies. For example:

322

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 6, 2009... specifications for future energy generation technologies, including the Ultra- Supercritical Steam Boiler and Turbine Project, said Williamson.

323

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 28, 2012 ... Administrative & Policy Manual .... Materials and Society: Energy Technology, Policy, and Education; Materials Processing and Production; and...

324

Technology Partnerships Office  

Science Conference Proceedings (OSTI)

... infrastructure for emerging information technologies and ... and processes, and expand their markets. ... alternative transportation energy sources, and ...

325

Technology Performance Exchange  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Performance Exchange Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and

326

Photovoltaic Technology Incubator Awards  

SciTech Connect

This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

2007-06-01T23:59:59.000Z

327

Available Technologies: Lignification Stoppers  

APPLICATIONS OF TECHNOLOGY: Biofuels: reduced cell wall recalcitrance and lignin polymerization in feedstocks (e.g., poplar, eucalyptus, switchgrass, miscanthus)

328

Technology Partnerships Office  

Science Conference Proceedings (OSTI)

... NISTTech. NIST Tech. Advanced Search. ... 20899. Advanced Technology Search. Enter desired search items and click "Begin Search". ...

329

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

330

Technology Commercialization & Partnerships | BNL  

Brookhaven National Laboratory's Office of Technology Commercialization and Partnerships manages and advances the commercialization of cutting-edge discoveries ...

331

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 3, 2013... pilot opportunity to broaden participation of underrepresented groups in science, technology, engineering, and mathematics (STEM) fields in...

332

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

333

Catalysis and Biocatalysis Technologies  

Science Conference Proceedings (OSTI)

ATP FOCUSED PROGRAM: Catalysis and Biocatalysis Technologies NOTE ... pharmaceuticals. And that only hints at the roles catalysis plays. ...

2011-10-19T23:59:59.000Z

334

Bioenergy Technologies Office: Sustainability  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview Financial Opportunities Publications Contact Us Sustainability The Bioenergy Technologies Office's activities are guided by a commitment to environmental, economic,...

335

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 10, 2010 ... ESTABLISHED MATERIALS TECHNOLOGIES ... A new, exciting development is the application of these techniques to biological systems,...

336

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 13, 2012 ... ESTABLISHED MATERIALS TECHNOLOGIES ... These projects include the development and validation of modeling tools to deliver higher...

337

Titanium Science & Technology  

Science Conference Proceedings (OSTI)

Titanium Science & Technology. Presented by: F.H. (Sam) Froes, Institute for Materials & Advanced Processes, University of Idaho...

338

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

ESTABLISHED MATERIALS TECHNOLOGIES ... Specifically, digital resources are available relating to materials for nuclear power, materials sustainability, and ...

339

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increasing the Power Modulation Window of Aluminium Smelter Pots with Shell Heat Exchanger Technology Initiatives To Reduction Of Aluminum Potline...

340

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 3, 2008... properties of nanomaterials, while also theorizing their impact on advancements in battery technology, solar energy, and superconductors.

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

HEALTHCARE INFORMATION TECHNOLOGY TESTING  

Science Conference Proceedings (OSTI)

... Technology, Title 45 Code of Federal Regulations, Part 170 ... Medicare and Medicaid Programs; Electronic Health Record Incentive Program; Final ...

2013-01-02T23:59:59.000Z

342

NSTC Committees on Technology  

Science Conference Proceedings (OSTI)

... national goals for Federal science and technology investments in a ... are coordinated across Federal agencies to form investment packages aimed ...

2013-08-06T23:59:59.000Z

343

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

344

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; Achievements at JLab. Patents; New Inventions; New Technologies; New Advances; ...

345

PNNL: Available Technologies: Electronics  

Current Control Technology for Quantum Cascade Laser and Other Applications; Enhanced Pool-Boiling Heat Transfer Using Nanostructured Surfaces;

346

Partnerships and Technology Transfer  

... and photovoltaic materials. This technology is applicable to quantum dot solid-state lighting, flexible electronics, thin film batteries, and ...

347

PNNL: Available Technologies: Environmental  

Current Control Technology for Quantum Cascade Laser and Other Applications; Dynamic Measurement of Hydraulic Parameters Under Liquid Unsaturated Flow ...

348

HEALTHCARE INFORMATION TECHNOLOGY TESTING  

Science Conference Proceedings (OSTI)

... test reports created for validation purposes and submitted to the certification body, the ... CHP Certified Health Information Technology Products List ...

2013-11-22T23:59:59.000Z

349

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... Requirements, Security and Privacy, Reference Architecture, and Technology ... Power Line Communication Standards in the Smart Grid David H. Su ...

2013-09-03T23:59:59.000Z

350

Energy Technology Engineering Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Engineering Center Technology Engineering Center 41 00 Guardian Street, Suite # 160 Simi Valley, CA 93063 Memorandum for: Gregory H. Woods General Council January 30, 2013 FROM: John Jones EL\= Federal Proje� irector Energy Technology Engineering Center (ETEC) Project Office SUBJECT: Annual National Environmental Policy Act {NEPA) Planning Summary Attached is the 2013 Annual NEPA Planning Summary for the ETEC Project Office.

351

Power Technologies Data Book  

SciTech Connect

This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

Goldstein, L.

2002-09-01T23:59:59.000Z

352

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

353

NREL: Power Technologies Energy Data Book - Technology Cross...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Energy Data Book Home Table of Contents Browse by Technology Biomass Geothermal Hydroelectric Solar Wind Calculators Archives Contact Us Technology Cross Reference...

354

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: November 2012 on Facebook Tweet about Fuel Cell Technologies...

355

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Archives to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter Archives on Facebook Tweet about Fuel Cell Technologies...

356

Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to the Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies Office Newsletter on...

357

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

358

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

: 530-752-9603 Technology Transfer Program www.techtransfer.berkeley.edu UC Berkeley Institute-665-3454 Email: techtransfer@berkeley.edu The contents of this document reflect the views of the authors, who

California at Berkeley, University of

359

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

-665-3562 Technology Transfer Program www.techtransfer.berkeley.edu UC Berkeley Institute of Transportation Studies: techtransfer@berkeley.edu The contents of this document reflect the views of the authors, who are responsible

California at Berkeley, University of

360

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Briza Technologies | Open Energy Information  

Open Energy Info (EERE)

Briza Technologies Place Hillsborough, New Jersey Zip 8844 Sector Wind energy Product Developing wind turbine technology. References Briza Technologies1 LinkedIn Connections...

362

Hedgehog Contaminant Removal Information Technology ...  

Technology Readiness Level: Sandia estimates this technologys TRL at approximately a level 6/7. Prototypes have been tested and shown to work in an ...

363

JSA Technology | Open Energy Information  

Open Energy Info (EERE)

JSA Technology Jump to: navigation, search Name JSA Technology Place Baie Mahault, France Zip 92122 Sector Solar Product JSA Technology specializes in the design, execution, and...

364

PCN Technology | Open Energy Information  

Open Energy Info (EERE)

PCN Technology Jump to: navigation, search Name PCN Technology Place San Diego, California Zip CA 92127 Product California-based smart grid technology developer. References PCN...

365

Rubicon Technology | Open Energy Information  

Open Energy Info (EERE)

Rubicon Technology Jump to: navigation, search Name Rubicon Technology Place Franklin Park, Illinois Zip 60131 Product Rubicon Technology makes a sapphire substrates for use in...

366

Engineering and Technology Research & Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Wang, Xiaoxing Wang July 09, 2012 Copyright 2012 RTI. All rights reserved Center for Energy Technology 2012 NETL CO 2 Capture Technology Meeting Engineering and Technology...

367

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

368

Technology reviews: Lighting systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize lighting system in the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

369

Technology reviews: Shading systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

370

Technology reviews: Glazing systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

371

Energy Efficient Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

372

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

373

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

374

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

375

Nuclear Energy Enabling Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop...

376

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

377

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

378

Technology Commercialization Showcase - EERE Commercialization Office  

Geothermal Energy Program; Hydrogen, Fuel Cells and Infrastructure Technologies Program; Industrial Technology Program; Vehicle Technologies Program;

379

Global Nuclear Security Technology Division (GNSTD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Nonproliferation Technology Nuclear Material Detection & Characterization Nuclear Security Advanced Technologies Safeguards & Security Technology Threat Reduction...

380

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology Assistance Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Assistance Program Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise and capabilities to accelerate the commercialization of licensed technologies. The Technology Assistance Program (TAP) provides funds for ORNL science & technology staff members to consult with licensees, performing work on the company's behalf that may include such activities as the following. Production of sample materials for evaluation

382

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

383

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

384

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

385

Technology Development | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development Electricity Advisory Committee Technology Development Smart Grid Demand Response Federal Smart Grid Task Force Distributed Energy Recovery Act...

386

Building Technologies Office: Engaging Stakeholders  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Engaging Stakeholders on Google Bookmark Building Technologies Office: Engaging Stakeholders on Delicious Rank...

387

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

energy technology. 2011 Wind Technologies Market Report Appendix: Sources of Data Presented in this Report Installation Trends

Bolinger, Mark

2013-01-01T23:59:59.000Z

388

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

energy technology. 2010 Wind Technologies Market Report Appendix: Sources of Data Presented in this Report Installation Trends

Wiser, Ryan

2012-01-01T23:59:59.000Z

389

Argonne TDC: Emergency Response Technologies  

Emergency Response Technologies. PROTECT (Program for Response Options and Technology Enhancements for Chemical/Biological Terrorism) Grid Security ...

390

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

391

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

392

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

393

technologies | OpenEI  

Open Energy Info (EERE)

technologies technologies Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

394

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

395

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

396

Geothermal innovative technologies catalog  

DOE Green Energy (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

397

Technology Transfer Awards 2012  

Science Conference Proceedings (OSTI)

EPRI's 2012 Technology Transfer Awards recognize the leaders and the innovators who have transferred research into applied results. The 2012 award winners have shown exceptional application of EPRI research and technology to solve a problem of size and significance, to champion a technology both within their companies and across the industry, to drive progress in the electricity sector, and to provide meaningful benefits for stakeholders and for society.

2013-01-23T23:59:59.000Z

398

Digital Sensor Technology  

SciTech Connect

The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

2013-07-01T23:59:59.000Z

399

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Machines Corporation Electronic Machines Corporation Smart Infrared Inspection System Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Smart Infrared Inspection System (SIRIS) * Grant for a demonstration of thermal imaging technologies - Identify, in real time, faults and failures in tires, brakes and bearings mounted on commercial motor vehicles - Employ system along the interstate - Explore whether statistical tools can be developed that can predict impending tire, brake, or bearing failures SIRIS - Details * $1.4 M Research Grant * 3-year Project * Grant competitively awarded September 2006 to IEM, Inc. of Troy, NY * Supplemental $500K from NYSERDA for improved high

400

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Radio Mobile Radio Service (WRI - CMRS) Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Universal ID Pilot Test WRI Overview * The goal: Improved motor carrier safety due to increased compliance caused by higher frequency of roadside safety inspections using wireless technologies. * Benefits * Improved safety of CMVs and their operation * Reductions in accidents * Increased productivity and mobility of the transportation system * Increased security and livability Universal ID Pilot Test The CMRS Platform for WRI * CMRS - Commercial Mobile Radio Services * Includes telematics devices (such as electronic on-board recorders) Universal ID Pilot Test

402

Electrochemical Technologies Group  

NLE Websites -- All DOE Office Websites (Extended Search)

essential for storing energy generated by intermittent renewable sources like solar and wind on the electricity grid. The Environmental Energy Technologies Division's...

403

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

404

Information Technology Portal  

Science Conference Proceedings (OSTI)

... Advancing the state-of-the-art in IT in such applications as cyber security and biometrics, the National Institute of Standards and Technology ...

2013-08-21T23:59:59.000Z

405

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 12, 2013 ... MT@TMS HOME PAGE ... this center will cover the scientific and technological requirements of the food industry along the whole value chain.

406

Bioconversion Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

BSD BSD EESD ORNL Bioconversion Science and Technology BioSciences Division Home Resources Publications People BST Students Former Members Links Contact Us Research Areas Production of Fuels and Chemicals Genomes to Life Biofuel Cells Bioprocessing of Fossil Fuels Biotreatment and Bioremediation Jonathan Mielenz, leader of the Bioconversion Science and Technology Group in ORNL's Biosciences Division, is studying a microbe that could prove more cost effective than current methods in transforming cellulose from sources such as switchgrass and poplar trees into ethanol. Bioconversion Science & Technology The Bioconversion Science and Technology group performs multidisciplinary R&D for the Department of Energy's (DOE) relevant applications of bioprocessing, especially with biomass. Bioprocessing combines the

407

Welding Technologies and Applications  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... Joining of Advanced and Specialty Materials (JASM XIII): Welding Technologies and Applications Sponsored by: MS&T Organization Program...

408

science and technology agenda  

Science Conference Proceedings (OSTI)

Bart Gordon's tenure as Chairman of the House Science and Technology Committee has been marked by an aggressive schedule of hearings and successes in...

409

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

410

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

411

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary for the Combustion Program The Combustion Technologies Product promotes the advancement of coal combustion power generation for use in industrial, commercial, and utility...

412

Hydrology Group - Technologies & Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies & Products Systems & Sensors Water Fluxmeter Software & Models Fish Individual-based Numerical Simulator (FINS ) FRAMES 1.x ReActive Flow and Transport of Groundwater...

413

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat....

414

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

415

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

416

Emerging Materials Technology  

Science Conference Proceedings (OSTI)

Posted on: 6/19/2013 12:00:00 AM... As materials science and engineering expands to encompass new technologies, such as nanomaterials, biomaterials, and...

417

Technology transfer issue  

Science Conference Proceedings (OSTI)

Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

Jacobson, C.

1982-05-31T23:59:59.000Z

418

FCT Technology Validation: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation: Contacts on AddThis.com... Home Transportation Projects StationaryDistributed Generation Projects Integrated Projects Quick Links Hydrogen Production...

419

Combustion Technologies Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Technologies Group Combustion research generates the fundamental physical and chemical knowledge on the interaction between flame and turbulence. Experimental and...

420

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 27, 2010 ... The 0.01-ton prototype is intended to replace conventional vapor compression cooling technology. This two-state alloy alternately absorbs or...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SRNL - Technology Transfer - Ombudsman  

... complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy.

422

Climate Vision: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Cement Chemical Manufacturing Electric Power Forest Products Iron and Steel Mining Oil and Gas Technology Pathways The DOE's Industries of the Future process helps entire...

423

Genome Science/Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Momchilo Vuyisich Bioenergy and Biomedical Sciences Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein...

424

Information Technology & Communications  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Information Technology & Communications Express Licensing 3-dimensional imaging at nanometer resolutions Call for Commercialization andor CRADA Partners PathScan...

425

NETL: Technology Partnerships Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

the Department of Energy, and the employees of NETL responsible for the operation of the technology partnership program. All communications with the ombudsman are confidential and...

426

New and Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This power point presentation provides an overview of CHP technologies and how they can be used in industrial manufacturing plants to increase productivity and reduce energy and costs.

427

Information Technology Solutions - Energy  

texturing process is a cost effective alternative that uses nontoxic materials. Information Technology Solutions ... United States Department of Energys National

428

Jefferson Lab Technology Transfer  

List the name (s) of Thomas Jefferson National Accelerator Facility's technology of interest: * Does any foreign entity (company, person, ... Select license type:

429

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 23, 2011 ... Recycling lithium ion batteries is not an option; the need to develop enabling technologies is critically important for a sustainable future.

430

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 9, 2011 ... This team will focus on developing and manufacturing materials technologies that can be pushed to these extremes in next generation energy...

431

Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Energy Program Tribal Summit Below are resources for Tribes on renewable energy technologies. Developing Clean Energy Projects on Tribal Lands: Data and Resources for...

432

SRNL - Technology Transfer - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

so that these technologies may have the collateral benefit of enhancing U.S. economic competitiveness. Savannah River National Laboratory . DOE-EM Logo Last updated: September 4...

433

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

434

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 1, 2013 ... Researchers at Penn State University have designed a special material ... and less power consumption than possible with current technology.

435

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Energy Research for Occidental Petroleum Corp and President of Occidental Oil Shale, Inc. * Focus: Clean Coal Technology. * Located: Steamboat Springs, CO 30 Appendix D...

436

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Energy Research for Occidental Petroleum Corp and President of Occidental Oil Shale, Inc. * Focus: Clean Coal Technology. * Located: Steamboat Springs, CO 38 Appendix D...

437

Optical Technology News  

Science Conference Proceedings (OSTI)

... Could Speed Innovation in Solar Devices Release ... Device Measures Absolute Optical Power in Fiber at ... of Standards and Technology (NIST) have ...

2010-05-24T23:59:59.000Z

438

SBIR Technology Transfer Opportunity  

Thanks for your interest in SRNL's Nanoproportional Counter technology. On this page you will find links to additional information and a listing of frequently asked ...

439

Technology Performance Exchange  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490...

440

Technology@TMS  

Science Conference Proceedings (OSTI)

To assist in the advancement of this emerging technology, The Minerals, Metals & Materials Society (TMS) has taken several initiatives to provide resources to...

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Information Technology Solutions  

Information Technology Solutions Advantages LLNL and University of Texas Medical Branch (UTMB) have used nickel-chelating nanolipoprotein particles (Ni-NLPs) as a ...

442

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

443

Carbon Dioxide Reduction Technologies  

Science Conference Proceedings (OSTI)

Technologies developed to sequester CO2 or use CO2 for enhanced fossil fuel recovery are currently in operation. Taxation regimes and CO2 credit trading are

444

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

445

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

DOE Awards $45 Million to Deploy Advanced Transportation Technologies Novel Electrode Material Offers Alternative for Li-ion Batteries New Materials Make...

446

JGI - Genomic Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

opportunities for technological access to our user services (including single cell genomics and DNA synthesis). Our Department serves at the interface between the Project...

447

NETL: Technology Transfer - DOE  

Clean power technologies, integrated gasification, carbon capture, and quantum mechanical simulationswords like these mean the future of energy to NETL's in-house ...

448

Technology Partnerships Office  

Science Conference Proceedings (OSTI)

... It should also find application in detection or any other component presently detectable through PCR, DNA probe technology or immunoassay but ...

449

PNNL: Available Technologies  

On this website, PNNL technologies and patents that are available for licensing are organized and searchable in a number of different ways. Search by ...

450

NETL: Technology Transfer - Outreach  

The Office of Research and Development (ORD)s Outreach team assists to bridge the gap from NETL technology to the general public. The team ...

451

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 22, 2009... smart grid technologies, batteries, and high-temperature materials) ... 15th Int'l Conference on Environmental Degradation in Nuclear Power...

452

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

453

Technology acquisition: sourcing technology from industry partners  

E-Print Network (OSTI)

chemicals, oil and gas and biofuels. The research adopts the perspective of an acquiring firm, which is interested in incorporating a new technology into its operations in order to meet a particular business need. Such a business need can be, for example...

Ortiz-Gallardo, Victor Gerardo

2013-07-09T23:59:59.000Z

454

Robotics Technology Crosscutting Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

NONE

1995-06-01T23:59:59.000Z

455

Technology Catalogue. First edition  

SciTech Connect

The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

Not Available

1994-02-01T23:59:59.000Z

456

Technology Innovation Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofermentation System Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial readiness. TIP projects are proposed by ORNL scientists and engineers and selected competitively based on their potential for near-term societal or economic impact. TIP technologies are advanced through research and development and outreach to industry. TIP is funded by UT-Battelle licensing royalties. When a technology enters the TIP process, it is initially made unavailable

457

Graphite technology development plan  

Science Conference Proceedings (OSTI)

This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

NONE

1986-07-01T23:59:59.000Z

458

Synchrophasor Technologies Page ii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2013 August 2013 Synchrophasor Technologies Page ii Table of Contents 1. Introduction ................................................................................................................... 1 2. Synchrophasor Technologies .......................................................................................... 1 3. Advanced Applications Software and their Benefits ........................................................ 4 3.1 Online (Near Real-Time Applications) ........................................................................... 5 3.2 Offline (Not real-time) Applications ............................................................................. 8 4. Recovery Act Synchrophasor Projects ............................................................................. 8

459

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

460

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydropower Technology Roundup Report  

Science Conference Proceedings (OSTI)

EPRI's 2002 report, Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report (1005194) provided a comprehensive review of a wide range of techniques and technologies for improving the dissolved oxygen (DO) levels in releases from hydroelectric projects. This report supplements EPRI 1005194, focusing primarily on aerating turbine technologies for new turbine installations and for turbine upgrades.

2009-12-23T23:59:59.000Z

462

Navy Technology Evaluation Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Techval Program Techval Program y g FUPWG FUPWG November 19, 2009 Ontario, CA Paul Kistler, PE CEM NAVFAC Engineering Service Center Port Hueneme CA Techval Navy Energy Techval Purpose Use the data collected by Techval to transition newer technologies into Navy wide use technologies into Navy wide use Use the data collected by Techval to prevent the Navy from investing in technologies that do not work investing in technologies that do not work Tech Assistance Help the Navy to meet increasingly tougher energy goals 2 * * * Navy Techval Green Light Technologies *Oil Free Magnetic Bearing Chiller Compressor *Spectrally Enhanced Lighting *Heat Pipes *Vending Machine Occupancy Sensor *Thermal Destratifiers Heat Pipes *Duct Sealants *HID Dimming Thermal Destratifiers

463

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

464

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

465

PRESSURE ACTIVATED SEALANT TECHNOLOGY  

Science Conference Proceedings (OSTI)

The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

Michael A. Romano

2004-04-01T23:59:59.000Z

466

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and  

Open Energy Info (EERE)

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Authors Ormat Technologies and Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Citation Ormat Technologies, Inc.. Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results [Internet]. [updated 2013;cited 2013]. Available from: http://www.ormat.com/news/latest-items/ormat-technologies-reports-2012-fourth-quarter-and-year-end-results

467

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

468

Technology's Impact on Production  

Science Conference Proceedings (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) ?? entitled Technologys Impact on Production: Developing Environmental Solutions at the State and National Level ? ? the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies ??Regulating Change, is the result of research performed for Tasks 2 and 3.

Amann, Rachel; Deweese, Ellis; Shipman, Deborah

2009-06-30T23:59:59.000Z

469

Robotics Technology Development Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

470

NREL: Technology Transfer Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

471

Available Technologies | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Portal Innovation Portal Search for Argonne technologies available for licensing, emerging technologies, patents and patent applications through the U.S. Department of Energy's Innovation Portal. Available Technologies Argonne's Technology Development and Commercialization division helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. Technology Development and Commercialization (TDC) grants licenses for Argonne-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. We are committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Technologies by Subject Area Battery Technology

472

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky WRI Pilot Test - Kentucky WRI Pilot Test - Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 *Utilizes existing automated screening system *Uses assorted technologies to identify commercial vehicles, i.e., ALPR, USDOTR, DSRC *Commercial vehicles are screened for safety and credential violations *Automated screening system currently undergoing testing and evaluation Universal ID Pilot Test Kentucky Pilot Test Kentucky Pilot Test (Not to Scale) Sorter WIM USDOT Reader LPR Sorter Sign Screening Computer (in scale house) 2 nd LPR DSRC Reader Static scale Through lane >>>> Park/Proceed Signs Mainline >>>> Kentucky Pilot Test * Information is captured from the commercial vehicle,

473

Utilities Inspection Technologies  

E-Print Network (OSTI)

Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been employed in industrial facilities within the Navy. Specific systems include compressed air, electrical distribution, natural gas, steam, and hot water. Technologies include: Enhanced optical methods (infrared thermography, boroscopes, and fiberscopes) Acoustic emissions and vibration signature analysis Locating and quantifying methods (deep probe temperature analysis, electromagnetic pipe and cable locators, holiday and fault locators, and radar mapping).

Messock, R. K.

1993-03-01T23:59:59.000Z

474

Federal Technology Portal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eere.energy.gov eere.energy.gov BTP and FEMP Technology Portal March 15, 2012 2 eere.energy.gov Background * This presentation was developed by the National Renewable Energy Laboratory at the request of the U.S. Department of Defense Tri-Services and the Federal Energy Management Program. * It incorporates initial feedback from representatives of the Interagency Task Force Technology Deployment Working Group. 3 eere.energy.gov Technology Readiness Levels 9. Actual system "flight proven" through successful mission operations 8. Actual system completed and "flight qualified" through test and demonstration 7. System prototype demonstration in a operational environment

475

Federal Technology Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

BTP and FEMP Technology Portal March 15, 2012 2 eere.energy.gov Background * This presentation was developed by the National Renewable Energy Laboratory at the request of the U.S. Department of Defense Tri-Services and the Federal Energy Management Program. * It incorporates initial feedback from representatives of the Interagency Task Force Technology Deployment Working Group. 3 eere.energy.gov Technology Readiness Levels 9. Actual system "flight proven" through successful mission operations 8. Actual system completed and "flight qualified" through test and demonstration 7. System prototype demonstration in a operational environment

476

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

477

OHVT technology roadmap [2000  

DOE Green Energy (OSTI)

The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

Bradley, R.A.

2000-02-01T23:59:59.000Z

478

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

479

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

480

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

Note: This page contains sample records for the topic "technologies linden vent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

482

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

483

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

484

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

485

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

486

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

487

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

488

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

489

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

490

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

491

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

492

Program on Technology Innovation: Integrated Generation Technology Options  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for current cost, performance, and technology status data for eight central-station power generation technologies. In this report, central station is defined as >100 MW with the exception of some renewable-resource-based technologies. In addition to fossil- and nuclear-based technologies, four renewable-resource-based technologies are included. This report addresses the principal technology options for utility-scale power generation.

2011-06-30T23:59:59.000Z

493

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Products Supported by the Fuel Cell Technologies Office, finds DOE funding has led to more than 360 hydrogen and fuel cell patents, 36 commercial...

494

MHK Technologies/Oregon State University Columbia Power Technologies...  

Open Energy Info (EERE)

Oregon State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State...

495

NREL: Power Technologies Energy Data Book - Technology Cross...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Biomass Geothermal Hydroelectric Solar Wind...

496

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel...

497

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development and Demonstration Plan* to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Multi-Year Research, Development and...

498

NREL: Technology Transfer - NREL's Wind Technology Patents Boost ...  

NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013. Wind energy research conducted at the National Wind Technology Center (NWTC ...

499

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

500

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and...