Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Passive solar technology  

SciTech Connect (OSTI)

The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

Watson, D

1981-04-01T23:59:59.000Z

2

Flexible Assembly Solar Technology  

Broader source: Energy.gov (indexed) [DOE]

2007-2010 BrightSource Energy, Inc. All rights reserved. 1 Flexible Assembly Solar Technology Binyamin Koretz Director, Strategic Planning & IP 2 Proprietary &...

3

Flexible Assembly Solar Technology  

Broader source: Energy.gov (indexed) [DOE]

Assembly Solar Technology BrightSource DE-EE0005792 | February 15, 2013 | Toister * The proposed assembly process is based on small, cost-effective assembly cells (to be designed...

4

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

Scott, Christopher

5

Solar Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

6

Implementing Solar Technologies at Airports  

SciTech Connect (OSTI)

Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

Kandt, A.; Romero, R.

2014-07-01T23:59:59.000Z

7

2010 Solar Technologies Market Report  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

Not Available

2011-11-01T23:59:59.000Z

8

EE Regional Technology Roadmap Includes comparison  

E-Print Network [OSTI]

EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

9

DOE Solar Energy Technologies Program: Overview and Highlights  

SciTech Connect (OSTI)

A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

Not Available

2006-05-01T23:59:59.000Z

10

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

and local policies pertaining to solar energy technologies, as well as market-based developmentslocal governments have also designed programs to fund energy efficiency and renewable energy development

Price, S.

2010-01-01T23:59:59.000Z

11

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Solar One PS10 Puertollano Plant Andasol I PS20 Location Technology Type Year Installed Capacity (MW) California,capacity of solar installed in each utility service area. The CaliforniaCalifornia, Hawaii, Indiana, New Hampshire, North Carolina, Michigan, and Vermont do not have limits on the capacity of interconnected solar

Price, S.

2010-01-01T23:59:59.000Z

12

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

and 3.2 discuss levelized cost of energy, solar resource,various CSP technologies. 3.1. Levelized Cost of Energy, PVand CSP Levelized cost of energy (LCOE) is the ratio of an

Price, S.

2010-01-01T23:59:59.000Z

13

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

of Energy. Solar Technologies Program and Loan GuaranteeLoan Guarantee Program 80 4.1.6 Clean Renewable Energy Bonds .. 82 4.1.7 Solarloans. Also, the ARRA removed the $2,000 cap on the ITC for residential solar

Price, S.

2010-01-01T23:59:59.000Z

14

Flexible Assembly Solar Technology  

Broader source: Energy.gov (indexed) [DOE]

platform that can be used for rapid assembly and installation of heliostats at a solar power tower plant. BrightSource will design and deploy a FAST prototype under this...

15

Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2009-10-01T23:59:59.000Z

16

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

17

2008 Solar Technologies Market Report: January 2010  

SciTech Connect (OSTI)

This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

Not Available

2010-01-01T23:59:59.000Z

18

Flexible Assembly Solar Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assembly Solar Technology This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona....

19

Solar Ventilation Preheating Resources and Technologies | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies Photo of a dark brown perforated metal wall is pictured on the side of an...

20

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Broader source: Energy.gov (indexed) [DOE]

Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural...

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Solar Photovoltaics Technology Conflict between  

E-Print Network [OSTI]

A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John domestically, and selling interna- tionally solar photovoltaic (PV) electricity- generating technology. Over

Deutch, John

22

Building design guidelines for solar energy technologies  

SciTech Connect (OSTI)

There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

Givoni, B.

1989-01-01T23:59:59.000Z

23

Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies  

E-Print Network [OSTI]

.........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

24

Solar Window Technology for BIPV or  

E-Print Network [OSTI]

Solar Window Technology for BIPV or BAPV Energy Systems Problem this technology solves: Using of Solar energy considerably, photovoltaic or PV material is still a major $ cost/unit of energy produced a novel high efficiency concentrator design, this static "Solar Window" system is such that it allows

Painter, Kevin

25

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

96 4.3.2 Customer Solar Leasefinancing, customer solar lease financing, property-assessedagreement (PPA), the solar lease, and property-assessed

Price, S.

2010-01-01T23:59:59.000Z

26

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Commission launched the California Solar Initiative (CSI), aenergy bond California Solar Initiative concentrating solarprograms, such as the California Solar Initiative (CSI) and

Price, S.

2010-01-01T23:59:59.000Z

27

Solar central receiver technology: the Solar Two Project  

SciTech Connect (OSTI)

Solar Two will be the world`s largest operating solar central receiver power plant. It is expected to begin operating in April 1996; it is currently undergoing start-up and checkout. The plant will use sunlight reflected from 1926 sun-tracking mirrors to heat molten nitrate salt flowing in a heat exchanger (receiver) that sits atop a 200 foot tower. The heated salt will be stored in a tank for use, when needed, to generate superheated steam for producing electricity with a conventional Rankine-cycle turbine/generator. The purpose of the project is to validate molten-salt solar central receiver technology and to reduce the perceived risks associated with the first full-scale commercial plants. Already, much has been learned during the project including the effects of trace contaminants in the salt and the large effect of wind on the receiver. There is also much that remains to be learned. This report describes the technical status of the Solar Two project including a summary of lessons learned to date.

Sutherland, J.P. [Southern California Edison Co., Irwindale, CA (United States)

1996-05-01T23:59:59.000Z

28

Thin film solar cell including a spatially modulated intrinsic layer  

DOE Patents [OSTI]

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

29

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

30

Concentrating Solar Power Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

31

Solar Hot Water Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

32

Pennsylvania Company Develops Solar Cell Printing Technology  

Broader source: Energy.gov [DOE]

The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

33

Holographic technology could increase solar efficiency | Department...  

Broader source: Energy.gov (indexed) [DOE]

cost. Redirect the light And that's just part of what holographic technology offers to solar energy generation. Because of its light-bending properties, holographic thin film...

34

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

35

Recording of SERC Monitoring Technologies- Solar Photovoltaics  

Broader source: Energy.gov [DOE]

This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

36

MHK technologies include current energy conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission StatementCenterTri-PartyTechnologies |

37

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

SciTech Connect (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

38

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

39

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Looking back—sizing the 2008 solar market. ” pp. 88–93.Iberdrola launches its first solar thermal power plant. ”Analysis of a future solar market, management summary. Bonn,

Price, S.

2010-01-01T23:59:59.000Z

40

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

use of renewable energy sources such as solar. Of the totalin solar energy (New Energy Finance 2009) Source: New Energyin solar energy (New Energy Finance 2009) Source: New Energy

Price, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

transportation costs. China's CSG Solar Glass Co. built theSolar Suntech Power, a Chinese crystalline silicon company with production in China,

Price, S.

2010-01-01T23:59:59.000Z

42

Applications of solar reforming technology  

SciTech Connect (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

43

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

solar facilities. Development of these facilities requires the long-term procurement of the power output.

Price, S.

2010-01-01T23:59:59.000Z

44

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

JA Solar 0.28 GW Baoding Yingli 0.28 GW Other 3.5 GW FigureSanyo SunPower JA Solar Baoding Yingli Kyocera Motech Sharp

Price, S.

2010-01-01T23:59:59.000Z

45

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Local and state governments may utilize funds for solar installations on government buildings and engage in energy strategy

Price, S.

2010-01-01T23:59:59.000Z

46

China Singyes Solar Technologies Holdings Ltd formerly known...  

Open Energy Info (EERE)

Singyes Solar Technologies Holdings Ltd formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name: China Singyes Solar Technologies Holdings Ltd (formerly...

47

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

48

Monitoring SERC TechnologiesSolar Photovoltaics  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

49

Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies  

SciTech Connect (OSTI)

This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

Zhang, Yabei; Smith, Steven J.

2007-08-16T23:59:59.000Z

50

Solar desiccant cooling: an evolving technology  

SciTech Connect (OSTI)

The potential for improved solar cooling economics has not been realized. The absorption cycle, and heat activated Rankine engine suffer from low efficiency. Desiccant cooling is simple and can acheive a Coefficient of Performance (COP) double that of the other systems. The basic desiccant system technology is described. This has been integrated with solar collecter regeneration to demonstrate feasibility. A performance analysis shows that desiccant cooling can be competitive, but that the capital cost penalty of solar-desiccant systems was the most serious detriment to economic competitiveness. Tax incentives are recommended.

Haas, S.A.

1982-06-01T23:59:59.000Z

51

Trony Solar Corporation formerly Shenzhen Trony Science Technology...  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name: Trony Solar Corporation (formerly Shenzhen Trony Science &...

52

Vehicle Technologies Office Merit Review 2014: EV Project: Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Project: Solar-Assisted Charging Demo Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Presentation given by Oak Ridge National Laboratory...

53

Concentrating Solar Power: Technology Overview  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

54

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

55

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

heating) Types of industry subsectors included (residential new and retrofit, commercial, utility, remote

Price, S.

2010-01-01T23:59:59.000Z

56

Business developments of nonthermal solar technologies  

SciTech Connect (OSTI)

Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)

Smith, S.A.; Watts, R.L.; Williams, T.A.

1985-10-01T23:59:59.000Z

57

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

58

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

59

SEMATECH: A Model for Advancing Solar Technology | Department...  

Broader source: Energy.gov (indexed) [DOE]

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them...

60

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Limited Personal Use of Government Office Equipment including Information Technology  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

2005-01-07T23:59:59.000Z

62

GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING  

E-Print Network [OSTI]

-growing economies in other parts of the world, there is a growing demand for practical, sustainable building designs as the broader architectural design and construction processes. Likely careers of graduates are in the building1 GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING DEPARTMENT

Reif, Rafael

63

Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

Not Available

2009-10-01T23:59:59.000Z

64

Silicon Ink Technology Offers Path to Higher Efficiency Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office (SETO) focuses on achieving the...

65

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

day and including PV modules, a battery bank, an inverterservice, but not battery replacement. 3.7.2 PV Inverterbattery replacement at 6-year intervals) was calculated to constitute about half of the 25-year lifecycle cost of the PV

Price, S.

2010-01-01T23:59:59.000Z

66

Test of a solar crop dryer Danish Technological Institute  

E-Print Network [OSTI]

Test of a solar crop dryer Danish Technological Institute Danish Institute of Agricultural Sciences Aidt Miljø A/S SEC-R-6 #12;Test of a solar crop dryer Søren �stergaard Jensen Danish Technological/S January 2001 #12;Preface The report describes the tests carried out on a solar crop dryer. The work

67

Premier Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoadingTechnologies

68

Solar Energy and Residential Building Integration Technology and Application  

E-Print Network [OSTI]

Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.

Ding Ma; Yi-bing Xue

69

Solar Energy Education. Home economics: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect (OSTI)

An instructional aid is provided for home economics teachers who wish to integrate the subject of solar energy into their classroom activities. This teacher's guide was produced along with the student activities book for home economics by the US Department of Energy Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-06-01T23:59:59.000Z

70

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect (OSTI)

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

71

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

72

Sestar Technologies, LLC Revolutionar y Solar Energy Products  

E-Print Network [OSTI]

Sestar Technologies, LLC Revolutionar y Solar Energy Products Sestar Technologies, LLC (SESTAR) is developing revolutionary solar energy products that will be integral components in the ultimate solution to the world's current and future energy pro- grams. It will lead to paradigm shifts in a number of solar

Jawitz, James W.

73

Chemical technology news from across RSC Publishing. Printing solar panels  

E-Print Network [OSTI]

Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

Rogers, John A.

74

Enabling Technologies for High Penetration of Wind and Solar Energy  

SciTech Connect (OSTI)

High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

Denholm, P.

2011-01-01T23:59:59.000Z

75

Research Activities Web Technologies Web Technologies include procedures that are used in order  

E-Print Network [OSTI]

Research Activities ­ Web Technologies Web Technologies include procedures that are used in order to enhance the services that are offered by the World Wide Web. They include both services that can be presented directly to the users of the World Wide Web and services that are transparent to the end user

Bouras, Christos

76

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

Wang, Chunhua

2011-01-01T23:59:59.000Z

77

High-Performance Home Technologies: Solar Thermal & Photovoltaic...  

Broader source: Energy.gov (indexed) [DOE]

in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

78

And the Award Goes to... Silicon Ink Solar Technology Supported...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

screen printing process, this silicon ink technology offers a novel path to producing solar cells with higher conversion efficiencies at lower cost. A pair of presenters...

79

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network [OSTI]

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global ClimateWatt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went provide 20 % of that. It takes a panel rated at 5 W, to average 1 W of power through the day and year, sog

McGehee, Michael

80

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network [OSTI]

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Understanding the adoption of solar power technologies in the UK domestic sector.  

E-Print Network [OSTI]

??The aim of this thesis was to provide new insights into the adoption of solar power technologies. Policy has identified solar technologies capable of providing… (more)

Faiers, Adam

2009-01-01T23:59:59.000Z

82

Fabrication of contacts for silicon solar cells including printing burn through layers  

DOE Patents [OSTI]

A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

2014-06-24T23:59:59.000Z

83

Numerical power balance and free energy loss analysis for solar cells including optical, thermodynamic, and electrical aspects  

SciTech Connect (OSTI)

A method for analyzing the power losses of solar cells is presented, supplying a complete balance of the incident power, the optical, thermodynamic, and electrical power losses and the electrical output power. The involved quantities have the dimension of a power density (units: W/m{sup 2}), which permits their direct comparison. In order to avoid the over-representation of losses arising from the ultraviolet part of the solar spectrum, a method for the analysis of the electrical free energy losses is extended to include optical losses. This extended analysis does not focus on the incident solar power of, e.g., 1000?W/m{sup 2} and does not explicitly include the thermalization losses and losses due to the generation of entropy. Instead, the usable power, i.e., the free energy or electro-chemical potential of the electron-hole pairs is set as reference value, thereby, overcoming the ambiguities of the power balance. Both methods, the power balance and the free energy loss analysis, are carried out exemplarily for a monocrystalline p-type silicon metal wrap through solar cell with passivated emitter and rear (MWT-PERC) based on optical and electrical measurements and numerical modeling. The methods give interesting insights in photovoltaic (PV) energy conversion, provide quantitative analyses of all loss mechanisms, and supply the basis for the systematic technological improvement of the device.

Greulich, Johannes, E-mail: johannes.greulich@ise.fraunhofer.de; Höffler, Hannes; Würfel, Uli; Rein, Stefan [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany)

2013-11-28T23:59:59.000Z

84

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network [OSTI]

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

85

Monitoring SERC TechnologiesSolar Hot Water  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

86

Emerging High-Efficiency Low-Cost Solar Cell Technologies  

E-Print Network [OSTI]

. A Manufacturing Cost Analysis Relevant to Photovoltaic Cells Fabricated with IIIEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute

McGehee, Michael

87

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

88

Recent technological advances in thin film solar cells  

SciTech Connect (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

89

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

90

DOE Solar Energy Technologies Program FY 2006 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

91

DOE Solar Energy Technologies Program 2007 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2008-07-01T23:59:59.000Z

92

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect (OSTI)

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

93

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2014-04-29T23:59:59.000Z

94

Automated solar collector installation design including ability to define heterogeneous design preferences  

DOE Patents [OSTI]

Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

2013-01-08T23:59:59.000Z

95

Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies  

E-Print Network [OSTI]

To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

96

Solar Environmental Technologies Tianjin Corp aka SETC Cenicom Solar Etc |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutline Jump to:SolarLtd Jump

97

Solar Energy Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolarSolar Energy

98

Solar Photovoltaic Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolar FuelsPhotovoltaic

99

Solar Thermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess

100

Enabling Thin Silicon Solar Cell Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cracking problem in silicon cell technology," says Budiman. "The ALS provides us with a light that allows us to measure and characterize molecular stress in a very quantitative...

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new  

E-Print Network [OSTI]

Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new low cost point for solar energy. The company plans to manufacture and distribute high-efficiency, high yield, low cost solar panels. The company is making green energy more

Jawitz, James W.

102

High temperature solar thermal technology: The North Africa Market  

SciTech Connect (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

103

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

104

E-Print Network 3.0 - advanced technology solar Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics. Wafer silicon photovoltaic technology. Survey... Photovoltaics: Advanced Solar Energy Conversion, by M. A. Green (Springer, 2006) Solar Electricity, by T... Spring 2012...

105

Solar Energy Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices ServicesRenewable Energy » Solar

106

Solar Manufacturing Technology 2 | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy SmoothSolar Industry Scorches

107

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

SciTech Connect (OSTI)

In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

108

THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL Jonatan Pinksea,b  

E-Print Network [OSTI]

THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL INDUSTRY Jonatan Pinksea regarding solar PV technology investments, a renewable energy technology that has seen explosive growth towards the development and commercialization of solar PV technology. To investigate this, a multiple case

Paris-Sud XI, Université de

109

NREL: Technology Deployment - Solar Technical Assistance Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D.SolarRequestEffortLeading Clean

110

Solar Manufacturing Technology 2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarkson solar

111

ICP Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energythe SecondInformation 3 -2ICE SolarICMICP

112

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect (OSTI)

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

113

A compendium of solar dish/Stirling technology  

SciTech Connect (OSTI)

This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

Stine, W.B. [California State Polytechnic Univ., Pomona, CA (United States). Dept. of Mechanical Engineering; Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States)

1994-01-01T23:59:59.000Z

114

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect (OSTI)

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

115

Software and codes for analysis of concentrating solar power technologies.  

SciTech Connect (OSTI)

This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

Ho, Clifford Kuofei

2008-12-01T23:59:59.000Z

116

#include #include  

E-Print Network [OSTI]

process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

Campbell, Andrew T.

117

Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and  

E-Print Network [OSTI]

Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and wind-powered generators. Currently, the strongest permanent magnets contain rare earth for most technologies requiring permanent magnets, due to their high energy product and coercivity. However

McQuade, D. Tyler

118

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

119

Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000  

SciTech Connect (OSTI)

A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

Prythero, T.; Meyer, R. T.

1980-09-01T23:59:59.000Z

120

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS  

E-Print Network [OSTI]

BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.

Borexino Collaboration; G. Alimonti

2000-12-11T23:59:59.000Z

122

#include #include  

E-Print Network [OSTI]

#include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

Poinsot, Laurent

123

Use of Municipal Assistance Programs to Advance the Adoption of Solar Technologies (Note: Real One)  

Broader source: Energy.gov [DOE]

This report serves as a tool for municipalities and organizations that are exploring programs to facilitate the installation of solar energy technologies at the local level. The report discusses programs being implemented in Berkeley, San Francisco, and Madison. Program design considerations, lessons learned from program administrators, and recommendations to consider when designing a municipal assistance program are included, but no program design is prescribed. Recommendations should be customized to serve the needs of a specific market.

124

SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY Mechanical Engineering Department , Philadelphia University, Amman Jordan, e-mail  

E-Print Network [OSTI]

SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY A. Saleh1 A. Badran2 1 Mechanical Engineering dish­type solar cooker was built and tested utilizing satellite dish technology. A common satellite-TV dish was utilized as a solar cooker after covering it with a highly­reflective aluminum foil, which

125

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

parts of the solar spectrum, the power output of the LSC PVson our lab. The power output of the solar simulator is aboutinput solar radiation, the higher the power output. Solar

Wang, Chunhua

2011-01-01T23:59:59.000Z

126

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

127

Applied Solar Technologies Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy Information the Army Permit:FilmsSolar Technologies Pvt.

128

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

SciTech Connect (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

1991-12-01T23:59:59.000Z

129

Reflector Technology Development and System Design for Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

Adam Schaut

2011-12-30T23:59:59.000Z

130

Solar Policy Environment: Pittsburgh  

Broader source: Energy.gov [DOE]

In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

131

Estimating the Value of Utility-Scale Solar Technologies in California...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating the Value of Utility- Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard J. Jorgenson, P. Denholm, and M. Mehos Technical Report NREL...

132

Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting  

Broader source: Energy.gov [DOE]

Through the SEEDS program, seven projects are investigating strategies to accelerate the pace of change for solar energy technologies using cutting-edge analytical and computational tools, real...

133

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

glass. . . 18 Figure 2.4: IV curve of a solar cell. . . . .+ 05, Ric06]. IV curve The IV curve of a solar cell is thesuperposition of the IV curve of the solar cell diode in the

Wang, Chunhua

2011-01-01T23:59:59.000Z

134

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

It is put on a solar tracker. . . . Figure 4.7: Steady stateIn the test, by using a solar tracker, we have been able toputting them on top of a solar tracker, we can easily change

Wang, Chunhua

2011-01-01T23:59:59.000Z

135

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?  

E-Print Network [OSTI]

are introducing a new solar cell design: the Passivated Emitter and Rear Cell (PERC), which features a full-PERT (Passivated Emitter, Rear Totally Diffused) solar cells with a processing sequence based on an industrialN-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? Bianca

136

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

Diaz, Chair Solar energy is a prominent renewable source ofalternative energy sources [Abb11]. Solar energy, radiantsolar energy will become a very prominent renewable source

Wang, Chunhua

2011-01-01T23:59:59.000Z

137

Applying environmental externalities to US Clean Coal Technologies for Asia. [Including external environmental costs  

SciTech Connect (OSTI)

The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions.

Szpunar, C.B.; Gillette, J.L.

1993-01-01T23:59:59.000Z

138

CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology  

E-Print Network [OSTI]

CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

CERN Video Productions; Marion Viguier

2012-01-01T23:59:59.000Z

139

In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-  

E-Print Network [OSTI]

with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

Goodman, Robert M.

140

Showcasing Solar Technologies from San José Companies at the Tech Museum of Innovation  

Broader source: Energy.gov [DOE]

In May 2007, the City of San José won a Solar America Showcase award from the US Department of Energy. This award offers technical assistance to help the City realize its ambitious solar technology deployment goals on large buildings and complexes mainly in the revitalized downtown area. In July 2007, a DOE Tiger Team — led by Cécile Warner of the National Renewable Energy Laboratory (NREL) — met with numerous city officials to discuss the City’s solar plans in detail and visit the various sites under consideration for solar technology adoption.

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384  

SciTech Connect (OSTI)

Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

Mehos, M. S.

2014-01-01T23:59:59.000Z

142

And the Award Goes to... Silicon Ink Solar Technology Supported...  

Energy Savers [EERE]

program continues to see from investing in collaborative efforts with solar start-ups that take full advantage of the NREL's expertise and facilities. Innovalight's silicon...

143

Solar America Cities Awards, Solar Energy Technologies Program, Fact Sheet, March 2009  

SciTech Connect (OSTI)

This publication represents an ongoing effort to support outreach activities through the Solar America Cities program. The two-page fact sheet offers an overview of the SAC program and lists specific resources for more information on developing solar programs.

Not Available

2009-03-01T23:59:59.000Z

144

Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar  

Broader source: Energy.gov [DOE]

The SunShot Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program is taking a physics- and chemistry-based approach to identifying failure modes...

145

The Integrative Application Study on Solar Energy Technology Used In a Student Dormitory  

E-Print Network [OSTI]

. Shandong Jianzhu University has carried an integrative application study on solar energy technology used in student dorm and proof-tested the energy conservation efficiency after completing the study. This has provided new, significant data...

Xue, Y.; Wang, C.

2006-01-01T23:59:59.000Z

146

Solar thermal powered desalination: membrane versus distillation technologies  

E-Print Network [OSTI]

, in terms of the volume of water produced for the energy consumed. The two most commonly encountered. The daily desalinated water output per square metre of solar collector area is estimated for a number in remediation of dryland salinity, a critical review of the literature on medium to large scale solar driven (or

147

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

SciTech Connect (OSTI)

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

148

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.  

E-Print Network [OSTI]

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

Noble, William Stafford

149

Solar Energy Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolar EnergySolarEnergySolar

150

Solar Energy Technologies FY'14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolar EnergySolarEnergySolar

151

Breakthrough Cutting Technology Promises to Reduce Solar Costs...  

Broader source: Energy.gov (indexed) [DOE]

Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials...

152

Project Profile: Forecasting and Influencing Technological Progress in Solar Energy  

Broader source: Energy.gov [DOE]

The University of North Carolina at Charlotte, along with their partners at Arizona State University and the University of Oxford, under the Solar Energy Evolution and Diffusion Studies (SEEDS)...

153

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.stacked LSC plates for photovoltaics with the green LSC onsolar concentra- tors for photovoltaics. Science, 321(5886):

Wang, Chunhua

2011-01-01T23:59:59.000Z

154

2010 Solar Technologies Market Report, November 2011, Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MENA Middle East and North Africa MG-Si metallurgical-grade silicon MNGSEC Martin Next Generation Solar Energy Center MOU memorandum of understanding MT metric ton MW megawatt...

155

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates: 39.90601, 116.387909 Show...

156

Concentrating Solar Power Program Technology Overview (Fact Sheet)  

SciTech Connect (OSTI)

Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

Not Available

2001-04-01T23:59:59.000Z

157

SolarEdge Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems JumpPermittingSolarAireSolarEdge

158

SolarMission Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystemsSolarLab Jump to:SolarMission

159

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

SciTech Connect (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

160

Concentrating Solar Power Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *Concentrating Solar Power

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Bosch Solar Sustainable Energy Technologies JV | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield SectorInformationBosch

162

Solar Ventilation Preheating Resources and Technologies | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPV

163

China Technology Solar Power Holdings Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroup IndiaChangtuAntecedence | OpenSolar

164

Dongguan Yecool Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatang ChifengDhahran,Dongguan Yecool Solar

165

Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestionSolarPortocarrioInformation

166

Novel buried contact technology for advanced silicon solar cells  

SciTech Connect (OSTI)

Increased efficiency of silicon solar cells has resulted in the increased complexity and cost of manufacture. Optical properties can be enhanced by increasing the optical path length, while minimizing both bulk and surface recombination. Conventional silicon based solar cells are fabricated by a series of physical or chemical vapor deposition processes followed by photolithography and etching processes for each layer. These repeated deposition and etching cycles are not only difficult to perform but they also generate severe surface topography. This topography is a major cause of yield loss and reliability problems for advanced solar cells. These problems are especially severe for high aspect ratio contact holes. An alternative method of performing this metallization inexpensively and reliably is by the use of electroless plating. As the plating process occurs selectively on Si and not on the surface passivation layer, thick metal films (Ni and Cu) can be deposited which depend entirely upon the depth of the trench used. The advantages of electroless plating as an alternative to standard metallization will be presented.

Ni Dheasuna, C.; Mathewson, A.; Hecking, L.; Wrixon, G.T. [National Microelectronics Research Centre, Cork (Ireland)

1994-12-31T23:59:59.000Z

167

Solar detoxification technology: Using energy from the sun to destroy hazardous waste  

SciTech Connect (OSTI)

Solar energy is being applied to one of the most difficult environmental problems our country faces in the coming decades: the destruction of hazardous waste. DOE Researchers are developing two separate technologies -- solar detoxification of water and solar decontamination of soil -- that could revolutionize the way toxic wastes are removed from the environment. Unlike many remediation techniques in use today, these solar-based processes actually destroy hazardous contaminants; the wastes are not transferred to other media for disposal. Solar detoxification of water uses solar energy to power a reaction that eliminates organic contaminants from polluted surface water and groundwater. The process uses a solar-activated photocatalyst, such as titanium dioxide, to break the bonds holding organic compounds together. Researchers are currently working to increase the efficiency and reduce the costs of the process to make it economically competitive with traditional remediation methods. In a related program researchers are investigating the ability of high solar flux (upwards of 300 times the sun's normal intensity) to decontaminate polluted solids such as soils. The solar decontamination of soil is a two-step process: in the first step contaminants are desorbed from the solid either by solar thermal energy or by conventional means (such as heating or vacuum extraction); in the second step the desorbed contaminants are destroyed. The contaminants can be destroyed by using either a high-flux photolytic process or a low-flux process that employs a photocatalyst. SERI's state-of-the-art high-flux solar furnace is home to a large portion of the soil decontamination research. 4 figs.

Anderson, J.V.; Clyne, R.J.

1991-08-01T23:59:59.000Z

168

Unmanned Untethered Submersible Technology Sept. 7-10, 1997 Some Design Considerations for a Solar Powered AUV;  

E-Print Network [OSTI]

Systems Institute (AUSI) is currently working on the development of a solar powered Autonomous Underwater of solar energy to power autonomous vehicles. This paper will discuss some of the technologies under of a solar powered autonomous sampling system. The work described in this paper focuses on some the energy

169

Intern Opportunity: Office of Technology Alliances at UC Irvine What we need: Technology assessment of university inventions including patent landscape,  

E-Print Network [OSTI]

assessment of university inventions including patent landscape, invention summary, and initial market at UCI. Licensing Officers within OTA are responsible for making decisions about proceeding with a patent filing and, for cases that are already filed, whether or not to continue with patent prosecution. A big

Loudon, Catherine

170

Energy Department Announces New Concentrating Solar Power Technology  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolar Power |Health ofNatural Gas

171

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest HomeInformation GabbsSolar

172

NREL-Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBus Jump to: navigation,CourseReport Agency/Company

173

Solar Hot Water Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 Solar BackgroundGivesof EnergyHot

174

Wuxi Jiacheng Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County,Worden,Wrightsville,Wurth Solar GmbH

175

Project Profile: Flexible Assembly Solar Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment of EnergyFlexible Assembly Solar

176

Solar Cells, Wound Repair Winning GVC Technologies | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat HomeAssurance: DOESoil0 (SAPC)Solar

177

Solar Smart Grid: 1663 Science and Technology Magazine | Los National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable EnergySolar

178

Economic evaluation of solar-only and hybrid power towers using molten salt technology  

SciTech Connect (OSTI)

Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

Kolb, G.J.

1996-12-01T23:59:59.000Z

179

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect (OSTI)

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

180

Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Assessment of solar technology in the home-building industry. Final report  

SciTech Connect (OSTI)

The NAHB Research Foundation, Inc., conducted a review of existing survey data supplied by home builders. The objective of this effort was to provide data which would serve as a basis for evaluating the completed and/or continuing programs of the Office of Solar Heat Technologies and to identify areas of future program emphasis.

Not Available

1983-06-01T23:59:59.000Z

182

2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

2010-11-01T23:59:59.000Z

183

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator29NanoPVNanowin Technology

184

Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes  

SciTech Connect (OSTI)

This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

Gordon, Kelly L.; Gilbride, Theresa L.

2008-05-22T23:59:59.000Z

185

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergyJingneng Energy Technology Co LtdResearch InstituteSunpu

186

Shanghai ST Solar Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren,Shanghai JTU PV Technology CoShanghai

187

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe Quest

188

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe

189

Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodson County,Worden,Wrightsville,Wurth Solar GmbH CoWuxi

190

Energy Department Announces New Concentrating Solar Power Technology...  

Office of Environmental Management (EM)

their ability to store energy as heat so that consumer demand can be met even when the sun is not shining, including during the night. These systems can be combined with existing...

191

Solar Radiation Resource Assessment Project. Program overview of fiscal year 1993  

SciTech Connect (OSTI)

The mission of the Solar Radiation Resource Assessment Project is to provide essential information about the solar radiation resource to users and planners of solar technologies so that they can make informed and timely decisions concerning applications of those technologies. The project team accomplishes this by producing and disseminating relevant and reliable information about solar radiation. Topics include: Variability of solar radiation, measurements of solar radiation, spectral distribution of solar radiation, and assessment of the solar resource. FY 1993 accomplishments are detailed.

Not Available

1994-06-01T23:59:59.000Z

192

Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application  

SciTech Connect (OSTI)

The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

2010-12-06T23:59:59.000Z

193

An outdoor exposure testing program for optical materials used in solar thermal electric technologies  

SciTech Connect (OSTI)

Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

Wendelin, T.; Jorgensen, G.

1994-01-01T23:59:59.000Z

194

U.S. Solar Power Market  

SciTech Connect (OSTI)

The report provides an overview of the domestic market for solar, including a concise look at the steps being taken to grow solar power in the U.S. Topics covered include: an overview of solar power including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving interest in solar power; a description of solar power technologies; a review of the economics of solar power; a discussion of the key markets for solar power; and, profiles of domestic solar cell/module manufacturers.

NONE

2007-08-15T23:59:59.000Z

195

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50˘/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12˘/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

196

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

197

How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77  

SciTech Connect (OSTI)

A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

1982-01-01T23:59:59.000Z

198

Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-07-01T23:59:59.000Z

199

Solar Technology Validation Project - Southwest Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-08  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

200

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network [OSTI]

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

PASSIVE SOLAR DESIGN J D, Balcomb, J. Co Heds torm and R, D.Solar Energy. 19. J. D. Balcomb. et al. Solar gains through

Viswanathan, R.

2011-01-01T23:59:59.000Z

202

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

2004.   “China  to  train  developing  nations  in  solar China  where  quality  is  already  equivalent  to  the  highest  technological  level  of  the  global  industry,  including  solar 

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

203

Candidate for solar power : a novel desalination technology for coal bed methane produced water.  

SciTech Connect (OSTI)

Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.

Hanley, Charles J.; Andelman, Marc (Biosouce, Inc., Worchester, MA); Hightower, Michael M.; Sattler, Allan Richard

2005-03-01T23:59:59.000Z

204

Sandia National Laboratories: Planting the "SEEDS" of Solar Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsights for Component Technologies

205

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

for passive solar deSigns of buildings. ! :'feasurements/BUILDING MATERIALS INTRODUC TION The design of passive solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

206

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology  

SciTech Connect (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. (Spire Corp., Bedford, MA (United States))

1993-04-01T23:59:59.000Z

207

Concentrating Solar Power  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

208

Solar Technology Validation Project - Loyola Marymount University: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-03  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

209

Solar Technology Validation Project - RES Americas: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-11  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

210

Solar Technology Validation Project - USS Data, LLC: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-04  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

211

Solar Technology Validation Project - Solargen (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-06  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

212

Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

213

Solar Technology Validation Project - Amonix, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-13  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

214

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

215

The U.S. Department of Energy`s role in commercialization of solar thermal electric technology  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has supported the development of solar thermal electric (STE) technology since the early 1970s. From its inception, the program has held a long-term goal of nurturing STE technologies from the research and development (R&D) stage through technology development, ultimately leading to commercialization. Within the last few years, the focus of this work -has shifted from R&D to cost-shared cooperative projects with industry. These projects are targeted not just at component development, but at complete systems, marketing approaches, and commercialization plans. This changing emphasis has brought new industry into the program and is significantly accelerating solar thermal`s entry into the marketplace. Projects such as Solar Two in the power tower area, a number of dish/Stirling joint ventures in the modular power area, and operations and maintenance (O&M) cost reduction studies will be discussed as examples of this new focus.

Burch, G.D. [United States Dept. of Energy, Washington, DC (United States); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

216

Solar Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This fact sheet outlines the content of the second edition of the DOE publication Solar Powering Your Local Community: A Guide for Local Governments.

217

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

218

1. Introduction Ad hoc networks are a hot research topic. The enabling technology for this field includes: (1)  

E-Print Network [OSTI]

1 1. Introduction Ad hoc networks are a hot research topic. The enabling technology for this field, with their computers turned on and connected. Ad hoc networks are a natural result of user demand meeting the enabling technology. Highly mobile devices that dynamically organize ad hoc networks, intercommunicate, pass

Yasinsac, Alec

219

7AC Technologies, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. Integrated Dynamic Electron...

220

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

solar energy applications, and water conservation. TheseConservation and Solar Applications, U.S. Department of Energy. )energy technologies including solar active and passive systems, wind machines, biomass conversion systems, energy conservation

Case, C.W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Problems in Solar, Nuclear and Storage of Energy", N78-If the problems are going to exist in solar energy systems,and solar energy is used to thaw out the PCM during the summer, Major problems

Viswanathan, R.

2011-01-01T23:59:59.000Z

222

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Performance of Thin Film, Solar Thermal Energy Converters",sts of Collectors of Solar Thermal Energy, A Steel Flat PlatA Comparison of Solar Thermal Coatings", Spie 85, Optics in

Viswanathan, R.

2011-01-01T23:59:59.000Z

223

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

TRANSFER (Section 4) A. PASSIVE SOLAR DESIGN B. HEA T PIPESreviews). D-15 A. PASSIVE SOLAR DESIGN J D, Balcomb, J. CoSection 4) D-15 - PASSIVE SOLAR DESIGN D-17 - HEAT PIPES D-

Viswanathan, R.

2011-01-01T23:59:59.000Z

224

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Long Life Terrestrial Solar Panel", 7 8N 24649, DOE/ JPLUno, "High Efficiency Solar Panel (HESP)! ', N78 10572, AD AOptically table for Flat Solar Panels", N78 17477 (1977). J.

Viswanathan, R.

2011-01-01T23:59:59.000Z

225

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Solar Cooling", Sharing the Sun in the Seventie s, Ed, J, Cook (Solar Energyll, Sharing the Sun in the Seventies, Ed, J, Cook (Cook H. M, Curran and M, M, Iller, "Comparative Evaluation of Solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

226

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

TI Reflective Solar Control Film on Windows Gains AcceptancelReflective Solar Control Film on Windows Gains Acceptance",optical window shutter, the cholesteric liquid crystal film

Viswanathan, R.

2011-01-01T23:59:59.000Z

227

Grass roots technology and energy policy: Solar ovens and wind turbines in Kenya  

SciTech Connect (OSTI)

Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxide elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.

Kammen, D.M. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

1992-12-31T23:59:59.000Z

228

Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

Jorgenson, J.; Denholm, P.; Mehos, M.

2014-06-01T23:59:59.000Z

229

Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

Jorgenson, J.; Denholm, P.; Mehos, M.

2014-05-01T23:59:59.000Z

230

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

Systems for Solar Thermionic Converters!! , AD 922869 (Performance of a Thermionic Converter Module Utilizing

Viswanathan, R.

2011-01-01T23:59:59.000Z

231

Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)  

SciTech Connect (OSTI)

Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

Not Available

2010-10-01T23:59:59.000Z

232

ribology is the science and technology of contact-ing solid surfaces in relative motion, including the  

E-Print Network [OSTI]

» friction and lubrication under extreme conditions, such as high-temperature or nonequilibrium, includ- ing, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction), and in the development of durable, low-friction surfaces and ultra-thin lubrication films. Friction between contacting

Guo, Yi

233

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

G. E. McOona 1d ABSTRACT: Solar heating panel performance issolar panels, co- efficient of performance of the heat pumps and the heatingThe panel is save heating costs in winter by absorbing solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

234

RFID TECHNOLOGY FOR AVI: FIELD DEMONSTRATION OF A WIRELESS SOLAR POWERED E-ZPASS1  

E-Print Network [OSTI]

mark of the Port Authority of New York and New Jersey #12;- 2 - ROADWAY SIDE MOUNT SOLAR PANEL OUTPUT Bluetooth GROUND/POLE-MOUNT CABINET CHARGER BATTERY ARRAY MGATE I READER OVERHEAD SOLAR PANEL (POLE MOUNTGateTM tag reader, antenna, solar panel, batteries and charger, enclosure and a pocket PC (PPC). A schematic

Mitchell, John E.

235

Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies  

SciTech Connect (OSTI)

Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

Jones, E.; Eto, J.

1997-09-01T23:59:59.000Z

236

Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

Not Available

2011-10-01T23:59:59.000Z

237

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes  

E-Print Network [OSTI]

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes information on the division of net royalties and proceeds: "With respect by the University associated with such action. After such expenses are reimbursed, royalties and other proceeds from

Logan, David

238

The winning ideas for the Fall 2013 Change the World Challenge cover a variety of innovative devices, processes, and technologies. The ten winning ideas include  

E-Print Network [OSTI]

. Weepri A 3-D printing system with educational lessons that empowers young inventors and tinkerers devices, processes, and technologies. The ten winning ideas include: Logikits Logikits is an easy-to-learn of mental illness; a notification email would be sent to the parents. Deborah Lark '17, Nuclear

Salama, Khaled

239

Study of solar-assisted thermoelectric technology for automobile air conditioning  

SciTech Connect (OSTI)

An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,680 Btu/h) in a 38 C (100 F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper. The photovoltaic (PV) cells, assumed to cover the roof area of a compact car can only generate about 225 W. However, this is more than enough to power a fan to provide air ventilation to the car interior which significantly reduces the peak cooling load when the car is parked in bright sunlight.

Mei, V.C.; Chen, F.C. [Oak Ridge National Lab., Oak Ridge, TN (United States); Mathiprakasam, B.; Heenan, P. [Midwest Research Inst., Kansas City, MO (United States)

1993-11-01T23:59:59.000Z

240

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

within the house includes: passive solar heating and coolingof the house. Technical Details: The passive constructionhouse" (Other technologies include solar domestic water heating, composting toilet, energy efficient conservation devices, passive

Case, C.W.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect (OSTI)

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

242

Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation  

SciTech Connect (OSTI)

Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

Macknick, J.; Beatty, B.; Hill, G.

2013-12-01T23:59:59.000Z

243

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems  

Broader source: Energy.gov [DOE]

This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

244

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

245

Historical Analysis of Investment in Solar Energy Technologies (2000-2007)  

SciTech Connect (OSTI)

The solar energy industry experienced unprecedented growth in the eight years from 2000 to 2007, with explosive growth occurring in the latter half of this period. From 2004 to 2007, global private sector investment in solar energy increased by almost twenty-fold, marking a dramatic increase in the short span of four years. This paper examines the timing, magnitude, focus and location of various forms of investment in the solar energy sector. It analyzes their trends to provide an understanding of the growth of the solar industry during the past eight years and to identify emerging themes in this rapidly evolving industry.

Jennings, C. E.; Margolis, R. M.; Bartlett, J. E.

2008-12-01T23:59:59.000Z

246

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

comparing the air source heat pump to the solar assisted~ indicates that the air source heat pump has a higher COP

Viswanathan, R.

2011-01-01T23:59:59.000Z

247

Quantitative Analysis of Solar Technologies For Net-Zero Design Affordable Homes Research Group, School of Architecture, McGill University  

E-Print Network [OSTI]

Cost per Watt (U.S.) Mono-crystalline - thick modular panels on roof, walls or separate structure 17Quantitative Analysis of Solar Technologies For Net-Zero Design Affordable Homes Research Group PRINCIPLES & RESULTS CONCLUSIONS Photovoltaic (PV) Energy Production Water-Based Solar Thermal Collectors Air

Barthelat, Francois

248

Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light-  

E-Print Network [OSTI]

light-to -electricity conversion efficiency in early implementations under AM1.5 solar light. EasyDye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light- to-electricity conversion in indoors low-light

249

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

250

Solar Innovator | Alta Devices  

ScienceCinema (OSTI)

Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

Mattos, Laila; Le, Minh

2013-05-29T23:59:59.000Z

251

Solar Policy Environment: Boston  

Broader source: Energy.gov [DOE]

City of Boston’s objective in creating Solar Boston is to maximize solar technology’s role in the City’s sustainable development, educational and emergency preparedness policies. Solar Boston’s objective is the installation of solar technology on all feasible and appropriate locations throughout Boston.

252

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

253

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

254

The conversion of solar energy to the chemical energy of organic compounds is a complex process that includes electron transport and  

E-Print Network [OSTI]

The conversion of solar energy to the chemical energy of organic compounds is a complex process would cause severe problems if special mechanisms did not protect the photosynthetic system from energy or photon units. Irradiance is the amount of energy that falls on a flat sensor of known area per

Ehleringer, Jim

255

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

hot water heating, etc, l50 F is good High melting temperatureand hot water systems. E-9Z REVIEW LBL LI TI Solar Absorption Properties of a High Temperature

Viswanathan, R.

2011-01-01T23:59:59.000Z

256

Project Profile: An Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV  

Broader source: Energy.gov [DOE]

The University of Texas at Austin, along with partners at Frontier Associates and Austin Energy, under the Solar Energy Evolution and Diffusion Studies (SEEDS) program, is developing an integrated...

257

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network [OSTI]

G. E. Bush, "A Simple Home Heating System", N77 20598, UCRLmore modest projects such as home heating and cooling is theEconomical Solar Heating System for Homes DATE: July 1

Viswanathan, R.

2011-01-01T23:59:59.000Z

258

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network [OSTI]

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

259

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

SciTech Connect (OSTI)

General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

260

For the designers, nature is the nucleus represented by the pond, moving gradually away from nature leads though a large open space towards the solar field, representing man-made technology.  

E-Print Network [OSTI]

from nature leads though a large open space towards the solar field, representing man-made technology to technology. In our design, the pond is a representation of nature, while the solar field on the extreme side is a representation of the man-made technology. We provide a connection between these two opposite concepts and offer

Goodman, Robert M.

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar Technology Validation Project - Tri-State G&T: Cooperative Research and Development Final Report, CRADA Number CRD-09-367-12  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

262

Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

Wilcox, S.

2013-08-01T23:59:59.000Z

263

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect (OSTI)

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

264

Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants  

E-Print Network [OSTI]

This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

Leitgab, Martin

2013-01-01T23:59:59.000Z

265

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

266

Photovoltaic concentrator technology development project. Sixth project integration meeting  

SciTech Connect (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

267

Solar Energy Technologies FY'14 Budget At-a-Glance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFuture |AssuranceSolarResource

268

Solar Energy Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolar

269

U.S. Department of Energy Solar Energy Technologies Program | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to: navigation, search Tool

270

Large resource development projects as markets for passive solar technologies. Final report  

SciTech Connect (OSTI)

A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

Roze-Benson, R V

1980-12-01T23:59:59.000Z

271

Evaluation of Solar Grade Silicon Produced by the Institute of Physics and Technology: Cooperative Research and Development Final Report, CRADA Number CRD-07-211  

SciTech Connect (OSTI)

NREL and Solar Power Industries will cooperate to evaluate technology for producing solar grade silicon from industrial waste of the phosphorus industry, as developed by the Institute of Physics and Technology (IPT), Kazakhstan. Evaluation will have a technical component to assess the material quality and a business component to assess the economics of the IPT process. The total amount of silicon produced by IPT is expected to be quite limited (50 kg), so evaluations will need to be done on relatively small quantities (? 5 kg/sample).

Page, M.

2013-02-01T23:59:59.000Z

272

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network [OSTI]

et al. , April 1975. 4. Solar Thermal Conversion Missionof.Several Central Reveiver Solar Thermal Power Plant Designterm solar energy are: Included solar thermal conversion to

Davidson, M.

2010-01-01T23:59:59.000Z

273

Early growth technology analysis : case studies in solar energy and geothermal energy  

E-Print Network [OSTI]

Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, ...

Kaya Firat, Ayse

2010-01-01T23:59:59.000Z

274

Role of pilot projects and public acceptance in developing wireless power transmission as an enabling technology for space solar power systems  

SciTech Connect (OSTI)

In all system concepts for delivering space solar power to terrestrial power systems, wireless power transmission (WPT) is identified as a critical link in the technology chain. To realize the full potential of WPT as an enabling technology for the development of space power systems, the technology needs to (1) be demonstrated as a commercially viable, low risk technology, and (2) be shown to be acceptable to the public. If WPT`s full potential is to be realized, its initial applications must be carefully chosen and demonstrated through a series of pilot projects which will develop both the technology and its public acceptance. This paper examines the role of pilot projects and how they will play an increasingly important role in the development and acceptance of WPT as an enabling technology for space solar power systems. Recognizing that public acceptance is the ultimate determinant of the commercial success or failure of a technology, the paper then explores the role of public opinion in the commercialization process of space solar power systems utilizing WPT. A framework that begins to define the process required to realize the full commercial potential of wireless power transmission is established. 21 refs., 1 fig., 2 tabs.

Woodell, M.I. [Bivings Woodell, Inc., Washington, DC (United States)] [Bivings Woodell, Inc., Washington, DC (United States); Schupp, B.W. [Raytheon Electronic Systems, Marlborough, MA (United States)] [Raytheon Electronic Systems, Marlborough, MA (United States)

1996-12-31T23:59:59.000Z

275

Connectable solar air collectors Solar Energy Centre Denmark  

E-Print Network [OSTI]

Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren �stergaard Jensen Miroslav Bosanac Solar Energy Centre Søren �stergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

276

The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1  

SciTech Connect (OSTI)

This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

Long, R.C.

1996-12-31T23:59:59.000Z

277

SolarBridge Technologies formerly SmartSpark Energy Systems | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginnerThinSolar/Wind

278

Rising Solar Energy Science and Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversityMedio, New Mexico: EnergyRising Solar

279

NREL: News Feature - NREL Solar Technology Will Warm Air at 'Home'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearch Staff MaterialsPrintableHPDrivingNREL Solar

280

Solar Roofing Shingles: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewable EnergySolar Thermal

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewableConcentrating Solar Power

282

Boston, Massachusetts: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

Not Available

2011-10-01T23:59:59.000Z

283

Knoxville, Tennessee: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies * Engaging Existing Industry to Promote Market Expansion * Allowing Solar Energy Systems in Historic Districts October 2011 Solar in Action The City of...

284

Passive Solar Building Design and Solar Thermal Space Heating Webinar  

Broader source: Energy.gov [DOE]

Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

285

BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH  

E-Print Network [OSTI]

BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

286

Page 7 The Coronal Courant The field of space weather studies the technological and societal impacts of the solar terrestrial  

E-Print Network [OSTI]

impacts of the solar terrestrial relationship. This emerging field of space science has become power distribution systems. Solar storms (such as coronal mass ejections and solar flares) can cause systems, sicken or kill astronauts and cause power blackouts. Though the current solar minimum

Eustice, Ryan

287

Solar Radiation Research Laboratory (Poster)  

SciTech Connect (OSTI)

SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

2012-07-01T23:59:59.000Z

288

Foundational Solar Resource Research (Poster)  

SciTech Connect (OSTI)

SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

2012-07-01T23:59:59.000Z

289

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

290

Baseline study of US industry solar exports  

SciTech Connect (OSTI)

This study is a detailed aggregate profile of US solar export activity in 1979 based on a survey of all segments of the solar industry. It identifies the dollar volume of exports by technology: (1) solar heating and cooling products; (2) wind products; (3) photovoltaics; (4) solar thermal electric; (5) OTEC and biomass; and (6) support products and services. The study offers to government and industry groups, for the first time, comprehensive information with which to formulate export goals and assistance measures based on the current realities of the solar export marketplace. Specific and aggregate recommendations which can lead to identification of realistic solar export opportunities and development of solar export markets are included.

Jacobius, T M; Levi, R S; Bereny, J A

1980-10-01T23:59:59.000Z

291

Solar Energy Technologies Office FY 2016 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFutureU.S. technological and market

292

Solar Energy in Inland Southern California: The Future Is Now Feb. 6, 2014  

E-Print Network [OSTI]

Solar Energy in Inland Southern California: The Future Is Now Feb. 6, 2014 This conference to learn about the state of solar energy by discussing the latest technology, public policy and opportunities for incorporating solar energy in their communities, including how the marketplace works, local

California at Riverside, University of

293

EEC 289-L Photovoltaics and Solar Cells 3 Units Winter Quarter (Alternate Years)  

E-Print Network [OSTI]

EEC 289-L Photovoltaics and Solar Cells 3 Units ­ Winter Quarter (Alternate Years) Prerequisite, and third-generation photovoltaics and solar cells, including design, fabrication technology, and grid physics of photovoltaics a. Device operation and performance metrics b. Properties of solar radiation c

294

Apricus Solar Co Ltd aka Focus Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy Information the ArmyInformationFocus Technology Co Ltd

295

EE580 Solar Cells Todd J. Kaiser  

E-Print Network [OSTI]

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

296

Boston solar retrofits: studies of solar access and economics  

SciTech Connect (OSTI)

Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

Shapiro, M.

1980-11-01T23:59:59.000Z

297

Connectable solar air collectors Solar Energy Centre Denmark  

E-Print Network [OSTI]

Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren �stergaard Jensen Miroslav Bosanac Solar Energy Centre for renewable energy of the Danish Energy Agency. The project group behind the project was: Solar Energy Centre

298

A model library of solar thermal electric components for the computer code TRNSYS  

SciTech Connect (OSTI)

A new approach to modeling solar thermal electric plants using the TRNSYS simulation environment is discussed. The TRNSYS environment offers many advantages over currently used tools, including the option to more easily study the hybrid solar/fossil plant configurations that have been proposed to facilitate market penetration of solar thermal technologies. A component library developed for Rankine cycle, Brayton cycle, and solar system modeling is presented. A comparison between KPRO and TRNSYS results for a simple Rankine cycle show excellent correlation.

Pitz-Paal, R. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Solare Energietechnik; Jones, S. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

299

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

300

analysis including plasma: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assembly 2010 Space Plasmas in the Solar System, including Planetary Magnetospheres (D) Solar Variability, Cosmic Rays and Climate (D21) GEOMAGNETIC ACTIVITY AT HIGH-LATITUDE:...

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laying the Foundation for a Solar America: The Million Solar Roofs Initiative  

SciTech Connect (OSTI)

As the U.S. Department of Energy's Solar Energy Technology Program embarks on the next phase of its technology acceptance efforts under the Solar America Initiative, there is merit to examining the program's previous market transformation effort, the Million Solar Roofs Initiative. Its goal was to transform markets for distributed solar technologies by facilitating the installation of solar systems.

Strahs, G.; Tombari, C.

2006-10-01T23:59:59.000Z

302

Solar energy at Sandia National Laboratories  

SciTech Connect (OSTI)

Basic concepts for using the energy of the sun have been known for centuries. The challenge today, the goal of the Department of Energy`s National Solar Energy Program is to create the technology needed to establish solar energy as a practical, economical alternative to energy produced by depletable fuels--and to use that solar-produced energy in a wide variety of applications. To assist the DOE in this national effort, Sandia sponsors industrial and university research and development, manages a series of technical programs, operates solar experimental facilities, and carries out its own scientific and engineering research. This booklet describes their projects, their technical objectives, and explains how their experimental facilities are used to find the answers we`re seeking. Prospective participants from companies involved in solar-energy development or applications should find it especially useful since it outlines broad areas of opportunity. Projects include: central receiver technology; line-focus thermal technology; photovoltaic systems technology; wind turbine development; energy storage technology; and applied research in improved polycrystalline materials for solar cells and photoelectrolysis of water.

NONE

1981-12-31T23:59:59.000Z

303

Energy 101: Concentrating Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies...

304

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

Process in the Adoption of Solar Energy Systems." Journal ofthe diffusion of innovation: Solar energy technology in Sri2010. Washington, DC, Solar Energy Industries Association:

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

305

Gap between active and passive solar heating  

SciTech Connect (OSTI)

The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

306

Solar Power Purchase Agreements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Solar Power Purchase Agreements Provides an overview of solar power purchase agreements including how they work, benefits and challenges and...

307

Breakout Session: Bringing Solutions to the Solar Industry: Startups...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bringing Solutions to the Solar Industry: Startups, Technology Development and Market Entry Breakout Session: Bringing Solutions to the Solar Industry: Startups, Technology...

308

IBM recently unveiled MobileFirst, a major initiative to develop mobile-related technologies and products that include security, analytics, mobile app development, and cloud-based backend services. MobileFirst  

E-Print Network [OSTI]

IBM recently unveiled MobileFirst, a major initiative to develop mobile-related technologies and products that include security, analytics, mobile app development, and cloud-based backend services. Mobile lab has been asked to lead key portions of IBM's mobile research agenda. IBM Research-Austin has

Plotkin, Joshua B.

309

An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization  

SciTech Connect (OSTI)

This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

Burch, J.; Thomas, K.E.

1998-01-01T23:59:59.000Z

310

Solar Policy Environment: Milwaukee  

Broader source: Energy.gov [DOE]

The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

311

SOLAR ENERGY POTENTIALS  

E-Print Network [OSTI]

In recent years solar energy has experienced phenomenal growth due to the technological improvements resulting in cost reductions and also governments policies supportive of renewable energy development and utilization. In this paper we will present possibilities for development and deployment of solar energy. We will use Kosovo to compare the existing power production potential and future possible potential by using solar energy.

Loreta N. Gashi; Sabedin A. Meha; Besnik A. Duriqi; Fatos S. Haxhimusa

312

Solar forecasting review  

E-Print Network [OSTI]

Quantifying PV power output variability,” Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

Inman, Richard Headen

2012-01-01T23:59:59.000Z

313

Solar Success Stories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

more efficient and less expensive solar energy technologies translate into easy access and large-scale energy savings. Explore EERE's solar energy success stories below. January...

314

Concentrating Solar Power (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2010-11-01T23:59:59.000Z

315

Solar Radiation and Meteorological Data Support  

E-Print Network [OSTI]

Solar Radiation and Meteorological Data Support for the Long Island Solar Farm and NSERCand NSERC-9 2011March 8 9, 2011 #12;LISF Solar Radiation and Meteorological Sensor Network ·· Technology Needs on intermittent source of solar radiationintermittent source of solar radiation #12;LISF Solar Radiation

Homes, Christopher C.

316

Solar thermal program summary: Volume 1, Overview, fiscal year 1988  

SciTech Connect (OSTI)

The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology,energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

Not Available

1989-02-01T23:59:59.000Z

317

A Look to the Future: Solar Repowering for Tomorrow's Energy Needs  

E-Print Network [OSTI]

to investigate the technical feasibility and cost effectiveness of central solar thermal energy technology. Projected development of this program includes studies of utility and industrial sites for application and the possibility of constructing one or more...

Wendt, M.

1980-01-01T23:59:59.000Z

318

SOLAR ENERGY Andrew Blakers  

E-Print Network [OSTI]

and conversion methods usually entail few environmental problems. Solar energy includes both direct radiationSOLAR ENERGY Andrew Blakers Director, Centre for Sustainable Energy Systems Australian National Solar energy is special. It is vast, ubiquitous and indefinitely sustainable. The solar resource

319

San Francisco, California: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

Francisco, California Includes case studies on: * Using a Web-based Solar Map to Provide Solar Information to the Public * Targeting Commercial Property Owners through the Mayor's...

320

Berkeley, California: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

Berkeley, California Includes case studies on: * Smart Solar Independent Client Advising Service * BerkeleyFIRST-A Property Assessed Clean Energy Financing Program * Berkeley Solar...

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar Policy Environment: Berkeley  

Broader source: Energy.gov [DOE]

The goals of this project are to (1) accelerate the adoption of solar technology at the local level by engaging the City, service providers, end users and regulators; (2) provide a model for other cities; and (3) promote solar technology among residents and local businesses.

322

Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

Romeo, Alessandro

323

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992  

SciTech Connect (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. [Spire Corp., Bedford, MA (United States)

1993-04-01T23:59:59.000Z

324

Solar Design Workbook  

SciTech Connect (OSTI)

This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

1981-06-01T23:59:59.000Z

325

Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power  

SciTech Connect (OSTI)

Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

Kennedy, C. E.; Terwilliger, K.

2007-01-01T23:59:59.000Z

326

IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY  

E-Print Network [OSTI]

depositions water cooled copper crucible and ceramic crucibles were used. The ceramic crucibles were found at dynamic deposition rates of 3.6 µm�m/min from ceramic crucibles onto RISE EWT solar cells. The cell by a dielectric passivation layer consisting of a thermal silicon oxide and ­ depending on the embodiment

327

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels .  

E-Print Network [OSTI]

??This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success.… (more)

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

328

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

SciTech Connect (OSTI)

Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

Not Available

2009-07-01T23:59:59.000Z

329

Review of legal and institutional issues in the use of decentralized solar energy systems  

SciTech Connect (OSTI)

The legal and institutional issues involved in the use of decentralized solar energy systems are examined for the purpose of advising government planners and policymakers, the solar industry, solar researchers, and prospective solar users of present and potential impediments and incentives to solar commercialization. This information was gathered primarily through a comprehensive literature review, with supplementary data provided through interviews with representatives of organizations active in the solar field. Five major issue areas were identified in the course of this study: (1) prohibitions on the use of solar equipment, (2) regulation of the production and placement of solar systems, (3) access to sunlight, (4) financial incentives and impediments to the use of solar technologies, and (5) the public utility-solar user interface. Each can be important in its impacts on the incidence of solar usage. The major actors involved with the issues identified above represent both the private and public sectors. Important private sector participants include solar manufacturers and installers, labor unions, lending institutions, utility companies, solar users themselves, and other community property owners. In the public sector, local, state, and federal governments are all capable of acting in ways that can influence the solar commercialization effort. Implementation options are available for all levels of government seeking to take an active role in addressing the previously mentioned legal and institutional issues. The appropriate actions will vary from federal to state to local governments, but each level can be important in removing existing barriers and creating new incentives for solar use.

Schweitzer, M.

1980-04-01T23:59:59.000Z

330

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

331

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

332

Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States  

SciTech Connect (OSTI)

The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

None

1980-07-01T23:59:59.000Z

333

Solar Industry at Work | Laila Mattos  

ScienceCinema (OSTI)

Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company.

Mattos, Laila

2013-05-29T23:59:59.000Z

334

Solar Industry at Work | Laila Mattos  

SciTech Connect (OSTI)

Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company.

Mattos, Laila

2012-01-01T23:59:59.000Z

335

Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels  

E-Print Network [OSTI]

This paper investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential photovoltaic ...

Chen, Heidi Q.

336

Economic On-Grid Solar Energy via Organic Thin Film Technology: 28 September 2007 - 27 October 2008  

SciTech Connect (OSTI)

Plextronics' PV Incubator goal was to take its organic photovoltaic technology from lab-scale and demonstrate a pathway to 3-W manufacturing capacity (~2010) and 7 cents/kWh LCOE by 2015.

Laird, D.; Bernkopf, J.; Jian, S.; Krieg, J.; Li, S.; McGuiness, C.; Rossier, J.; Storch, M.; Ripnis, R.; Tuttle, R.; Woodworth, B.; Williams, S.

2009-12-01T23:59:59.000Z

337

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

338

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

339

Solar Policy Environment: New Orleans  

Broader source: Energy.gov [DOE]

To use unprecedented rebuilding of the city of New Orleans is an opportunity for the Office of Recovery Management and its partners to encourage solar in New Orleans’ energy marketplace. While all Solar Cities grantees are undertaking market transformation activities that will both remove barriers to the adoption of solar technologies and reduce the cost of solar technologies, the reconstruction process affords New Orleans a window of opportunity to structurally alter the ways in which solar technologies are regulated, incentivized, produced, and consumed in the Greater New Orleans area.

340

Magnetohydrodynamics and Solar Physics  

E-Print Network [OSTI]

In this short review, I present some of the recent progresses on the pending questions of solar physics. These questions let us revisit the solar wind, the solar dynamo problem, the dynamics of the photosphere and finally have a glimpse at other solar type stars. Discussing the use of direct numerical simulations in solar physics, I show that the full numerical calculation of the flow in a single supergranule would require more electric power than the luminosity of the sun itself with present computer technology.

Rieutord, Michel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

342

Development of Molten-Salt Heat Trasfer Fluid Technology for...  

Broader source: Energy.gov (indexed) [DOE]

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

343

Project Profile: CSP Energy Storage Solutions - Multiple Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

344

Power Electronics and Balance of System Hardware Technologies  

Broader source: Energy.gov [DOE]

DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

345

New Orleans, Louisiana: Solar in Action (Brochure), Solar America...  

Energy Savers [EERE]

in New Orleans: Lessons Learned SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Financial Opportunities...

346

Next-Generation Photovoltaic Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

347

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

348

Building-integrated solar energy devices based on wavelength selective films.  

E-Print Network [OSTI]

??A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin… (more)

Ulavi, Tejas U.

2013-01-01T23:59:59.000Z

349

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

most widely used material in solar panel technology today isearth desert areas with solar panels would provide enoughthe amount of sunlight solar panels receive varies greatly

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

350

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network [OSTI]

of photovoltaic (PV) solar panels, grows increasingly more Currently there are  solar panels on one percent of technology.   The number of solar panel installations maybe 

Fedman, Anna

2011-01-01T23:59:59.000Z

351

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

l d i n g D e s i g n E n v e l o p e R&D Program Summaries Effective, cost competitive solar shingles. Building-integrated photovoltaic (PV) technologies helps make solar power...

352

Port of Galveston Solar Energy Project  

SciTech Connect (OSTI)

This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

Falcioni, Diane [Project Director, Port of Galveston; Cuclis, Alex [Project Manager, Houston Advanced Research Center; Freundlich, Alex [Principal Investigator, University of Houston

2014-03-31T23:59:59.000Z

353

Conservation and solar guidelines  

SciTech Connect (OSTI)

Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the US and the results are also displayed on maps. An example is included.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

354

SSuuppppoorrtt aa PPhhDD aatt oonnee ooff SSccoottllaanndd''ss lleeaaddiinngg UUnniivveerrssiittiieess The Energy Technology Partnership (ETP)  

E-Print Network [OSTI]

and a further 25 are available in 2011. These are across a range of areas, including; wind; marine; solar; bio-energy and a further 25 are available in 2011. These are across a range of areas, including; wind; marine; solar; bio-energy UUnniivveerrssiittiieess The Energy Technology Partnership (ETP) is an alliance of Scottish Universities engaged in world

Strathclyde, University of

355

Solar Policy Environment: Seattle  

Broader source: Energy.gov [DOE]

The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

356

Design considerations for concentrating solar power tower systems employing molten salt.  

SciTech Connect (OSTI)

The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

2010-09-01T23:59:59.000Z

357

Washington County- Solar Ordinance  

Broader source: Energy.gov [DOE]

Provides for zoning restrictions on solar energy systems, including (1) six foot setbacks; (2) 20 foot height limitations on freestanding systems; (3) limitations on square feet of freestanding...

358

2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for  

E-Print Network [OSTI]

photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar technology such as concentrating solar power (CSP). PV project developers first need to identify2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases

Paris-Sud XI, Université de

359

Solar Policy Environment: Ann Arbor  

Broader source: Energy.gov [DOE]

The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

360

Public Lecture Prospects for Solar  

E-Print Network [OSTI]

Public Lecture Prospects for Solar Energy Utilization 4 p.m., October 8 100 Lindquist Hall Scientific lecture O Thermodynamically Efficient Solar Energy Concentration 2 p.m., October 7 128 Jabara Hall-Merced and director of the California Advanced Solar Technologies Institute. He invented the field of non

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Solar Powering Your Community: A Guide for Local Governments...  

Broader source: Energy.gov (indexed) [DOE]

SOLAR ENERGY TECHNOLOGIES PROGRAM SOLAR POWERING YOUR COMMUNITY: A GUIDE FOR LOCAL GOVERNMENTS Second edition Cities and local communities across the country are recognizing that...

362

Implementation of Solar Energy in Eco-Cities.  

E-Print Network [OSTI]

?? The purpose of this study is to investigate the potential of implementing solar energy and solar technology systems in the energy systems of two… (more)

Nestius Svensson, Olivia

2013-01-01T23:59:59.000Z

363

Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3  

Broader source: Energy.gov [DOE]

This document details the Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3: Solar Technology Options and Resource Assessment Question & Answer Session on August 15, 2012.

364

Opportunities and Challenges for Solar Minigrid Development in Rural India  

SciTech Connect (OSTI)

The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

2012-09-01T23:59:59.000Z

365

Solar thermal bowl concepts and economic comparisons for electricity generation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

366

Solar Rights  

Broader source: Energy.gov [DOE]

In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

367

Energy 101: Concentrating Solar Power  

ScienceCinema (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2013-05-29T23:59:59.000Z

368

Energy 101: Concentrating Solar Power  

SciTech Connect (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2010-01-01T23:59:59.000Z

369

Solar access of residential rooftops in four California cities  

E-Print Network [OSTI]

solar-energy systems, including photovoltaic panels andsolar-energy systems, including photovoltaic panels and

Levinson, Ronnen

2010-01-01T23:59:59.000Z

370

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

SciTech Connect (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

371

Space Science Technology Health General Sci-fi & Gaming Oddities International Business Politics Education Entertainment Sports Solar Power With A Twist  

E-Print Network [OSTI]

Education Entertainment Sports Solar Power With A Twist Posted on: Monday, 6 October 2008, 07:25 CDT Solar-Champaign Source: redOrbit Staff & Wire Reports More News in this Category Related Articles Solar Power Showcased power is now available with a twist, thanks to U.S. researchers who found a way to make efficient

Rogers, John A.

372

In Proc. SPIE 4007-105, Adaptive Optical Systems Technologies, Wizinowich, ed., Munich, Germany, March 2000. A Workstation Based Solar/Stellar Adaptive Optics System  

E-Print Network [OSTI]

adequate for a correlation tracker of solar granulation controlling a tip­tilt corrector. In 2000, March 2000. A Workstation Based Solar/Stellar Adaptive Optics System G¨oran B. Scharmera, Mark Shandb eighteen months. The Swedish Vacuum Solar Tower (SVST) uses off-the-shelf workstations for all aspects

Löfdahl, Mats

373

Bridgeview Park facility solar retrofit  

SciTech Connect (OSTI)

The weatherization and insulation of a presently unheated frame park building and the installation of a Trombe wall on the south side of the structure for passive solar heating are planned. The major objectives of the project are to increase the exposure of local residents and visitors to passive solar technology and to demonstrate the applicability of passive solar technology to residential, commercial and recreational buildings. Some changes in the original plans are discussed. Five blueprints illustrate the planned improvements. (LEW)

Not Available

1981-01-01T23:59:59.000Z

374

Purdue Solar Energy Utilization Laboratory  

SciTech Connect (OSTI)

The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

Agrawal, Rakesh [Purdue] [Purdue

2014-01-21T23:59:59.000Z

375

E-Print Network 3.0 - advanced conversion technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Professor Meng Tao Course Description... for solar energy utilization. Review of solar cell physics. Wafer silicon photovoltaic technology. ... Source: Collection:...

376

A handbook for solar central receiver design  

SciTech Connect (OSTI)

This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

Falcone, P.K.

1986-12-01T23:59:59.000Z

377

Solar Installation Labor Market Analysis  

SciTech Connect (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

378

Solar Energy Education. Solar solutions: Reader, Part III  

SciTech Connect (OSTI)

A collection of magazine articles which focus on the subject of solar energy is presented in this booklet. This is the third of a four part series of the Solar Energy Reader books. The articles provide brief discussions on the various applications of solar energy including: heat, photovoltaics; wind, hydro, and biomass. A glossary of terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

379

Solar thermophotovoltaic efficiency potentials : surpassing photovoltaic device efficiencies  

E-Print Network [OSTI]

Solar energy has gained more attention in recent years due to increased concerns about the continued use of fossil fuels. Solar energy is a form of renewable energy, and solar energy technology does not release greenhouse ...

Barnes, Kathryn M

2012-01-01T23:59:59.000Z

380

Conservation and solar energy program: congressional budget request, FY 1982  

SciTech Connect (OSTI)

Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Information and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)

None

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi  

E-Print Network [OSTI]

Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating the economics of the solar power technologies. The NMSU team is evaluating the potential environmental impacts

Johnson, Eric E.

382

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

383

Solar Electric & Heat System Training  

Broader source: Energy.gov [DOE]

GRID Alternatives is holding a solar training in partnership with Trees, Water & People and Lakota Solar Enterprises. This 9-day training will include both classroom education and hands-on...

384

Solar Instructor Training Network Frequently Asked Questions  

Broader source: Energy.gov [DOE]

These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

385

Introduction to Solar Photon Conversion  

SciTech Connect (OSTI)

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

386

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

Not Available

2010-09-01T23:59:59.000Z

387

Secretary Chu Announces more than $200 Million for Solar and...  

Energy Savers [EERE]

more than 200 Million for Solar and Water Power Technologies Secretary Chu Announces more than 200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis...

388

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network [OSTI]

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

389

Heterojunction solar cell  

DOE Patents [OSTI]

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

390

Current Status of Concentrator Photovoltaic (CPV) Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(CPV) technology has recently entered the market as a utility- scale option for the generation of solar electricity. This report explores the current status of CPV technology...

391

SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS  

SciTech Connect (OSTI)

This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

2008-08-01T23:59:59.000Z

392

EC/MS 573 Solar Energy Systems (This course is jointly offered as MS 573 Course)  

E-Print Network [OSTI]

Course Description: This course is designed for first year graduate and senior undergraduate students from engineering disciplines and is intended to educate students in the design and applications of solar energy engineering. It will focus on fundamentals of solar energy conversion, photovoltaic and photothermal engineering, optical systems, photoelectrochemical cells for hydrogen generation, and energy storage and distribution systems. The course covers solar energy insolation and global energy needs, current trends in solar plants, thin film solar cells, and solar cell material science. Design and installation of solar panels for residential and industrial applications and connections to the national grid and cost analysis will be discussed. In addition, basic manufacturing processes for the production of solar panels, environmental impacts, and the related system engineering aspects will be included to provide a comprehensive state-of-the art approach to solar energy utilization. Course Goals: 1. Learn the fundamentals of solar energy conversion systems, available solar energy and the local and national needs, photovoltaic and photothermal engineering applications, emerging technologies,

unknown authors

393

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Office of Environmental Management (EM)

borrower must be rural small business or agricultural producer * Technology: biomass, solar, wind, hydro, hydrogen, geothermal * Applications: equipment, construction,...

394

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells  

E-Print Network [OSTI]

of Solar Energy Conversion (Oxford University Press, Newsolar energy back into the forefront of technological research in universities

Abrams, Zeev R.

2012-01-01T23:59:59.000Z

395

Solar Junction Develops World Record Setting Concentrated Photovoltaic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office focuses on achieving the goals of...

396

Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013  

SciTech Connect (OSTI)

Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

Ravi, T. S.

2013-05-01T23:59:59.000Z

397

Solar Easements  

Broader source: Energy.gov [DOE]

New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

398

Solar Easements  

Broader source: Energy.gov [DOE]

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

399

Internship Contract (Includes Practicum)  

E-Print Network [OSTI]

Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

Thaxton, Christopher S.

400

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network [OSTI]

D. (2004). Advances in solar thermal electricity technology.table.. 21  Table 8. Solar Thermal Cooling Data19  Solar Thermal Cooling

Xu, Tengfang

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

November 20, 2009. Renewable Energy Policy Network for theinternal only). Renewable Energy Policy Network for the 21conducted by the Renewable Energy Policy Project (REPP) in

Price, S.

2010-01-01T23:59:59.000Z

402

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

DOE. (2008). Renewable Energy Production Incentive. U.S.84 4.1.10 Renewable Energy Productionenergy certificate Renewable Energy Production Incentive (

Price, S.

2010-01-01T23:59:59.000Z

403

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

DOE. (2008). Renewable Energy Production Incentive. U.S.certificate Renewable Energy Production Incentive (federal)4.1.10 Renewable Energy Production Incentive The Renewable

Price, S.

2010-01-01T23:59:59.000Z

404

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Electric Power thermal energy storage terawatt utility3.9.5 Storage Thermal energy storage (TES) has the potential

Price, S.

2010-01-01T23:59:59.000Z

405

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Golden, CO: National Renewable Energy Laboratory. Denholm,Golden, CO: National Renewable Energy Laboratory (internalonly). Renewable Energy Policy Network for the 21 st

Price, S.

2010-01-01T23:59:59.000Z

406

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

organic cells and dye-sensitized cells, respectively. Figureinclude dye-sensitized and organic PV cells, which have

Price, S.

2010-01-01T23:59:59.000Z

407

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

CSP Plants ..10 Table 1.2. CSP Plants Under Construction, by11 Table 1.3. Installed CSP Plants in the United

Price, S.

2010-01-01T23:59:59.000Z

408

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Electricity for the U.S. NREL Report TP-670-44073. Golden,Analysis 2007/2008. Report # NPS-Supply3. Palo Alto, CA:Analysis 2008/2009. Report # NPS-Supply4. Palo Alto, CA:

Price, S.

2010-01-01T23:59:59.000Z

409

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

DOE. (2008). Renewable Energy Production Incentive. U.S.Renewable Energy Production Incentive ..4.1.10 Renewable Energy Production Incentive The Renewable

Price, S.

2010-01-01T23:59:59.000Z

410

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

large-scale PV plants in Spain, and grid-connectedgrid-connected PV and large PV power plants in Germany,where there is a new PV manufacturing plant or where a new

Price, S.

2010-01-01T23:59:59.000Z

411

Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to: navigation,

412

NREL: Technology Deployment - Solar Decathlon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther Federal Agency Support PhotoDecathlon Photo

413

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

414

Evaluation of Wind Loads on Solar Panels.  

E-Print Network [OSTI]

?? The current impetus for alternative energy sources is increasing the demand for solar energy technologies in Florida – the Sunshine State. Florida’s energy production… (more)

Barata, Johann

2011-01-01T23:59:59.000Z

415

Developing a solar energy industry in Egypt .  

E-Print Network [OSTI]

??This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this… (more)

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

416

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

417

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

Video recording and text version of the Fuel Cell Technologies Office webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015.

418

Concentrating Solar Power: Energy from Mirrors  

SciTech Connect (OSTI)

This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

Poole, L.

2001-02-27T23:59:59.000Z

419

Planar photovoltaic solar concentrator module  

DOE Patents [OSTI]

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

420

Planar photovoltaic solar concentrator module  

DOE Patents [OSTI]

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, Clement J. (New Brunswick, NJ)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pump apparatus including deconsolidator  

DOE Patents [OSTI]

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

422

Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries  

SciTech Connect (OSTI)

Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

None,

1981-09-01T23:59:59.000Z

423

NANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures  

E-Print Network [OSTI]

include dye-sensitized solar cells, quantum- dot-sensitized solar cells, and p-n junction solar cells their efficiencies more practical. Now the third-generation solar cells, such as dye-sensitized solar cells (DSSCsNANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures Kehan Yu Ă? Junhong Chen

Chen, Junhong

424

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Technology of Nankai University Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute...

425

assistive technologies aat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water...

426

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

Berdahl, P.

2010-01-01T23:59:59.000Z

427

California Solar Initiative- Single-Family Affordable Solar Housing (SASH) Program  

Broader source: Energy.gov [DOE]

The California Solar Initiative (CSI) provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in total funding for the CSI, ...

428

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network [OSTI]

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

429

Community Shared Solar with Solarize  

Broader source: Energy.gov [DOE]

An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

430

Light shield for solar concentrators  

DOE Patents [OSTI]

A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

Plesniak, Adam P.; Martins, Guy L.

2014-08-26T23:59:59.000Z

431

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

SciTech Connect (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

432

Decathletes Demonstrate Affordable Solar Housing  

Broader source: Energy.gov [DOE]

Two teams tied for first place in the first-ever Affordability Contest at the 2011 Solar Decathlon -- demonstrating that innovative technology doesn’t have to be expensive.

433

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

technologies. Silicon photovoltaic module cost have continuegeneration photovoltaic panels due to their low cost, easycost-efficient multiple junction solar devices with remarkably high efficiency should be the direction and objective of photovoltaic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

434

Solar Policy Environment: San Francisco  

Broader source: Energy.gov [DOE]

The City and County of San Francisco’s “Solar San Francisco” Initiative will strive to remove barriers to the deployment of solar technologies in San Francisco as part of its effort to reduce its overall greenhouse gas emissions to 20% below 1990 levels by the year 2012.

435

Solar Easements and Rights Laws  

Broader source: Energy.gov [DOE]

Indiana state law includes both covenant restrictions and solar easement provisions. The state's covenant restrictions prevent planning and zoning authorities from prohibiting or unreasonably...

436

Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform  

E-Print Network [OSTI]

of Energy Technology, Aalborg University. Keywords: characterization, experiment based, modelling, solar (MSc and PhD level) taught at the Department of Energy Technology, Aalborg University. SOLAR CELL S. V. Spataru, D. Sera, T. Kerekes, R. Teodorescu Department of Energy Technology Aalborg University

Sera, Dezso

437

Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind?  

E-Print Network [OSTI]

including the large solar panels which contribute to amaterial, kap- ton, solar panel mylar, and a few metallic

2009-01-01T23:59:59.000Z

438

Department of Energy Technology  

E-Print Network [OSTI]

Reservoir Models 42 #12;Page 2.21. Energy Storage 43 2.22. Focusing Solar Collector 43 2.23. Digitizing technology towa^ls energy technology problems in general, at Risø and in the Depart- ment, was made manifestRisa-R-482 Department of Energy Technology Annual Progress Report 1 January - 31 December 1982 Ris

439

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

440

Module level solutions to solar cell polarization  

DOE Patents [OSTI]

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL Solar Radiation Resource Assessment Project: Status and outlook  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory. 17 refs.

Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

1992-05-01T23:59:59.000Z

442

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

energy including hydroelectric, wind, geothermal, biomass, photovoltaic, and solar thermal, each having its own advantages and

Luc, Wesley Wai

443

Solar Buildings Research Network A brief overview  

E-Print Network [OSTI]

Solar Buildings Research Network A brief overview Andreas Athienitis, Scientific Director Meli Stylianou, Network Manager #12;VISION Development of the solar-optimized building as an integrated advanced not mean complex; it brings together "low-tech" passive solar technologies that appear simple but generally

Wu, Bin

444

Access to Solar: Designing and Developing a  

E-Print Network [OSTI]

is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total members of a neighborhood or community to pool resources and share the benefits of a single solar

445

Overview of BNL's Solar Energy Research Plansgy  

E-Print Network [OSTI]

Overview of BNL's Solar Energy Research Plansgy March 8, 2011, #12;Outline O i f th LISF S l PV P j Field LIPA Substation South Array Field LIPA Substation #12;#12;#12;BNL is developing a solar energy, February 2009 · EERE Renewable Systems interconnection Study, February 2008 · EERE Solar Energy Technology

Homes, Christopher C.

446

Design of a GaAs/Ge solar array for unmanned aerial vehicles  

SciTech Connect (OSTI)

Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

Scheiman, D.A.; Colozza, A.J. [NYMA Setar Inc., Brookpark, OH (United States); Brinker, D.J.; Bents, D.J. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-12-31T23:59:59.000Z

447

Design of a GaAs/Ge solar array for unmanned aerial vehicles  

SciTech Connect (OSTI)

Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

Scheiman, D.A.; Brinker, D.J.; Bents, D.J.; Colozza, A.J.

1995-03-01T23:59:59.000Z

448

Solar cell with back side contacts  

DOE Patents [OSTI]

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

449

Lex Helius: The Law of Solar Energy  

Broader source: Energy.gov [DOE]

This 85-page document covers a variety of solar legal issues including solar access, power purchase agreements, solar development contracts, regulations, permitting, solar financing contracts, and renewable energy credits. Note that this document is not legal advice or a legal opinion on specific facts or circumstances.

450

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller.  

E-Print Network [OSTI]

??This thesis reviews the work that was done before my time as a graduate student so that one may understand the solar thermal technology and… (more)

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

451

Promise of Solar: Variables to Consider When Evaluating the Use of Solar (Presentation)  

SciTech Connect (OSTI)

This presentation on solar technologies and sustainability was given at the 17th Annual Rocky Mountain Land-Use Institute (RMLUI) Land-Use Conference.

Carlisle, N.

2008-03-01T23:59:59.000Z

452

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

453

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network [OSTI]

solar-energy systems, including photovoltaic panels andsolar-energy systems, including photovoltaic panels and

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

454

Power Tower Technology Roadmap and cost reduction plan.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

455

2005 Solar Decathlon (Competition Program)  

SciTech Connect (OSTI)

The 2005 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

Not Available

2005-10-01T23:59:59.000Z

456

Are Standard Solar Models Reliable?  

E-Print Network [OSTI]

The sound speeds of solar models that include element diffusion agree with helioseismological measurements to a rms discrepancy of better than 0.2% throughout almost the entire sun. Models that do not include diffusion, or in which the interior of the sun is assumed to be significantly mixed, are effectively ruled out by helioseismology. Standard solar models predict the measured properties of the sun more accurately than is required for applications involving solar neutrinos.

John N. Bahcall; M. H. Pinsonneault; Sarbani Basu; J. Christensen-Dalsgaard

1996-12-20T23:59:59.000Z

457

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

SciTech Connect (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

458

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect (OSTI)

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

NONE

1981-12-31T23:59:59.000Z

459

Solar Advisor Model User Guide for Version 2.0  

SciTech Connect (OSTI)

The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

2008-08-01T23:59:59.000Z

460

Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Next-Generation Solar Collectors for CSP  

Broader source: Energy.gov [DOE]

This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

462

Solar Easements  

Broader source: Energy.gov [DOE]

Rhode Island allows property owners to establish solar easements in the same manner and with the same effect as a conveyance of an interest in real property. Solar easements must be created in...

463

Solar Forecasting  

Broader source: Energy.gov [DOE]

On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

464

Solar Easements  

Broader source: Energy.gov [DOE]

Kansas' solar easement provisions do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate...

465

Solar Rights  

Broader source: Energy.gov [DOE]

Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

466

Solar Grid Integration Industrial Research Perspectives  

E-Print Network [OSTI]

with 25 inverters) Substation 1 Substation 2 Solar Power Generation Wind Generation 100 MW Wide variety/30/2011 Role of Global Research · Delivering core technologies for new products + productivity · Discovering new technology opportunities · Establishing foothold in advanced technologies · Spreading technology

Homes, Christopher C.

467

Solar Ready: An Overview of Implementation Practices  

SciTech Connect (OSTI)

This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

2012-01-01T23:59:59.000Z

468

Solar Policy Environment: Madison  

Broader source: Energy.gov [DOE]

The City of Madison’s Solar America Cities project, “MadiSUN”, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madison’s approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

469

Smart Solar Marketing Strategies: Clean Energy State Program Guide  

Broader source: Energy.gov [DOE]

The report, based on recent research, informs states on how they can act more like retail marketers to establish the financial and energy value of solar technology for the consumer. According to the new solar marketing report, use of effective marketing strategies is the key to attracting new customers to solar and bringing this smart technology into the mainstream.

470

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

471

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

Reif, John H.

472

Nanoscience and Nanostructures for Photovoltaics and Solar Fuels  

E-Print Network [OSTI]

Nanoscience and Nanostructures for Photovoltaics and Solar Fuels Arthur J. Nozik National Renewable to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production of the technological status of nanocrystals and nanostructures for third generation photovoltaic cells and solar fuels

Wu, Zhigang

473

Integrating Seeing Measurements into the Operations of Solar Telescopes  

E-Print Network [OSTI]

conditions for solar observations: Big Bear Solar Observatory in California, Haleakala on Maui, HawaiiIntegrating Seeing Measurements into the Operations of Solar Telescopes C. Denker and A. P. Verdoni New Jersey Institute of Technology, Center for Solar-Terrestrial Research 323 Martin Luther King Blvd

474

SunLab: Concentrating Solar Power Program Overview  

SciTech Connect (OSTI)

DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

NONE

1998-11-24T23:59:59.000Z

475

The passive solar home  

SciTech Connect (OSTI)

This article describes a home designed with both energy efficiency and solar principles in mind. The house is situated in Colorado and maintains a comfortable, relatively even heat year around with little backup heat needed. The sun heats the home and the energy efficient design works to store and distribute the heat slowly and continuously. Specific design elements discussed include the following: collection, storage, distribution and retention of solar energy.

Weiss, J.; Stone, L. [Solar Energy International, Carbondale, CO (United States)

1995-02-01T23:59:59.000Z

476

2005 the North American Solar Challenge  

SciTech Connect (OSTI)

In July 2005 the North American Solar Challenge (NASC) featured university built solar powered cars ran across the United States into Canada. The competition began in Austin, Texas with stops in Weatherford, Texas; Broken Arrow, Oklahoma; Topeka, Kansas; Omaha, Nebraska; Sioux Falls, South Dakota, Fargo, North Dakota; Winnipeg, Manitoba; Brandon, Manitoba; Regina, Saskatchewan; Medicine Hat, Alberta; mainly following U.S. Highway 75 and Canadian Highway 1 to the finish line in Calgary, Alberta, Canada, for a total distance of 2,500 miles. NASC major sponsors include the U.S. Department of Energy (DOE), Natural Resources Canada and DOEs National Renewable Energy Laboratory. The event is designed to inspire young people to pursue careers in science and engineering. NASCs predecessors, the American Solar Challenge and Sunrayce, generally have been held every two years since 1990. With each race, the solar cars travel faster and further with greater reliability. The NASC promotes: -Renewable energy technologies (specifically photovoltaic or solar cells) -Educational excellence in science, engineering and mathematics -Creative integration of technical and scientific expertise across a wide-range of disciplines -Hands-on experience for students and engineers to develop and demonstrate their technical and creative abilities. Safety is the first priority for the NASC. Each team put its car through grueling qualifying and technical inspections. Teams that failed to meet the requirements were not allowed participate. During the race, each team was escorted by lead and chase vehicles sporting rooftop hazard flashers. An official observer accompanied each solar car team to keep it alert to any safety issues.

Dan Eberle

2008-12-22T23:59:59.000Z

477

First Light of the 1.6 meter off-axis New Solar Telescope at Big Bear Solar Observatory  

E-Print Network [OSTI]

First Light of the 1.6 meter off-axis New Solar Telescope at Big Bear Solar Observatory Wenda Caoab, Nicolas Gorceixb, Roy Coulterb, Aaron Coulterb, Philip R. Goodeab aCenter for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102; bBig Bear Solar

478

Design of a telescope pointing and tracking subsystem for the Big Bear Solar Observatory New Solar Telescope  

E-Print Network [OSTI]

, California, U.S.A.; bNew Jersey Institute of Technology, Newark, New Jersey, U.S.A. ABSTRACT The New SolarDesign of a telescope pointing and tracking subsystem for the Big Bear Solar Observatory New Solar Telescope J. R. Varsika and G.Yangb aBig Bear Solar Observatory, 40386 North Shore Lane, Big Bear City

479

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

480

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies including solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Area of cooperation includes: Joint research and development on  

E-Print Network [OSTI]

Technologies August 2, 2006: HCL Technologies Ltd (HCL), India's leading global IT services company, has signed projects that are using this technology currently such as BioGrid in Japan, National Grid Service in UKArea of cooperation includes: · Joint research and development on Grid computing technologies

Buyya, Rajkumar

482

Subsidizing Solar: The Case for an Environmental Goods and Services Carve-out from the Global Subsidies Regime  

E-Print Network [OSTI]

$13.3 billion in loan guarantees for solar energy projects—$from solar energy sources include grants, loans, and loanpreferential loans provided to companies in the solar

Simmons, Zachary Scott

2014-01-01T23:59:59.000Z

483

A Solar Re-Skin at FedEx Field | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Solar Re-Skin at FedEx Field A Solar Re-Skin at FedEx Field August 2, 2011 - 10:40am Addthis Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies...

484

E-Print Network 3.0 - absorbers solar Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

go to www.ncsc.ncsu.edu Solar... Thermal Solar thermal technologies use the sun's power to heat air or water. We use hot water in our homes... The two types of solar thermal...

485

Solar radiation management impacts on agriculture in China: A case study in the Geoengineering  

E-Print Network [OSTI]

Solar radiation management impacts on agriculture in China: A case study in the Geoengineering-Earth Science and Technology, Yokohama, Japan Abstract Geoengineering via solar radiation management could affect agricultural productivity due to changes in temperature, precipitation, and solar radiation

Robock, Alan

486

Where solar thermal meets photovoltaic for high-efficiency power conversion  

E-Print Network [OSTI]

To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

Bierman, David M. (David Matthew)

2014-01-01T23:59:59.000Z

487

Greenhouse Gas Return on Investment: A New Metric for Energy Technology  

E-Print Network [OSTI]

to decision making beyond energy technology. ACKNOWLEDGMENTSA New Metric for Energy Technology Corinne Reich-Weiser ,INTRODUCTION Alternative energy technologies such as solar,

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

488

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by  

E-Print Network [OSTI]

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should also be considered. This project would examine the proposed solar cell materials and designs and create

Iglesia, Enrique

489

2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for  

E-Print Network [OSTI]

, either photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar technology such as concentrating solar power (CSP). PV project developers first need to identify. For that purpose, simulation software such as PVSyst (www.pvsyst.com) considers the behavior of the whole system

Recanati, Catherine

490

The Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory  

E-Print Network [OSTI]

mirror (M1) and its alignment with the secondary mirror (M2) will be actively controlled. HighThe Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory G. Yang*a, J of Technology, 323 Martin Luther King Blvd., Newark, NJ 07104; bBig Bear Solar Observatory, 40386 North Shore

491

Nasmyth focus instrumentation of the New Solar Telescope at Big Bear Solar Observatory  

E-Print Network [OSTI]

field stop and heat reflector (heat-stop), elliptical secondary mirror (SM) and diagonal flats. Figure 1Nasmyth focus instrumentation of the New Solar Telescope at Big Bear Solar Observatory Wenda Caoab Coulterb, and Philip R. Goodeab aCenter for Solar-Terrestrial Research, New Jersey Institute of Technology

492

1718 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 7, JULY 2004 Solar-Blind AlGaN-Based p-i-n Photodiodes With  

E-Print Network [OSTI]

-i-n Photodiodes With Low Dark Current and High Detectivity N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay Abstract--We report solar-blind Al Ga1 N-based heterojunc- tion p-i-n photodiodes with low dark current and high. Index Terms--AlGaN, dark current, detectivity, heterostruc- ture, high-performance, p-i-n photodiode

AytĂĽr, Orhan

493

The Science of Solar As part of its public outreach activities, the UC Davis-UC Santa Cruz Solar Collaborative wishes to provide up-to-date,  

E-Print Network [OSTI]

The Science of Solar As part of its public outreach activities, the UC Davis-UC Santa Cruz Solar Collaborative wishes to provide up-to-date, detailed information on the science behind photovoltaics. The Solar to their respective section, thereby helping to create a hub for reliable information on solar technology. · Solar

494

Advanced Ceramic Materials and Packaging Technologies for Realizing...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for...

495

Solar America Initiative State Working Group: Final Scientific/Technical Report  

SciTech Connect (OSTI)

Through the support from the Department of Energy, NARUC has educated thousands of stakeholders, including Public Utility Commissioners, commission staff, and State energy officials on solar energy technology, implementation, and policy. During the lifetime of this grant, NARUC staff engaged stakeholders in policy discussions, technical research, site visits, and educational meetings/webinars/materials that provided valuable education and coordination on solar energy technology and policy among the States. Primary research geared toward State decision-makers enabled stakeholders to be informed on current issues and created new solar energy leaders throughout the United States. Publications including a Frequently Asked Questions guide on feed-in tariffs and a legal analysis of state implementation of feed-in tariffs gave NARUC members the capacity to understand complex issues related to the economic impacts of policies supportive of solar energy, and potential paths for implementation of technology. Technical partnerships with the National Renewable Energy Laboratory (NREL) instructed NARUC members on feed-in tariff policy for four States and solar PV resource assessment in seven States, as well as economic impacts of solar energy implementation in those States. Because many of the States in these technical partnerships had negligible amounts of solar energy installed, this research gave them new capacity to understand how policies and implementation could impact their constituency. This original research produced new data now available, not only to decision-makers, but also to the public at-large including educational institutions, NGOs, consumer groups, and other citizens who have an interest in solar energy adoption in the US. Under this grant, stakeholders engaged in several dialogs. These educational opportunities brought NARUC members and other stakeholders together several times each year, shared best practices with State decision-makers, fostered partnerships and relationships with solar energy experts, and aided in increasing the implementation of smart policies that will foster solar technology deployment. The support from the Department of Energyâ??s Office of Energy Efficiency and Renewable Energy has created solar energy leaders in the States; leaders who will serve to be a continuing valuable resource as States consider adoption of new low-carbon and domestic energy supply to meet the energy needs of the United States.

Julie Taylor

2012-03-30T23:59:59.000Z

496

UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni-  

E-Print Network [OSTI]

i UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni- toring Laboratory has been measuring incident solar radiation since 1975. Current support for this work comes from the Regional Solar Radiation Monitoring Project (RSRMP), a utility consortium project including the Bon

Oregon, University of

497

Procuring Solar Energy: A Guide for Federal Facility Decision Makers, September 2010  

SciTech Connect (OSTI)

This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

Stoltenberg, B.; Partyka, E.

2010-09-01T23:59:59.000Z

498

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

499

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

500

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network [OSTI]

resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, solar, geothermal, nuclear, coal with carbon sequestration, and natural gas. This diversity of sources gas with carbon sequestration are preferred. Gasification Gasification is a process in which coal