Sample records for technologies international nuclear

  1. International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION

    E-Print Network [OSTI]

    California at Los Angeles, University of

    International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION PRODUCTS IN SELECTED APEX DESIGNS K. A. McCarthy, D. A. Petti, R. L. Moore, and B. J. In this paper we concentrate on mobilization of first wall materials during ingress events, and provide guidance

  2. (International symposium on fusion nuclear technology, Tokyo, Japan, April 10, 1988): Foreign trip report

    SciTech Connect (OSTI)

    Bell, G.E.

    1988-05-24T23:59:59.000Z

    A presentation entitled ''Experimental and Analytical Investigations of Mass Transfer Processes of /sup 12/Cr-1MoVW Steel in Thermally-Convected Lithium Systems'' was made by G.E. Bell (coauthors M.A. Abdou (UCLA) and P.F. Tortorelli (ORNL)) at a poster session of the International Symposium on Fusion Nuclear Technology (ISFNT). The results presented were taken from work performed while Mr. Bell was an Oak Ridge Associated Universities Fellow at ORNL from October 1986 to March 1988. A consistent theme throughout the conference was the need for collaboration within and among national efforts to achieve the goal of an engineering test reactor.

  3. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01T23:59:59.000Z

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. ANS 2006 WINTER MEETING & Nuclear Technology Expo

    E-Print Network [OSTI]

    Krings, Axel W.

    Development Workshop: Digital Instrumentation Upgrades 52 DOE Nuclear Criticality Safety Program 53ANS 2006 WINTER MEETING & Nuclear Technology Expo "Ensuringthe (TOFE) 5th International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human Machine

  5. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01T23:59:59.000Z

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  6. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  7. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19T23:59:59.000Z

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  8. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    it would transfer nuclear technology. Washington Post. 26preferences: the export of sensitive nuclear technology.export of sensitive nuclear technology presents a kind of

  9. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01T23:59:59.000Z

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  10. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E. (ed.)

    1990-10-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  11. NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION

    E-Print Network [OSTI]

    PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION ·· ENVIRONMENTAL RESEARCH LABORATORYENVIRONMENTAL·· NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" ·· INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION

  12. International Framework for Nuclear Energy Cooperation (IFNEC...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

  13. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  14. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01T23:59:59.000Z

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Technology and international climate policy

    SciTech Connect (OSTI)

    Clarke, Leon; Calvin, Kate; Edmonds, James A.; Kyle, Page; Wise, Marshall

    2009-05-01T23:59:59.000Z

    Both the nature of international climate policy architectures and the development and diffusion of new energy technologies could dramatically influence future costs of reducing global emissions of greenhouse gases. This paper explores the implications of interactions between technology availability and performance and international policy architectures for technology choice and the social cost of limiting atmospheric CO2 concentrations to 500 ppm by the year 2095. Key issues explored in the paper include the role of bioenergy production with CO2 capture and storage (CCS), overshoot concentration pathways, and the sensitivity of mitigation costs to policy and technology.

  16. International Partnership for Geothermal Technology Launches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Partnership for Geothermal Technology Launches Website International Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis...

  17. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  18. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04T23:59:59.000Z

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  19. International scientists on nuclear winter

    SciTech Connect (OSTI)

    Malone, T.F.

    1985-12-01T23:59:59.000Z

    A report by the International Council of Scientific Unions (ICSU) leads new support to the warning of extreme climatic disruptions that would follow a nuclear war. The two-volume report does not deal explicitly with public policy questions, but focuses on scientific knowledge of physical effects and biological responses. The author reviews studies made since the warning of a nuclear winter began in 1982, and evaluates the new report. He finds the message of the report to be a clear warning that a major nuclear war would threaten the entire world. He hopes it will be a catalyst to world opinion in the same way that the public responded to the incident of radioactive fallout striking a Japanese fishing vessel in 1954.

  20. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76Safeguards and Nuclear Science

  1. Generation IV International Forum Updates Technology Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration December 31, 2013 - 12:14pm...

  2. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10T23:59:59.000Z

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  3. Nuclear reactor internals alignment configuration

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

    2009-11-10T23:59:59.000Z

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  4. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  5. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Science & Technology Border Security Comprehensive Vulnerability and Threat Analysis Consequence Management, Safeguards, and Non-Proliferation Tools Export...

  6. Massachusetts Institute of Technology Department of Nuclear Engineering

    E-Print Network [OSTI]

    Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

  7. Nuclear export and technology transfer controls

    SciTech Connect (OSTI)

    Hower, J.J.; Primeau, S.J. (Eagle Research Group, Inc., Arlington, VA (US))

    1988-01-01T23:59:59.000Z

    A review of the U.S. implementation of nuclear export and technology transfer controls is undertaken to assess whether the U.S. controls is undertaken to assess whether the U.S. controls meet the full scope of the international commitment toward non-proliferation controls. The international non-proliferation controls have been incorporated into CoCom, the Coordinating Committee of the multinational organization established to protect the mutual interests of the participating countries in the area of strategic export controls. However, this CoCom list is classified and each participating country implements these controls pursuant to its own laws. A comparison to the non-proliferation controls promulgated by the U.K. is used to verify that the U.S. controls are at least as comprehensive as the British controls.

  8. PIA - 10th International Nuclear Graphite Specialists Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th International Nuclear Graphite Specialists Meeting registration web site More Documents &...

  9. International Framework for Nuclear Energy Cooperation to Hold...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

  10. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28T23:59:59.000Z

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  11. International Technology Exchange Division: 1993 Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. International Nuclear Safeguards | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National Nuclear

  13. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

  14. International Nuclear Security | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National

  15. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2005 - 2006 #12;2 #12;3 ANNUAL. Papazoglou #12;5 PREFACE The Institute has continued transferring know how from Nuclear Technology to other of the Institute page 34 7. Publications page 36 8. Research Projects page 72 #12;4 ORGANISATIONAL CHART 2006

  16. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2008 #12;#12;ANNUAL REPORT a success story for the Institute of Nuclear Technology ­ Radiation Protection over the last decades PROJECTS i #12;ii #12;iii UORGANISATIONAL CHART 2008 REACTOR SAFETY COMMITTEE Chairman: I.A. Papazoglou

  17. Nuclear technology for the year 2000

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  18. INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463

    SciTech Connect (OSTI)

    Banford, Anthony; Edwards, Jeremy [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom)] [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom); Demmer, Rick; Rankin, Richard [Idaho National Laboratory, Idaho Falls, ID 83401(United States)] [Idaho National Laboratory, Idaho Falls, ID 83401(United States); Hastings, Jeremy [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

  19. International perceptions of US nuclear policy.

    SciTech Connect (OSTI)

    Stanley, Elizabeth A. (Georgetown Universtiy, Washington, DC)

    2006-02-01T23:59:59.000Z

    The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one set for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.

  20. Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL

    E-Print Network [OSTI]

    Heljanko, Keijo

    Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, automation 1 INTRODUCTION In nuclear power plants (NPPs), novel digitalized I&C systems enable complicated, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009) VERIFICATION OF SAFETY LOGIC DESIGNS

  1. Hindawi Publishing Corporation Science and Technology of Nuclear Installations

    E-Print Network [OSTI]

    Demazière, Christophe

    Hindawi Publishing Corporation Science and Technology of Nuclear Installations Volume 2013, Article Department of Nuclear Chemistry, Chalmers University of Technology, 412 96 Gothenburg, Sweden 2 Department of Nuclear Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden Correspondence should

  2. International nuclear waste management fact book

    SciTech Connect (OSTI)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01T23:59:59.000Z

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  3. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27T23:59:59.000Z

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

  4. Status and Value of International Standards for Nuclear Criticality Safety

    SciTech Connect (OSTI)

    Hopper, Calvin Mitchell [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

  5. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    Fusion Nuclear Science and Technology Program - Status and plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research...

  6. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  7. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect (OSTI)

    David Shropshire

    2009-09-01T23:59:59.000Z

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  8. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  9. United States-Republic of Korea (ROK) International Nuclear Energy...

    Office of Environmental Management (EM)

    United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International...

  10. Institute of Nuclear Technology & Radiation Protection

    E-Print Network [OSTI]

    Institute of Nuclear Technology & Radiation Protection annual Report 2010 #12;#12;ANNUAL REPORTResearchReactor I.Stamatelatos NuclearAnalytical Techniques& Radioisotopes I.Stamatelatos AerosolFlows C Pollution S.Andronopoulos Analyses&Assessment ofEnvironmental Pollutants C.Vasilakos Fusion

  11. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2007 #12;#12;i ANNUAL REPORT has been a pivotal year for the Institute due to the world wide emergence of the "nuclear energy 11 Facts and Figures page 33 4. Personnel page 35 5. Funding page 36 6. Expenditure of the Institute

  12. International safeguards: Accounting for nuclear materials

    SciTech Connect (OSTI)

    Fishbone, L.G.

    1988-09-28T23:59:59.000Z

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  13. Journal of Counter-Ordnance Technology (Sixth International Sym um on Technology and Mine Problem, NPS, 10-13 Uncertainty in Acoustic Mine Detection Due to

    E-Print Network [OSTI]

    Chu, Peter C.

    alternative to nuclear submarines. Technological advancements in battery design have resulted in higherJournal of Counter-Ordnance Technology (Sixth International Sym um on Technology and Mine Problem advantage of nuclear submarines is negligible to these countries. Mines come in a multitude of variations

  14. Internal dose following a major nuclear war

    SciTech Connect (OSTI)

    Peterson, K.R.; Shapiro, C.S. (Lawrence Livermore National Laboratory, Livermore, CA (Unites States))

    1992-01-01T23:59:59.000Z

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the 'nuclear winter' effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  15. Nuclear Nonproliferation Programs | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiatives Nonproliferation Technology Nonproliferation Systems Safeguards and Security Technology International Safeguards Nuclear Material Detection and Characterization For...

  16. Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology

    E-Print Network [OSTI]

    Leads Technical Leads - evaluation of nuclear hydrogen production methods and system/infrastructure Programmatic Overview Nuclear Hydrogen InitiativeNuclear Hydrogen Initiative #12;Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative

  17. Synergy among international monitoring system technologies

    SciTech Connect (OSTI)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C.; Preston, R.R.; Trost, L.C.

    1996-08-01T23:59:59.000Z

    This paper describes the results of an International Monitoring System synergy study using Sandia National Laboratory`s IVSEM (Integrated Verification System Evaluation Model). The study compares individual subsystem performance (seismic, infrasound, radionuclide, and hydroacoustic) with integrated system performance. The integrated system exhibits synergy because different sensor technologies cover different locations; thus, the integrated system covers more locations than can any individual subsystem. Energy and system performance can be further enhanced by allowing mixed technology detection and location.

  18. Science and Technology Challenges for International Safeguards

    SciTech Connect (OSTI)

    Mark Schanfein

    2009-07-01T23:59:59.000Z

    The science and technology challenges for international safeguards range from cutting edge physics needs to practical technology solutions for high volume data handling and analysis issues. This paper will take a narrow look at some of the predominant challenges, which include those at high throughput commercial facilities and those in the detection of undeclared facilities. It is hoped that by highlighting these areas it can encourage a concerted effort by scientific institutions and industry to provide robust cost-effective solutions.

  19. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01T23:59:59.000Z

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

  20. Future AI and Robotics Technology for Nuclear Plants Decommissioning

    E-Print Network [OSTI]

    Hu, Huosheng

    Future AI and Robotics Technology for Nuclear Plants Decommissioning Huosheng Hu and Liam Cragg to aid in decommissioning nuclear plants that have been used to process or store nuclear materials. Scope potential applications to nuclear plant decommissioning, namely Nanotechnology, Telepresence

  1. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  2. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  3. International Conference on INTERNET TECHNOLOGIES AND APPLICATIONS

    E-Print Network [OSTI]

    Davies, John N.

    ), will be held in Wrexham, North East Wales, UK from Wednesday 7th to Friday 9th September 2005. The conferenceInternational Conference on INTERNET TECHNOLOGIES AND APPLICATIONS ITA 05 Wednesday 7th - Friday 9 computing and engineering. Accepted papers will be published in the conference proceedings. Suitable topics

  4. Nuclear technologies for Moon and Mars exploration

    SciTech Connect (OSTI)

    Buden, D.

    1991-01-01T23:59:59.000Z

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  5. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect (OSTI)

    Perella, V.F.

    1999-11-29T23:59:59.000Z

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  6. Vehicle Technologies Office Merit Review 2014: Internal Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    4: Internal Combustion Engine Energy Retention (ICEER) Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER) Presentation given by...

  7. Nuclear fission and nuclear safeguards: Common technologies and challenges

    SciTech Connect (OSTI)

    Keepin, G.R.

    1989-01-01T23:59:59.000Z

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably /sup 239/Pu and /sup 235/U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs.

  8. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect (OSTI)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12T23:59:59.000Z

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  9. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01T23:59:59.000Z

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  10. Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Abdou, Mohamed

    Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

  11. International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 NURETH15-xxx Pisa, Italy, May 12-15, 2013

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 NURETH15-xxx technologies in the context of generation IV nuclear power reactors. In order to improve electric efficiency during last years as a possible energy conversion cycle for Sodium nuclear Fast Reactors (SFRs) [1

  12. JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

    E-Print Network [OSTI]

    JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

  13. Technology transfer significance of the International Safeguards Project Office

    SciTech Connect (OSTI)

    Marcuse, W.; Waligura, A.J.

    1988-06-01T23:59:59.000Z

    The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

  14. Copyright 2007, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Copyright 2007, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology Conference held in Dubai, U.A.E., 4­6 December 2007 reviewed by the International Petroleum Technology Conference and are subject to correction by the author

  15. Copyright 2008, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology

    E-Print Network [OSTI]

    Fossen, Haakon

    Copyright 2008, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology Conference held in Kuala Lumpur, Malaysia, 3­5 December not been reviewed by the International Petroleum Technology Conference and are subject to correction

  16. M. Abdou April 2013 Fusion Nuclear Science and Technology

    E-Print Network [OSTI]

    Abdou, Mohamed

    M. Abdou April 2013 Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Fusion Nuclear Science and Technology Challenges and Required R&D Presentation Outline Introduction to realizing fusion power and the Central Role of Fusion Nuclear Science and Technology (FNST) 4 #12;M. Abdou

  17. The market viability of nuclear hydrogen technologies.

    SciTech Connect (OSTI)

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06T23:59:59.000Z

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads to significantly different results in regards to the relative profitability of the different technologies and configurations. This is the case both with a deterministic and a stochastic analysis, as shown in the tables below. The flexibility in output products clearly adds substantial value to the HPE-ALWR and HTE-HTGR plants. In fact, under the GBM assumption for prices, the HTE-HTGR plant becomes more profitable than the SI-HTGR configuration, although SI-HTGR has a much lower levelized cost. For the HTE-HTGR plant it is also profitable to invest in additional electric turbine capacity (Case b) in order to fully utilize the heat from the nuclear reactor for electricity production when this is more profitable than producing hydrogen. The technologies are all at the research and development stage, so there are significant uncertainties regarding the technology cost and performance assumptions used in this analysis. As the technologies advance, the designers need to refine the cost and performance evaluation to provide a more reliable set of input for a more rigorous analysis. In addition, the durability of the catalytic activity of the materials at the hydrogen plant during repetitive price cycling is of prime importance concerning the flexibility of switching from hydrogen to electricity production. However, given the potential significant economic benefit that can be brought from cogeneration with the flexibility to quickly react to market signals, DOE should consider R&D efforts towards developing durable materials and processes that can enable this type of operation. Our future work will focus on analyzing a range of hydrogen production technologies associated with an extension of the financial analysis framework presented here. We are planning to address a variety of additional risks and options, such as the value of modular expansion in addition to the co-generation capability (i.e., a modular increase in the hydrogen production capacity of a plant in a given market with rising hydrogen demand), and contrast that with economies-of-scale of large-unit designs.

  18. Technologies for detection of nuclear materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1996-03-30T23:59:59.000Z

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  19. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect (OSTI)

    Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden)] [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

    2013-07-01T23:59:59.000Z

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  20. Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

  1. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    204. Bhatia, Shyam. 1988. Nuclear rivals in the Middle East.of the merits of selective nuclear proliferation. Journal ofThe Case for a Ukranian nuclear deterrent. Foreign Affairs.

  2. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    SciTech Connect (OSTI)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes, and meeting the needs of the commercial nuclear industry (including developing and evaluating fuel concepts that may enhance accident tolerance in light water reactors while possibly improving fuel performance) are program priorities. Continuing to build partnerships and collaborations with industry, universities, international organizations, and other DOE programs are essential to addressing the challenges facing the FCT program. (authors)

  3. Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    E-Print Network [OSTI]

    Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

  4. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect (OSTI)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  5. Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Safety 3 C #12;Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2013-2014 Page 1

  6. Fusion Nuclear Science and Technology Research Needed Now for Magnetic

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology Research Needed Now for Magnetic Fusion Energy Neil B. Morley;Outline Introduction Nuclear science and technology research needed now to enable the construction Conclusions What we are missing out on by eliminating long term technology programs? Opportunities in the Age

  7. Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central and Technology Center (UCLA) President, Council of Energy Research and Education Leaders, CEREL (USA) With input

  8. Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2012-2013 Page 1

  9. Information and communication technologies in downtown revitalization : an international survey

    E-Print Network [OSTI]

    McCabe, Kathleen (Kathleen Ann)

    2005-01-01T23:59:59.000Z

    The Technology & Downtown Revitalization International Study surveyed downtown management organizations in Canada, Europe, Japan, New Zealand, South Africa, and the United States regarding attitudes, challenges and utilization ...

  10. 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology

    E-Print Network [OSTI]

    of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel CycleISTCISTC 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01

  11. March 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Fission And Nuclear Technologies Science Subject Feed Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 72 > Peer-review study of the draft handbook...

  12. June 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 Estimation of gas leak rates through very...

  13. April 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Fission And Nuclear Technologies Science Subject Feed Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (null) 298 > Estimation of gas leak rates through very...

  14. Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities Nuclear Science & Technology (FNST) The nuclear environment also affects Tritium Fuel Cycle separation PFC & Blanket T processing design dependent optics 3 #12;Fusion Nuclear Science and Technology

  15. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

  16. International Engagement | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  17. International Exercises | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  18. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01T23:59:59.000Z

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  19. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  20. Elementary! A Nuclear Forensics Workshop Teaches Vital Skills to International Practitioners

    SciTech Connect (OSTI)

    Brim, Cornelia P.; Minnema, Lindsay T.

    2014-04-01T23:59:59.000Z

    The article describes the Nuclear Forensics Workshop sponsored by the International Atomic Energy Agency (IAEA), the Office of Nonproliferation and International Security (NIS) and hosted by Pacific Northwest National Laboratory October 28-November 8, 2013 in Richland,Washington. Twenty-six participants from 10 countries attended the workshop. Experts from from Los Alamos, Lawrence Livermore, and Pacific Northwest national laboratories collaborated with an internationally recognized cadre of experts from the U.S. Department of Homeland Security and other U.S. agencies, IAEA, the Australian Nuclear Science and Technology Organisation, the United Kingdom Atomic Weapons Establishment (AWE), and the European Union Joint Research Center Institute for Transuranium Elements, to train practitioners in basic methodologies of nuclear forensic examinations.

  1. EU signs ITER deal Negotiations on the ITER international nuclear

    E-Print Network [OSTI]

    Korea and the US, the agreement aims to develop a project that will test the feasibility of nuclearEU signs ITER deal Negotiations on the ITER international nuclear fusion project have been on Wednesday reached a final agreement on the ITER project after years of talks. "The completion

  2. NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    McDonald, Kirk

    NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

  3. Information Technology Intern: Description and Responsibilities

    E-Print Network [OSTI]

    Haviland, David

    & network. The intern will also administrate and keep close contact with Obelis IT suppliers, oversee all. Qualifications: A successful IT intern will be hard-working and self-motivated. The ability to manage projects

  4. Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS

    E-Print Network [OSTI]

    Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

  5. Office of Nuclear Energy, Science and Technology Executive Summary

    E-Print Network [OSTI]

    nuclear power plant in the U.S. by 2010 to support the President's goal of reducing greenhouse gasOffice of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long

  6. CERNA WORKING PAPER SERIES Innovation and international technology transfer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for producing solar PV, without deploying PV systems in its territory. This case suggests that technology of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products

  7. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    NONE

    2013-07-01T23:59:59.000Z

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  8. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  9. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Atomic Energy Agency. Nuclear Technology Review 2008. Vienna1: Generations of Nuclear Technology Time 53 1945-1965 -the expansion of their nuclear technology potential. 3 The

  10. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  11. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  12. International Nuclear Energy Policy and Cooperation | Department...

    Energy Savers [EERE]

    encompasses technologies related to small modular reactors (SMRs), sodium-cooled fast reactors, light water reactor accident-tolerant fuels, actinide separations and waste...

  13. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  14. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05T23:59:59.000Z

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

  15. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect (OSTI)

    Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  16. Proceedings of the international workshop on spallation materials technology

    SciTech Connect (OSTI)

    Mansur, L.K.; Ullmaier, H. [comps.] [comps.

    1996-10-01T23:59:59.000Z

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  17. Working Party on International Nuclear Data Evaluation Cooperation (WPEC)

    SciTech Connect (OSTI)

    Giuseppe Palmiotti

    2014-06-01T23:59:59.000Z

    The OECD Nuclear Energy Agency (NEA) is organizing the cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associated processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission-product capture reactions, the U-235 capture cross-section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of Pu-239 in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two new subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project of a Collaborative International Evaluated Library (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term, task-oriented subgroups, the WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).

  18. International training course on nuclear materials accountability for safeguards purposes

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  19. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01T23:59:59.000Z

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  20. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  1. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13T23:59:59.000Z

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  2. Production Technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  3. 5th International Seminar in Sustainable Technology Development

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    5th International Seminar in Sustainable Technology Development UPC, Vilanova i la Geltrú, 04 Master in Sustainable Development, and aims to connect experts, future researchers and policy · To increase the understanding of a sustainable development in the long term and the role of technology therein

  4. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C. [BWX Technologies, PO Box 785, Lynchburg, VA 24505-0785 (United States)

    2004-02-04T23:59:59.000Z

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  5. advanced nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  6. advancing nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advancing nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  7. TED: Technology and Economic Development International Conference on Innovation, Technology and Knowledge Economics

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    TED: Technology and Economic Development 3rd International Conference on Innovation, Technology and Knowledge Economics Ankara, 24th -26th June An Empirical Study into the Determinants of Innovativeness for Industrial Management (TUSSIDE), 41401 Gebze, Kocaeli, Turkey 3 Gebze Institute of Technology, Department

  8. international exercises | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve;SolidThermalexercises | National Nuclear

  9. International Engagement | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan InterlibraryTrilateralEngagement

  10. International Exercises | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan

  11. International Programs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | NationalPrograms |

  12. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01T23:59:59.000Z

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  13. Graz University of Technology International Sustainability Partnerships

    E-Print Network [OSTI]

    , hydro power, photovoltaic and thermal solar energy require both space and advanced technical know. This includes not only technological development (with companies pioneering innovative solutions for biofuel companies, many of which are SMEs. Together they have a turnover of 6.88 billion, of which 3.08 billion

  14. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

  15. Preparation of nuclear fuel spheres by flotation-internal gelation

    DOE Patents [OSTI]

    Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

    1984-12-21T23:59:59.000Z

    A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

  16. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect (OSTI)

    Polansky, G.F. [Phillips Lab., Albuquerque, NM (United States); Schmidt, G.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States); Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Lab., Laurel, MD (United States)

    1994-08-01T23:59:59.000Z

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  17. Optimal Technologies International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe community EnergyOptimal Technologies

  18. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    Advisory Committee and Generation IV International Forum.Nuclear Energy Agency The Generation IV International Forum.Technology Roadmap for Generation IV Nuclear Energy Systems.

  19. Leasing of Nuclear Power Plants With Using Floating Technologies

    SciTech Connect (OSTI)

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

    2002-07-01T23:59:59.000Z

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

  20. International Nuclear Fuel Cycle Fact Book. Revision 12

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  1. ETSF5 -INTERNATIONAL CONFERENCE ENERGY TECHNOLOGIES FOR A SUSTAINABLE FUTURE

    E-Print Network [OSTI]

    ETSF5 - INTERNATIONAL CONFERENCE ENERGY TECHNOLOGIES FOR A SUSTAINABLE FUTURE Energy and Large Research Facilities: The role of large research facilities in the development of sustainable energy systems, Roskilde, Denmark. Günther G Scherer and Selmiye A Gursel, General Energy Research, Paul Scherrer Institute

  2. International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9) N9P0302 Kaohsiung, Taiwan, September 9-13, 2012

    E-Print Network [OSTI]

    Haviland, David

    The 9th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9 Kudinov Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE proportional to terminal melt spread thickness. At certain thickness, the melt layer becomes non

  3. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    SciTech Connect (OSTI)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States). International Programs Dept.; Jimenez, R.D.; Esparza-Baca, C. [ed.] [Applied Sciences Lab., Inc., Albuquerque, NM (United States)

    1995-07-01T23:59:59.000Z

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

  4. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

    1997-12-31T23:59:59.000Z

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  5. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  6. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign InNuclear SecurityUnder BudgetNREL

  7. Sandia Energy - Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry

  8. Report of the Nuclear Reactor Technology Subcommittee

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthernof the Nuclear Reactor

  9. International Internships in Nuclear Safeguards and Security: Challenges and Successes

    SciTech Connect (OSTI)

    Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Kryuchkov, Eduard F.; Geraskin, Nikolai I.; Silaev, Maxim E.; Sokova, Elena K.; Ford, David G.

    2010-04-20T23:59:59.000Z

    All students in the Russian safeguards and security degree programs at the National Research Nuclear University MEPhI and Tomsk Polytechnic University, sponsored by the Material Protection, Control and Accounting (MPC&A) Education Project, take part in a domestic internship at a Russian enterprise or facility. In addition, a select few students are placed in an international internship. These internships provide students with a better view of how MPC&A and nonproliferation in general are addressed outside of Russia. The possibility of an international internship is a significant incentive for students to enroll in the safeguards and security degree programs. The U.S. members of the MPC&A Education Project team interview students who have been nominated by their professors. These students must have initiative and reasonable English skills. The project team and professors then select students to be tentatively placed in various international internships during the summer or fall of their final year of study. Final arrangements are then made with the host organizations. This paper describes the benefits of the joint United States/Russia cooperation for next-generation workforce development, some of the international internships that have been carried out, the benefits of these international internships, and lessons learned in implementing them.

  10. PNNL's Community Science & Technology Seminar Series Nuclear Power in a

    E-Print Network [OSTI]

    PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World Leonard J. Bond is a Laboratory Fellow at Pacific Northwest National Laboratory. He has been with PNNL information and upcoming seminars, contact PNNL at 375-6871 or visit http://regionaloutreach.pnnl

  11. annual nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Annual Report Curtin...

  12. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    SciTech Connect (OSTI)

    Sanchez, R.G. [comp.

    1994-01-01T23:59:59.000Z

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  13. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01T23:59:59.000Z

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  14. Roadmap: Radiologic Imaging Sciences Nuclear Medicine (with certification and ATS Radiologic Technology)

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences ­ Nuclear Medicine (with certification and ATS Radiologic Technology) ­ Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-NMHO] Regional College Catalog technology; successfully completed the certification exam for the American Registry of Radiologic Technology

  15. Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL

    E-Print Network [OSTI]

    Danon, Yaron

    , Box 454027 bellerd@unlv.nevada.edu ABSTRACT Recent attention to nuclear safeguards has stepped up the need for additional non proliferation safety measures. One of these safeguards is the tracking of 239 plan and the need to reprocess spent nuclear fuel, there is an increased need for the security

  16. Internationally Standardized Cost Item Definitions for Decommissioning of Nuclear Installations

    SciTech Connect (OSTI)

    Lucien Teunckens; Kurt Pflugrad; Candace Chan-Sands; Ted Lazo

    2000-06-04T23:59:59.000Z

    The European Commission (EC), the International Atomic Energy Agency (IAEA), and the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) have agreed to jointly prepare and publish a standardized list of cost items and related definitions for decommissioning projects. Such a standardized list would facilitate communication, promote uniformity, and avoid inconsistency or contradiction of results or conclusions of cost evaluations for decommissioning projects carried out for specific purposes by different groups. Additionally, a standardized structure would also be a useful tool for more effective cost management. This paper describes actual work and result thus far.

  17. International Nuclear Energy Policy and Cooperation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based International Nuclear Energy

  18. Smart Metering and Electricity Demand: Technology, Economics and International Experience

    E-Print Network [OSTI]

    Brophy Haney, A; Jamasb, Tooraj; Pollitt, Michael G.

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Smart Metering and Electricity Demand: Technology, Economics and International Experience EPRG Working Paper EPRG0903 Cambridge Working Paper in Economics 0905 Aoife... Brophy Haney, Tooraj Jamasb and Michael G. Pollitt In recent years smart metering of electricity demand has attracted attention around the world. A number of countries and regions have started deploying new metering systems; and many others have...

  19. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

  20. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect (OSTI)

    Roy C. Herndon

    2001-02-28T23:59:59.000Z

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  1. Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute

    SciTech Connect (OSTI)

    Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

    2002-07-15T23:59:59.000Z

    An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

  2. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  3. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1992-06-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  4. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E. (ed.)

    1992-06-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  5. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1990-12-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  6. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1992-01-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  7. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect (OSTI)

    NONE

    1992-12-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  8. XLV International Winter Meeting on Nuclear Physics BORMIO, Italy, January 14-21, 2007

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    XLV International Winter Meeting on Nuclear Physics BORMIO, Italy, January 14-21, 2007 The ALICE transition of nuclear matter from a hadron gas to a new state of matter, the Quark Gluon Plasma (QGP

  9. Ira Helfand, MD International Physicians for the Prevention of Nuclear War

    E-Print Network [OSTI]

    Robock, Alan

    Ira Helfand, MD International Physicians for the Prevention of Nuclear War Physicians for Social Responsibility NUCLEAR FAMINE: A BILLION PEOPLE AT RISK Global Impacts of Limited Nuclear War on Agriculture of studies have shown that a limited, regional nuclear war between India and Pakistan would cause significant

  10. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  11. Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

  12. Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel

    E-Print Network [OSTI]

    McDonald, Kirk

    Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal Power Targetry Workshop, May 3, 2011 #12;Institute for Nuclear and Energy Technologies 2 L. Stoppel, Th for Nuclear and Energy Technologies 4 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal free surface target

  13. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  14. March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

  15. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01T23:59:59.000Z

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  16. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Saxon, D.S.

    2010-01-01T23:59:59.000Z

    Phys. A278 (1977) 387. NUCLEAR FISSION INDUCED BY ATOMICand J.R. Huizenga, in Nuclear Fission (Academic Press, Newvery soft nuclei, nuclear fission and heavy ion reactions.

  17. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  18. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  19. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11T23:59:59.000Z

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  20. International Safeguards Technology and Policy Education and Training Pilot Programs

    SciTech Connect (OSTI)

    Dreicer, M; Anzelon, G A; Essner, J T; Dougan, A D; Doyle, J; Boyer, B; Hypes, P; Sokava, E; Wehling, F; Martin, J; Charlton, W

    2009-06-16T23:59:59.000Z

    A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total and were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.

  1. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect (OSTI)

    David L. Black

    2000-06-04T23:59:59.000Z

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  2. Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a

    E-Print Network [OSTI]

    Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a controversial nuclear fusion plan. The technical meeting of experts is intended to pave the way of nuclear fusion say it provides an attractive long-term energy option, because the basic materials needed

  3. Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013

    E-Print Network [OSTI]

    Meunier, Michel

    Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25 #12;Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013 Paper 6722 DRAGON5: Designing Computational Schemes Dedicated to Fission Nuclear Reactors

  4. Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

  5. Overview of Fusion Nuclear Technology in the US

    SciTech Connect (OSTI)

    Morley, Neil B.; Abdou, Mohamed A.; Anderson, Mark; Calderoni, P.; Kurtz, Richard J.; Nygren, R N.; Raffray, R; Sawan, M.; Sharpe, Peter J.; Smolentsev, S.; Willms, Scott; Ying, A Y.

    2006-02-01T23:59:59.000Z

    Fusion Nuclear Technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities. With the recent return of the US to the ITER collaboration, several activities in support of the ITER machine have been initiated, including development of the first wall shielding blanket baffle module (module 18), testing of plasma facing components, ITER tokamak exhaust tritium processing system development, and 3-D neutronics and activation code advances. The ITER test blanket module development activity has also been restarted in the US, and critical R&D is proceeding on ceramic breeder thermomechanical systems and lead-lithium breeder systems utilizing SiC composite flow channel inserts for thermal and MHD electrical insulation. Novel research on free surface liquid metal divertors is also continuing, with the goal of fielding a lithium free surface divertor in the National Spherical Torus eXperimental device (NSTX) and aiding the development of the Lithium Tokamak Experiment at Princeton. Materials research in the long term is focused on coupled computational materials science and carefully designed experiments to determine the underlying mechanisms that control the mechanical and physical behavior of advanced body-centered cubic metals and ceramic composites in the harsh fusion environment. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described.

  6. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Robert Bean; Casey Durst

    2009-10-01T23:59:59.000Z

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  7. Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Internal...

  8. Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

    1994-06-27T23:59:59.000Z

    Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

  9. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect (OSTI)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01T23:59:59.000Z

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

  10. Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology

    SciTech Connect (OSTI)

    Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

    1998-08-01T23:59:59.000Z

    The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

  11. World nuclear fuel market: proceedings of the international conference on nuclear energy

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

  12. Synopsis of the international workshop on illicit trafficking of nuclear material

    SciTech Connect (OSTI)

    Niemeyer, S.

    1997-03-01T23:59:59.000Z

    In this paper a synopsis is presented of the second ITWG (Nuclear Smuggling International Technical Working Group) meeting that was held in Obninsk, Russia, on December 2-4, 1996, at the Institute of Physics and Power Engineering.

  13. Los Alamos Lab: International and Applied Technology Division, IAT: Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking down theElectrodynamics,

  14. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    E-Print Network [OSTI]

    Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6; c the nuclear ribosomal RNA cistron were compared together with regions of three representative protein- coding

  15. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01T23:59:59.000Z

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  16. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    SciTech Connect (OSTI)

    Harmon,, K. M.; Lakey,, L. T.

    1983-07-01T23:59:59.000Z

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  17. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    SciTech Connect (OSTI)

    Harmon,, K. M.; Lakey,, L. T.

    1982-11-01T23:59:59.000Z

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  18. 2 Science and Technology of Nuclear Installations the nuclear data are added in a speci c format to so-called

    E-Print Network [OSTI]

    Demazière, Christophe

    information from experi- mental cross-section data, integral data (critical assemblies), and nuclear models#12;2 Science and Technology of Nuclear Installations the nuclear data are added in a speci c format to so-called evaluated nuclear data les, such as ENDF-6 (Evaluated Nuclear Data File-6). e

  19. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  20. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  1. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01T23:59:59.000Z

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  2. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  3. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  4. Design principles for the development of space technology maturation laboratories aboard the International Space Station

    E-Print Network [OSTI]

    Saenz Otero, Alvar, 1975-

    2005-01-01T23:59:59.000Z

    This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

  5. The role of immigrant scientists and entrepreneurs in international technology transfer

    E-Print Network [OSTI]

    Kerr, William Robert, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    This thesis characterizes the important role of US ethnic scientists and entrepreneurs for international technology diffusion. Chapter 1 studies the transfer of tacit knowledge regarding new innovations through ethnic ...

  6. International nuclear fuel cycle fact book. [Contains glossary

    SciTech Connect (OSTI)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  7. International prospects for clean coal technologies (Focus on Asia)

    SciTech Connect (OSTI)

    Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

    1997-12-31T23:59:59.000Z

    The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

  8. Nuremberg, Germany, 27-29 March 2001 International Congress for Particle Technology

    E-Print Network [OSTI]

    Jonas, Ulrich - Institute of Electronic Structure and Laser, Foundation for Research and Technology

    - 1 - Nuremberg, Germany, 27-29 March 2001 International Congress for Particle Technology Christian 55128 Mainz Germany Email: jonas@mpip-mainz.mpg.de Abstract Session: Headline 17: Nanoscale Materials in a sub-monolayer on a cationic square. #12;- 2 - Nuremberg, Germany, 27-29 March 2001 International

  9. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01T23:59:59.000Z

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  10. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  11. Fusion Engineering and Design xxx (2006) xxxxxx Overview of fusion nuclear technology in the US

    E-Print Network [OSTI]

    Raffray, A. René

    2006-01-01T23:59:59.000Z

    Fusion Engineering and Design xxx (2006) xxx­xxx Overview of fusion nuclear technology in the US N.B. Morley et al. / Fusion Engineering and Design xxx (2006) xxx­xxx · firstwall

  12. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01T23:59:59.000Z

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  13. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Lindken, Ralph

    Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors: Better prediction of the flow and heat transfer in liquid metal cooled nuclear reactors will contribute

  14. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Vuik, Kees

    production need improvement. In that respect, CFD predictions of the flow and heat transport in nuclear fuelNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors

  15. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Energy Savers [EERE]

    Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or...

  16. An international comparison of public attitudes towards carbon capture and storage technologies

    E-Print Network [OSTI]

    1 An international comparison of public attitudes towards carbon capture and storage technologies as an important element in determining the eventual fate of new technologies and carbon capture and storage (CCS, with particular emphasis on attitudes towards carbon capture and storage (CCS). We find low levels of awareness

  17. Removable Urban Pavements: An innovative, sustainable technology Journal: International Journal of Pavement Engineering

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Removable Urban Pavements: An innovative, sustainable technology Journal: International Journal of Pavement Engineering URL: http://mc.manuscriptcentral.com/gpav E-mail: IJPE.editor@citg.tudelft.nl, alqadi@uiuc.edu Removable Urban Pavements: An innovative, sustainable technology François de Larrard1, Thierry Sedran2, Jean

  18. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    Energy Agency INDEEP International Database on Demand-Side Management Technologiesenergy assessment and analysis methodology/protocol and Energy Assessment Guide Develop a database of “Energy Saving Technologies energy assessment and analysis methodology/protocol and Energy Assessment Guide Develop a database of “Energy Saving Technologies 

  19. International Symposium on Bioremediation and Sustainable Environmental Technologies (Reno, Nevada; June 27-30, 2011).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    International Symposium on Bioremediation and Sustainable Environmental Technologies (Reno, Nevada is not practical due to magnitude of the problem, access issues, and/or resource constraints. Here "bioremediation of greenhouse gases. Unfortunately, most OCPs are not amenable to conventional bioremediation technologies hence

  20. Proceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference

    E-Print Network [OSTI]

    Papalambros, Panos

    optimization study. For a new technology, such as fuel cells, it is also important to include uncertaintiesProceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference June 16-18, 2008, Denver, Colorado, USA FUELCELL2008-65111 OPTIMAL DESIGN OF HYBRID ELECTRIC FUEL

  1. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect (OSTI)

    Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Reisman, A. [Brookhaven National Lab., Upton, NY (United States); Turpen, E. [Aquila Technologies Group, Inc., Cambridge, MA (United States)

    1996-10-01T23:59:59.000Z

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  2. How to Proceed with the Thorium Nuclear Technology: a Real Options Analysis

    E-Print Network [OSTI]

    Guillas, Serge

    How to Proceed with the Thorium Nuclear Technology: a Real Options Analysis Afzal Siddiqui Stein-Erik Fleten August 11, 2008 Abstract The advantage of thorium-fuelled nuclear power is that it limits, and the current costs of initiating a thorium fuel cycle would be very high. We analyse how a government may

  3. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  4. REPORT ON THE INTERNATIONAL CENTRE FOR GAS TECHNOLOGY INFORMATION'S 2002 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Mary Lang

    2003-03-01T23:59:59.000Z

    This is the final technical report for the U.S. Department of Energy Grant DE-FG26-02NT41445 for Membership in the International Centre for Gas Technology Information. The grant period began January 1, 2002 and ended December 31, 2002. The primary purpose of this grant was to continue U.S. country membership in the International Energy Agency's International Centre for Gas Technology Information (ICGTI) for calendar year 2002. The mission of ICGTI is to promote international cooperation and collaboration on natural gas technology development and commercialization. This final technical report describes ICGTI's 2002 activities, in which U.S. country membership in ICGTI was sustained and supported, but ICGTI's activities were curtailed by loss of funding.

  5. Web Developer/Programmer Intern Employer: Transim Technology Corporation

    E-Print Network [OSTI]

    Childers, Bruce

    and dynamic technology company. We are expanding our team in search of a creative, hard-working, and self, SQL, CSS Experience with .NET and Web Services Experience/working knowledge of SQL and relational

  6. Most Viewed Documents for Fission and Nuclear Technologies: December...

    Office of Scientific and Technical Information (OSTI)

    various two-phase flow regimes Ishii, M. (1977) 20 3rd Miami international conference on alternative energy sources Nejat Veziroglu, T. (1980) 19 Fission fragment rockets: A...

  7. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  8. Sandia Weapon Intern Program visits KCP | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed |Nuclear

  9. Savannah River Site hosts military interns | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART SignedhostsNuclearAdministration

  10. Weapons Intern Program participants visit Pantex | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads Arrives inAdministrationSecurity

  11. Statement to the IAEA International Conference on Nuclear Security |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring SolarSystem,

  12. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Energy Policy, Vol. 34 Generation IV International Forum. “Introduction to Generation IV Nuclear Energy Systems and theIII Plus 2030-onward – Generation IV 2030-onward 2030-onward

  13. 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation

    E-Print Network [OSTI]

    Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy with thermonuclear reactors; the second step aims to raise the utilization rate of nuclear fuels from the current 1

  14. Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 189 Copyright 2006 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Pázsit, Imre

    Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 189 Copyright © 2006* and Imre Pázsit Department of Nuclear Engineering Chalmers University of Technology SE-412 96 Göteborg, I. (2006) `Investigation of detector tube impacting in the Ringhals-1 BWR', Int. J. Nuclear Energy

  15. International Framework for Nuclear Energy Cooperation to Hold

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » International

  16. International Nuclear Energy Research Initiative (I-NERI) Annual Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergyDepartment of

  17. International Nuclear Energy Research Initiative: 2012 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergyDepartment

  18. Fragments' internal and kinetic temperatures in the framework of a Nuclear Statistical Multifragmentation Model

    E-Print Network [OSTI]

    S. R. Souza; B. V. Carlson; R. Donangelo; W. G. Lynch; M. B. Tsang

    2014-11-27T23:59:59.000Z

    The agreement between the fragments' internal and kinetic temperatures with the breakup temperature is investigated using a Statistical Multifragmentation Model which makes no a priori as- sumption on the relationship between them. We thus examine the conditions for obtaining such agreement and find that, in the framework of our model, this holds only in a relatively narrow range of excitation energy. The role played by the qualitative shape of the fragments' state densities is also examined. Our results suggest that the internal temperature of the light fragments may be affected by this quantity, whose behavior may lead to constant internal temperatures over a wide excitation energy range. It thus suggests that the nuclear thermometry may provide valuable information on the nuclear state density.

  19. March 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    solutions Maimoni, A. (1980) 101 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 87 One-dimensional drift-flux model and constitutive...

  20. Nuclear Energy: Policies and Technology for the 21st Century

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC) formed two subcommittees to develop a report for the new Administration: a Policy Subcommittee chartered to evaluate U.S....

  1. Most Viewed Documents for Fission And Nuclear Technologies: September...

    Office of Scientific and Technical Information (OSTI)

    under accident conditions Bomelburg, H.J. (1977) 71 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 68 Stress analysis and evaluation of a...

  2. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03T23:59:59.000Z

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  3. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect (OSTI)

    Robbins, W.H.; Finger, H.B.

    1991-07-01T23:59:59.000Z

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  4. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Copyright 2013 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Demazière, Christophe

    288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Copyright © 2013 Energy Science and Technology, Vol. 7, No. 4, pp.288­318. Biographical notes: Christophe Demazière of Technology, SE-412 96 Gothenburg, Sweden Email: demaz@chalmers.se Abstract: Current practices in the nuclear

  5. Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their

    E-Print Network [OSTI]

    Demazière, Christophe

    Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational plants', Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, pp.287­298. Biographical notes Engineering Chalmers University of Technology SE-412 96 Gothenburg, Sweden E-mail: demaz

  6. Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 167 Copyright 2006 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Demazière, Christophe

    Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 167 Copyright © 2006 unseated fuel assemblies in BWRs', Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, pp.167 in BWRs Christophe Demazière Department of Reactor Physics Chalmers University of Technology SE-412 96

  7. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    E-Print Network [OSTI]

    Danon, Yaron

    ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 11 Nuclear Research and Consultancy Group, P 2011) The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear

  8. 309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR MATERIALS"

    E-Print Network [OSTI]

    Motta, Arthur T.

    309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR review; it is a book preview. Thirty years ago, "Fundamental Aspects of Nuclear Reactor Fuel Elements of nuclear fuels among other topics pertinent to the materials in the ensemble of the nuclear reactor

  9. Overview of Fusion Nuclear Technology in the US

    E-Print Network [OSTI]

    / Shield Module 18 ­ Tokamak Exhaust Plant IFE Technology Research ­ High Average Power Laser ­ Z Studies ­ Neutronics Simulation Tools ITER Project Office and US Contributions to ITER ­ First wall) Department of Energy (DOE) Enabling Technologies Program ITER Project Office (US-IPO) High Average Power

  10. ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems

    E-Print Network [OSTI]

    André Gsponer; Jean-pierre Hurni

    2004-01-01T23:59:59.000Z

    This paper contains two parts: (I) A list of “points ” highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

  11. Photowatt Technologies aka Photowatt International SA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenixPhotovoltech NV Jump

  12. International Center for Appropriate & Sustainable Technology | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformation International Center for

  13. International Energy Agency Technology Roadmap for Wind Energy | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformationInternational Energy Agency

  14. Comparative analyses for selected clean coal technologies in the international marketplace

    SciTech Connect (OSTI)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01T23:59:59.000Z

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  15. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Electricity Markets" OECD/IEA Report 2000. OECD/IEA. "Nuclear Power in the OECD" OECD/IEA Report 2001.OECD/IEA. "Nuclear Power". IEA Energy Technology Essentials,

  16. Operation technology of air treatment system in nuclear facilities

    E-Print Network [OSTI]

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01T23:59:59.000Z

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  17. Communication : 9th CANMET [Canada Centre for Mineral and Energy Technology] /ACI [American Concrete Institute] (International Conference on Superplasticizers and other Chemical Admixtures in

    E-Print Network [OSTI]

    Boyer, Edmond

    Communication : 9th CANMET [Canada Centre for Mineral and Energy Technology] /ACI [American for Mineral and Energy Technology] /ACI [American Concrete Institute] (International Conference (Canada Centre for Mineral and Energy Technology) /ACI (American Concrete Institute) (International

  18. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01T23:59:59.000Z

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  19. Nuclear rocket performance based on Rover/NERVA technology

    SciTech Connect (OSTI)

    Kirk, W.L.

    1990-01-01T23:59:59.000Z

    It has been suggested that the 1955-1972 nuclear rocket development (Rover) program provides a strong foundation for a renewed nuclear engine development effort. It is concluded that there is an extensive development base deriving from the Rover/NERVA program for bead-loaded graphite-fueled reactors (Isp = 825-900 s), a moderate base for composite fuel (Isp = 875-925 s), and a modest base for carbide fuel (Isp = 975-1025 s). For carbide fuel and to some extent for composite fuel, there is a potential for considerable increase in reactor core and presumable engine lifetime with only modest reduction in Isp.

  20. Fusion Nuclear Science and Technology (FNST) Mohamed Abdou

    E-Print Network [OSTI]

    Material degradation by radiation and other damage Fabrication and joining for reliable components at IFE pulse repetition rate · Incremental effects of repetitive pulses (e.g., radiation damage Components divertor, limiter and nuclear aspects of plasma heating/fueling and IFE final optics Blanket

  1. Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy

    E-Print Network [OSTI]

    Vuik, Kees

    of overheating of the nuclear reactor core during a severe accident, large amount of hydrogen are generatedNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy utilities, government

  2. Nuclear nonproliferation and safety: Challenges facing the International Atomic Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Chairman of the Senate Committee on Govermental Affairs asked the United States General Accounting Office (GAO) to review the safeguards and nuclear power plant safety programs of the International Atomic Energy Agency (IAEA). This report examines (1) the effectiveness of IAEA`s safeguards program and the adequacy of program funding, (2) the management of U.S. technical assistance to the IAEA`s safeguards program, and (3) the effectiveness of IAEA`s program for advising United Nations (UN) member states about nuclear power plant safety and the adequacy of program funding. Under its statute and the Treaty on the Non-Proliferation of Nuclear Weapons, IAEA is mandated to administer safeguards to detect diversions of significant quantities of nuclear material from peaceful uses. Because of limits on budget growth and unpaid contributions, IAEA has had difficulty funding the safeguards program. IAEA also conducts inspections of facilities or locations containing declared nuclear material, and manages a program for reviewing the operational safety of designated nuclear power plants. The U.S. technical assistance program for IAEA safeguards, overseen by an interagency coordinating committee, has enhanced the agency`s inspection capabilities, however, some weaknesses still exist. Despite financial limitations, IAEA is meeting its basic safety advisory responsibilities for advising UN member states on nuclear safety and providing requested safety services. However, IAEA`s program for reviewing the operational safety of nuclear power plants has not been fully effective because the program is voluntary and UN member states have not requested IAEA`s review of all nuclear reactors with serious problems. GAO believes that IAEA should have more discretion in selecting reactors for review.

  3. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

    1999-10-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  4. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report

    SciTech Connect (OSTI)

    A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

    1999-09-30T23:59:59.000Z

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

  5. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  6. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31T23:59:59.000Z

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  7. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17T23:59:59.000Z

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  8. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear

  9. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers in

  10. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers

  11. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0

  12. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01T23:59:59.000Z

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  13. Stakeholder identification of advanced technology opportunities at international ports of entry

    SciTech Connect (OSTI)

    Parker, S.K. [Sandia National Labs., Albuquerque, NM (United States). Energy Policy and Planning Dept.; Icerman, L. [Icerman and Associates, Santa Fe, NM (United States)

    1997-01-01T23:59:59.000Z

    As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5) inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.

  14. 2010 International Conference on Power System Technology Renewable energy integration: mechanism for

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    capacity that can integrate the wind energy blocks. Both the new grids and upgrade grid must have a stepped2010 International Conference on Power System Technology Renewable energy integration: mechanism with high uncertainty, as it usually happens with renewable energies. This work faces this problem

  15. ANNUAL NAEE/IAEE INTERNATIONAL CONFERENCE ENERGY TECHNOLOGY AND INFRASTRUCTURE FOR SUSTAINABLE

    E-Print Network [OSTI]

    Texas at Austin, University of

    5TH ANNUAL NAEE/IAEE INTERNATIONAL CONFERENCE ENERGY TECHNOLOGY AND INFRASTRUCTURE FOR SUSTAINABLE DEVELOPMENT SHERATON HOTEL, ABUJA, NIGERIA April 23-24, 2012 CALL FOR PAPERS CONFERENCE OBJECTIVES: After a decade of energy sector and economy-wide reforms, many African countries are confronted

  16. International survey of options to fund regional science and technology in Africa

    E-Print Network [OSTI]

    of Action (CPA), as agreed by the 2005 African Ministerial Conference on Science and Technology (AMCOST; the private sector and the international donor community. The analysis stresses the importance of African poverty reduction strategy papers or their equivalent. Private sector support for S&T in Africa

  17. Proceedings of the 6th International Fuel Cell Science, Engineering & Technology Conference

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Proceedings of the 6th International Fuel Cell Science, Engineering & Technology Conference FuelCell2008 June 16-18, 2008, Denver, Colorado, USA DRAFT FuelCell2008-65112 PART I OF II: DEVELOPMENT OF MERESS MODEL ­ DEVELOPING SYSTEM MODELS OF STATIONARY COMBINED HEAT AND POWER (CHP) FUEL CELL SYSTEMS

  18. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect (OSTI)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14T23:59:59.000Z

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  19. October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH

  20. Nuclear Separations Technologies Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates fromNuclear Security Conference

  1. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear MaterialsModeling

  2. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0Summer 1995

  3. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0Summer

  4. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers0SummerSpring

  5. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthern Supplementthe NUCLEAR

  6. FY 2006 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017 Federal Register09National NuclearSecurity

  7. FY 2008 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017National Nuclear

  8. FY 2009 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017NationalNational NuclearSecurity

  9. State Nuclear Power Technology Corporation SNPTC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop,Lanka-DLRStandard EthanolEnergyState Nuclear

  10. Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle

    SciTech Connect (OSTI)

    Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

    2013-07-01T23:59:59.000Z

    Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

  11. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06T23:59:59.000Z

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  12. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11T23:59:59.000Z

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  13. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    E-Print Network [OSTI]

    A. Alemberti; M. Battaglieri; E. Botta; R. De Vita; E. Fanchini; G. Firpo

    2014-04-14T23:59:59.000Z

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  14. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

    2002-11-30T23:59:59.000Z

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  15. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect (OSTI)

    Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

    1991-01-01T23:59:59.000Z

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  16. Professor Emeritus of Nuclear Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), syip@mit.edu

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    CV SIDNEY YIP Professor Emeritus of Nuclear Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 (USA), syip@mit.edu Education B.S. (Mechanical Engineering, 1958), M.S. (Nuclear Engineering, 1959), and Ph.D. (Nuclear Engineering, 1962), all from the University of Michigan

  17. International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004.

    E-Print Network [OSTI]

    The 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6 Junbeom Yoo, Suhyun Park, Hojung Bang, Taihyo Kim, Sungdeok Cha Korea Advanced Institute of Science for assuring quality of software. In the area of nuclear power plant control systems, testing on software

  18. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator NNSAAdministration Technology

  19. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01T23:59:59.000Z

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  20. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  1. Report of a workshop on nuclear power growth and nonproliferation held at the Woodrow Wilson international center for scholars, Washington, DC, April 21, 2010

    SciTech Connect (OSTI)

    Pilat, Joseph F [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The workshop addressed the future of nuclear power and nonproliferation in light of global nuclear energy developments, changing US policy and growing concerns about nuclear proliferation and terrorism. The discussion reflected wide agreement on the need for nuclear power, the necessity of mitigating any proliferation and terrorism risks and support for international cooperation on solutions. There were considerable differences on the nature and extent of the risks of differing fuel cycle choices. There was some skepticism about the prospects for a global nuclear energy renaissance, but there was a recognition that nuclear power would expand somewhat in the decades ahead with some states expanding capacity dramatically (e.g., China) and at least a few new states developing nuclear power programs. It was also argued by some participants that under the right conditions, a genuine renaissance could occur some decades from now. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security Several participants noted that the United States will not be able to continue to lead global nonproliferation efforts and to shape the growth of nuclear power as well as the global environment and energy debates without a robust US nuclear energy program. Some participants argued that fully integrating nuclear energy growth and nonproliferation, proliferation resistance and physical protection objectives was possible. The growing consensus on these objectives and the growing concern about the potential impact of further proliferation on the industry was one reason for optimism. The Blue Ribbon commission led by Scowcroft and Hamilton was seen as going far beyond the need to find an alternative to Yucca Mountain, and the preeminent forum in the next years to address the back end of the fuel cycle and other issues. Some argued that addressing these issues is the critical missing element, or the final piece of the puzzle to ensure the benefits of nuclear power and to promote nonproliferation. In this context, many argued that R&D on closed as well as open fuel cycle options in order to ensure a suite of long-term options was essential.

  2. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    SciTech Connect (OSTI)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15T23:59:59.000Z

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  3. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

    2007-08-01T23:59:59.000Z

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  4. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    SciTech Connect (OSTI)

    J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

    2012-03-01T23:59:59.000Z

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  5. International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008

    E-Print Network [OSTI]

    Boyer, Edmond

    International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino International Forum for the new nuclear energy systems, we have developed a new concept of molten salt reactor Products which poison the core can be extracted without stopping reactor operation; nuclear waste

  6. International Topical Meeting on Nuclear Reactor Thermal hydraulics, NURETH-15 NURETH15-599 Pisa, Italy, May 12-17, 2013

    E-Print Network [OSTI]

    Haviland, David

    The 15th International Topical Meeting on Nuclear Reactor Thermal hydraulics, NURETH-15 NURETH15 of steam explosion shock wave propagation. #12;The 15th International Topical Meeting on Nuclear Reactor to note that stratified melt-coolant configuration can be formed in several scenarios of nuclear reactor

  7. The International Standing Committee for FNST All Participants to ISFNT-9

    E-Print Network [OSTI]

    Abdou, Mohamed

    on Fusion Nuclear Technology (ISFNT) series of conferences was conceived in the 1980's with the following and the many multidisciplinary issues for Fusion Nuclear Science and Technology (FNST). ­ Enhance international&D for Fusion Nuclear Science and Technology is a "Grand Challenge" not only because of the multi

  8. Clean coal technologies---An international seminar: Seminar evaluation and identification of potential CCT markets

    SciTech Connect (OSTI)

    Guziel, K.A.; Poch, L.A.; Gillette, J.L.; Buehring, W.A.

    1991-07-01T23:59:59.000Z

    The need for environmentally responsible electricity generation is a worldwide concern. Because coal is available throughout the world at a reasonable cost, current research is focusing on technologies that use coal with minimal environmental effects. The United States government is supporting research on clean coal technologies (CCTs) to be used for new capacity additions and for retrofits to existing capacity. To promote the worldwide adoption of US CCTs, the US Department of Energy, the US Agency for International Development, and the US Trade and Development Program sponsored a two-week seminar titled Clean Coal Technologies -- An International Seminar. Nineteen participants from seven countries were invited to this seminar, which was held at Argonne National Laboratory in June 1991. During the seminar, 11 US CCT vendors made presentations on their state-of-the-art and commercially available technologies. The presentations included technical, environmental, operational, and economic characteristics of CCTs. Information on financing and evaluating CCTs also was presented, and participants visited two CCT operating sites. The closing evaluation indicated that the seminar was a worthwhile experience for all participants and that it should be repeated. The participants said CCT could play a role in their existing and future electric capacity, but they agreed that more CCT demonstration projects were needed to confirm the reliability and performance of the technologies.

  9. International Legal Framework for Denuclearization and Nuclear Disarmament – Present Situation and Prospects

    SciTech Connect (OSTI)

    Gastelum, Zoe N.

    2012-12-16T23:59:59.000Z

    This thesis is the culminating project for my participation in the OECD NEA International School of Nuclear Law. This paper will begin by providing a historical background to current disarmament and denuclearization treaties. This paper will discuss the current legal framework based on current and historical activities related to denuclearization and nuclear disarmament. Then, it will propose paths forward for the future efforts, and describe the necessary legal considerations. Each treaty or agreement will be examined in respect to its requirements for: 1) limitations and implementation; 2) and verification and monitoring. Then, lessons learned in each of the two areas (limitations and verification) will be used to construct a proposed path forward at the end of this paper.

  10. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11T23:59:59.000Z

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for restoring the ability of degraded EPR to be compliant and resist fracture. The results of this research reveal that absorption of chemical treatments can lower the glass transition temperature and modulus of EPR. Chemical treatments pursued thus far have proven ineffective at restoring EPR strength and elongation at break. Future work will combine the plasticizer modalities found to successfully increase the volume of the EPR, reduce EPR glass transition temperature and reduce EPR modulus with promising chemistries that will repair the damage of the polymer, potentially using the plasticizer as a host for the new chemistry.

  11. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    SciTech Connect (OSTI)

    Khan, T.A. [comp.] [Brookhaven National Lab., Upton, NY (United States); Roecklein, A.K. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

    1995-03-01T23:59:59.000Z

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

  12. Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. PerretGallix, International Journal of Modern

    E-Print Network [OSTI]

    Peterson, Carsten

    Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. Perret­Gallix, International Journal on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, Pisa, Italy, April 3

  13. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect (OSTI)

    M.F. Simpson; K.-R. Kim

    2010-12-01T23:59:59.000Z

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  14. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    SciTech Connect (OSTI)

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-10-20T23:59:59.000Z

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

  15. United Technologies Corporation: Internal Audit Department (IAD) Case Study: A Case Study of the UTC ACE Operating System

    E-Print Network [OSTI]

    Roth, George

    2008-08-11T23:59:59.000Z

    This study of United Technologies Corporation's Internal Audit Department (IAD) examines how stability and change are important factors in how this department functions and improves. IAD is a leader in the adoption of ...

  16. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect (OSTI)

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01T23:59:59.000Z

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  17. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    SciTech Connect (OSTI)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01T23:59:59.000Z

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  18. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)] [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01T23:59:59.000Z

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  19. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25T23:59:59.000Z

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

    2010-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19T23:59:59.000Z

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2009-11-23T23:59:59.000Z

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

  4. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 3: Environmental remediation and environmental management issues

    SciTech Connect (OSTI)

    Baschwitz, R.; Kohout, R.; Marek, J.; Richter, P.I.; Slate, S.C. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Papers are divided into the following sections: Low/Intermediate level waste disposal from an international viewpoint; Solid waste volume reduction, treatment and packaging experience; Design of integrated systems for management of nuclear wastes; Mixed waste (hazardous and radioactive) treatment and disposal; Advanced low/intermediate level waste conditioning technologies including incineration; National programs for low/intermediate waste management; Low/Intermediate waste characterization, assay, and tracking systems; Disposal site characterization and performance assessment; Radioactive waste management and practices in developing countries; Waste management from unconventional (e.g. VVER) nuclear power reactors; Waste minimization, avoidance and recycling in nuclear power plants; Liquid waste treatment processes and experience; Low/Intermediate waste storage facilities--design and experience; Low/Intermediate waste forms and acceptance criteria for disposal; Management of non-standard or accident waste; and Quality assurance and control in nuclear waste management. Individual papers have been processed separately for inclusion in the appropriate data bases.

  5. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

  6. A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology, Viability, and Options

    E-Print Network [OSTI]

    A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology, Viability, and Options Rahul Tongia & V. S. Arunachalam Department of Engineering & Public Policy Carnegie tongia@andrew.cmu.edu; vsa@andrew.cmu.edu Abstract: India's nuclear power program is based on indigenous

  7. Abstract. The problem of controlled nuclear fusion (CNF) is a colossal scientific and technological challenge on a global

    E-Print Network [OSTI]

    Abstract. The problem of controlled nuclear fusion (CNF) is a colossal scientific and technological the feasibility of building a magnetic thermonuclear reactor''. The three papers below briefly outline the history044n08ABEH001068 The initial period in the history of nuclear fusion research at the Kurchatov

  8. Report on the Scientific Committee for the Evaluation of the Institute of Nuclear Technology and Radiation Protection (INTRP)

    E-Print Network [OSTI]

    - 1/4 - Report on the Scientific Committee for the Evaluation of the Institute of Nuclear and evaluated the Institute of Nuclear Reactor Technology and Radiation Protection, following the instructions), Prof. Michel Giot (Université Catholique de Louvain), Dr. Michel Reocreux, (Institut de Radioprotection

  9. Experts in Defense: How China’s Academicians Contribute to Its Defense Science and Technology Development

    E-Print Network [OSTI]

    WILSON, Jordan

    2015-01-01T23:59:59.000Z

    leader Nuclear propulsion and basic nuclear technology Groupmember Nuclear weapons technology Group leader Precisionrockets Information technology and computing Nuclear Medical

  10. ``White Land``...new Russian closed-cycle nuclear technology for global deployment

    SciTech Connect (OSTI)

    Bowman, C.D.

    1996-07-01T23:59:59.000Z

    A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

  11. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    SciTech Connect (OSTI)

    Evans, Meredydd; Runci, Paul; Meier, Alan

    2008-08-01T23:59:59.000Z

    This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

  12. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect (OSTI)

    Slate, S.C. [comp.; Allen, R.E. [ed.

    1993-12-01T23:59:59.000Z

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  13. Tags and seals for controling nuclear materials, Arms control and nonproliferation technologies. Second quarter 1993

    SciTech Connect (OSTI)

    Staehle, G; Talaber, C; Stull, S; Moulthrop, P [eds.

    1993-12-31T23:59:59.000Z

    This issue of Arms Control and Nonproliferation Technologies summarizes demonstrations and addresses related topics. The first article, ``Basic Nuclear Material Control and Accountability Concepts as Might be Applied to the Uranium from the US-Russian HEU Purchase,`` describes safeguards sybsystems necessary for effective nuclear material safeguards. It also presents a general discussion on HEU-to-low-enrichment uranium (LEU) commingling processes and suggests applicable key measurement points. The second article, ``A Framework for Evaluating Tamper-Indicating-Device Technologies (TIDs),`` describes their uses, proper selection, and evaluation. The final three articles discuss the tags and seals applications and general characteristics of several nuclear material containers: the Type 30B uranium hexafluoride container, the AT-400R container, and the DOT Specification 6M container for SNM. Finally, the Appendix displays short descriptions and illustrations of seven tags and seals, including: the E-cup and wire seal, the python seal, the secure loop inspectable tag/seal (SLITS), bolt-and-loop type electronic identification devices, and the shrink-wrap seal.

  14. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect (OSTI)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01T23:59:59.000Z

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  15. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    SciTech Connect (OSTI)

    Collins, Robert T [ORNL] [ORNL; Collins, Jack Lee [ORNL] [ORNL; Hunt, Rodney Dale [ORNL] [ORNL; Ladd-Lively, Jennifer L [ORNL] [ORNL; Patton, Kaara K [ORNL] [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL] [NASA Marshall Space Flight Center, Huntsville, AL

    2014-01-01T23:59:59.000Z

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  16. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20T23:59:59.000Z

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Journal of Nuclear Materials, Volumes 367-370, 2007, 1586-1589 Designing Optimised Experiments for the International Fusion

    E-Print Network [OSTI]

    Cambridge, University of

    Journal of Nuclear Materials, Volumes 367-370, 2007, 1586-1589 Designing Optimised Experiments for the International Fusion Materials Irradiation Facility R. Kemp1 G.A. Cottrell2 and H.K.D.H. Bhadesia1 1 Department EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon., OX14 3DB, UK Abstract

  19. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  20. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1986-06-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

  1. Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development

    SciTech Connect (OSTI)

    Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

    1995-01-01T23:59:59.000Z

    The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

  2. Nuclear Futures Analysis and Scenario Building

    SciTech Connect (OSTI)

    Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

    1999-07-09T23:59:59.000Z

    This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

  3. The Japan Times Printer Friendly Articles France has won the competition to host the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear-

    E-Print Network [OSTI]

    the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear- fusion reactor. Japan fought wins by withdrawing ITER bid Thermonuclear fusion utilizes the same process that powers the sun -- nuclear-fusion reactions -- to produce energy. Scientists at the ITER plant will create nuclear-fusion

  4. Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010

    SciTech Connect (OSTI)

    Pilat, Joseph F [Los Alamos National Laboratory

    2010-12-08T23:59:59.000Z

    A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

  5. The Daya Bay Nuclear Plant Project in the Light of International Environmental Law

    E-Print Network [OSTI]

    Mushkat, Roda

    1990-01-01T23:59:59.000Z

    result from locating a nuclear plant so close to the Hongat 1292 (1975). THE DA YA BAY NUCLEAR PLANT PROJECT national1986) (H.K. ). THE DA YA BAY NUCLEAR PLANT PROJECT IV. THE "

  6. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    ECBCS)* Clean Coal Sciences* Climate Technology Initiative (Clean Coal Centre* Industrial Energy-Related Technologies

  7. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01T23:59:59.000Z

    10-01096) Journal of Nuclear Technology, in Press. [46] G.W.Library for Nuclear Science and Technology,” Nuclear Datacalculations,” Nuclear Data for Science and Technology

  8. Nuclear fuels technologies Fiscal Year 1996 research and development test results

    SciTech Connect (OSTI)

    Beard, C.A.; Blair, H.T.; Buksa, J.J.; Butt, D.P.; Chidester, K.; Eaton, S.L.; Farish, T.J.; Hanrahan, R.J.; Ramsey, K.B.

    1996-11-01T23:59:59.000Z

    During fiscal year 1996, the Department of Energy`s Office of Fissile Materials Disposition (OFMD) funded Los Alamos National Laboratory (LANL) to investigate issues associated with the fabrication of plutonium from dismantled weapons into mixed-oxide (MOX) nuclear fuel for disposition in nuclear power reactors. These issues can be divided into two main categories: issues associated with the fact that the plutonium from dismantled weapons contains gallium, and issues associated with the unique characteristics of the PuO[sub 2] produced by the dry conversion process that OFMD is proposing to convert the weapons material. Initial descriptions of the experimental work performed in fiscal year 1996 to address these issues can be found in Nuclear Fuels Technologies Fiscal Year 1996 Research and Development Test Matrices. However, in some instances the change in programmatic emphasis towards the Parallex program either altered the manner in which some of these experiments were performed (i.e., the work was done as part of the Parallex fabrication development and not as individual separate-effects tests as originally envisioned) or delayed the experiments into Fiscal Year 1997. This report reviews the experiments that were conducted and presents the results.

  9. Attutude-action consistency and social policy related to nuclear technology

    SciTech Connect (OSTI)

    Lindell, M.K.; Perry, R.W.; Greene, M.

    1980-06-01T23:59:59.000Z

    This study reports the results of a further analysis of questionnaire data--parts of which have been previously reported by Lindell, Earle, Hebert and Perry (1978)--that are related to the issue of consistency of attitudes and behavior toward nuclear power and nuclear waste management. Three factors are considered that might be expected to have a significant bearing on attitude-action consistency: social support, attitude object importance and past activism. Analysis of the data indicated that pronuclear respondents were more likely to show consistency of attitudes and actions (66%) than were antinuclear respondents (51%) although the difference in proportions is not statistically significant. Further analyses showed a strong positive relation between attitude-action consistency and perceived social support, measured by the degree to which the respondent believed that close friends and work associated agreed with his attitude. This relationship held up even when controls for attitude object importance and past activism were introduced. Attitude object importance--the salience of the issue of energy shortage--had a statistically significant effect only when perceived social support was low. Past activism had no significant relation to attitude-action consistency. These data suggest that the level of active support for or opposition to nuclear technology will be affected by the distribution of favorable and unfavorable attitudes among residents of an area. Situations in which pro- and antinuclear attitudes are concentrated among members of interacting groups, rather than distributed randomly, are more likely to produce high levels of polarization.

  10. JET Papers presented to the 2nd IEA International Workshop on Beryllium Technology for Fusion (6th September 1995, Jackson Hole, USA)

    E-Print Network [OSTI]

    JET Papers presented to the 2nd IEA International Workshop on Beryllium Technology for Fusion (6th September 1995, Jackson Hole, USA)

  11. Global biosurveillance: enabling science and technology. Workshop background and motivation: international scientific engagement for global security

    SciTech Connect (OSTI)

    Cui, Helen H [Los Alamos National Laboratory

    2011-01-18T23:59:59.000Z

    Through discussion the conference aims to: (1) Identify core components of a comprehensive global biosurveillance capability; (2) Determine the scientific and technical bases to support such a program; (3) Explore the improvement in biosurveillance to enhance regional and global disease outbreak prediction; (4) Recommend an engagement approach to establishing an effective international community and regional or global network; (5) Propose implementation strategies and the measures of effectiveness; and (6) Identify the challenges that must be overcome in the next 3-5 years in order to establish an initial global biosurveillance capability that will have significant positive impact on BioNP as well as public health and/or agriculture. There is also a look back at the First Biothreat Nonproliferation Conference from December 2007. Whereas the first conference was an opportunity for problem solving to enhance and identify new paradigms for biothreat nonproliferation, this conference is moving towards integrated comprehensive global biosurveillance. Main reasons for global biosurveillance are: (1) Rapid assessment of unusual disease outbreak; (2) Early warning of emerging, re-emerging and engineered biothreat enabling reduced morbidity and mortality; (3) Enhanced crop and livestock management; (4) Increase understanding of host-pathogen interactions and epidemiology; (5) Enhanced international transparency for infectious disease research supporting BWC goals; and (6) Greater sharing of technology and knowledge to improve global health.

  12. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25T23:59:59.000Z

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  13. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    Contact Info: National Energy Technology Laboratory Tel: 1-Committee on Energy Research and Technology. January 2002. “Committee on Energy Research and Technology. November

  14. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    Utilizing Thermal Energy Storage Technology Optimised Utilizing Thermal Energy Storage Technology Optimised Utilizing Thermal Energy Storage Technology Optimised 

  15. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

  16. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics of nuclear reactors are based on the use of different solvers for resolving the different physical fields and the corresponding approximations. Keywords: nuclear reactors; multi-physics; multi-scale; modelling; deterministic

  17. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  18. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    SciTech Connect (OSTI)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01T23:59:59.000Z

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs.

  19. ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation

    E-Print Network [OSTI]

    André Gsponer; Jean-pierre Hurni

    2004-01-01T23:59:59.000Z

    militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear

  20. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    2004. International Wind Energy Development, World Market2005. International Wind Energy Development, World Market2004, March 2005. Canadian Wind Energy Association (CanWEA),

  1. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    SciTech Connect (OSTI)

    Ramirez, Amanda Ann

    2008-09-01T23:59:59.000Z

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  2. In Proc. International Conference on Advances in Building Technology. Hong Kong, China. December 4-6, 2002.

    E-Print Network [OSTI]

    . It is widely used as sheathing, flooring, and I-joist materials in light- frame wood construction, replacingIn Proc. International Conference on Advances in Building Technology. Hong Kong, China. December 4 The Formosan Subterranean Termites (FSTs) pose a growing threat to all structural wood materials in residential

  3. The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology ANCRiSST2011

    E-Print Network [OSTI]

    Greer, Julia R.

    The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology ANCRi, and time of structural damage in an instrumented building. Unlike existing methods, the method is designed is conducted to provide insight into applying the method to a building. A tap test is performed on a small

  4. The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology ANCRiSST2011

    E-Print Network [OSTI]

    Spencer Jr., B.F.

    The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology ANCRi) for the response reduction of building structures under seismic loading. First, the building structure used sink, the sensitivity to the amplitude of the loading and the natural frequency of the building

  5. Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination

    SciTech Connect (OSTI)

    Jacobson, Victor Levon

    2002-08-01T23:59:59.000Z

    U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

  6. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect (OSTI)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12T23:59:59.000Z

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  7. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01T23:59:59.000Z

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  8. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05T23:59:59.000Z

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  9. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    SciTech Connect (OSTI)

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada)] [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada); Daniska, Vladimir [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)] [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)

    2013-07-01T23:59:59.000Z

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  10. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect (OSTI)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01T23:59:59.000Z

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

  11. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  12. On selection and operation of an international interim storage facility for spent nuclear fuel

    E-Print Network [OSTI]

    Burns, Joe, 1966-

    2004-01-01T23:59:59.000Z

    Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

  13. and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016

    E-Print Network [OSTI]

    Solna, Knut

    2008-01-01T23:59:59.000Z

    and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 Vinca, Belgrade, Serbia 2 National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu

  14. International Conference on the Developments in Renewable Energy Technology and German Alumni Energy Expert Seminar for South and South-East

    E-Print Network [OSTI]

    Peinke, Joachim

    2nd International Conference on the Developments in Renewable Energy Technology and German Alumni on the Developments in Renewable Energy Technology (ICDRET, www.icdret.uiu.ac.bd ) in Dhaka, Bangladesh. The first local and international organizations involved in renewable energy supported the event as sponsors

  15. 7. International Immersive Projection Technologies Workshop 9. Eurographics Workshop on Virtual Environments (2003)

    E-Print Network [OSTI]

    Kuhlen, Torsten

    2003-01-01T23:59:59.000Z

    H, Neuenhofstraße 181, 52078 Aachen, Germany 3 Institute for Internal Combustion Engines Aachen (VKA), Aachen

  16. Ties That Do Not Bind: Russia and the International Liberal Order

    E-Print Network [OSTI]

    Krickovic, Andrej

    2012-01-01T23:59:59.000Z

    effect on international relations. Nuclear weapons andeffect on international relations. Nuclear weapons and

  17. Joanna McFarlane, Refuyat Ashen, and K.C. Cushman Separations and Materials Research Group, Nuclear Science and Technology Division

    E-Print Network [OSTI]

    Pennycook, Steve

    , Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge. Fuel mixtures that were considered included: biodiesel and standard diesel fuel, methyl-butanoate and n

  18. 167Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 Analysis methods for the determination of possible

    E-Print Network [OSTI]

    Demazière, Christophe

    167Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 Analysis methods-dependence due to the localised character of the perturbation. Several techniques relying on the analysis. Keywords: neutron noise analysis; Boiling Water Reactor (BWR); stability; Decay Ratio (DR); space

  19. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    , use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

  20. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    Repository”,   Nuclear  Technology,   154,   April  2006.  Materials,”  Nuclear   Technology,  62,  335  (1983).  ERA  1974]   of   nuclear   technologies   into   the  

  1. International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)

    E-Print Network [OSTI]

    Kelley, C. T. "Tim"

    International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, La transport criticality problems. Traditional methods for computing this eigenvalue/eigenvector pair

  2. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016

    E-Print Network [OSTI]

    Harilal, S. S.

    . Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10 becomes well coupled to the melt motion. Under the plasma impact with high velocity of 5000 m s-1 , the W

  3. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10.1088/0029-5515/54/3/033008

    E-Print Network [OSTI]

    Harilal, S. S.

    . Miloshevsky and A. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10 is observed on the melt surface in the absence of plasma impact. The magnetic field of 5 T that is parallel

  4. Nuclear materials safeguards for the future

    SciTech Connect (OSTI)

    Tape, J.W.

    1995-12-31T23:59:59.000Z

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  5. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  6. A Technical, Financial, and Policy Analysis of the RAMSES RFID Inventory Management System for NASA's International Space Station: Prospects for SBIR/STTR Technology Infusion

    E-Print Network [OSTI]

    's International Space Station: Prospects for SBIR/STTR Technology Infusion by Abraham T. Grindle Honors B for SBIR/STTR Technology Infusion by Abraham T. Grindle Honors B.S. Aerospace Engineering Saint Louis that might be unique to SBIR/STTR technologies that are successfully infused into the mainstream NASA

  7. Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.

    E-Print Network [OSTI]

    Aamodt, Agnar

    Advances in Drilling Technology - E-proceedings of the First International Conference on Drilling of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling PÃ¥l The drilling process is getting increasingly more complex as oil fields mature and technology evolves

  8. TechnologyReview.com |Print Forums

    E-Print Network [OSTI]

    TechnologyReview.com |Print Forums International Fusion Research By Ian H. Hutchinson July 8, 2005 The announcement in the last week that the site for the International Thermonuclear Experimental Reactor (ITER) is finally resolved is a source of relief and anticipation to nuclear fusion researchers worldwide. It opens

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01T23:59:59.000Z

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  10. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  11. INTERNATIONAL AGREEMENTS

    Office of Environmental Management (EM)

    generators, reactor pressure vessel and internals, cables, piping, pumps, valves) - optimization of nuclear power plant generation capacity (digital I&C upgrades, advanced...

  12. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting

    SciTech Connect (OSTI)

    Abriola, D.; Tuli, J.

    2009-03-23T23:59:59.000Z

    The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of the IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).

  13. Submitted to the 6th International Symposium on Fusion Nuclear Technology

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Flow First-Wall) design, which is a part of the APEX study, liquid metal, such as Lithium (Li) or Tin Wall (FW) from sputtering erosion, and elimination of peak thermal stresses in solid FW components [2

  14. International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07277

    E-Print Network [OSTI]

    Danon, Yaron

    polyimide film located in the center of the cathode so that the fragments are emitted into each side deposit their total energy in the gas. The grid signal is a function of the angle of emission, which is the maximum time needed to collect the entire energy deposited in the gas. The cathode signal

  15. International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07283

    E-Print Network [OSTI]

    Danon, Yaron

    in two depleted uranium samples. These were used to fit the time-dependent background in the data thick (>2.5 mm) molybdenum and uranium samples capable of quantifying background, resolution function

  16. Nuclear World Order and Nonproliferation

    SciTech Connect (OSTI)

    Joeck, N

    2007-02-05T23:59:59.000Z

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  17. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Broader source: Energy.gov [DOE]

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  18. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01T23:59:59.000Z

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  19. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  20. February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

  1. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-10-01T23:59:59.000Z

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

  2. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    SciTech Connect (OSTI)

    none,

    1983-02-01T23:59:59.000Z

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  3. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume III

    SciTech Connect (OSTI)

    Abdou, M.

    1984-10-01T23:59:59.000Z

    This chapter deals with the analysis and engineering scaling of solid breeded blankets. The limits under which full component behavior can be achieved under changed test conditions are explored. The characterization of these test requirements for integrated testing contributes to the overall test matrix and test plan for the understanding and development of fusion nuclear technology. The second chapter covers the analysis and engineering scaling of liquid metal blankets. The testing goals for a complete blanket program are described. (MOW)

  4. Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.

    SciTech Connect (OSTI)

    Walter, Andrew

    2009-06-01T23:59:59.000Z

    National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

  5. The International Safeguards Technology Base: How is the Patient Doing? An Exploration of Effective Metrics

    SciTech Connect (OSTI)

    Schanfein, Mark J; Gouveia, Fernando S

    2010-07-01T23:59:59.000Z

    The term “Technology Base” is commonly used but what does it mean? Is there a common understanding of the components that comprise a technology base? Does a formal process exist to assess the health of a given technology base? These are important questions the relevance of which is even more pressing given the USDOE/NNSA initiatives to strengthen the safeguards technology base through investments in research & development and human capital development. Accordingly, the authors will establish a high-level framework to define and understand what comprises a technology base. Potential goal-driven metrics to assess the health of a technology base will also be explored, such as linear demographics and resource availability, in the hope that they can be used to better understand and improve the health of the U.S. safeguards technology base. Finally, through the identification of such metrics, the authors will offer suggestions and highlight choices for addressing potential shortfalls.

  6. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect (OSTI)

    Warren, N. Jill [Editor

    1999-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect (OSTI)

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  8. Nuclear Deterrence in the Age of Nonproliferation

    SciTech Connect (OSTI)

    Richardson, J

    2009-01-21T23:59:59.000Z

    The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

  9. American Nuclear Society 2013 Student Conference Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)

    E-Print Network [OSTI]

    Danon, Yaron

    American Nuclear Society 2013 Student Conference ­ Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013) A DETECTOR. Troy, NY 12180 mcderb@rpi.edu 1. INTRODUCTION Reactor design and criticality safety calculations

  10. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Karin. "Nuclear Energy and Sustainability: UnderstandingKarin. "Nuclear Energy and Sustainability: Understandingfission sustainability with hybrid nuclear cycles", Energy

  11. Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  12. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    Thermal Energy Utilizing Thermal Energy Storage TechnologyPower Generation with Thermal Energy Storage  Sustainable Cooling with Thermal Energy Storage Demonstration projects/

  13. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    HP HP HP Current Annexes Transportation of Thermal Energy Utilizing Thermal Energy Storage Technology Optimised Power Generation with Thermal Energy Storage  Sustainable 

  15. Overview of the international R&D recycling activities of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-12-01T23:59:59.000Z

    Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

  16. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol"OECD/IEA Report OECD/Nuclear Energy Agency. "Nuclear Energy

  17. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    2005. Cowan Robin. "Nuclear Power Reactors: A Study inThe Last Chance for Nuclear Power?" Energy Studies Reviewa National Infrastructure for Nuclear Power", IAEA Nuclear

  18. Business model transformation for the international division of a fortune 100 high technology company

    E-Print Network [OSTI]

    Mokhtari Dizaji, Reza, 1968-

    2008-01-01T23:59:59.000Z

    Raytheon Canada in Waterloo, Ontario offers a very interesting but challenging research case. As one of the international divisions of Raytheon Corporation, the company has a business model similar to its parent company. ...

  19. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J. [United States Department of State, Bureau of Arms Control, Verification and Compliance, Office of Verification and Transparency Technologies, Washington, DC (United States); Jones, Anthony M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Denlinger, Laura Schmidt [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-05-04T23:59:59.000Z

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  20. Outlook for renewable energy technologies: Assessment of international programs and policies

    SciTech Connect (OSTI)

    Branstetter, L.J.; Vidal, R.C.; Bruch, V.L.; Zurn, R.

    1995-02-01T23:59:59.000Z

    The report presents an evaluation of worldwide research efforts in three specific renewable energy technologies, with a view towards future United States (US) energy security, environmental factors, and industrial competitiveness. The overall energy technology priorities of foreign governments and industry leaders, as well as the motivating factors for these priorities, are identified and evaluated from both technological and policy perspectives. The specific technologies of interest are wind, solar thermal, and solar photovoltaics (PV). These program areas, as well as the overall energy policies of Denmark, France, Germany, Italy, the United Kingdom (UK), Japan, Russia, and the European Community as a whole are described. The present and likely future picture for worldwide technological leadership in these technologies-is portrayed. The report is meant to help in forecasting challenges to US preeminence in the various technology areas, particularly over the next ten years, and to help guide US policy-makers as they try to identify specific actions which would help to retain and/or expand the US leadership position.

  1. International Subcommittee Report

    Energy Savers [EERE]

    and overall U.S. international nuclear commercial leadership as part of the "Team USA" approach NEAC Meeting December 10, 2014 4 Recommendations by the NEAC International...

  2. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  3. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    for nuclear waste disposal and decommissioning whilethe cost of decommissioning and nuclear waste disposal on

  4. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    by U.S. Department of Energy Building Technologies Program,for solar and low energy buildings. Also relevant is HP IAcommercial zero-energy building (ZEB), -Improved operational

  5. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    in Buildings & Community Systems, Demand-Side Management,Demand-Side Management Implementing Agreement (www.ieadsm.org) ECBCS Energy Conservation in BuildingsBuilding Technologies Program, Department of Energy, Washington, DC. Demand Side Management

  6. Doubts Rise Over the Great Nuclear Promise Julio Godoy

    E-Print Network [OSTI]

    that a thermonuclear reactor poses three technical problems: production of the elements to undergo fusion (deuterium over a decision to base the International Thermonuclear Experimental Reactor (ITER) in France seems to introduce new nuclear technology. It will seek a nuclear fusion of two hydrogen isotopes (deuterium which

  7. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    SciTech Connect (OSTI)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-06-01T23:59:59.000Z

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

  8. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  9. Koizumi says Japan still hoping to host international nuclear fusion ... http://asia.news.yahoo.com/050614/ap/d8an68i81.html 1 of 2 6/14/05 7:48 AM

    E-Print Network [OSTI]

    Koizumi says Japan still hoping to host international nuclear fusion ... http-- New Yahoo! Asia News Search Yahoo! News advertisement Tuesday June 14, 12:59 PM Koizumi says Japan still hoping to host international nuclear fusion reactor Contentious negotiations between Japan

  10. Appears in 29th International Symposium on Computer Architecture Slack: Maximizing Performance Under Technological Constraints

    E-Print Network [OSTI]

    Bodik, Rastisla

    Appears in 29th International Symposium on Computer Architecture Slack: Maximizing Performance) by resorting to non- uniform designs that provide resources at multiple qual- ity levels (e.g., fast believe it is appropriate to examine them in their own right. To this end, we develop slack for use

  11. Proceedings of FUELCELL2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    of water within the fuel cell stack is crit- ical for optimal stack performance. A balance must be struckProceedings of FUELCELL2006 Fourth International Conference on Fuel Cell Science, Engineering-ORIENTED MODEL OF THE WATER DYNAMICS IN FUEL CELLS B. A. McCain Fuel Cell Control Laboratory Department

  12. International Energy: Subject Thesaurus. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

  13. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS) / American Nuclear Society (ANS)

    E-Print Network [OSTI]

    International Conference on Mathematics and Computational Methods Applied to Nuclear Science-dimensional transport simulations for ITER. Among these, we propose a new method which is computationally fast) methods are used within Monte Carlo (MC) transport codes to improve the computational efficiency

  14. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  15. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    Farge, Marie

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

  16. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

  17. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 (8pp) doi:10.1088/0029-5515/50/3/034007

    E-Print Network [OSTI]

    Morrison, Philip J.,

    2010-01-01T23:59:59.000Z

    -dimensional (2D), two-field version of this model has been intensively investigated in [4­6] and a 3D extensionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 for obtaining 0029-5515/10/034007+08$30.00 1 © 2010 IAEA, Vienna Printed in the UK #12;Nucl. Fusion 50 (2010

  18. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2003-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010

    E-Print Network [OSTI]

    École Normale Supérieure

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

  20. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004.iop.org/NF/50/014004 Abstract Fusion energy research began in the early 1950s as scientists worked to harness at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.-s, 52.57.-z, 28.52.-s, 89.30.Jj (Some

  1. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006

    E-Print Network [OSTI]

    .57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

  2. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001

    E-Print Network [OSTI]

    Heidbrink, William W.

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 (13pp) doi:10.1088/0029-5515/52/1/013001

    E-Print Network [OSTI]

    Budny, Robert

    2012-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15 MA and a flat are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures ( 0.6 keV) and v 400 rad s

  4. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608S621 doi:10.1088/0029-5515/47/10/S10

    E-Print Network [OSTI]

    Martín-Solís, José Ramón

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608­S, EURATOM Association, 01-497, Warsaw, Poland E-mail: pericoli@frascati.enea.it Received 30 January 2007 of turbulence suppression and energy transport. At the highest densities the ion thermal conductivity remains

  5. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005

    E-Print Network [OSTI]

    Vlad, Gregorio

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication 15 June) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

  6. An international initiative on long-term behavior of high-level nuclear waste glass

    SciTech Connect (OSTI)

    Gin, Stephane [CEA Marcoule DTCD SECM LCLT, Bagnols/Ceze (France); Abdelouas, Abdessalam [SUBATECH, Nantes (France); Criscenti, Louise J. [Sandia National Laboratories, Albuquerque, NM (United States); Ebert, W. L. [Argonne National Laboratory (ANL), Argonne, IL (United States); Ferrand, Karine [SCK·CEN, Mol (Belgium); Geisler, Thorsten [Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany); Harrison, Mike T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Inagaki, Yaohiro [Kyushu Univ. (Japan). Dept. Appl. Quantum Physics and Nuclear Engineering; Mitsui, Seiichiro [Japan Atomic Energy Agency, Ibaraki (Japan); Mueller, Karl T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental and Molecular Science Lab.; Marra, James C. [Savannah River National Laboratory, Aiken, SC (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States); Pierce, Eric M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schofield, James M. [AMEC, Harwell Oxford (United Kingdom); Steefel, Carl I. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-06-01T23:59:59.000Z

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  7. Nuclear reactor with internal thimble-type delayed neutron detection system

    SciTech Connect (OSTI)

    Gross, K.C.; Poloncsik, J.; Lambert, J.D.B.

    1990-07-03T23:59:59.000Z

    This paper describes a liquid-metal cooled nuclear reactor. It comprises: a housing having a core containing nuclear material, a shell and tube heat exchanger positioned within the housing. The shell and tube heat exchanger have the tubes thereof arranged in parallel, a primary coolant within the shell and tube heat exchanger, means for detecting positioned within a tube in the shell and tube heat exchanger for generating a signal in response to a reaction detected by the means for detecting, the means for detecting including signal detectors D-1, D-2, and D-3 selectively spaced from one another along the coolant flow within the shell and tube heat exchanger so that the total time lapsed after the occurrence of the reaction and a delayed-neutron is detected is: TOTAL = T{sub h} + T{sub t} + T{sub d}. Where: T{sub h} = isotopic holdup time for the delayed-neutron traveling from the reaction spot to the coolant T{sub t} = transit time for the delayed-neutron traveling from the coolant to the heat exchanger inlet T{sub d} = constant transit time for the delayed-neutrons to reach each of the delayed-neutron detectors D-1, D-2, and D-3, which is dependent upon the position of the delayed-neutron detector; and a mechanism remotely connected to the signal detectors to record the reaction detected thereby.

  8. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    heat transfer. Nuclear Technology 163 (2008) 344- [18] V.and Electricity . Nuclear Technology 144 [5] D. F. Williams,Vessel Technology . Nuclear Technology, 78 (1987) 245- [5

  9. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

    E-Print Network [OSTI]

    Vialle, Stéphane

    operator such as EDF, the time required to compute nuclear reactor core simulations is rather critical. Introduction As operator of nuclear power plants, EDF needs many nuclear reactor core simulationsInternational Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009

  10. It is a unique programme of its kind not only in this country but also in the whole of South East Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & Technology, the programme provides research and development exper

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & TechnologyDepartmentofAtomicEnergy. Contact Head Nuclear Engineering & Technology Programme Indian Institute of Technology Kanpur Kanpur - 208.iitk.ac.in/net/ Nuclear Engineering & Technology Programme IITK Indian Institute of Technology Kanpur 3D Tomographic

  11. 2005 International Truck & Bus Safety & Security Symposium 447 SAFETY AND SECURITY TECHNOLOGIES OF IMPORTANCE TO

    E-Print Network [OSTI]

    , Michigan; Ventura County Transportation Commission (VCTC) in Ventura County, California; and Tri solution. According to Dan Marchand of TriMet, Portland, Oregon, "technology makes it possible to deliver trips. TriMet, on the other hand, coordinates a very large, fixed route, multi-modal transit program

  12. Proceedings of International Thermal Treatment Technologies (IT3), San Antonio, TX, October 2013

    E-Print Network [OSTI]

    energy as electricity or steam for district heating. Ferrous or non-ferrous material recovery from built in China. The case study to be examined in this paper is the new 800 ton per day WTE unit, one of four units of total capacity of 2,300 tons per day serving the city of Cixi. The technology used

  13. To appear in Proceedings of the 7 International Conference on Greenhouse Gas Control Technologies

    E-Print Network [OSTI]

    Technologies (Vancouver, BC, Canada, 5-9 September 2004) TRANSPORTATION FUEL FROM COAL WITH LOW CO2 EMISSIONS) and electricity from coal. Four of the designs include capture of CO2 for long-term underground storage. We also% of global CO2 emissions from fossil fuels. One option is making H2 from coal with CCS, which is expected

  14. Proceedings of FUELCELL2006 The 4th International Conference on FUEL CELL SCIENCE, ENGINEERING and TECHNOLOGY

    E-Print Network [OSTI]

    Papalambros, Panos

    and TECHNOLOGY June 19-21, 2006, Irvine, CA, USA FUELCELL2006-97161 OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrat- ing a fuel cell vehicle simulator with a physics-based fuel cell model. The integration

  15. Assessment of industry views on international business prospects for solar thermal technology

    SciTech Connect (OSTI)

    Easterling, J.C.

    1984-09-01T23:59:59.000Z

    This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

  16. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    government in nuclear energy regulation in Rossiiskaiaof 63260 MW. 30 Nuclear energy regulation in France is not astate control in nuclear energy regulation at the expense of

  17. Results from an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes near Geological Nuclear Waste Repositories

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01T23:59:59.000Z

    safety of a hypothetical nuclear waste repository – BMT1 ofAssociated with Nuclear Waste Repositories, Academic Press,safety of a hypothetical nuclear waste repository – BMT1 of

  18. Office of Science and Technology&International Year EndReport - 2005

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2005-10-27T23:59:59.000Z

    Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repository total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).

  19. Annual report of the international nuclear research initiative OSMOSE project (FY05).

    SciTech Connect (OSTI)

    Klann, R. T.; Hudelot, J. P.; Perret, G.; Drin, N.; Nuclear Engineering Division; Commissariat a l'Energie Atomique

    2007-10-03T23:59:59.000Z

    The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculational models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program -- including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

  20. Annual report of the international nuclear energy research initiative OSMOSE project (FY06).

    SciTech Connect (OSTI)

    Klann, R. T.; Hudelot, J. P.; Drin, N.; Zhong, Z.; Nuclear Engineering Division; Commissariat a l Energie Atomique

    2007-08-29T23:59:59.000Z

    The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculation models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program--including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

  1. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    SciTech Connect (OSTI)

    Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

  2. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Nuclear Power", IAEA Nuclear Energy Series, No. NG-G-3.1.Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol" OECD/IEA Report OECD/

  3. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL PROGRAM ANNUAL REPORT FOR 2007

    SciTech Connect (OSTI)

    Marra, J

    2008-08-26T23:59:59.000Z

    The DOE-EM Office of Engineering and Technology is responsible for implementing EM's international cooperative program. The Office of Engineering and Technology's international efforts are aimed at supporting EM's mission of risk reduction and accelerated cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To do this, EM pursues collaborations with government organizations, educational institutions, and private industry to identify and develop technologies that can address the site cleanup needs of DOE. The Office of Engineering and Technology has developed a Technology Roadmap and a Multi-year Program Plan to identify technology needs and identify areas for focused research and development to support DOE-EM's environmental cleanup and waste management objectives. The international cooperative program is an important element of the technology development roadmap, leveraging of world-wide expertise in the advancement and deployment of remediation and treatment technologies. Introductory briefings aimed at furthering familiarity with the DOE-EM mission, and the vital role that technology development plays within it, were presented at two international meetings. The Office of Engineering and Technology currently works with the Khlopin Radium Institute (KRI) and SIA Radon Institute in Russia, the International Radioecology Laboratory (IRL) in Ukraine and the Nuclear Engineering and Technology Institute (NETEC) in South Korea through cooperative bilateral arrangements to support EM's accelerated cleanup and closure mission.

  4. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect (OSTI)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01T23:59:59.000Z

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  5. Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

    1999-10-01T23:59:59.000Z

    The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

  6. Nuclear Fuel Cycle Reasoner: PNNL FY12 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

    2013-05-03T23:59:59.000Z

    Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

  7. Nuclear reactor with internal thimble-type delayed neutron detection system

    SciTech Connect (OSTI)

    Gross, Kenny C. (Lemont, IL); Poloncsik, John (Downers Grove, IL); Lambert, John D. B. (Wheaton, IL)

    1990-01-01T23:59:59.000Z

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  8. Export Controls and International Safeguards: Strengthening Nonproliferation through Interdisciplinary Integration

    SciTech Connect (OSTI)

    Peterson, Danielle J.; Goorevich, Richard; Hooper, Rich; Scheinman, Lawrence; Tape, James W.

    2008-11-03T23:59:59.000Z

    International safeguards and export controls are central to ensuring international confidence in the peaceful uses of nuclear materials and technologies and to achieving adequate oversight on the transfer and use of nuclear materials, technology, and equipment required for the development of proliferation-sensitive parts of the nuclear fuel cycle. Although the independent strengths of international safeguards and export controls rely largely on universal adherence, there may be opportunities to exploit the shared strengths of these systems. This article provides background information on the separate evolution of export controls and international safeguards, considers how these two elements of the nonproliferation regime interact, and identifies some possible avenues that could, over time, lead to wholly integrated activities.

  9. Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors

    SciTech Connect (OSTI)

    Love, E.F.; Pauley, K.A.; Reid, B.D.

    1995-09-01T23:59:59.000Z

    This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy`s Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste.

  10. Journal of NUCLEAR SCIENCE and TECHNOLOGY, 21[1] pp.1~9 (January 1984). 1 Present Status of Study on Extraction

    E-Print Network [OSTI]

    Laughlin, Robert B.

    conducted. In the last October, the International Meet- ing on Recovery of Uranium from Seawater was held of Study on Extraction of Uranium from Sea Water Masayoshi KANNO Department of Nuclear Engineering, Faculty has not been changed. Because of the limited resources of terrestrial uranium, the techniques

  11. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

    2013-01-01T23:59:59.000Z

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  12. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  13. International Conference on Human Resource Development for Nuclear Power Programmes: Strategies for Education and Training, Networking and Knowledge Management

    SciTech Connect (OSTI)

    Pepper, S.

    2014-06-24T23:59:59.000Z

    The IAEA’s Junior Professional Officer (JPO) program provides the opportunity for early career professionals to obtain valuable work experience while helping the IAEA perform basic, yet essential work that would otherwise be performed by an experienced staff member. JPO assignments span the spectrum of IAEA tasks, including open source information collection and analysis, equipment evaluation, testing, and installation, statistical analysis of data, software and web development, entomology, performance strategy, project management, communications, and stable isotope analysis. JPOs are college graduates with degrees in science, engineering, or other disciplines relevant to the work of the IAEA, generally 32 years old or younger, and have approximately two years’ professional experience. They work with the IAEA in entry-level positions for one or two years under extrabudgetary funding provided by an IAEA Member State. Currently, ten Member States have JPO agreements with the IAEA. The United States initiated its JPO program in 2004 and has found that the program has advantages for both the IAEA and the United States. The IAEA is an excellent environment for introducing young scientists, engineers and other professionals to the practical application of their education, to international civil service, to the challenges facing the global nuclear industry, and to the industry’s practitioners. This paper will summarize the advantages of the JPO program to the IAEA and to the Member State.

  14. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01T23:59:59.000Z

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  15. Internalizing Null Extraterrestrial "Signals": An Astrobiological App for a Technological Society

    E-Print Network [OSTI]

    Chaisson, Eric J

    2014-01-01T23:59:59.000Z

    One of the beneficial outcomes of searching for life in the Universe is that it grants greater awareness of our own problems here on Earth. Lack of contact with alien beings to date might actually comprise a null "signal" pointing humankind toward a viable future. Astrobiology has surprising practical applications to human society; within the larger cosmological context of cosmic evolution, astrobiology clarifies the energetic essence of complex systems throughout the Universe, including technological intelligence that is intimately dependent on energy and likely will be for as long as it endures. The "message" contained within the "signal" with which today's society needs to cope is reasonably this: Only solar energy can power our civilization going forward without soiling the environment with increased heat yet robustly driving the economy with increased per capita energy usage. The null "signals" from extraterrestrials also offer a rational solution to the Fermi paradox as a principle of cosmic selection l...

  16. SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

  17. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01T23:59:59.000Z

    Library for Nuclear Science and Technology," Nuclear Datanuclear structure studies. More recently, NRF has been identified as a promising technology

  18. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01T23:59:59.000Z

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  19. Measurement of Spent Fuel Assemblies - Overview of the Status of the Technology for Initiating Discussion at NATIONAL RESEARCH CENTRE KURCHATOV INSTITUTE June 2013

    SciTech Connect (OSTI)

    SISKIND B.; N /A

    2013-06-03T23:59:59.000Z

    This presentation provides an overview of the status of the technology for the measurement of the fissile material content of spent nuclear reactor fuel. The emphasis is on how the needs of the U.S. Nuclear Regulatory Commission and the International Atomic Energy Agency are met by the available technology and what more needs to be done in this area.

  20. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect (OSTI)

    Elder, H.K.

    1986-05-01T23:59:59.000Z

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  1. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01T23:59:59.000Z

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  2. Nuclear Materials Science:Materials Science Technology:MST-16:LANL:Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclearResearchers inAlamos

  3. Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear EnergySouth CarolinaJobEducation atofReduce

  4. International Conference on Environmental Health and Technology As we rise to the challenge of making a healthier society, the ancillary impact of the

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Environmental Health and Technology 15 - 17th As we rise to the challenge of making a healthier society, the ancillary impact of the economic growth in the country as we make economic advancements. Keeping in view the above agenda the Centre for Environmental Science

  5. Advanced Technology in Welding, Materials Processing and Evaluation, Proceedings, 5th JWS International Symposium, Tokyo, 17-19 Apr.1990. Vol.l;

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Advanced Technology in Welding, Materials Processing and Evaluation, Proceedings, 5th JWS International Symposium, Tokyo, 17-19 Apr.1990. Vol.l; S.Machida, ed. Japan Welding Society, Tokyo, 11-16. 1990 The Physics of Welding Processes Thomas W. EAGAR" Abstract Welding is an extremely complex process; however

  6. The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES

    E-Print Network [OSTI]

    Maruyama, Shigeo

    The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN ABSTRACT Several heat transfer problems related to single

  7. 11th International Symposium on Unmanned Untethered Submersible Technology (UUST99) August 22-25, 1999, New England Center, Durham, New Hampshire, USA

    E-Print Network [OSTI]

    Whitcomb, Louis L.

    of Underwater Vehicles Louis L. Whitcomb, Dana R. Yoerger, and Hanumant Singh Abstract This paper first reviews for reliable three- dimensional position sensing for underwater vehicles. Ta- ble 1 summarizes the sensors most11th International Symposium on Unmanned Untethered Submersible Technology (UUST99) August 22

  8. International Symposium on Quality of Life Technology, Toronto, ON, Canada. June 6-7, 2011. Feasibility of a Mobility Option for Infants

    E-Print Network [OSTI]

    Stansfield, Sharon

    3 rd International Symposium on Quality of Life Technology, Toronto, ON, Canada. June 6-7, 2011. TheWeeBot: Feasibility of a Mobility Option for Infants Carole W. Dennis, Sc.D, OTR/L OccupationalBot, a mobile robot controlled by weight shift over a Wii balance board, over five training sessions. Infants

  9. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  10. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  11. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

    2014-05-09T23:59:59.000Z

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  12. INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01T23:59:59.000Z

    The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

  13. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    the merits and the risks of nuclear energy dependence aresecurity risks associated with nuclear energy are so immenseNuclear Energy and Coal in France and the Netherlands". Risk

  14. International Fuel Services and Commercial Engagement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation...

  15. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 11691181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 1169­1181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M" Mitsuru KAMBE Central Research Institute and accepted September 10, 2002) A metal fueled modular island core sodium cooled fast breeder reactor concept

  16. FPGA-based Particle Recognition in the HADES Abstract--Modern FPGA technologies are often employed in nuclear and particle physics experimental facilities to accelerate

    E-Print Network [OSTI]

    Jantsch, Axel

    are often employed in nuclear and particle physics experimental facilities to accelerate application the emission direction, the en- ergy, and the mass of the produced particles when the accelerated beam hits1 FPGA-based Particle Recognition in the HADES Experiment Abstract--Modern FPGA technologies

  17. The Fourth Generation of Nuclear Power

    SciTech Connect (OSTI)

    Lake, James Alan

    2000-11-01T23:59:59.000Z

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  18. Accelerator-driven transmutation technologies for resolution of long-term nuclear waste concerns

    SciTech Connect (OSTI)

    Bowman, C.D.

    1996-10-01T23:59:59.000Z

    The paper provides a rationale for resolution of the long-term waste disposition issue based on complete destruction of fissile material and all higher actinides. It begins with a brief history of geologic storage leading to the present impasse in the US. The proliferation aspects of commercial plutonium are presented in a new light as a further driver for complete destruction. The special problems in Russia and the US of the disposition of the highly enriched spent naval reactor fuel and spent research reactor fuel are also presented. The scale of the system required for complete destruction is also examined and it is shown that a practical system for complete destruction of commercial and defense fissile material must be widely dispersed rather than concentrated at a single site. Central tenants of the US National Academy of Sciences recommendations on waste disposition are examined critically and several technologies considered for waste destruction are described briefly and compared Recommendations for waste disposition based on Accelerator-Driven Transmutation Technology suitable for both the US and Russia are presented.

  19. Prioritizing Network Interdiction of Nuclear Dennis P. Michalopoulos, David P. Morton, and J. Wesley Barnes

    E-Print Network [OSTI]

    Morton, David

    to obtain a nuclear weapon. An International Atomic Energy Agency (IAEA) database on illicit trafficking, Energy, and Logistics. H.I. Gassmann, S.W. Wallace, and W.T. Ziemba (eds.), World Scientific. #12, and Al Qaeda has repeatedly attempted to obtain nuclear material, technology, and expertise. Osama bin

  20. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.