Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION  

E-Print Network [OSTI]

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED;International Symposium on Fusion Nuclear Technology (ISFNT-5) heat from in-vessel systems with high neutron Symposium on Fusion Nuclear Technology (ISFNT-5) A design must adequately transfer heat from plasma

California at Los Angeles, University of

2

5th International Symposium on Fusion Nuclear Technology Rome, September 19 -24 1999  

E-Print Network [OSTI]

5th International Symposium on Fusion Nuclear Technology Rome, September 19 - 24 1999 In as the working gas (and later with a mixture of 10 % oxygen in helium), purging the vacuum vessel with dry

3

Los Alamos Lab: International and Applied Technology Division, IAT: Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclear SecurityOffice >Counterterrorism

4

Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)  

SciTech Connect (OSTI)

A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

Not Available

1988-10-01T23:59:59.000Z

5

(International symposium on fusion nuclear technology, Tokyo, Japan, April 10, 1988): Foreign trip report  

SciTech Connect (OSTI)

A presentation entitled ''Experimental and Analytical Investigations of Mass Transfer Processes of /sup 12/Cr-1MoVW Steel in Thermally-Convected Lithium Systems'' was made by G.E. Bell (coauthors M.A. Abdou (UCLA) and P.F. Tortorelli (ORNL)) at a poster session of the International Symposium on Fusion Nuclear Technology (ISFNT). The results presented were taken from work performed while Mr. Bell was an Oak Ridge Associated Universities Fellow at ORNL from October 1986 to March 1988. A consistent theme throughout the conference was the need for collaboration within and among national efforts to achieve the goal of an engineering test reactor.

Bell, G.E.

1988-05-24T23:59:59.000Z

6

Nuclear Reactors and Technology  

SciTech Connect (OSTI)

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Cason, D.L.; Hicks, S.C. [eds.

1992-01-01T23:59:59.000Z

7

Nuclear Reactors and Technology; (USA)  

SciTech Connect (OSTI)

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

8

International Nuclear Security  

SciTech Connect (OSTI)

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

9

Monitoring international nuclear activity  

SciTech Connect (OSTI)

The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

Firestone, R.B.

2006-05-19T23:59:59.000Z

10

The nuclear materials control technology briefing book  

SciTech Connect (OSTI)

As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

Hartwell, J.K.; Fernandez, S.J.

1992-03-01T23:59:59.000Z

11

International Masters Program in Nuclear Security Human Capacity Building in Nuclear Security  

E-Print Network [OSTI]

1 TUDelft International Masters Program in Nuclear Security Human Capacity Building in Nuclear Security Dirk Jan van den Berg President Del2 University of Technology participants, Nuclear security requires highly skilled experts. Professionals, who are familiar

Langendoen, Koen

12

International Nuclear Energy Policy and Cooperation | Department...  

Office of Environmental Management (EM)

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation Recent Events 6th US-India Civil Nuclear Energy Working Group Meeting 6th...

13

Nuclear Technology Programs  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

14

International Framework for Nuclear Energy Cooperation (IFNEC...  

Broader source: Energy.gov (indexed) [DOE]

International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

15

Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report  

SciTech Connect (OSTI)

The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

NONE

1993-12-31T23:59:59.000Z

16

Current Abstracts Nuclear Reactors and Technology  

SciTech Connect (OSTI)

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Bales, J.D.; Hicks, S.C. [eds.

1993-01-01T23:59:59.000Z

17

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

18

Nuclear Proliferation Technology Trends Analysis  

SciTech Connect (OSTI)

A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

2005-10-04T23:59:59.000Z

19

Generation IV International Forum Updates Technology Roadmap...  

Office of Environmental Management (EM)

nuclear energy Generation IV International Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors China and Russia to Join the Generation IV International Forum...

20

Nuclear Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclearSafeguards and Nuclear

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

International Nuclear Safeguards Inspection Support Tool  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is committed to developing technologies to meet escalating requirements for the International Atomic Energy Agency (IAEA) Non-Proliferation Treaty (NPT) monitoring and associated inspections. This commitment involves the customization and transfer of existing remote monitoring/information management technologies for use by the IAEA. This paper describes an information management system called INSIST International Nuclear Safeguards Inspection Support Tool, which was developed by the Pacific Northwest Laboratory (PNL) to support the IAEA Action Team in its role of monitoring and verifying compliance under United Nations Special Commission (UNSC) Resolutions 687, 707, and 715. Initial emphasis was placed on developing and deploying functionality and databases customized to support the Action Team. Throughout the design and customization of INSIST, emphasis was placed on information storage and retrieval capabilities for data gathered by the Action Team. In addition, PNL provided the Action Team with maps and satellite images and other relevant Iraqi databases to further facilitate the following activities: monitoring nuclear activities, facility operations, and nuclear material inventories assisting in inspection planning and training providing post inspection analysis providing onsite inspection support reporting on inspection findings.

Steinmaus, K.L.; Wukelic, G.E.; Beal, O.M.

1994-03-01T23:59:59.000Z

22

Nuclear reactor internals alignment configuration  

DOE Patents [OSTI]

An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

2009-11-10T23:59:59.000Z

23

Illinois Institute of Technology International Center  

E-Print Network [OSTI]

: Transferring from the Illinois Institute of Technology to: Program Number of New School (ask InternationalIllinois Institute of Technology International Center 3201 S. State St. MTCC Room 203 Chicago, IL). Meet with an International Advisor at the International Center to discuss your intent to transfer

Heller, Barbara

24

Nuclear power high technology colloquium: proceedings  

SciTech Connect (OSTI)

Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

Not Available

1984-12-10T23:59:59.000Z

25

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

26

Security Science & Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Security Science & Technology Border Security Comprehensive Vulnerability and Threat Analysis Consequence Management, Safeguards, and Non-Proliferation Tools Export...

27

International technology transfer, firm productivity and employment.  

E-Print Network [OSTI]

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It… (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

28

Nuclear export and technology transfer controls  

SciTech Connect (OSTI)

A review of the U.S. implementation of nuclear export and technology transfer controls is undertaken to assess whether the U.S. controls is undertaken to assess whether the U.S. controls meet the full scope of the international commitment toward non-proliferation controls. The international non-proliferation controls have been incorporated into CoCom, the Coordinating Committee of the multinational organization established to protect the mutual interests of the participating countries in the area of strategic export controls. However, this CoCom list is classified and each participating country implements these controls pursuant to its own laws. A comparison to the non-proliferation controls promulgated by the U.K. is used to verify that the U.S. controls are at least as comprehensive as the British controls.

Hower, J.J.; Primeau, S.J. (Eagle Research Group, Inc., Arlington, VA (US))

1988-01-01T23:59:59.000Z

29

Massachusetts Institute of Technology Department of Nuclear Engineering  

E-Print Network [OSTI]

Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

30

PIA - 10th International Nuclear Graphite Specialists Meeting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th...

31

Savannah River Remediation Intern Sees Nuclear Industry as Job...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis...

32

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

Abdou, Mohamed

33

INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463  

SciTech Connect (OSTI)

International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

Banford, Anthony; Edwards, Jeremy [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom)] [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom); Demmer, Rick; Rankin, Richard [Idaho National Laboratory, Idaho Falls, ID 83401(United States)] [Idaho National Laboratory, Idaho Falls, ID 83401(United States); Hastings, Jeremy [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

2013-07-01T23:59:59.000Z

34

Nuclear Systems Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclearSafeguardsResearch AreasNuclear

35

International perceptions of US nuclear policy.  

SciTech Connect (OSTI)

The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one set for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.

Stanley, Elizabeth A. (Georgetown Universtiy, Washington, DC)

2006-02-01T23:59:59.000Z

36

Nuclear technology for the year 2000  

SciTech Connect (OSTI)

Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

Not Available

1987-01-01T23:59:59.000Z

37

Physics of Accelerators and Related Technology for International...  

Broader source: Energy.gov (indexed) [DOE]

Physics of Accelerators and Related Technology for International Students (PARTI). Physics of Accelerators and Related Technology for International Students (PARTI). December 14,...

38

Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL  

E-Print Network [OSTI]

Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009) FUELASSEMBLY SELF SHIELDING Polytechnic Institute Department of Mechanical, Aerospace and Nuclear Engineering Romanc2@rpi.edu; Danony

Danon, Yaron

39

Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL  

E-Print Network [OSTI]

Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, automation 1 INTRODUCTION In nuclear power plants (NPPs), novel digitalized I&C systems enable complicated, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009) VERIFICATION OF SAFETY LOGIC DESIGNS

Heljanko, Keijo

40

International nuclear waste management fact book  

SciTech Connect (OSTI)

The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

Abrahms, C W; Patridge, M D; Widrig, J E

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I.W.; Patridge, M.D.

1991-05-01T23:59:59.000Z

42

Status and Value of International Standards for Nuclear Criticality Safety  

SciTech Connect (OSTI)

This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

Hopper, Calvin Mitchell [ORNL] [ORNL

2011-01-01T23:59:59.000Z

43

international | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareAi-rapter | National Nuclear'--|

44

International | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses to EngineeredA GENERAL2 International7 12 BONNEVILLE|

45

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect (OSTI)

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

46

International Commercial Vehicle Technology Symposium  

E-Print Network [OSTI]

Cluster (CVC), the Fraunhofer Innovations Cluster for Digital Commercial Vehicle Technology (DNT Fraunhofer Innovation Cluster DNT/FUMI, Fraunhofer ITWM Opening of exhibition and come together WEDNESDAY, 12 innovation projects between the industry and the scientific fraternity. A network like the CVA works like

Steidl, Gabriele

47

International Framework for Nuclear Energy Cooperation to Hold...  

Energy Savers [EERE]

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

48

Nuclear Energy: Policies and Technology for the 21st Century...  

Broader source: Energy.gov (indexed) [DOE]

Energy: Policies and Technology for the 21st Century Nuclear Energy: Policies and Technology for the 21st Century The Department of Energy (DOE) Nuclear Energy Advisory Committee...

49

United States-Republic of Korea (ROK) International Nuclear Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International...

50

DOE NHI: Progress in Nuclear Connection Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

Steven R. Sherman

2007-06-01T23:59:59.000Z

51

Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology  

SciTech Connect (OSTI)

Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

David Shropshire

2009-09-01T23:59:59.000Z

52

Synergy among international monitoring system technologies  

SciTech Connect (OSTI)

This paper describes the results of an International Monitoring System synergy study using Sandia National Laboratory`s IVSEM (Integrated Verification System Evaluation Model). The study compares individual subsystem performance (seismic, infrasound, radionuclide, and hydroacoustic) with integrated system performance. The integrated system exhibits synergy because different sensor technologies cover different locations; thus, the integrated system covers more locations than can any individual subsystem. Energy and system performance can be further enhanced by allowing mixed technology detection and location.

Edenburn, M.W.; Bunting, M.L.; Payne, A.C.; Preston, R.R.; Trost, L.C.

1996-08-01T23:59:59.000Z

53

Spent Nuclear Fuel Alternative Technology Decision Analysis  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

54

International Conference on INTERNET TECHNOLOGIES AND APPLICATIONS  

E-Print Network [OSTI]

), will be held in Wrexham, North East Wales, UK from Wednesday 7th to Friday 9th September 2005. The conferenceInternational Conference on INTERNET TECHNOLOGIES AND APPLICATIONS ITA 05 Wednesday 7th - Friday 9 computing and engineering. Accepted papers will be published in the conference proceedings. Suitable topics

Davies, John N.

55

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

56

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I W; Mitchell, S J

1990-01-01T23:59:59.000Z

57

Vehicle Technologies Office Merit Review 2014: Internal Combustion...  

Broader source: Energy.gov (indexed) [DOE]

4: Internal Combustion Engine Energy Retention (ICEER) Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER) Presentation given by...

58

Future AI and Robotics Technology for Nuclear Plants Decommissioning  

E-Print Network [OSTI]

Future AI and Robotics Technology for Nuclear Plants Decommissioning Huosheng Hu and Liam Cragg to aid in decommissioning nuclear plants that have been used to process or store nuclear materials. Scope potential applications to nuclear plant decommissioning, namely Nanotechnology, Telepresence

Hu, Huosheng

59

technology | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU Ctdball Amestechnology |

60

Reactor Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermalOxide Fuel CellsReaction of NO2, H2O and

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

M. Abdou April 2013 Fusion Nuclear Science and Technology  

E-Print Network [OSTI]

M. Abdou April 2013 Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Fusion Nuclear Science and Technology Challenges and Required R&D Presentation Outline Introduction to the Fusion Nuclear Environment and Fusion Nuclear Components FNST R&D Challenges Need for Fusion Nuclear

Abdou, Mohamed

62

Review of Current Nuclear Vacuum System Technologies  

SciTech Connect (OSTI)

Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

Carroll, M.; McCracken, J.; Shope, T.

2003-02-25T23:59:59.000Z

63

Global Nuclear Energy Partnership Technology Development Plan  

SciTech Connect (OSTI)

This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

David J. Hill

2007-07-01T23:59:59.000Z

64

Nuclear fission and nuclear safeguards: Common technologies and challenges  

SciTech Connect (OSTI)

Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably /sup 239/Pu and /sup 235/U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs.

Keepin, G.R.

1989-01-01T23:59:59.000Z

65

Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism  

SciTech Connect (OSTI)

As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

Richardson, J; Yuldashev, B; Labov, S; Knapp, R

2006-06-12T23:59:59.000Z

66

The Daya Bay Nuclear Plant Project in the Light of International Environmental Law  

E-Print Network [OSTI]

Ministry of Nuclear Industry; PACIFIC BASIN LAW JOURNAL [international law prohibits a state from building a nuclearNUCLEAR PLANT PROJECT IN THE LIGHT OF INTERNATIONAL ENVIRONMENTAL LAW

Mushkat, Roda

1990-01-01T23:59:59.000Z

67

Copyright 2008, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology  

E-Print Network [OSTI]

Copyright 2008, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology Conference held in Kuala Lumpur, Malaysia, 3­5 December not been reviewed by the International Petroleum Technology Conference and are subject to correction

Fossen, Haakon

68

Copyright 2007, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology  

E-Print Network [OSTI]

Copyright 2007, International Petroleum Technology Conference This paper was prepared for presentation at the International Petroleum Technology Conference held in Dubai, U.A.E., 4­6 December 2007 reviewed by the International Petroleum Technology Conference and are subject to correction by the author

Johansen, Tor Arne

69

Technology transfer significance of the International Safeguards Project Office  

SciTech Connect (OSTI)

The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

Marcuse, W.; Waligura, A.J.

1988-06-01T23:59:59.000Z

70

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

Organizations, accidents, and nuclear weapons. Princeton,the likelihood of a nuclear accident (Sagan 1993, 1995). “potential for a nuclear accident. Yet it seems implausible

Kroenig, Matthew

2006-01-01T23:59:59.000Z

71

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

nature of the nuclear recipient’s security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipient’s security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

72

JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research  

E-Print Network [OSTI]

JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

73

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network [OSTI]

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

74

International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 NURETH15-xxx Pisa, Italy, May 12-15, 2013  

E-Print Network [OSTI]

The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 NURETH15-xxx technologies in the context of generation IV nuclear power reactors. In order to improve electric efficiency during last years as a possible energy conversion cycle for Sodium nuclear Fast Reactors (SFRs) [1

Paris-Sud XI, Université de

75

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY-27, 2004 CERN Geneva, Switzerland #12;NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY Experience Installing New Equipment · Conclusions #12;NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

McDonald, Kirk

76

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Upton, NY #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT;3 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Properties

McDonald, Kirk

77

Technologies for detection of nuclear materials  

SciTech Connect (OSTI)

Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

DeVolpi, A.

1996-03-30T23:59:59.000Z

78

Freeze Technology for Nuclear Applications - 13590  

SciTech Connect (OSTI)

Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden)] [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01T23:59:59.000Z

79

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network [OSTI]

204. Bhatia, Shyam. 1988. Nuclear rivals in the Middle East.of the merits of selective nuclear proliferation. Journal ofThe Case for a Ukranian nuclear deterrent. Foreign Affairs.

Kroenig, Matthew

2006-01-01T23:59:59.000Z

80

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications Department: Best Practices Supervisor(s): John Delooper Staff: AM 7 Requisition Number: 1400936 The Head of...

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Information and communication technologies in downtown revitalization : an international survey  

E-Print Network [OSTI]

The Technology & Downtown Revitalization International Study surveyed downtown management organizations in Canada, Europe, Japan, New Zealand, South Africa, and the United States regarding attitudes, challenges and utilization ...

McCabe, Kathleen (Kathleen Ann)

2005-01-01T23:59:59.000Z

82

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

Crawford, T. Daniel

83

Nuclear Separations Technologies Workshop Report 2011  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor Technology Subcommittee of NEACSummary Nucleari NUCLEAR

84

Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central Mountain to climb Since we have never done any experiments on FNST in a real fusion nuclear environment, we

85

Proceedings HTR2006: International Topical Meeting on High Temperature Reactor Technology  

E-Print Network [OSTI]

Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology be effectively modeled using computational fluid dynamics. The NACOK test facility at the Julich Research Center TESTS USING COMPUTATIONAL FLUID DYNAMICS Marie-Anne Brudieu Department of Nuclear Engineering

86

International Exercises | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

87

International Engagement | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

88

Space nuclear power, propulsion, and related technologies.  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

Berman, Marshall

1992-01-01T23:59:59.000Z

89

16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology  

E-Print Network [OSTI]

of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel CycleISTCISTC 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01

90

June 2014 Most Viewed Documents for Fission And Nuclear Technologies...  

Office of Scientific and Technical Information (OSTI)

June 2014 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 Estimation of gas leak rates...

91

Graz University of Technology International Sustainability Partnerships  

E-Print Network [OSTI]

. This includes not only technological development (with companies pioneering innovative solutions for biofuel technology providers for renewable energy under the umbrella of ECO World Styria which encompasses 150

92

International nuclear fuel cycle fact book. Revision 6  

SciTech Connect (OSTI)

The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1986-01-01T23:59:59.000Z

93

Information Technology Intern: Description and Responsibilities  

E-Print Network [OSTI]

& network. The intern will also administrate and keep close contact with Obelis IT suppliers, oversee all. Qualifications: A successful IT intern will be hard-working and self-motivated. The ability to manage projects

Haviland, David

94

CERNA WORKING PAPER SERIES Innovation and international technology transfer  

E-Print Network [OSTI]

1 CERNA WORKING PAPER SERIES Innovation and international technology transfer: The case technology transfer: The case of the Chinese photovoltaic industry Arnaud de la Tour, Matthieu Glachant, Yann emphasis on the role of technology transfers and innovation. Our analysis combines a review

Paris-Sud XI, Université de

95

Elementary! A Nuclear Forensics Workshop Teaches Vital Skills to International Practitioners  

SciTech Connect (OSTI)

The article describes the Nuclear Forensics Workshop sponsored by the International Atomic Energy Agency (IAEA), the Office of Nonproliferation and International Security (NIS) and hosted by Pacific Northwest National Laboratory October 28-November 8, 2013 in Richland,Washington. Twenty-six participants from 10 countries attended the workshop. Experts from from Los Alamos, Lawrence Livermore, and Pacific Northwest national laboratories collaborated with an internationally recognized cadre of experts from the U.S. Department of Homeland Security and other U.S. agencies, IAEA, the Australian Nuclear Science and Technology Organisation, the United Kingdom Atomic Weapons Establishment (AWE), and the European Union Joint Research Center Institute for Transuranium Elements, to train practitioners in basic methodologies of nuclear forensic examinations.

Brim, Cornelia P.; Minnema, Lindsay T.

2014-04-01T23:59:59.000Z

96

International and national security applications of cryogenic detectors - mostly nuclear safeguards  

SciTech Connect (OSTI)

As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

Rabin, Michael W [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

97

International Commercial Arbitration and Technology Transfer Disputes.  

E-Print Network [OSTI]

??The thesis explores the concept of International Arbitration, an alternative to litigation. It argues the benefits and the inherent limitations parties are likely to face… (more)

Boban, Jaan

2012-01-01T23:59:59.000Z

98

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

McDonald, Kirk

99

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect (OSTI)

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

100

Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS  

E-Print Network [OSTI]

Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network [OSTI]

Office of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long method of generating energy from nuclear fission in both the United States and the world. A key mission

102

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World generated by nuclear power. What will the U.S. energy portfolio look like, and how will the energy demand is focused on longer- term operation of nuclear power plants, including measurements to detect

103

ANS 2006 WINTER MEETING & Nuclear Technology Expo  

E-Print Network [OSTI]

; and Embedded Topical Meeting: NPIC&HMIT 2006 Alaron Corporation Ameren UE/Callaway Nuclear Plant Atomic Energy) EXCEL Services Corporation Florida Power & Light GE Nuclear Energy Idaho National Laboratory INVENSYS/Lockheed Martin Sargent & Lundy TVA U.S. Department of Energy, Nuclear Engineering U.S. Nuclear Regulatory

Krings, Axel W.

104

Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical Approach  

E-Print Network [OSTI]

International technology transfer..........................................................51 6 Conclusion ......................................................................................................62 Research paper 2: What Drives the International Transfer of Climate Change Mitigation Technologies1 Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical

Paris-Sud XI, Université de

105

Announcement The Scientific Advisory Committee of the International Science & Technology Center (ISTC SAC)  

E-Print Network [OSTI]

Knowledge and technology transfer from High Energy Physics (vi) International collaboration - Road map2nd Announcement The Scientific Advisory Committee of the International Science & Technology Center (ISTC SAC) in cooperation with The Secretariat of the International Science & Technology Center (ISTC

106

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

107

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

108

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

109

Proceedings of the international workshop on spallation materials technology  

SciTech Connect (OSTI)

This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

Mansur, L.K.; Ullmaier, H. [comps.] [comps.

1996-10-01T23:59:59.000Z

110

International Partnership for Geothermal Technology Launches...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

111

International nuclear fuel cycle fact book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.

1988-01-01T23:59:59.000Z

112

International nuclear fuel cycle fact book: Revision 9  

SciTech Connect (OSTI)

The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

Leigh, I.W.

1989-01-01T23:59:59.000Z

113

Working Party on International Nuclear Data Evaluation Cooperation (WPEC)  

SciTech Connect (OSTI)

The OECD Nuclear Energy Agency (NEA) is organizing the cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associated processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission-product capture reactions, the U-235 capture cross-section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of Pu-239 in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two new subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project of a Collaborative International Evaluated Library (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term, task-oriented subgroups, the WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).

Giuseppe Palmiotti

2014-06-01T23:59:59.000Z

114

Production Technology | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

115

5th International Seminar in Sustainable Technology Development  

E-Print Network [OSTI]

5th International Seminar in Sustainable Technology Development UPC, Vilanova i la Geltrú, 04 Master in Sustainable Development, and aims to connect experts, future researchers and policy · To increase the understanding of a sustainable development in the long term and the role of technology therein

Politècnica de Catalunya, Universitat

116

nuclear controls  

National Nuclear Security Administration (NNSA)

the Office of Nonproliferation and International Security (NIS) is to prevent the proliferation of nuclear weapons, materials, technology, and expertise. NIS applies technical...

117

Configuration and technology implications of potential nuclear hydrogen system applications.  

SciTech Connect (OSTI)

Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

2005-11-05T23:59:59.000Z

118

Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap  

SciTech Connect (OSTI)

This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

Casey, Leslie A.

2014-01-13T23:59:59.000Z

119

International Nuclear Services Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International AssociationServices Ltd Jump to: navigation,

120

Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs  

SciTech Connect (OSTI)

The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

2005-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology To Realize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Technology To Realize Fusion Energy in the International Context Kathryn A. McCarthy Deputy Associate Laboratory Director Nuclear Science & Technology Idaho National Laboratory...

122

References R-3 ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society.  

E-Print Network [OSTI]

References #12;References R-3 REFERENCES ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society. ANSI 1969. N13.1, Sampling Airborne Radioactive Materials in Nuclear for Application to Radioactive Dosimetry and Radiological Assessments, DOE/TIC-11026, U.S. Department of Energy

Pennycook, Steve

123

References R-3 ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society.  

E-Print Network [OSTI]

References #12;References R-3 REFERENCES ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society. ANSI 1969. N13.1, Sampling Airborne Radioactive Materials in Nuclear: A Handbook of Decay Data for Application to Radioactive Dosimetry and Radiological Assessments, DOE/TIC-11026

Pennycook, Steve

124

July 2013 Most Viewed Documents for Fission And Nuclear Technologies...  

Office of Scientific and Technical Information (OSTI)

July 2013 Most Viewed Documents for Fission And Nuclear Technologies Science Subject Feed Estimation of gas leak rates through very small orifices and channels. From sealed PuO...

125

International Partnership for Geothermal Technology Launches Website |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE Vehicle TechnologiesDepartmentDepartment

126

E-Print Network 3.0 - advanced nuclear technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Objectives: Develop and demonstrate technologies for detecting the stages of a foreign nuclear weapons... and Testing Nonproliferation Enabling Technologies ... Source:...

127

E-Print Network 3.0 - advancing nuclear technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Objectives: Develop and demonstrate technologies for detecting the stages of a foreign nuclear weapons... and Testing Nonproliferation Enabling Technologies ... Source:...

128

International Fuel Technology Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data, RegionalInternationalFuel

129

Nuclear Physics Technology Saves Lives | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear PairsNuclear Physics

130

Advanced Technology Development and Mitigation | National Nuclear...  

National Nuclear Security Administration (NNSA)

Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

131

ETSF5 -INTERNATIONAL CONFERENCE ENERGY TECHNOLOGIES FOR A SUSTAINABLE FUTURE  

E-Print Network [OSTI]

ETSF5 - INTERNATIONAL CONFERENCE ENERGY TECHNOLOGIES FOR A SUSTAINABLE FUTURE Energy and Large Research Facilities: The role of large research facilities in the development of sustainable energy systems, Roskilde, Denmark. Günther G Scherer and Selmiye A Gursel, General Energy Research, Paul Scherrer Institute

132

Taiwan International Graduate Program Sustainable Chemical Science and Technology  

E-Print Network [OSTI]

to sustainable energy 2. construction of supramolecular materials for recognition, self- assemblyTaiwan International Graduate Program Sustainable Chemical Science and Technology Taiwan of the Program to offer Ph.D. education programs only in inter-disciplinary areas in the physical sciences

133

Evaluating Russian space nuclear reactor technology for United States applications  

SciTech Connect (OSTI)

Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

Polansky, G.F. [Phillips Lab., Albuquerque, NM (United States); Schmidt, G.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States); Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Lab., Laurel, MD (United States)

1994-08-01T23:59:59.000Z

134

International Nuclear Fuel Cycle Fact Book. Revision 12  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

135

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect (OSTI)

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

136

Leasing of Nuclear Power Plants With Using Floating Technologies  

SciTech Connect (OSTI)

The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

2002-07-01T23:59:59.000Z

137

International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex  

SciTech Connect (OSTI)

This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States). International Programs Dept.; Jimenez, R.D.; Esparza-Baca, C. [ed.] [Applied Sciences Lab., Inc., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

138

Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology  

E-Print Network [OSTI]

Integrate applicable work conducted in programs in the Offices of Nuclear Energy (Gen IV, NERI, I · FY 2010: Complete the design of a commercial-scale nuclear hydrogen production system · FY 2015 to budget uncertainties (risk/benefit) · Guide the development of technology to support decisions Develop

139

A methodology for evaluating ``new`` technologies in nuclear power plants  

SciTech Connect (OSTI)

As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

Korsah, K.; Clark, R.L.; Holcomb, D.E.

1994-06-01T23:59:59.000Z

140

Sandia National Laboratories: Nuclear Energy Safety Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More Green WasteThe

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Security Science & Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear PhysicsDoDepartment ofSecretsCommodityNREL

142

International Internships in Nuclear Safeguards and Security: Challenges and Successes  

SciTech Connect (OSTI)

All students in the Russian safeguards and security degree programs at the National Research Nuclear University MEPhI and Tomsk Polytechnic University, sponsored by the Material Protection, Control and Accounting (MPC&A) Education Project, take part in a domestic internship at a Russian enterprise or facility. In addition, a select few students are placed in an international internship. These internships provide students with a better view of how MPC&A and nonproliferation in general are addressed outside of Russia. The possibility of an international internship is a significant incentive for students to enroll in the safeguards and security degree programs. The U.S. members of the MPC&A Education Project team interview students who have been nominated by their professors. These students must have initiative and reasonable English skills. The project team and professors then select students to be tentatively placed in various international internships during the summer or fall of their final year of study. Final arrangements are then made with the host organizations. This paper describes the benefits of the joint United States/Russia cooperation for next-generation workforce development, some of the international internships that have been carried out, the benefits of these international internships, and lessons learned in implementing them.

Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Kryuchkov, Eduard F.; Geraskin, Nikolai I.; Silaev, Maxim E.; Sokova, Elena K.; Ford, David G.

2010-04-20T23:59:59.000Z

143

International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9) N9P0302 Kaohsiung, Taiwan, September 9-13, 2012  

E-Print Network [OSTI]

The 9th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9 Kudinov Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE proportional to terminal melt spread thickness. At certain thickness, the melt layer becomes non

Haviland, David

144

Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors  

E-Print Network [OSTI]

Advisory Committee and Generation IV International Forum.Nuclear Energy Agency The Generation IV International Forum.Technology Roadmap for Generation IV Nuclear Energy Systems.

Galvez, Cristhian

2011-01-01T23:59:59.000Z

145

Nuclear Reactor Technology Subcommittee of NEAC  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor Technology Subcommittee of NEAC Mujid Kazimi (Chair),

146

Smart Metering and Electricity Demand: Technology, Economics and International Experience  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Smart Metering and Electricity Demand: Technology, Economics and International Experience EPRG Working Paper EPRG0903 Cambridge Working Paper in Economics 0905 Aoife... Brophy Haney, Tooraj Jamasb and Michael G. Pollitt In recent years smart metering of electricity demand has attracted attention around the world. A number of countries and regions have started deploying new metering systems; and many others have...

Brophy Haney, A; Jamasb, Tooraj; Pollitt, Michael G.

147

NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results  

SciTech Connect (OSTI)

Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

1992-01-01T23:59:59.000Z

148

Proceedings of the Nuclear Criticality Technology and Safety Project Workshop  

SciTech Connect (OSTI)

This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

Sanchez, R.G. [comp.

1994-01-01T23:59:59.000Z

149

INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE  

SciTech Connect (OSTI)

Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

Roy C. Herndon

2001-02-28T23:59:59.000Z

150

E-Print Network 3.0 - annual nuclear technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of electricity from nuclear power plants is far less than any of the alternative energy technologies now contem... Nuclear Engineering Undergraduate Program...

151

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

152

Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research  

SciTech Connect (OSTI)

Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

2012-09-01T23:59:59.000Z

153

Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

154

Important technology considerations for space nuclear power systems  

SciTech Connect (OSTI)

This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

1988-03-01T23:59:59.000Z

155

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network [OSTI]

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling practices in a nutshell', Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, pp.288 Energy and Nuclear Applications', Göteborg, Sweden, 13­14 October 2011 Copyright © 2013 Inderscience

Demazière, Christophe

156

{alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)  

SciTech Connect (OSTI)

The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

Avrigeanu, V.; Avrigeanu, M. [Horia Hulubei National Institute for Physics and Nuclear Engineering, POBox MG-6, 077125 Magurele, Ilfov (Romania)

2012-11-20T23:59:59.000Z

157

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect (OSTI)

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

158

Nuclear Technology Programs semiannual progress report, April-- September 1990  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-06-01T23:59:59.000Z

159

Nuclear Technology Programs semiannual progress report, April-- September 1990  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1992-06-01T23:59:59.000Z

160

Nuclear Technology Programs semiannual progress report, October 1988--March 1989  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

Harmon, J.E. [ed.

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear technology programs; Semiannual progress report, October 1989--March 1990  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-01-01T23:59:59.000Z

162

Nuclear technology programs. Semiannual progress report, April--September 1991  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Not Available

1993-07-01T23:59:59.000Z

163

Nuclear Technology Programs semiannual progress report, October 1990--March 1991  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

NONE

1992-12-01T23:59:59.000Z

164

Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute  

SciTech Connect (OSTI)

An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

2002-07-15T23:59:59.000Z

165

Ira Helfand, MD International Physicians for the Prevention of Nuclear War  

E-Print Network [OSTI]

Ira Helfand, MD International Physicians for the Prevention of Nuclear War Physicians for Social Responsibility NUCLEAR FAMINE: A BILLION PEOPLE AT RISK Global Impacts of Limited Nuclear War on Agriculture of studies have shown that a limited, regional nuclear war between India and Pakistan would cause significant

Robock, Alan

166

Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency  

Broader source: Energy.gov [DOE]

Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

167

International Safeguards Technology and Policy Education and Training Pilot Programs  

SciTech Connect (OSTI)

A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total and were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.

Dreicer, M; Anzelon, G A; Essner, J T; Dougan, A D; Doyle, J; Boyer, B; Hypes, P; Sokava, E; Wehling, F; Martin, J; Charlton, W

2009-06-16T23:59:59.000Z

168

Refractory alloy technology for space nuclear power applications  

SciTech Connect (OSTI)

Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

1984-01-01T23:59:59.000Z

169

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Broader source: Energy.gov [DOE]

The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

170

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

171

2012 Nuclear Energy Enabling Technology Factsheet | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE)2012 Nuclear Energy Enabling Technology

172

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network [OSTI]

STRUCTURE OF NUCLEAR REACTION INDUCED BY LOW ENERGY DEUTERONin the nuclear reaction induced by low energy deuteron on

Saxon, D.S.

2010-01-01T23:59:59.000Z

173

Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece  

SciTech Connect (OSTI)

Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

174

SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS  

SciTech Connect (OSTI)

Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

Farfan, E.; Foley, T.

2010-02-11T23:59:59.000Z

175

tel-00714379,version1-4Jul2012 TECHNOLOGY AND INTERNATIONAL SPECIALISATION IN TOURISM 1  

E-Print Network [OSTI]

tel-00714379,version1-4Jul2012 #12;TECHNOLOGY AND INTERNATIONAL SPECIALISATION IN TOURISM 1 IN TOURISM (TECHNOLOGIE ET SPECIALISATION INTERNATIONAL TOURISTIQUE) Thèse dirigée par M. François VELLAS-Le Mirail tel-00714379,version1-4Jul2012 #12;TECHNOLOGY AND INTERNATIONAL SPECIALISATION IN TOURISM 2

Paris-Sud XI, Université de

176

Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a  

E-Print Network [OSTI]

Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a controversial nuclear fusion plan. The technical meeting of experts is intended to pave the way of nuclear fusion say it provides an attractive long-term energy option, because the basic materials needed

177

Proceedings of the Nuclear Criticality Technology Safety Workshop  

SciTech Connect (OSTI)

This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

Rene G. Sanchez

1998-04-01T23:59:59.000Z

178

Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories International, Inc.- January 2008  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Advanced Technologies and Laboratories International, Inc. is performing at a level deserving DOE-VPP Star recognition.

179

Institute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel  

E-Print Network [OSTI]

facilities · Developing and testing of new measuring techniques May 2 - 6, 2011 #12;Institute for NuclearInstitute for Nuclear and Energy Technologies 1 L. Stoppel, Th. Wetzel FAIR and IFMIF liquid metal Power Targetry Workshop, May 3, 2011 #12;Institute for Nuclear and Energy Technologies 2 L. Stoppel, Th

McDonald, Kirk

180

Overview of Fusion Nuclear Technology in the US  

SciTech Connect (OSTI)

Fusion Nuclear Technology (FNT) research in the United States encompasses many activities and requires expertise and capabilities in many different disciplines. The US Enabling Technology program is divided into several task areas, with aspects of fusion nuclear technology being addressed mainly in the Plasma Chamber, Neutronics, Safety, Materials, Tritium and Plasma Facing Component Programs. These various programs work together to address key FNT topics, including support for the ITER basic machine and the ITER Test Blanket Module, support for domestic plasma experiments, and development of DEMO relevant material and technological systems for blankets, shields, and plasma facing components. While it is difficult to describe all these activities in adequate detail, this paper gives an overview of critical FNT activities. With the recent return of the US to the ITER collaboration, several activities in support of the ITER machine have been initiated, including development of the first wall shielding blanket baffle module (module 18), testing of plasma facing components, ITER tokamak exhaust tritium processing system development, and 3-D neutronics and activation code advances. The ITER test blanket module development activity has also been restarted in the US, and critical R&D is proceeding on ceramic breeder thermomechanical systems and lead-lithium breeder systems utilizing SiC composite flow channel inserts for thermal and MHD electrical insulation. Novel research on free surface liquid metal divertors is also continuing, with the goal of fielding a lithium free surface divertor in the National Spherical Torus eXperimental device (NSTX) and aiding the development of the Lithium Tokamak Experiment at Princeton. Materials research in the long term is focused on coupled computational materials science and carefully designed experiments to determine the underlying mechanisms that control the mechanical and physical behavior of advanced body-centered cubic metals and ceramic composites in the harsh fusion environment. In addition, two inertial fusion energy (IFE) research programs conducting FNT-related research for IFE are also described.

Morley, Neil B.; Abdou, Mohamed A.; Anderson, Mark; Calderoni, P.; Kurtz, Richard J.; Nygren, R N.; Raffray, R; Sawan, M.; Sharpe, Peter J.; Smolentsev, S.; Willms, Scott; Ying, A Y.

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP), Academia Sinica  

E-Print Network [OSTI]

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP Science and Technology (MST) graduate program: (1) Chemical dynamics and molecular spectroscopy, and transient species, and covers mechanisms involved in photodissociation, reactive scattering, energy transfer

182

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency  

Broader source: Energy.gov [DOE]

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

183

Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants  

SciTech Connect (OSTI)

This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

Robert Bean; Casey Durst

2009-10-01T23:59:59.000Z

184

Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts  

SciTech Connect (OSTI)

The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

2010-09-01T23:59:59.000Z

185

395NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 CONSTRUCTION OF AN ENVIRONMENTAL RADON  

E-Print Network [OSTI]

395NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 CONSTRUCTION OF AN ENVIRONMENTAL RADON MONITORING SYSTEM USING CR-39 NUCLEAR TRACK DETECTORS GIL HOON AHN* and JAI-KI LEE1 National Nuclear Management & Control Agency 305-600, POX 114 Yuseong, Daejeon, Korea 1 Dept. of Nuclear

186

World nuclear fuel market: proceedings of the international conference on nuclear energy  

SciTech Connect (OSTI)

Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

Not Available

1982-01-01T23:59:59.000Z

187

Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology  

SciTech Connect (OSTI)

The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

1998-08-01T23:59:59.000Z

188

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network [OSTI]

EXP. THEOfl. Permanent address: Lappeenranta University ofTechnology, SF-53851 Lappeenranta 85, Finland "Present

Saxon, D.S.

2010-01-01T23:59:59.000Z

189

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect (OSTI)

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

190

How to Proceed with the Thorium Nuclear Technology: a Real Options Analysis  

E-Print Network [OSTI]

technology that is clean, cost-effective, long-term sustainable, and safe. Currently undeveloped technologiesHow to Proceed with the Thorium Nuclear Technology: a Real Options Analysis Afzal Siddiqui Stein: +44 207 3834703 Department of Industrial Economics and Technology Management, Norwegian University

Guillas, Serge

191

ANNUAL NAEE/IAEE INTERNATIONAL CONFERENCE ENERGY TECHNOLOGY AND INFRASTRUCTURE FOR SUSTAINABLE  

E-Print Network [OSTI]

5TH ANNUAL NAEE/IAEE INTERNATIONAL CONFERENCE ENERGY TECHNOLOGY AND INFRASTRUCTURE FOR SUSTAINABLE that is so common in Africa made energy technology and infrastructure so critical for these countries of appropriate energy technology that can deliver cost effective and efficient energy services and address

Texas at Austin, University of

192

A study on international technology transfer critical factors in Hong Kong/Pearl River Delta manufacturing industries.  

E-Print Network [OSTI]

???International Technology Transfer (ITT) has been increasingly an important issue in technology diffusion, and has accumulated a vast body of research over past years. ITT… (more)

Dong, Qiuling (???)

2008-01-01T23:59:59.000Z

193

International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1  

SciTech Connect (OSTI)

This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

Harmon,, K. M.; Lakey,, L. T.

1983-07-01T23:59:59.000Z

194

Design Features and Technology Uncertainties for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

2004-06-01T23:59:59.000Z

195

EU signs ITER deal Negotiations on the ITER international nuclear  

E-Print Network [OSTI]

for the #12;past 50 years, while reducing funds for proven and clean energy technology like energy efficiency fusion as a future clean energy source. "Energy is an issue of concern to all of us, and we all hope proportion of energy research funding for an expensive technology that has consistently failed to deliver

196

Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

197

2 Science and Technology of Nuclear Installations the nuclear data are added in a speci c format to so-called  

E-Print Network [OSTI]

information from experi- mental cross-section data, integral data (critical assemblies), and nuclear models#12;2 Science and Technology of Nuclear Installations the nuclear data are added in a speci c format to so-called evaluated nuclear data les, such as ENDF-6 (Evaluated Nuclear Data File-6). e

Demazière, Christophe

198

Design principles for the development of space technology maturation laboratories aboard the International Space Station  

E-Print Network [OSTI]

This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

Saenz Otero, Alvar, 1975-

2005-01-01T23:59:59.000Z

199

The role of immigrant scientists and entrepreneurs in international technology transfer  

E-Print Network [OSTI]

This thesis characterizes the important role of US ethnic scientists and entrepreneurs for international technology diffusion. Chapter 1 studies the transfer of tacit knowledge regarding new innovations through ethnic ...

Kerr, William Robert, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

200

Management of international transfer of innovative technologies in the enterprise.  

E-Print Network [OSTI]

?? The objective is to clarify the concept of technology transfer and the accompanying components to deliver them to the reader. The object of this… (more)

Trofimchuk, Olena

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy  

E-Print Network [OSTI]

This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

2004-01-01T23:59:59.000Z

202

International prospects for clean coal technologies (Focus on Asia)  

SciTech Connect (OSTI)

The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

1997-12-31T23:59:59.000Z

203

. International Conference on Nuclear Knowledge Management INAC 2005 international Conference on Nuclear Knowledge Management, INAC 2005, Santos (Brazil)  

E-Print Network [OSTI]

Institute (IPEN-Brazil) barroso@ipen.br c Ph D., Head of Information Science Department Telecommunication Nuclear Atlantic Conference, Santos : Brazil (2005)" #12;R. I. RICCIARDI, A. C. O. BARROSO and J. O. BARROSO and J.-

Paris-Sud XI, Université de

204

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

205

A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary  

SciTech Connect (OSTI)

To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

None

2003-03-01T23:59:59.000Z

206

Savannah River Site hosts military interns | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8Nuclear SecurityAdministration

207

Nuremberg, Germany, 27-29 March 2001 International Congress for Particle Technology  

E-Print Network [OSTI]

- 1 - Nuremberg, Germany, 27-29 March 2001 International Congress for Particle Technology Christian 55128 Mainz Germany Email: jonas@mpip-mainz.mpg.de Abstract Session: Headline 17: Nanoscale Materials in a sub-monolayer on a cationic square. #12;- 2 - Nuremberg, Germany, 27-29 March 2001 International

Jonas, Ulrich - Institute of Electronic Structure and Laser, Foundation for Research and Technology

208

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their  

E-Print Network [OSTI]

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational plants', Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, pp.287­298. Biographical notes methods and their applications for the analysis of nuclear power plants C. Demazière Department of Nuclear

Demazière, Christophe

209

ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts  

SciTech Connect (OSTI)

This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

Not Available

1991-12-31T23:59:59.000Z

210

Proceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference  

E-Print Network [OSTI]

optimization study. For a new technology, such as fuel cells, it is also important to include uncertaintiesProceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference June 16-18, 2008, Denver, Colorado, USA FUELCELL2008-65111 OPTIMAL DESIGN OF HYBRID ELECTRIC FUEL

Papalambros, Panos

211

Web Developer/Programmer Intern Employer: Transim Technology Corporation  

E-Print Network [OSTI]

and dynamic technology company. We are expanding our team in search of a creative, hard-working, and self, SQL, CSS Experience with .NET and Web Services Experience/working knowledge of SQL and relational

Childers, Bruce

212

Most Viewed Documents for Fission and Nuclear Technologies: December...  

Office of Scientific and Technical Information (OSTI)

Nicolas; Pruess, Karsten (2004) 21 Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.;...

213

March 2014 Most Viewed Documents for Fission And Nuclear Technologies...  

Office of Scientific and Technical Information (OSTI)

J. (1978) 30 > Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Executive summary: main report. PWR and BWR Not Available (1975)...

214

Guidance for Deployment of Mobile Technologies for Nuclear Power...  

Broader source: Energy.gov (indexed) [DOE]

This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking...

215

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

SciTech Connect (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

216

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect (OSTI)

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

217

PIA - 10th International Nuclear Graphite Specialists Meeting registration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PET Imaging:Department 1 / 18

218

NNSA interns visit Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National Nuclear Securityhits 21

219

Sandia Weapon Intern Program visits KCP | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis a multiprogram laboratory operated by

220

Sandia National Laboratories: Recent Sandia International Used Nuclear Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNationalEnergyRadiationManagement

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

International Nuclear Energy Policy and Cooperation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through aEnergy International Fuel Services

222

International Center for Environmental Technology Transfer | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International Association of Public

223

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger

2007-06-01T23:59:59.000Z

224

Advanced international training course on state systems of accounting for and control of nuclear materials  

SciTech Connect (OSTI)

This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

Not Available

1981-10-01T23:59:59.000Z

225

Los Alamos Lab: International and Applied Technology Division, IAT:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclear SecurityOffice > Applied

226

Los Alamos Lab: International and Applied Technology Division, IAT: Applied  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclear SecurityOffice >

227

International Partnership for Geothermal Technology - 2012 Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE Vehicle TechnologiesDepartmentDepartment ofDepartment

228

Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

2013-09-03T23:59:59.000Z

229

Fragments' internal and kinetic temperatures in the framework of a Nuclear Statistical Multifragmentation Model  

E-Print Network [OSTI]

The agreement between the fragments' internal and kinetic temperatures with the breakup temperature is investigated using a Statistical Multifragmentation Model which makes no a priori as- sumption on the relationship between them. We thus examine the conditions for obtaining such agreement and find that, in the framework of our model, this holds only in a relatively narrow range of excitation energy. The role played by the qualitative shape of the fragments' state densities is also examined. Our results suggest that the internal temperature of the light fragments may be affected by this quantity, whose behavior may lead to constant internal temperatures over a wide excitation energy range. It thus suggests that the nuclear thermometry may provide valuable information on the nuclear state density.

S. R. Souza; B. V. Carlson; R. Donangelo; W. G. Lynch; M. B. Tsang

2014-11-27T23:59:59.000Z

230

NEXT GENERATION NUCLEAR PLANT NGNP Technology Development Roadmapping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ISR Inner Side Reflector Kc Fracture Toughness kg Kilogram K-T Kepner-Tregoe KTA German nuclear technical committee kW Kilowatt LANL Los Alamos National Laboratory LBE Licensing...

231

The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry  

E-Print Network [OSTI]

) project. The general scope of the work was to determine possible applications of smart materials DoE facilities. The project started with the selection of types of smart materials and technologies1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor

Giurgiutiu, Victor

232

Comparative analyses for selected clean coal technologies in the international marketplace  

SciTech Connect (OSTI)

Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

Szpunar, C.B.; Gillette, J.L.

1990-07-01T23:59:59.000Z

233

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

Energy Policy, Vol. 34 Generation IV International Forum. “Introduction to Generation IV Nuclear Energy Systems and theIII Plus 2030-onward – Generation IV 2030-onward 2030-onward

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

234

Overview of Fusion Nuclear Technology in the US  

E-Print Network [OSTI]

/ Shield Module 18 ­ Tokamak Exhaust Plant IFE Technology Research ­ High Average Power Laser ­ Z Studies ­ Neutronics Simulation Tools ITER Project Office and US Contributions to ITER ­ First wall) Department of Energy (DOE) Enabling Technologies Program ITER Project Office (US-IPO) High Average Power

235

Isotope Development & Production | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

236

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

237

259NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.38 NO.3 APRIL 2006 NuSEE: AN INTEGRATED ENVIRONMENT OF SOFTWARE  

E-Print Network [OSTI]

259NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.38 NO.3 APRIL 2006 NuSEE: AN INTEGRATED ENVIRONMENT and Technology 1 Department of Nuclear and Quantum Engineering 2 Department of Electrical Engineering & Computer. In safety-critical systems such as a Nuclear Power Plant (NPP), extremely high- confidence for software

238

11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation  

E-Print Network [OSTI]

Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy with thermonuclear reactors; the second step aims to raise the utilization rate of nuclear fuels from the current 1

239

Communication : 9th CANMET [Canada Centre for Mineral and Energy Technology] /ACI [American Concrete Institute] (International Conference on Superplasticizers and other Chemical Admixtures in  

E-Print Network [OSTI]

Communication : 9th CANMET [Canada Centre for Mineral and Energy Technology] /ACI [American for Mineral and Energy Technology] /ACI [American Concrete Institute] (International Conference (Canada Centre for Mineral and Energy Technology) /ACI (American Concrete Institute) (International

Boyer, Edmond

240

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network [OSTI]

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO… (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

242

ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems  

E-Print Network [OSTI]

This paper contains two parts: (I) A list of “points ” highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

André Gsponer; Jean-pierre Hurni

2004-01-01T23:59:59.000Z

243

Operation technology of air treatment system in nuclear facilities  

E-Print Network [OSTI]

Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

2001-01-01T23:59:59.000Z

244

Nuclear Materials Research and Technology/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear011 DRAFT

245

Nuclear Materials Research and Technology/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear011

246

Nuclear Materials Research and Technology/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear011Researchers

247

Fusion Nuclear Science and Technology (FNST) Mohamed Abdou  

E-Print Network [OSTI]

Material degradation by radiation and other damage Fabrication and joining for reliable components at IFE pulse repetition rate · Incremental effects of repetitive pulses (e.g., radiation damage Components divertor, limiter and nuclear aspects of plasma heating/fueling and IFE final optics Blanket

248

309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR MATERIALS"  

E-Print Network [OSTI]

309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR review; it is a book preview. Thirty years ago, "Fundamental Aspects of Nuclear Reactor Fuel Elements of nuclear fuels among other topics pertinent to the materials in the ensemble of the nuclear reactor

Motta, Arthur T.

249

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Copyright 2013 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Copyright © 2013 to safety analyses' presented at the `JSPS Colloquium on Nuclear Energy and Nuclear Applications', Göteborg Inderscience Enterprises Ltd. Multi-physics modelling of nuclear reactors: current practices in a nutshell

Demazière, Christophe

250

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect (OSTI)

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

251

ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES  

SciTech Connect (OSTI)

We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

2009-06-11T23:59:59.000Z

252

2010 Asia-Pacific International Symposium on Aerospace Technology Rotor-stator interaction broadband noise  

E-Print Network [OSTI]

2010 Asia-Pacific International Symposium on Aerospace Technology Rotor-stator interaction-dimensional annular cascade to the impinging harmonic distortions. Each upstream har- monic mode is defined by its and Horan[2] . The #12;· 2 · Igor Vinogradov/ Chinese Journal of Aeronatics typical energy distribution over

Huang, Xun

253

2010 International Conference on Power System Technology Renewable energy integration: mechanism for  

E-Print Network [OSTI]

capacity that can integrate the wind energy blocks. Both the new grids and upgrade grid must have a stepped2010 International Conference on Power System Technology Renewable energy integration: mechanism with high uncertainty, as it usually happens with renewable energies. This work faces this problem

Catholic University of Chile (Universidad Católica de Chile)

254

Proceedings of the International Conference "Underwater Acoustic Measurements: Technologies & Results" Heraklion, Crete, Greece, 28th  

E-Print Network [OSTI]

with entrainments of bubbles of calculated sizes [6] (later augmented by use of the Gabor transform when entrainmentProceedings of the International Conference "Underwater Acoustic Measurements: Technologies the acoustic information was available in order to interpret conditions on Titan. The exercise includes

Sóbester, András

255

Announcement and Call for Papers IWMST 2014 The International Workshop on Modern Science and Technology 2014  

E-Print Network [OSTI]

Char, Fuel Cell, Renewable Energy, Methane Gas, Green House Gas, NOx, SOx, Natural Gas Hydrate, Marine and Technology 2014 October 30 - 31, 2014 Wuhan, China 1. SCOPE We are pleased to announce that the International, Environmental Materials, Bioimaging, Natural Resources, and Others Energy and Environment Solar Energy, Biomass

Yanai, Keiji

256

Department Name: Center for International Education Org. #: 2062 Position Title: Technology Coordinator  

E-Print Network [OSTI]

Department Name: Center for International Education Org. #: 2062 Position Title: Technology of enrollment (or first term if entering mid-year); and 2. Students of any classification whose work advanced level responsibilities for departmental functions and/or programs. This level is assigned

Baltisberger, Jay H.

257

INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF C2  

E-Print Network [OSTI]

10TH INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF C2 Modeling% of the responding organizations employed some form of access control mechanism [7]. Therefore, though insider users violations with the most damaging consequences take place through misuse of insider access privileges

Laskey, Kathryn Blackmond

258

Stakeholder identification of advanced technology opportunities at international ports of entry  

SciTech Connect (OSTI)

As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5) inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.

Parker, S.K. [Sandia National Labs., Albuquerque, NM (United States). Energy Policy and Planning Dept.; Icerman, L. [Icerman and Associates, Santa Fe, NM (United States)

1997-01-01T23:59:59.000Z

259

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network [OSTI]

of overheating of the nuclear reactor core during a severe accident, large amount of hydrogen are generatedNuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy utilities, government

Vuik, Kees

260

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network [OSTI]

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy utilities, government organizations and various branches of industry - including the nuclear, financial services and medical sectors

Lindken, Ralph

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

1999-03-01T23:59:59.000Z

262

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

1999-03-01T23:59:59.000Z

263

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

2000-11-01T23:59:59.000Z

264

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

2000-10-31T23:59:59.000Z

265

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

1999-09-30T23:59:59.000Z

266

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

1999-10-01T23:59:59.000Z

267

Semi-Annual Report 2008 Page 1 SKCSwedish Center forNuclear Technology  

E-Print Network [OSTI]

in nuclear power plants 17 Study of post-dryout heat transfer and internal structure of annular and mist two Progress in some of the research projects 11 Development of an integrated neutronic / thermal-hydraulic tool for noise analysis 11 Uncertainty and sensitivity analysis applied to the simulation

Haviland, David

268

Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications  

SciTech Connect (OSTI)

This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

2012-07-17T23:59:59.000Z

269

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers  

SciTech Connect (OSTI)

This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

Heather D. Medema; Ronald K. Farris

2012-09-01T23:59:59.000Z

270

Preventing Proliferation of Nuclear Materials and Technology | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations Sort by:atNEWS0,0,Nuclear

271

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994 Los Alamos

272

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994 Los

273

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994 LosSummer

274

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994

275

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring 1996

276

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring

277

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring6 Los

278

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring6

279

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter

280

Nuclear Materials Technology/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinterLos Alamos

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear Materials Technology/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinterLos

282

SRNS signs on as industry partner for Nuclear Engineering Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446SmallnAboutEducation | National

283

Nuclear Separations Technologies Workshop Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,Science

284

PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Ashbystation |

285

FY 2009 National Security Technologies, LLC, PER Summary | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudget » FY 2009NuclearFiscal

286

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect (OSTI)

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

287

Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle  

SciTech Connect (OSTI)

Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T. [Central Research Institute of Electric Power Industry, Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements (Germany)

2013-07-01T23:59:59.000Z

288

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT  

SciTech Connect (OSTI)

The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

Vinson, D.

2010-07-11T23:59:59.000Z

289

SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security  

E-Print Network [OSTI]

Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

Alemberti, A; Botta, E; De Vita, R; Fanchini, E; Firpo, G

2014-01-01T23:59:59.000Z

290

SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security  

E-Print Network [OSTI]

Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

A. Alemberti; M. Battaglieri; E. Botta; R. De Vita; E. Fanchini; G. Firpo

2014-04-14T23:59:59.000Z

291

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect (OSTI)

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

292

The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century  

SciTech Connect (OSTI)

In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

Garaizar, X

2010-01-06T23:59:59.000Z

293

International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004.  

E-Print Network [OSTI]

for assuring quality of software. In the area of nuclear power plant control systems, testing on softwareThe 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004. Paper ID. N6P298 Direct Control Flow Testing on Function Block Diagrams

294

Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study  

SciTech Connect (OSTI)

In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

1991-01-01T23:59:59.000Z

295

A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology, Viability, and Options  

E-Print Network [OSTI]

A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology tongia@andrew.cmu.edu; vsa@andrew.cmu.edu Abstract: India's nuclear power program is based on indigenous materials and technology, with the potential for providing energy security for many centuries. This paper

296

Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants  

SciTech Connect (OSTI)

Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

2007-08-01T23:59:59.000Z

297

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

SciTech Connect (OSTI)

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

298

High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary  

SciTech Connect (OSTI)

The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

2010-02-01T23:59:59.000Z

299

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data  

E-Print Network [OSTI]

testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticalityENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 11 Nuclear Research and Consultancy Group, P

Danon, Yaron

300

Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates the central themes of this book-  

E-Print Network [OSTI]

109 7 Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates of ignoring the social, political, and environmental dimensions of innovation - than nuclear power. Once widely seen as an energy source of almost unlimited potential, nuclear power is today expanding in just

Kammen, Daniel M.

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Report of a workshop on nuclear power growth and nonproliferation held at the Woodrow Wilson international center for scholars, Washington, DC, April 21, 2010  

SciTech Connect (OSTI)

The workshop addressed the future of nuclear power and nonproliferation in light of global nuclear energy developments, changing US policy and growing concerns about nuclear proliferation and terrorism. The discussion reflected wide agreement on the need for nuclear power, the necessity of mitigating any proliferation and terrorism risks and support for international cooperation on solutions. There were considerable differences on the nature and extent of the risks of differing fuel cycle choices. There was some skepticism about the prospects for a global nuclear energy renaissance, but there was a recognition that nuclear power would expand somewhat in the decades ahead with some states expanding capacity dramatically (e.g., China) and at least a few new states developing nuclear power programs. It was also argued by some participants that under the right conditions, a genuine renaissance could occur some decades from now. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security Several participants noted that the United States will not be able to continue to lead global nonproliferation efforts and to shape the growth of nuclear power as well as the global environment and energy debates without a robust US nuclear energy program. Some participants argued that fully integrating nuclear energy growth and nonproliferation, proliferation resistance and physical protection objectives was possible. The growing consensus on these objectives and the growing concern about the potential impact of further proliferation on the industry was one reason for optimism. The Blue Ribbon commission led by Scowcroft and Hamilton was seen as going far beyond the need to find an alternative to Yucca Mountain, and the preeminent forum in the next years to address the back end of the fuel cycle and other issues. Some argued that addressing these issues is the critical missing element, or the final piece of the puzzle to ensure the benefits of nuclear power and to promote nonproliferation. In this context, many argued that R&D on closed as well as open fuel cycle options in order to ensure a suite of long-term options was essential.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

302

International Legal Framework for Denuclearization and Nuclear Disarmament – Present Situation and Prospects  

SciTech Connect (OSTI)

This thesis is the culminating project for my participation in the OECD NEA International School of Nuclear Law. This paper will begin by providing a historical background to current disarmament and denuclearization treaties. This paper will discuss the current legal framework based on current and historical activities related to denuclearization and nuclear disarmament. Then, it will propose paths forward for the future efforts, and describe the necessary legal considerations. Each treaty or agreement will be examined in respect to its requirements for: 1) limitations and implementation; 2) and verification and monitoring. Then, lessons learned in each of the two areas (limitations and verification) will be used to construct a proposed path forward at the end of this paper.

Gastelum, Zoe N.

2012-12-16T23:59:59.000Z

303

Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies  

Broader source: Energy.gov [DOE]

Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

304

Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory  

E-Print Network [OSTI]

Analytical nuclear gradients for fully internally contracted complete active space second-order perturbation theory (CASPT2) are reported. This implementation has been realized by an automated code generator that can handle spin-free formulas for the CASPT2 energy and its derivatives with respect to variations of molecular orbitals and reference coefficients. The underlying complete active space self-consistent field and the so-called Z-vector equations are solved using density fitting. With full internal contraction the size of first-order wave functions scales polynomially with the number of active orbitals. The CASPT2 gradient program and the code generator are both publicly available. This work enables the CASPT2 geometry optimization of molecules as complex as those investigated by respective single-point calculations.

MacLeod, Matthew K

2015-01-01T23:59:59.000Z

305

Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants  

SciTech Connect (OSTI)

This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

Khan, T.A. [comp.] [Brookhaven National Lab., Upton, NY (United States); Roecklein, A.K. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1995-03-01T23:59:59.000Z

306

International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008  

E-Print Network [OSTI]

International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino International Forum for the new nuclear energy systems, we have developed a new concept of molten salt reactor Products which poison the core can be extracted without stopping reactor operation; nuclear waste

Boyer, Edmond

307

International Topical Meeting on Nuclear Reactor Thermal hydraulics, NURETH-15 NURETH15-599 Pisa, Italy, May 12-17, 2013  

E-Print Network [OSTI]

The 15th International Topical Meeting on Nuclear Reactor Thermal hydraulics, NURETH-15 NURETH15 of steam explosion shock wave propagation. #12;The 15th International Topical Meeting on Nuclear Reactor to note that stratified melt-coolant configuration can be formed in several scenarios of nuclear reactor

Haviland, David

308

International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems  

SciTech Connect (OSTI)

In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

M.F. Simpson; K.-R. Kim

2010-12-01T23:59:59.000Z

309

Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. PerretGallix, International Journal of Modern  

E-Print Network [OSTI]

Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. Perret­Gallix, International Journal on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, Pisa, Italy, April 3

Peterson, Carsten

310

United Technologies Corporation: Internal Audit Department (IAD) Case Study: A Case Study of the UTC ACE Operating System  

E-Print Network [OSTI]

This study of United Technologies Corporation's Internal Audit Department (IAD) examines how stability and change are important factors in how this department functions and improves. IAD is a leader in the adoption of ...

Roth, George

2008-08-11T23:59:59.000Z

311

Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230  

SciTech Connect (OSTI)

Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)] [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

2013-07-01T23:59:59.000Z

312

International Energy Conference, 19 -21 May 2003 Energy Technologies for post-Kyoto targets in the medium term  

E-Print Network [OSTI]

Aquifers and Hydrocarbon Structures Power & Heat Air Air O2 N2 & O2 CO2 CO2 CO2 Compression & DehydrationInternational Energy Conference, 19 - 21 May 2003 Energy Technologies for post-Kyoto targets in the medium term CO2 Capture & Geological Storage Niels Peter Christensen International Ventures Director

313

Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1  

SciTech Connect (OSTI)

The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

1995-10-20T23:59:59.000Z

314

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: dmeade@pppl.gov Received 6 August

315

Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation  

SciTech Connect (OSTI)

This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

2010-11-01T23:59:59.000Z

316

Supercritical Fluid Extraction of Radionuclides - A Green Technology for Nuclear Waste Management  

SciTech Connect (OSTI)

Supercritical fluid carbon dioxide (SF-CO2) is capable of extracting radionuclides including cesium, strontium, uranium, plutonium and lanthanides directly from liquid and solid samples with proper complexing agents. Of particular interest is the ability of SF-CO2 to dissolve uranium dioxide directly using a CO2-soluble tri-nbutylphosphate- nitric acid (TBP-HNO3) extractant to form a highly soluble UO2(NO3)2(TBP)2 complex that can be transported and separated from Cs, Sr, and other transition metals. This method can also dissolve plutonium dioxide in SF-CO2. The SF-CO2 extraction technology offers several advantages over conventional solvent-based methods including ability to extract radionuclides directly from solids, easy separation of solutes from CO2, and minimization of liquid waste generation. Potential applications of the SF-CO2 extraction technology for nuclear waste treatment and for reprocessing of spent nuclear fuels will be discussed. Information on current demonstrations of the SF-CO2 technology by nuclear companies and research organizations in different countries will be reviewed.

Wai, Chien M.

2003-09-10T23:59:59.000Z

317

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

SciTech Connect (OSTI)

This report presents results from a program evaluation of the U.S. Department of Energy?s Buildings Technologies Program (BTP) participation in collaborative international technology implementing agreements. The evaluation was conducted by researchers from the Pacific Northwest National Laboratory and the Lawrence Berkeley National Laboratory in the fall of 2007 and winter 2008 and was carried out via interviews with stakeholders in four implementing agreements in which BTP participates, reviews of relevant program reports, websites and other published materials. In addition to these findings, the report includes a variety of supporting materials such that aim to assist BTP managers who currently participate in IEA implementing agreements or who may be considering participation.

Evans, Meredydd; Runci, Paul; Meier, Alan

2008-08-01T23:59:59.000Z

318

Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

2011-09-13T23:59:59.000Z

319

Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

2010-09-21T23:59:59.000Z

320

Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2006-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2007-09-25T23:59:59.000Z

322

CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

Farfan, E.

2009-11-23T23:59:59.000Z

323

International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings  

SciTech Connect (OSTI)

This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

Not Available

1984-06-01T23:59:59.000Z

324

Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production  

SciTech Connect (OSTI)

This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

2013-08-01T23:59:59.000Z

325

Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process  

SciTech Connect (OSTI)

The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

Collins, Robert T [ORNL] [ORNL; Collins, Jack Lee [ORNL] [ORNL; Hunt, Rodney Dale [ORNL] [ORNL; Ladd-Lively, Jennifer L [ORNL] [ORNL; Patton, Kaara K [ORNL] [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL] [NASA Marshall Space Flight Center, Huntsville, AL

2014-01-01T23:59:59.000Z

326

``White Land``...new Russian closed-cycle nuclear technology for global deployment  

SciTech Connect (OSTI)

A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

Bowman, C.D.

1996-07-01T23:59:59.000Z

327

Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 3: Environmental remediation and environmental management issues  

SciTech Connect (OSTI)

This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Papers are divided into the following sections: Low/Intermediate level waste disposal from an international viewpoint; Solid waste volume reduction, treatment and packaging experience; Design of integrated systems for management of nuclear wastes; Mixed waste (hazardous and radioactive) treatment and disposal; Advanced low/intermediate level waste conditioning technologies including incineration; National programs for low/intermediate waste management; Low/Intermediate waste characterization, assay, and tracking systems; Disposal site characterization and performance assessment; Radioactive waste management and practices in developing countries; Waste management from unconventional (e.g. VVER) nuclear power reactors; Waste minimization, avoidance and recycling in nuclear power plants; Liquid waste treatment processes and experience; Low/Intermediate waste storage facilities--design and experience; Low/Intermediate waste forms and acceptance criteria for disposal; Management of non-standard or accident waste; and Quality assurance and control in nuclear waste management. Individual papers have been processed separately for inclusion in the appropriate data bases.

Baschwitz, R.; Kohout, R.; Marek, J.; Richter, P.I.; Slate, S.C. [eds.

1993-12-31T23:59:59.000Z

328

Abstract. The problem of controlled nuclear fusion (CNF) is a colossal scientific and technological challenge on a global  

E-Print Network [OSTI]

Abstract. The problem of controlled nuclear fusion (CNF) is a colossal scientific and technological the feasibility of building a magnetic thermonuclear reactor''. The three papers below briefly outline the history044n08ABEH001068 The initial period in the history of nuclear fusion research at the Kurchatov

329

Tags and seals for controling nuclear materials, Arms control and nonproliferation technologies. Second quarter 1993  

SciTech Connect (OSTI)

This issue of Arms Control and Nonproliferation Technologies summarizes demonstrations and addresses related topics. The first article, ``Basic Nuclear Material Control and Accountability Concepts as Might be Applied to the Uranium from the US-Russian HEU Purchase,`` describes safeguards sybsystems necessary for effective nuclear material safeguards. It also presents a general discussion on HEU-to-low-enrichment uranium (LEU) commingling processes and suggests applicable key measurement points. The second article, ``A Framework for Evaluating Tamper-Indicating-Device Technologies (TIDs),`` describes their uses, proper selection, and evaluation. The final three articles discuss the tags and seals applications and general characteristics of several nuclear material containers: the Type 30B uranium hexafluoride container, the AT-400R container, and the DOT Specification 6M container for SNM. Finally, the Appendix displays short descriptions and illustrations of seven tags and seals, including: the E-cup and wire seal, the python seal, the secure loop inspectable tag/seal (SLITS), bolt-and-loop type electronic identification devices, and the shrink-wrap seal.

Staehle, G; Talaber, C; Stull, S; Moulthrop, P [eds.

1993-12-31T23:59:59.000Z

330

1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report  

SciTech Connect (OSTI)

The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

Slate, S.C. [comp.; Allen, R.E. [ed.

1993-12-01T23:59:59.000Z

331

Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

2009-09-21T23:59:59.000Z

332

Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2005-09-20T23:59:59.000Z

333

Journal of Nuclear Materials, Volumes 367-370, 2007, 1586-1589 Designing Optimised Experiments for the International Fusion  

E-Print Network [OSTI]

Journal of Nuclear Materials, Volumes 367-370, 2007, 1586-1589 Designing Optimised Experiments for the International Fusion Materials Irradiation Facility R. Kemp1 G.A. Cottrell2 and H.K.D.H. Bhadesia1 1 Department EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon., OX14 3DB, UK Abstract

Cambridge, University of

334

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

ECBCS)* Clean Coal Sciences* Climate Technology Initiative (Clean Coal Centre* Industrial Energy-Related Technologies

Evans, Meredydd

2008-01-01T23:59:59.000Z

335

International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings  

SciTech Connect (OSTI)

This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

Not Available

1986-06-01T23:59:59.000Z

336

Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development  

SciTech Connect (OSTI)

The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

1995-01-01T23:59:59.000Z

337

Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010  

SciTech Connect (OSTI)

A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

Pilat, Joseph F [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

338

The Daya Bay Nuclear Plant Project in the Light of International Environmental Law  

E-Print Network [OSTI]

result from locating a nuclear plant so close to the Hongat 1292 (1975). THE DA YA BAY NUCLEAR PLANT PROJECT national1986) (H.K. ). THE DA YA BAY NUCLEAR PLANT PROJECT IV. THE "

Mushkat, Roda

1990-01-01T23:59:59.000Z

339

Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology  

SciTech Connect (OSTI)

This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

O'Hara,J.M.; Higgins,J.; Brown, William S.

2009-04-01T23:59:59.000Z

340

The 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11) Popes' Palace Conference Center, Avignon, France, October 2-6, 2005  

E-Print Network [OSTI]

Conference Center, Avignon, France, October 2-6, 2005 Paper: 193 ON THE SIMULATION OF NUCLEAR POWER PLANT the industrial simulation of two-phase flows in the nuclear power plant components as steam generators (SGThe 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11) Popes' Palace

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Global biosurveillance: enabling science and technology. Workshop background and motivation: international scientific engagement for global security  

SciTech Connect (OSTI)

Through discussion the conference aims to: (1) Identify core components of a comprehensive global biosurveillance capability; (2) Determine the scientific and technical bases to support such a program; (3) Explore the improvement in biosurveillance to enhance regional and global disease outbreak prediction; (4) Recommend an engagement approach to establishing an effective international community and regional or global network; (5) Propose implementation strategies and the measures of effectiveness; and (6) Identify the challenges that must be overcome in the next 3-5 years in order to establish an initial global biosurveillance capability that will have significant positive impact on BioNP as well as public health and/or agriculture. There is also a look back at the First Biothreat Nonproliferation Conference from December 2007. Whereas the first conference was an opportunity for problem solving to enhance and identify new paradigms for biothreat nonproliferation, this conference is moving towards integrated comprehensive global biosurveillance. Main reasons for global biosurveillance are: (1) Rapid assessment of unusual disease outbreak; (2) Early warning of emerging, re-emerging and engineered biothreat enabling reduced morbidity and mortality; (3) Enhanced crop and livestock management; (4) Increase understanding of host-pathogen interactions and epidemiology; (5) Enhanced international transparency for infectious disease research supporting BWC goals; and (6) Greater sharing of technology and knowledge to improve global health.

Cui, Helen H [Los Alamos National Laboratory

2011-01-18T23:59:59.000Z

342

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

343

International technology transfer (ITT) and corporate social responsibility (CSR) : A study in the interaction of two business functions within the Norwegian petroleum company Statoil.  

E-Print Network [OSTI]

??I study Statoil?s use of international technology transfer (ITT) and corporate social responsibility (CSR), and ways in which the two business functions interact within Statoil.… (more)

Bakken, Bent Egil Roalkvam

2011-01-01T23:59:59.000Z

344

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network [OSTI]

Assessmentof Electric-Drive Vehicles: Policies, Markets, andInternational Assessment Electric-Drive Vehicles: Policies,International Assessment Electric-Drive Vehicles Policies,

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

345

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

2004. International Wind Energy Development, World Market2005. International Wind Energy Development, World Market2004, March 2005. Canadian Wind Energy Association (CanWEA),

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

346

Nuclear Futures Analysis and Scenario Building  

SciTech Connect (OSTI)

This LDRD project created and used advanced analysis capabilities to postulate scenarios and identify issues, externalities, and technologies associated with future ''things nuclear''. ''Things nuclear'' include areas pertaining to nuclear weapons, nuclear materials, and nuclear energy, examined in the context of future domestic and international environments. Analysis tools development included adaptation and expansion of energy, environmental, and economics (E3) models to incorporate a robust description of the nuclear fuel cycle (both current and future technology pathways), creation of a beginning proliferation risk model (coupled to the (E3) model), and extension of traditional first strike stability models to conditions expected to exist in the future (smaller force sizes, multipolar engagement environments, inclusion of actual and latent nuclear weapons (capability)). Accomplishments include scenario development for regional and global nuclear energy, the creation of a beginning nuclear architecture designed to improve the proliferation resistance and environmental performance of the nuclear fuel cycle, and numerous results for future nuclear weapons scenarios.

Arthur, E.D.; Beller, D.; Canavan, G.H.; Krakowski, R.A.; Peterson, P.; Wagner, R.L.

1999-07-09T23:59:59.000Z

347

ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation  

E-Print Network [OSTI]

militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear

André Gsponer; Jean-pierre Hurni

2004-01-01T23:59:59.000Z

348

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

349

Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

L.E. Demick

2010-09-01T23:59:59.000Z

350

20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.  

SciTech Connect (OSTI)

The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

Ramirez, Amanda Ann

2008-09-01T23:59:59.000Z

351

Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361  

SciTech Connect (OSTI)

The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada)] [Candesco - A Division of Kinectrics Inc, 26 Wellington E 3rd floor, Toronto, Ontario, M5E 1S2 (Canada); Daniska, Vladimir [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)] [DECOM a.s., Sibirska 1, 917 01 Trnava (Slovakia)

2013-07-01T23:59:59.000Z

352

On selection and operation of an international interim storage facility for spent nuclear fuel  

E-Print Network [OSTI]

Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

Burns, Joe, 1966-

2004-01-01T23:59:59.000Z

353

Heat Pipe Science and Technology, An International Journal 1(3), 279302 (2010) 2151-7975/10/$35.00 2010 by Begell House, Inc. 279  

E-Print Network [OSTI]

Heat Pipe Science and Technology, An International Journal 1(3), 279­302 (2010) 2151 Innovative heat exchangers are needed to harness or transport energy from various pro- cess industry management and transport requirements. The #12;Heat Pipe Science and Technology, An International Journal

Khandekar, Sameer

354

International Conference on the Developments in Renewable Energy Technology and German Alumni Energy Expert Seminar for South and South-East  

E-Print Network [OSTI]

2nd International Conference on the Developments in Renewable Energy Technology and German Alumni on the Developments in Renewable Energy Technology (ICDRET, www.icdret.uiu.ac.bd ) in Dhaka, Bangladesh. The first local and international organizations involved in renewable energy supported the event as sponsors

Peinke, Joachim

355

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology International Center 3201 S. State Street MTCC, Room with the transfer of the above named scholar from the Illinois Institute of Technology. Name of Supervisor SignatureInternational Center ­ 3201 South State Street, MTCC - Room 203 ­ (312)-567-3680 ­ icenter

Heller, Barbara

356

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01T23:59:59.000Z

357

Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination  

SciTech Connect (OSTI)

U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

Jacobson, Victor Levon

2002-08-01T23:59:59.000Z

358

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

359

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology International Center 3201 S. State St. MTCC, Room 203 at the International Center to discuss your intent to transfer and to which school. Agree on a SEVIS release date your travel plans with the International Center. · If you decide not to transfer, you must inform

Heller, Barbara

360

Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study  

SciTech Connect (OSTI)

Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants  

SciTech Connect (OSTI)

Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

2011-09-30T23:59:59.000Z

362

The Japan Times Printer Friendly Articles France has won the competition to host the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear-  

E-Print Network [OSTI]

the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear- fusion reactor. Japan fought wins by withdrawing ITER bid Thermonuclear fusion utilizes the same process that powers the sun

363

167Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 Analysis methods for the determination of possible  

E-Print Network [OSTI]

167Int. J. Nuclear Energy Science and Technology, Vol. 2, No. 3, 2006 Analysis methods-dependence due to the localised character of the perturbation. Several techniques relying on the analysis. Keywords: neutron noise analysis; Boiling Water Reactor (BWR); stability; Decay Ratio (DR); space

Demazière, Christophe

364

Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems  

E-Print Network [OSTI]

, use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

365

Joanna McFarlane, Refuyat Ashen, and K.C. Cushman Separations and Materials Research Group, Nuclear Science and Technology Division  

E-Print Network [OSTI]

, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge. Fuel mixtures that were considered included: biodiesel and standard diesel fuel, methyl-butanoate and n

Pennycook, Steve

366

Nuclear Fabrication Consortium  

SciTech Connect (OSTI)

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

367

A Technical, Financial, and Policy Analysis of the RAMSES RFID Inventory Management System for NASA's International Space Station: Prospects for SBIR/STTR Technology Infusion  

E-Print Network [OSTI]

's International Space Station: Prospects for SBIR/STTR Technology Infusion by Abraham T. Grindle Honors B for SBIR/STTR Technology Infusion by Abraham T. Grindle Honors B.S. Aerospace Engineering Saint Louis that might be unique to SBIR/STTR technologies that are successfully infused into the mainstream NASA

368

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology International Center 3201 S. State Street MTCC, Room Institute of Technology (IIT) in order to facilitate my transfer. Signature: _Date:_ SECTION B: THIS SECTION notified us of his/her intent to transfer to Illinois Institute of Technology. Please complete

Heller, Barbara

369

Reprinted from Nuclear Physics A654 (1999) 436~457~  

E-Print Network [OSTI]

Reprinted from YSICS A Nuclear Physics A654 (1999) 436~457~ www.eIsevier.nl/locate/npe Accelerator-driven Transmutation Projects. The Importance of Nuclear Physics Research for Waste Transmutation. Waclaw Gudowsk? aRoyal Institute of Technology,Stockholm, Sweden ELSEVIER #12;International Nuclear Physics Conference 1998 UNESCO

370

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network [OSTI]

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, La transport criticality problems. Traditional methods for computing this eigenvalue/eigenvector pair

Kelley, C. T. "Tim"

371

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 (3pp) doi:10.1088/0029-5515/53/4/042001  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA Received 9 directly (e.g. by spectroscopy), integration of the post-exposure W deposition showed that a net effective

Harilal, S. S.

372

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016  

E-Print Network [OSTI]

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University the developed volume-of-fluid magnetohydrodynamic code. The effects of plasma velocity and magnetic field

Harilal, S. S.

373

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004  

E-Print Network [OSTI]

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear for publication 17 December 2013 Published 21 January 2014 Abstract The plasma shielding effect is a well

Harilal, S. S.

374

and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016  

E-Print Network [OSTI]

and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 devices Milan Rajkovi´c1 , Milos Skori´c2 , Knut Sølna3 and Ghassan Antar4 1 Institute of Nuclear Sciences the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis

Solna, Knut

375

The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12) Sheraton Station Square, Pittsburgh, Pennsylvania, U.S.A. September 30-October 4, 2007  

E-Print Network [OSTI]

in the unit square. Figure 1: Physical Domain and Fictitious Domain. simulation of nuclear power plants fromThe 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12) Sheraton DOMAIN SIMULATIONS FOR THE TWO-PHASE FLOW ENERGY BALANCE OF THE CLOTAIRE STEAM GENERATOR MOCK-UP Michel

Paris-Sud XI, Université de

376

Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.  

E-Print Network [OSTI]

Advances in Drilling Technology - E-proceedings of the First International Conference on Drilling of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling PÃ¥l The drilling process is getting increasingly more complex as oil fields mature and technology evolves

Aamodt, Agnar

377

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Broader source: Energy.gov [DOE]

The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

378

Ties That Do Not Bind: Russia and the International Liberal Order  

E-Print Network [OSTI]

effect on international relations. Nuclear weapons andeffect on international relations. Nuclear weapons and

Krickovic, Andrej

2012-01-01T23:59:59.000Z

379

International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07277  

E-Print Network [OSTI]

@rpi.edu is bipolar, so the sum of the anode and grid signal is used to process the data. The signals from the chamber be possible to see changes in the mass distribution as a function of neutron energy. This process will enable deposit their total energy in the gas. The grid signal is a function of the angle of emission

Danon, Yaron

380

Submitted to the 6th International Symposium on Fusion Nuclear Technology  

E-Print Network [OSTI]

Flow First-Wall) design, which is a part of the APEX study, liquid metal, such as Lithium (Li) or Tin Wall (FW) from sputtering erosion, and elimination of peak thermal stresses in solid FW components [2

California at Los Angeles, University of

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07283  

E-Print Network [OSTI]

in two depleted uranium samples. These were used to fit the time-dependent background in the data thick (>2.5 mm) molybdenum and uranium samples capable of quantifying background, resolution function

Danon, Yaron

382

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

SciTech Connect (OSTI)

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

383

Nuclear materials safeguards for the future  

SciTech Connect (OSTI)

Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

Tape, J.W.

1995-12-31T23:59:59.000Z

384

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

Staiger, M. Daniel, Swenson, Michael C.

2011-09-01T23:59:59.000Z

385

Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-10-01T23:59:59.000Z

386

Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1  

SciTech Connect (OSTI)

Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

none,

1983-02-01T23:59:59.000Z

387

Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting  

SciTech Connect (OSTI)

The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of the IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).

Abriola, D.; Tuli, J.

2009-03-23T23:59:59.000Z

388

February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Broader source: Energy.gov [DOE]

The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

389

Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report  

Broader source: Energy.gov [DOE]

The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

390

TechnologyReview.com |Print Forums  

E-Print Network [OSTI]

TechnologyReview.com |Print Forums International Fusion Research By Ian H. Hutchinson July 8, 2005 The announcement in the last week that the site for the International Thermonuclear Experimental Reactor (ITER) is finally resolved is a source of relief and anticipation to nuclear fusion researchers worldwide. It opens

391

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

392

Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

393

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

394

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

Thermal Energy Utilizing Thermal Energy Storage TechnologyPower Generation with Thermal Energy Storage  Sustainable Cooling with Thermal Energy Storage Demonstration projects/

Evans, Meredydd

2008-01-01T23:59:59.000Z

395

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

HP HP HP Current Annexes Transportation of Thermal Energy Utilizing Thermal Energy Storage Technology Optimised Power Generation with Thermal Energy Storage  Sustainable 

Evans, Meredydd

2008-01-01T23:59:59.000Z

396

The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

Matthews, Mark L.; Eriksson, Leif G.

2003-02-25T23:59:59.000Z

397

National Nuclear Security Administration International Safeguards Education & Training Program(s)  

SciTech Connect (OSTI)

The introduction of nuclear power is a challenging, time-consuming and complex endeavor. After lengthy deliberations and research, some discover they are not prepared to take on the responsibilities or make the necessary investments to pursue nuclear power at this time. In particular, as countries begin to study their education systems with a critical eye, they discover they are unlikely to produce the requisite people to support the new plant they had hoped to introduce in the next ten to fifteen years. Without experienced personnel who can manage, operate, regulate and inspect the new plant, there is no point to building a plant in the first place. This paper will begin with an overview of various challenges associated with establishing and implementing a safe, secure and sustainable nuclear program and describe the some of the key issues that need to be addressed while planning to introduce nuclear power into an energy portfolio. Subsequent sections will describe how the United States is assisting countries in this planning process and in developing an effective workforce capable of supporting the nuclear program. Next, the paper will look at the key documents countries need to prepare in order to develop an effective workforce. The final section will offer some potential measures for success to ensure the long-term viability of the education system.

Frazar, Sarah L.; McClelland-Kerr, John

2009-10-06T23:59:59.000Z

398

Business model transformation for the international division of a fortune 100 high technology company  

E-Print Network [OSTI]

Raytheon Canada in Waterloo, Ontario offers a very interesting but challenging research case. As one of the international divisions of Raytheon Corporation, the company has a business model similar to its parent company. ...

Mokhtari Dizaji, Reza, 1968-

2008-01-01T23:59:59.000Z

399

Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.  

SciTech Connect (OSTI)

National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

Walter, Andrew

2009-06-01T23:59:59.000Z

400

To appear in Proceedings of the 7 International Conference on Greenhouse Gas Control Technologies  

E-Print Network [OSTI]

-efficient vehicles. Introduction Integrated gasification combined cycle (IGCC) technology offers the least costly,2]. But because cost-competitive H2 end-use technologies such as fuel cell vehicles will not be widely available engine vehicles, which are more energy efficient than spark-ignition engine vehicles. Compression

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NEW JERSEY INSTITUTE OF TECHNOLOGY Instructions to Complete the International Student Financial Statement Form  

E-Print Network [OSTI]

Institute of Technology. This information must be submitted before a Certificate of Visa Eligibility (Form I-term annuities or certificates of deposit · New Jersey Institute of Technology reserves the right to require _______________________________________________________________ Family/Last Name First/Given Name Middle 2. Date of Birth ____________________ Month Day Year 3. Country

Gary, Dale E.

402

Overview of the international R&D recycling activities of the nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-12-01T23:59:59.000Z

403

Emergency Preparedness technology support to the Health and Safety Executive (HSE), Nuclear Installations Inspectorate (NII) of the United Kingdom. Appendix A  

SciTech Connect (OSTI)

The Nuclear Installations Inspectorate (NII) of the United Kingdom (UK) suggested the use of an accident progression logic model method developed by Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) for K Reactor to predict the magnitude and timing of radioactivity releases (the source term) based on an advanced logic model methodology. Predicted releases are output from the personal computer-based model in a level-of-confidence format. Additional technical discussions eventually led to a request from the NII to develop a proposal for assembling a similar technology to predict source terms for the UK`s advanced gas-cooled reactor (AGR) type. To respond to this request, WSRC is submitting a proposal to provide contractual assistance as specified in the Scope of Work. The work will produce, document, and transfer technology associated with a Decision-Oriented Source Term Estimator for Emergency Preparedness (DOSE-EP) for the NII to apply to AGRs in the United Kingdom. This document, Appendix A is a part of this proposal.

O`Kula, K.R.

1994-03-01T23:59:59.000Z

404

Nuclear World Order and Nonproliferation  

SciTech Connect (OSTI)

The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

Joeck, N

2007-02-05T23:59:59.000Z

405

Outlook for renewable energy technologies: Assessment of international programs and policies  

SciTech Connect (OSTI)

The report presents an evaluation of worldwide research efforts in three specific renewable energy technologies, with a view towards future United States (US) energy security, environmental factors, and industrial competitiveness. The overall energy technology priorities of foreign governments and industry leaders, as well as the motivating factors for these priorities, are identified and evaluated from both technological and policy perspectives. The specific technologies of interest are wind, solar thermal, and solar photovoltaics (PV). These program areas, as well as the overall energy policies of Denmark, France, Germany, Italy, the United Kingdom (UK), Japan, Russia, and the European Community as a whole are described. The present and likely future picture for worldwide technological leadership in these technologies-is portrayed. The report is meant to help in forecasting challenges to US preeminence in the various technology areas, particularly over the next ten years, and to help guide US policy-makers as they try to identify specific actions which would help to retain and/or expand the US leadership position.

Branstetter, L.J.; Vidal, R.C.; Bruch, V.L.; Zurn, R.

1995-02-01T23:59:59.000Z

406

Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor

1999-09-21T23:59:59.000Z

407

Global Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Nuclear Security Both DOE and the National Nuclear Security Administration are working to reduce the risk of nuclear proliferation and provide technologies to improve...

408

ince 1992, the United States has been involved in the establishment and op-eration of a science and technology center in Russia--the International Sci-  

E-Print Network [OSTI]

and technology center in Russia--the International Sci- ence and Technology Center (ISTC)--and a similar center..." This agreement was initialed in May of 1992, with the United States, Russia, the European Union, and Japan to create a science center in Ukraine distinct from the one being established in Russia. Ratification

409

International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers  

E-Print Network [OSTI]

in Buildings & Community Systems, Demand-Side Management,Demand-Side Management Implementing Agreement (www.ieadsm.org) ECBCS Energy Conservation in BuildingsBuilding Technologies Program, Department of Energy, Washington, DC. Demand Side Management

Evans, Meredydd

2008-01-01T23:59:59.000Z

410

American Nuclear Society 2013 Student Conference Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network [OSTI]

American Nuclear Society 2013 Student Conference ­ Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013) A DETECTOR. Troy, NY 12180 mcderb@rpi.edu 1. INTRODUCTION Reactor design and criticality safety calculations

Danon, Yaron

411

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

2005. Cowan Robin. "Nuclear Power Reactors: A Study inThe Last Chance for Nuclear Power?" Energy Studies Reviewa National Infrastructure for Nuclear Power", IAEA Nuclear

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

412

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol"OECD/IEA Report OECD/Nuclear Energy Agency. "Nuclear Energy

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

413

Measurement of 37Ar to support technology for On-site Inspection under the Comprehensive Nuclear-Test-Ban Treaty  

E-Print Network [OSTI]

On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,{\\alpha})37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.

C. E. Aalseth; A. R. Day; D. A. Haas; E. W. Hoppe; B. J. Hyronimus; M. E. Keillor; E. K. Mace; J. L. Orrell; A. Seifert; V. T. Woods

2010-08-04T23:59:59.000Z

414

Proceedings of FUELCELL2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology  

E-Print Network [OSTI]

of water within the fuel cell stack is crit- ical for optimal stack performance. A balance must be struckProceedings of FUELCELL2006 Fourth International Conference on Fuel Cell Science, Engineering-ORIENTED MODEL OF THE WATER DYNAMICS IN FUEL CELLS B. A. McCain Fuel Cell Control Laboratory Department

Stefanopoulou, Anna

415

International survey of options to fund regional science and technology in Africa  

E-Print Network [OSTI]

and their contribution to development. In low-income countries, this should include explicit statements in national Paul van Gardingen Anna Karp The University of Edinburgh Centre for the study of Environmental Change; the private sector and the international donor community. The analysis stresses the importance of African

416

Journal of NUCLEAR SCIENCE and TECHNOLOGY, 21[1] pp.1~9 (January 1984). 1 Present Status of Study on Extraction  

E-Print Network [OSTI]

of the development of nuclear power generation has not been changed because of maldistribution of the fossil energy resources, their ultimate shortage and the harmful effect of their burnings upon the environment. AccordingJournal of NUCLEAR SCIENCE and TECHNOLOGY, 21[1] pp.1~9 (January 1984). 1 REVIEW Present Status

Laughlin, Robert B.

417

CAREERS at the International  

E-Print Network [OSTI]

for cooperation in the nuclear field committed to promoting safe, secure and peaceful uses of nuclear technology Economics Nuclear Safety EnvironmentalSpecialties Nuclear Security HumanResourceManagement NutritionStatesintheseareas. Safety and Security IAEAsupports

Hart, Gus

418

(Environmental technology)  

SciTech Connect (OSTI)

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

419

Nuclear Deterrence in the Age of Nonproliferation  

SciTech Connect (OSTI)

The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

Richardson, J

2009-01-21T23:59:59.000Z

420

United States-Republic of Korea (ROK) International Nuclear Energy Research  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy, Office ofNuclearVision"Initiative

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Proceedings of FUELCELL2006 The 4th International Conference on FUEL CELL SCIENCE, ENGINEERING and TECHNOLOGY  

E-Print Network [OSTI]

and TECHNOLOGY June 19-21, 2006, Irvine, CA, USA FUELCELL2006-97161 OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrat- ing a fuel cell vehicle simulator with a physics-based fuel cell model. The integration

Papalambros, Panos

422

2005 International Truck & Bus Safety & Security Symposium 447 SAFETY AND SECURITY TECHNOLOGIES OF IMPORTANCE TO  

E-Print Network [OSTI]

, Michigan; Ventura County Transportation Commission (VCTC) in Ventura County, California; and Tri solution. According to Dan Marchand of TriMet, Portland, Oregon, "technology makes it possible to deliver trips. TriMet, on the other hand, coordinates a very large, fixed route, multi-modal transit program

423

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

424

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

for nuclear waste disposal and decommissioning whilethe cost of decommissioning and nuclear waste disposal on

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

425

Nuclear reactor with internal thimble-type delayed neutron detection system  

SciTech Connect (OSTI)

This paper describes a liquid-metal cooled nuclear reactor. It comprises: a housing having a core containing nuclear material, a shell and tube heat exchanger positioned within the housing. The shell and tube heat exchanger have the tubes thereof arranged in parallel, a primary coolant within the shell and tube heat exchanger, means for detecting positioned within a tube in the shell and tube heat exchanger for generating a signal in response to a reaction detected by the means for detecting, the means for detecting including signal detectors D-1, D-2, and D-3 selectively spaced from one another along the coolant flow within the shell and tube heat exchanger so that the total time lapsed after the occurrence of the reaction and a delayed-neutron is detected is: TOTAL = T{sub h} + T{sub t} + T{sub d}. Where: T{sub h} = isotopic holdup time for the delayed-neutron traveling from the reaction spot to the coolant T{sub t} = transit time for the delayed-neutron traveling from the coolant to the heat exchanger inlet T{sub d} = constant transit time for the delayed-neutrons to reach each of the delayed-neutron detectors D-1, D-2, and D-3, which is dependent upon the position of the delayed-neutron detector; and a mechanism remotely connected to the signal detectors to record the reaction detected thereby.

Gross, K.C.; Poloncsik, J.; Lambert, J.D.B.

1990-07-03T23:59:59.000Z

426

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

427

Office of Science and Technology&International Year EndReport - 2005  

SciTech Connect (OSTI)

Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repository total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).

Bodvarsson, G.S.

2005-10-27T23:59:59.000Z

428

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 (11pp) doi:10.1088/0029-5515/50/1/014001  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 its worth. Looking at the way forward, this vision constitutes a strong basis to harness fusion energy Cabinet of the French High Commissioner for Atomic Energy CEA, 91191 Gif-sur-Yvette, France Received 19

429

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 055018 (13pp) doi:10.1088/0029-5515/49/5/055018  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 055018 experimental and theoretical status of the most basic issues of FRC stability, confinement, and current drive field line linear systems as fusion reactors. We also develop scaling relations for extrapolation from

Washington at Seattle, University of

430

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

Ghoniem, Nasr M.

431

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

�cole Normale Supérieure

432

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006  

E-Print Network [OSTI]

.57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

433

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020-scale fluctuations, in contrast to present day experiments where, in general, relatively low energy fast ions of alpha particles produced in DT reactions as the main heating source. Fusion alphas, with small

Zonca, Fulvio

434

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005  

E-Print Network [OSTI]

#12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

Farge, Marie

435

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002  

E-Print Network [OSTI]

Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

436

Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

NONE

1995-06-01T23:59:59.000Z

437

International Energy: Subject Thesaurus. Revision 1  

SciTech Connect (OSTI)

The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

Not Available

1993-11-01T23:59:59.000Z

438

Annual report of the international nuclear energy research initiative OSMOSE project (FY06).  

SciTech Connect (OSTI)

The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculation models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program--including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

Klann, R. T.; Hudelot, J. P.; Drin, N.; Zhong, Z.; Nuclear Engineering Division; Commissariat a l Energie Atomique

2007-08-29T23:59:59.000Z

439

Annual report of the international nuclear research initiative OSMOSE project (FY05).  

SciTech Connect (OSTI)

The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculational models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program -- including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

Klann, R. T.; Hudelot, J. P.; Perret, G.; Drin, N.; Nuclear Engineering Division; Commissariat a l'Energie Atomique

2007-10-03T23:59:59.000Z

440

Constraining potential nuclear-weapons proliferation from civilian reactors  

SciTech Connect (OSTI)

Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort.

Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Doubts Rise Over the Great Nuclear Promise Julio Godoy  

E-Print Network [OSTI]

that a thermonuclear reactor poses three technical problems: production of the elements to undergo fusion (deuterium over a decision to base the International Thermonuclear Experimental Reactor (ITER) in France seems to introduce new nuclear technology. It will seek a nuclear fusion of two hydrogen isotopes (deuterium which

442

Nuclear reactor with internal thimble-type delayed neutron detection system  

SciTech Connect (OSTI)

This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

Gross, Kenny C. (Lemont, IL); Poloncsik, John (Downers Grove, IL); Lambert, John D. B. (Wheaton, IL)

1990-01-01T23:59:59.000Z

443

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

operator such as EDF, the time required to compute nuclear reactor core simulations is rather critical. Introduction As operator of nuclear power plants, EDF needs many nuclear reactor core simulationsInternational Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009

Vialle, Stéphane

444

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

for nuclear cooperation with Russia", The Nonproliferationof nuclear energy see for Russia, Trenin Dmitri. "Russia`s Nuclear Policy in the 21 st Century Environment",

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

445

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

for global nuclear security, given my aforementionedthe national security dimensions of nuclear energy see forecological and security risks associated with nuclear energy

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

446

Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors  

SciTech Connect (OSTI)

This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy`s Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste.

Love, E.F.; Pauley, K.A.; Reid, B.D.

1995-09-01T23:59:59.000Z

447

The effect of diffusion in internal gradients on nuclear magnetic resonance transverse relaxation measurements  

SciTech Connect (OSTI)

In the present work we study the internal gradient effects on diffusion attenuation of the echo train appearing in the well-known Carr-Purcell-Meiboom-Gill (CPMG) technique, extensively used for transverse relaxation measurements. Our investigations are carried out on two porous ceramics, prepared with the same amount of magnetic impurities (Fe{sub 2}O{sub 3}) but different pore sizes. It is shown that diffusion effects on the CPMG echo train attenuation are strongly influenced by the pore size for the same magnetic susceptibility of the two samples. The experimental results were compared with a theoretical model taking into account the limit of free or restricted diffusion on echo train attenuation. The NMR experiments were performed on water filled samples using a low-field NMR instrument. The porous ceramics were prepared using both the replica technique and the powder compression technique. Magnetic susceptibility measurements indicated close values of the susceptibility constant for the two samples whereas the SEM images indicated different pore sizes. The results reported here may have impact in the interpretation of NMR relaxation measurements of water in soils or concrete samples.

Muncaci, S.; Ardelean, I. [Technical University of Cluj-Napoca, Physics and Chemistry Department, Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Physics and Chemistry Department, Cluj-Napoca (Romania); Boboia, S. [Technical University of Cluj-Napoca, Physics and Chemistry Department, Cluj-Napoca, Romania and Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Physics and Chemistry Department, Cluj-Napoca, Romania and Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

448

Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992  

SciTech Connect (OSTI)

This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

Carlisle, R.P.; Zenzen, J.M.

1994-01-01T23:59:59.000Z

449

Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities  

E-Print Network [OSTI]

Instrumentation & Control Systems Remote Maintenance Components Heat Transport & Power Conversion Systems In-vessel Components Plasma Facing Components divertor, limiter, heating/fueling and final optics, etc. Blanket, heat/particle fluxes, magnetic field, etc.) with high magnitude and steep gradients. · Nuclear heating

Abdou, Mohamed

450

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

451

A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts  

SciTech Connect (OSTI)

With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

452

Internalizing Null Extraterrestrial "Signals": An Astrobiological App for a Technological Society  

E-Print Network [OSTI]

One of the beneficial outcomes of searching for life in the Universe is that it grants greater awareness of our own problems here on Earth. Lack of contact with alien beings to date might actually comprise a null "signal" pointing humankind toward a viable future. Astrobiology has surprising practical applications to human society; within the larger cosmological context of cosmic evolution, astrobiology clarifies the energetic essence of complex systems throughout the Universe, including technological intelligence that is intimately dependent on energy and likely will be for as long as it endures. The "message" contained within the "signal" with which today's society needs to cope is reasonably this: Only solar energy can power our civilization going forward without soiling the environment with increased heat yet robustly driving the economy with increased per capita energy usage. The null "signals" from extraterrestrials also offer a rational solution to the Fermi paradox as a principle of cosmic selection l...

Chaisson, Eric J

2014-01-01T23:59:59.000Z

453

It is a unique programme of its kind not only in this country but also in the whole of South East Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & Technology, the programme provides research and development exper  

E-Print Network [OSTI]

Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & TechnologyDepartmentofAtomicEnergy. Contact Head Nuclear Engineering & Technology Programme Indian Institute of Technology Kanpur Kanpur - 208.iitk.ac.in/net/ Nuclear Engineering & Technology Programme IITK Indian Institute of Technology Kanpur 3D Tomographic

Srivastava, Kumar Vaibhav

454

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network [OSTI]

Nuclear Power", IAEA Nuclear Energy Series, No. NG-G-3.1.Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol" OECD/IEA Report OECD/

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

455

New technology for purging the steam generators of nuclear power plants  

SciTech Connect (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

456

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

457

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL PROGRAM ANNUAL REPORT FOR 2007  

SciTech Connect (OSTI)

The DOE-EM Office of Engineering and Technology is responsible for implementing EM's international cooperative program. The Office of Engineering and Technology's international efforts are aimed at supporting EM's mission of risk reduction and accelerated cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To do this, EM pursues collaborations with government organizations, educational institutions, and private industry to identify and develop technologies that can address the site cleanup needs of DOE. The Office of Engineering and Technology has developed a Technology Roadmap and a Multi-year Program Plan to identify technology needs and identify areas for focused research and development to support DOE-EM's environmental cleanup and waste management objectives. The international cooperative program is an important element of the technology development roadmap, leveraging of world-wide expertise in the advancement and deployment of remediation and treatment technologies. Introductory briefings aimed at furthering familiarity with the DOE-EM mission, and the vital role that technology development plays within it, were presented at two international meetings. The Office of Engineering and Technology currently works with the Khlopin Radium Institute (KRI) and SIA Radon Institute in Russia, the International Radioecology Laboratory (IRL) in Ukraine and the Nuclear Engineering and Technology Institute (NETEC) in South Korea through cooperative bilateral arrangements to support EM's accelerated cleanup and closure mission.

Marra, J

2008-08-26T23:59:59.000Z

458

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

459

International Symposium on Quality of Life Technology, Toronto, ON, Canada. June 6-7, 2011. Feasibility of a Mobility Option for Infants  

E-Print Network [OSTI]

3 rd International Symposium on Quality of Life Technology, Toronto, ON, Canada. June 6-7, 2011. TheWeeBot: Feasibility of a Mobility Option for Infants Carole W. Dennis, Sc.D, OTR/L OccupationalBot, a mobile robot controlled by weight shift over a Wii balance board, over five training sessions. Infants

Stansfield, Sharon

460

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D Imaging Real-Time Volume Rendering  

E-Print Network [OSTI]

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D volume visualization hardware comes a new challenge: effectively harnessing the visu- alization power- gorithms such as perspective rendering, overlapping volumes, and geometry mixing within volumes. We examine

Chen, Baoquan

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D Imaging RealTime Volume Rendering  

E-Print Network [OSTI]

to appear in the International Journal of Imaging Systems and Technology, special issue on 3D­powered, commodity volume visualization hardware comes a new challenge: effectively harnessing the visu­ alization­ gorithms such as perspective rendering, overlapping volumes, and geometry mixing within volumes. We examine

Chen, Baoquan

462

Advanced Technology in Welding, Materials Processing and Evaluation, Proceedings, 5th JWS International Symposium, Tokyo, 17-19 Apr.1990. Vol.l;  

E-Print Network [OSTI]

Advanced Technology in Welding, Materials Processing and Evaluation, Proceedings, 5th JWS International Symposium, Tokyo, 17-19 Apr.1990. Vol.l; S.Machida, ed. Japan Welding Society, Tokyo, 11-16. 1990 The Physics of Welding Processes Thomas W. EAGAR" Abstract Welding is an extremely complex process; however

Eagar, Thomas W.

463

International Conference on Environmental Health and Technology As we rise to the challenge of making a healthier society, the ancillary impact of the  

E-Print Network [OSTI]

International Conference on Environmental Health and Technology 15 - 17th As we rise to the challenge of making a healthier society, the ancillary impact of the economic growth in the country as we make economic advancements. Keeping in view the above agenda the Centre for Environmental Science

Srivastava, Kumar Vaibhav

464

11th International Symposium on Unmanned Untethered Submersible Technology (UUST99) August 22-25, 1999, New England Center, Durham, New Hampshire, USA  

E-Print Network [OSTI]

of Underwater Vehicles Louis L. Whitcomb, Dana R. Yoerger, and Hanumant Singh Abstract This paper first reviews for reliable three- dimensional position sensing for underwater vehicles. Ta- ble 1 summarizes the sensors most11th International Symposium on Unmanned Untethered Submersible Technology (UUST99) August 22

Whitcomb, Louis L.

465

International Center 3201 South State Street, MTCC -Room 203 (312)-567-3680 icenter@iit.edu www.ic.iit.edu Illinois Institute of Technology  

E-Print Network [OSTI]

International Center ­ 3201 South State Street, MTCC - Room 203 ­ (312)-567-3680 ­ icenter@iit.edu ­ www.ic.iit.edu Illinois Institute of Technology Chicago-Kent College of Law 565 West Adams Street CPT. · Transfer students may count any time spent as a full-time student at the previous school

Heller, Barbara

466

Nuclear Fuel Cycle Reasoner: PNNL FY12 Report  

SciTech Connect (OSTI)

Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

2013-05-03T23:59:59.000Z

467

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

468

Nuclear Materials Science:Materials Science Technology:MST-16:LANL:Los  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy

469

SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994  

SciTech Connect (OSTI)

The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

Not Available

1994-10-01T23:59:59.000Z

470

TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft  

SciTech Connect (OSTI)

The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

NONE

1980-12-31T23:59:59.000Z

471

INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000  

SciTech Connect (OSTI)

The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

M.A. Ebadian, Ph.D.

2001-01-01T23:59:59.000Z

472

Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes  

SciTech Connect (OSTI)

This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

Not Available

1992-07-01T23:59:59.000Z

473

Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

474

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

Nuclear   Fuel”,   Nuclear  Engineering  and  Technology,  in   Engineering  -­?  Nuclear  Engineering   and  the  in  Engineering  -­?  Nuclear  Engineering   and  the  

Djokic, Denia

2013-01-01T23:59:59.000Z

475

Improving the Safeguardability of Nuclear Facilities  

SciTech Connect (OSTI)

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to reduce security risks and proliferation hazards while improving the synergy of major design features and raising operational efficiency, in a world where significant expansion of nuclear energy use may occur. Correspondingly, the U.S. DOE’s Next Generation Safeguards Initiative (NGSI) includes objectives to contribute to international efforts to develop SBD, and to apply SBD in the development of new U.S. nuclear infrastructure. Here, SBD is defined as a structured approach to ensure the timely, efficient and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical protection, and safety objectives into the overall design process for a nuclear facility, from initial planning through design, construction and operation. The SBD process, in its simplest form, may be applied usefully today within most national regulatory environments. Development of a mature approach to implementing SBD requires work in the areas of requirements definition, design processes, technology and methodology, and institutionalization. The U.S. efforts described in this paper are supportive of SBD work for international safeguards that has recently been initiated by the IAEA with the participation of many stakeholders including member States, the IAEA, nuclear technology suppliers, nuclear utilities, and the broader international nonproliferation community.

T. Bjornard; R. Bari; D. Hebditch; P. Peterson; M. Schanfein

2009-07-01T23:59:59.000Z

476

International Fuel Services and Commercial Engagement | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation...

477

Nuclear Waste Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Waste Reduction Pyroprocessing is a promising technology for recycling used nuclear fuel and improving the associated waste management options. The process...

478

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 11691181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M"  

E-Print Network [OSTI]

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 1169­1181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M" Mitsuru KAMBE Central Research Institute and accepted September 10, 2002) A metal fueled modular island core sodium cooled fast breeder reactor concept

Laughlin, Robert B.

479

Monitoring international nuclear activity  

E-Print Network [OSTI]

a database will allow existing FBI and LLNL collaborators tothis information to the FBI and LLNL. Intelligence is

Firestone, R.B.

2006-01-01T23:59:59.000Z

480

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

Note: This page contains sample records for the topic "technologies international nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

VNS: A volumetric neutron source for fusion nuclear technology testing and development  

SciTech Connect (OSTI)

Recent progress in fusion plasma research and the initiation of the Engineering Design Activity for ITER provide incentives to seriously explore technically sound and logically consistent pathways toward development of fusion as a practical and attractive energy source. A critical goal is the successful construction and operation of a fusion power demonstration plant (DEMO). Major world program strategies call for DEMO operation by the year 2025. Such a date is important in order for fusion to play a significant role in the energy supply market in the second half of the twenty-first century. Without such a DEMO goal, it will be very hard to justify major financial commitments in the near term for major projects such as ITER. The major question is whether a DEMO goal by the year 2025 is attainable from a technical standpoint. This has been the central question being addressed in a study, called VENUS. Results to date show that a DEMO by the year 2025 can be realized if three major facilities begin operation in parallel by the year 2005. These facilities are: (1) ITER, (2) VNS, and (3) IFMIF. Results show that VNS is a necessary element toward DEMO in a strategy consistent with present world program plans. The key requirements to test and develop fusion nuclear components (e.g. blanket) are 1 MW/m{sup 2} neutron wall load, >10 m{sup 2} of test area at the first wall, steady state or long burn plasma operation, fluence of {approx}6MWy/m{sup 2} at the first wall in {approx}10-12 year period, and duty cycle x availability factor of {approx}0.3. Results of the study show that an attractive design envelope for VNS that satisfies the nuclear testing and development requirements exists. Within this design envelope, the most attractive design points for VNS appear to be driven plasma (Q{approx}1) in tokamak configuration with normal toroidal-field copper coils, major radius 1.5-2.0m, fusion power {approx}100MW, and neutron wall load {approx}1.5MW/m{sup 2}.

Abdou, M.A.; Peng, Y.K.; Ying, A.Y. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

482

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect (OSTI)

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

483

Measurement of Spent Fuel Assemblies - Overview of the Status of the Technology for Initiating Discussion at NATIONAL RESEARCH CENTRE KURCHATOV INSTITUTE June 2013  

SciTech Connect (OSTI)

This presentation provides an overview of the status of the technology for the measurement of the fissile material content of spent nuclear reactor fuel. The emphasis is on how the needs of the U.S. Nuclear Regulatory Commission and the International Atomic Energy Agency are met by the available technology and what more needs to be done in this area.

SISKIND B.; N /A

2013-06-03T23:59:59.000Z

484

Internal variability of the tropical Pacific ocean Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA  

E-Print Network [OSTI]

Internal variability of the tropical Pacific ocean M. Jochum Earth, Atmospheric and Planetary model of the tropical Pacific ocean is analyzed to quantify the interannual variability caused by internal variability of ocean dynamics. It is found that along the Pacific cold tongue internal variability

Jochum, Markus

485

Nuclear programs in India and Pakistan  

SciTech Connect (OSTI)

India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

2014-05-09T23:59:59.000Z

486