Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Comparison of Two Gasoline and Two Diesel Cars with Varying...  

Broader source: Energy.gov (indexed) [DOE]

A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control...

2

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

3

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

4

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

5

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

6

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

7

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

8

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

9

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

10

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

11

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

SciTech Connect (OSTI)

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

12

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (BillionTotal Consumption1,2372009From PeruSampling MethodologyGasoline

13

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

14

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube  

E-Print Network [OSTI]

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

15

[98e]-Catalytic reforming of gasoline and diesel fuel  

SciTech Connect (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

16

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

SciTech Connect (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

17

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

18

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

19

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

matter from on-road gasoline and diesel vehicles.D.H. , Chase, R.E. , 1999b. Gasoline vehicle particle sizeFactors for On-Road Gasoline and Diesel Motor Vehicles

Ban-Weiss, George A.

2009-01-01T23:59:59.000Z

20

Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel  

E-Print Network [OSTI]

Atmospheric Environment 38 (2004) 1417­1423 Measurements of ion concentration in gasoline of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7 � 108 cm�3

Yu, Fangqun

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2  

E-Print Network [OSTI]

1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A DATE * mjkleeman@ucdavis.edu, (530)-752-8386 ABSTRACT Carbonyls from gasoline powered light

22

An experimental investigation of low octane gasoline in diesel engines.  

SciTech Connect (OSTI)

Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

Ciatti, S. A.; Subramanian, S. (Energy Systems)

2011-09-01T23:59:59.000Z

23

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions  

SciTech Connect (OSTI)

To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies. This research program has two facets: (1) development and use of short-term in vitro and in vivo toxicity assays for comparing the toxicities of gasoline and diesel exhaust emissions; and (2) determination of the disposition of inhaled ultrafine particles deposited in the lung. Responses of cultured cells, cultured lung slices, and rodent lungs to various types of particles were compared to develop an improved short-term toxicity screening capability. To date, chemical toxicity indicators of cultured human A549 cells and early inflammatory and cytotoxic indicators of rat lungs have given the best distinguishing capability. A study is now underway to determine the relative toxicities of exhaust samples from in-use diesel and gasoline engines. The samples are being collected under the direction of the National Renewable Energy Laboratory with support from DOE's Office of Heavy Vehicle Technologies. The ability to generate solid ultrafine particles and to trace their movement in the body as particles and soluble material was developed. Data from rodents suggest that ultrafine particles can move from the lung to the liver in particulate form. The quantitative disposition of inhaled ultrafine particles will be determined in rodents and nonhuman primates.

Kristen J. Nikula; Gregory L. Finch; Richard A. Westhouse; JeanClare Seagrave; Joe L. Mauderly; Doughlas R. Lawson; Michael Gurevich

1999-04-26T23:59:59.000Z

24

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI)...

25

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

26

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

27

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

28

Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass  

SciTech Connect (OSTI)

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible fuels.

Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

2013-06-09T23:59:59.000Z

29

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network [OSTI]

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

30

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

31

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

hybrid (gas or diesel) electric vehicle technology (Langer,e.g. hybrid gasoline-electric vs. diesel vehicles). Dealing

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

32

Recent Developments in BMW's Diesel Technology  

SciTech Connect (OSTI)

The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

Steinparzer, F

2003-08-24T23:59:59.000Z

33

Update on Diesel Exhaust Emission Control Technology and Regulations...  

Broader source: Energy.gov (indexed) [DOE]

Update on Diesel Exhaust Emission Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction...

34

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

35

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

36

Review of Diesel Emission Control Technology  

Broader source: Energy.gov (indexed) [DOE]

Diesel Emission Control Technology Tim Johnson August 2002 2 Outline * Introduction - Regulatory update and technology approaches * Ultrafines * Filters * NOx - LNC - SCR - LNT *...

37

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

38

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network [OSTI]

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

39

Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing  

SciTech Connect (OSTI)

In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

Hsu, D. D.

2011-03-01T23:59:59.000Z

40

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

42

Update on Diesel Exhaust Emission Control Technology and Regulations  

Broader source: Energy.gov (indexed) [DOE]

Control Technology and Regulations Tim Johnson August 2004 2 Diesel emission control technology is making significant progress * Diesel regulations are getting tighter in all...

43

Advances in Diesel Engine Technologies for European Passenger...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

44

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

45

Biomass IBR Fact Sheet: Gas Technology Institute  

Broader source: Energy.gov [DOE]

Gas Technology Institute will conduct research and development on hydropyrolysis and hydroconversion processes to make gasoline and diesel.

46

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

47

Comparative Toxicity of Gasoline and Diesel Engine Emissions  

SciTech Connect (OSTI)

Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.

JeanClare Seagrave; Joe L. Mauderly; Barbara Zielinska; John Sagebiel; Kevin Whitney; Doughlas R. Lawson; Michael Gurevich

2000-06-19T23:59:59.000Z

48

Application of positive matrix factorization to on-road measurements for source apportionment of diesel-and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

of diesel- and gasoline-powered vehicle emissions in Mexico City D. A. Thornhill, A. E. Williams, T. B be low. The second figure shows the background versus diesel factors. There may be a slight horizontal factors. In this case, even when the diesel factor's contributions are very high, the background factor

Meskhidze, Nicholas

49

iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow-  

E-Print Network [OSTI]

L iquid fuel--such as gasoline, diesel, aviation fuel, and ethanol--will continue to be important for pow- ering our transportation systems in the foreseeable future. Transportation fuels derived from-derived transportation fuels are to substitute (on a large scale) for petroleum-based fuels. For example, how do we

Gilbert, Matthew

50

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Broader source: Energy.gov (indexed) [DOE]

light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

51

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

52

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network [OSTI]

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

53

Diesel Engine Strategy & North American Market Challenges, Technology...  

Broader source: Energy.gov (indexed) [DOE]

Engine Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the...

54

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

SciTech Connect (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

55

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

56

Diesel Emission Control Technology Review  

Broader source: Energy.gov (indexed) [DOE]

Technology Review Tim Johnson August 22, 2006 DEER 2006 Detroit 2 Summary * Regulations - Europe is in middle of determining Euro 5 and Euro 6 (LD) levels * Implications to US...

57

Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles  

SciTech Connect (OSTI)

Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

2009-04-10T23:59:59.000Z

58

DIesel Emission Control Technology Developments  

Broader source: Energy.gov (indexed) [DOE]

for on-road Applies to off-road and stationary engines in California Enables use of control technologies New Engine Standards 0 2 4 6 8 10 12 gbhp-hr N o C o n t r o l 1 9 8 8...

59

Active Diesel Emission Control Technology for Transport Refrigeration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

60

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with...

62

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Includes gasoline, diesel, and electric. The following fourIncludes gasoline, diesel, and electric. In this study, weemissions from diesel-truck delivery and electric generation

Wang, Guihua

2008-01-01T23:59:59.000Z

63

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

64

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

65

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network [OSTI]

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

de Weck, Olivier L.

66

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

67

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

68

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

69

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

of hydrogen, methanol and gasoline as fuels for fuel cellto petroleum pathways with gasoline and diesel vehicles.simplicity, we use the term ‘‘gasoline pathway” to refer to

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

70

Active Diesel Emission Control Technology for Sub-50 HP Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

71

Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies  

SciTech Connect (OSTI)

This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

2011-01-01T23:59:59.000Z

72

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

73

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

74

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

75

Vehicle Technologies Office Merit Review 2014: Gasoline-Like Fuel Effects on Advanced Combustion Regimes  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about gasoline-like...

76

,"New York City Gasoline and Diesel Retail Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuelAnnual Energy* jCity Gasoline

77

,"San Francisco Gasoline and Diesel Retail Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuelAnnualSan Francisco Gasoline

78

Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel  

DOE Patents [OSTI]

Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

2002-06-04T23:59:59.000Z

79

Coal-fueled diesel: Technology development: Final report  

SciTech Connect (OSTI)

This project consisted of four tasks: (1) to determine if CWM could be ignited and burned rapidly enough for operation in a 1000-rpm diesel engine, (2) to demonstrate that a durable CWM-fueled engine could in principle be developed, (3) to assess current emissions control technology to determine the feasibility of cleaning the exhaust of a CWM-fueled diesel locomotive, and (4) to conduct an economic analysis to determine the attractiveness of powering US locomotives with CWM. 34 refs., 125 figs., 28 tabs.

Leonard, G.; Hsu, B.; Flynn, P.

1989-03-01T23:59:59.000Z

80

Clean Diesel Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean Air ActDiesel

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diesel Emission Control Technology in Review  

Broader source: Energy.gov (indexed) [DOE]

Technologies in Review Tim Johnson August 5, 2008 DEER Conference Dearborn, MI 2 Corning Incorporated Summary * Regulatory action: Euro VI HDD, CARB LEV3, CO 2 - HD technology...

82

Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Passenger Car Technology for Low Emissions and CO2 Compliance Diesel Passenger Car Technology for Low Emissions and CO2 Compliance Cost effective reduction of legislated emissions...

83

SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES  

SciTech Connect (OSTI)

The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+} by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.

Scott G. McKinley; Celedonio M. Alvarez

2003-03-01T23:59:59.000Z

84

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

85

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

SciTech Connect (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

86

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies  

E-Print Network [OSTI]

Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

87

Development of a Fischer-Tropsch Gasoline Process for the Steam Hydrogasification Technology  

E-Print Network [OSTI]

M. ,   et   al. ,   Gasoline  conversion:  reactivity  al. ,   Methanol   to   gasoline   over   zeolite   H-­?of a Fischer-Tropsch Gasoline Process for the Steam

Li, Yang

2013-01-01T23:59:59.000Z

88

Combustion and Emissions Performance of Dual-Fuel Gasoline and...  

Broader source: Energy.gov (indexed) [DOE]

Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

89

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

90

Review of SCR Technologies for Diesel Emission Control: Euruopean...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

91

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

, environmentally harmful, oil exploration and drilling. Technology Solar Fuel's proprietary technology converts wasteful thermal energy production. Solar Fuel has two patents filed and in process. Market Potential There are many potential markets for Solar Fuel, however, the beachhead target is the oil and gas in- dustry

Jawitz, James W.

92

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

93

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

94

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

95

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel...

96

Coal fueled diesel system for stationary power applications-technology development  

SciTech Connect (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

97

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

98

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

99

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect (OSTI)

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

100

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect (OSTI)

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

-Enhanced PCCI - Mixed Mode Combustion Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Turbo Technology...

102

Coal-fueled diesel technology development Emissions Control  

SciTech Connect (OSTI)

GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

1994-01-01T23:59:59.000Z

103

Diesel Emission Control Technology in Review | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelated PathStrategy |in Review Diesel

104

Advances in Diesel Engine Technologies for European Passenger Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of Energy Diesel Engine

105

European Diesel Engine Technology: An Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse EnvironmentalEstimatingin EGR Coolers |Diesel

106

Gasoline marketing  

SciTech Connect (OSTI)

Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline.

Metzenbaum, H.M.

1991-02-01T23:59:59.000Z

107

Diesel Particulate Filter Technology for Low-Temperature and...  

Broader source: Energy.gov (indexed) [DOE]

DEER Conference, 2004 Sougato Chatterjee, Ray Conway, Satish Viswanathan, Todd Jacobs Johnson Matthey Catalysts Environmental Catalysts & Technologies Outline * Introduction * CRT...

108

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.Future:F4:GLADYDiesel

109

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram

110

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 DiagramLearn more... Price

111

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 DiagramLearn more...

112

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 DiagramLearn more...Holiday

113

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (BillionTotal Consumption1,2372009From PeruSampling Methodology The

114

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (BillionTotal Consumption1,2372009From PeruSampling Methodology ThePrice

115

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (BillionTotal Consumption1,2372009From PeruSampling Methodology

116

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (BillionTotal Consumption1,2372009From PeruSampling

117

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (BillionTotal Consumption1,2372009From PeruSamplingDetailed Price and CV

118

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608 Canadaviewing

119

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608 CanadaviewingPrice

120

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608Sampling Methodology

122

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608Sampling

123

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608SamplingSee all

124

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539 1,736LiquidsDecade 1,112276(EIA)

125

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539 1,736LiquidsDecade 1,112276(EIA)Procedures,

126

Application and development of technologies for engine-condition-based maintenance of emergency diesel generators  

SciTech Connect (OSTI)

The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O. [Korea Hydro and Nuclear Power Company Central Research Institue, 70, 1312 -gil Yuseong-daero Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2012-07-01T23:59:59.000Z

127

Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program  

SciTech Connect (OSTI)

One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

Not Available

1994-05-01T23:59:59.000Z

128

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

129

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

130

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

Gerke, Frank G.

2001-08-05T23:59:59.000Z

131

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

132

DIesel Emission Control Technology Developments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners withof EnergyTechnology Status DFCAct:

133

Advanced Diesel Engine Technology Development for HECC | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffortEnergy Technology

134

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

135

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

136

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

137

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

138

Renewable Diesel Fuels: Status of Technology and R&D Needs  

Broader source: Energy.gov (indexed) [DOE]

global warming gases *Rural economic development Renewable Diesel Options Near-Term Biodiesel: neat or up to 20% blend Ethanol: up to 15% blend (E-diesel) Medium-Term Biomass...

139

Emission Control Technology, Performance/Durability -POSTER Effect of Accelerated Ash Loading on Performance of Diesel  

E-Print Network [OSTI]

on Performance of Diesel Particulate Filters and Morphology of Ash Layers Bruce G. Bunting and Todd J. Toops using a single-cylinder diesel engine has been developed for accelerated ash loading in catalyzed and non- catalyzed diesel particular filters (DPF) made of cordierite, SiC and mullite substrate

Pennycook, Steve

140

Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Performance of Gasoline Fuels and Surrogates in Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline...

142

Diesel Truck Traffic in Low-Income and Minority Communities Adjacent to Ports: Environmental Justice Implications of Near-Roadway Land Use Conflicts  

E-Print Network [OSTI]

Particulate Emissions from Diesel Engines: A Review. JournalExposure of PM2.5 and EC from Diesel and Gasoline Vehiclesa Major Highway with Heavy-Duty Diesel Traffic. Atmospheric

Houston, Douglas; Krudysz, Margaret; Winer, Arthur

2008-01-01T23:59:59.000Z

143

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

144

Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

145

Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

146

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

147

The Impact of Technological Change and Lifestyles on the Energy Demand  

E-Print Network [OSTI]

demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

Steininger, Karl W.

148

Advanced Particulate Filter Technologies for Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

149

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

SciTech Connect (OSTI)

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

150

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005...

151

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

152

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

2013-03-01T23:59:59.000Z

153

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

154

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

155

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

156

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect (OSTI)

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

157

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

SciTech Connect (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

158

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

159

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

1998-05-05T23:59:59.000Z

160

Gasoline prices decrease (Short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014GasolineShort

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gasoline prices decrease (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014 Gasoline prices

162

Gasoline prices decrease (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014 Gasoline

163

Gasoline prices decrease (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline prices

164

Gasoline prices decrease (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline

165

Renewable Diesel  

Broader source: Energy.gov (indexed) [DOE]

Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

166

Gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014 GasolineGasoline

167

Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994  

SciTech Connect (OSTI)

Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

none,

1994-01-31T23:59:59.000Z

168

Houston Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeterans | Updates andHospitalHot283

169

California Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4 Calendar ReservationCalendar

170

Chicago Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistantChemistry andChemistryCheryl902

171

Cleveland Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonCleanCleanDoug449

172

Colorado Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structure researchinREVISION 13 March

173

New York Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons usedDOENew Technique653 2.643 2.650

174

Denver Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts ofMarch2Q)4(82)6)k(STEO) ï‚·272

175

Florida Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. FORFederalJune637

176

Los Angeles Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241 3.202 3.272

177

Massachusetts Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration390 2.387 2.372 2.520 2.594

178

Miami Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,Information Administration390 2.387 2.372Methodology

179

Minnesota Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,,8.1 64.1 4.2 1.8.33.0

180

San Francisco Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02and TechnicalSpectrometerSamuel O31

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Diesel vs Gasoline Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) | DepartmentTrucksvs

182

Washington Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanford Contractors >783

183

Ohio Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3113315,0,482272

184

PADD 4 Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. CrudeP1. Energy Production383 2.389 2.421

185

PADD 5 Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. CrudeP1. Energy Production383 2.389

186

Seattle Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005questionnairesquestionnaires0. Net83 3.231 3.202 3.248

187

Texas Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for SelectedWeekly81.5 72.1 7.6 N8285 2.286 2.287

188

Boston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by9 U.S. EnergyDecadesummer electric

189

The California Demonstration Program for Control of PM from Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Research and Technology EPA's AP-42 Emission Factors - Small Diesel SMALL DIESEL (< 600 hp) Emission Factor Emission Factor Emission Factor Emission (lbhp-hr) (g...

190

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Technology, Dr. S. Diamond ** Plasma Science and Fusion Center, MIT ***Sloan Automobile Laboratory, MIT Diesel Plasmatron Reformers * Enhanced conversion of diesel fuel...

191

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

192

AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer...  

Energy Savers [EERE]

09 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports The Vehicle Technologies...

193

AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

194

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov (indexed) [DOE]

R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2,...

195

With Mathematica Gasoline Inventory  

E-Print Network [OSTI]

Preprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the station

Reiter, Clifford A.

196

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network [OSTI]

Regulation and Arbitrage in Wholesale Gasoline Markets,Content Regulation and Wholesale Gasoline Prices JenniferCONTENT REGULATION AND WHOLESALE GASOLINE PRICES by Jennifer

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

197

Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses  

SciTech Connect (OSTI)

This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

Lammert, M.

2008-06-01T23:59:59.000Z

198

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

199

Renewable Diesel Fuels: Status of Technology and R&D Needs | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy Diesel Fuels: Status of

200

Impact of Clean Diesel Technology on Climate Change | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITof EnergyFuelClean Diesel

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

SciTech Connect (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

202

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report  

SciTech Connect (OSTI)

This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

Barnitt, R.

2011-01-01T23:59:59.000Z

203

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

204

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Valve Actuation EGR Loop Controls Variable Intake Electrically Driven Components Turbo Technology Aftertreatment Integration of Cummins Business Component Technologies in a...

205

Gasoline Biodesulfurization Fact Sheet  

Broader source: Energy.gov [DOE]

This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

206

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

207

Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"  

SciTech Connect (OSTI)

The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during load and speed changes to extend LTC-D engine operating limits, power density and fuel economy. Low emissions engine design concepts were proposed and evaluated.

Rolf Reitz; P. Farrell; D. Foster; J. Ghandhi; C. Rutland; S. Sanders

2009-07-31T23:59:59.000Z

208

Oligomerize for better gasoline  

SciTech Connect (OSTI)

This paper reports on normal butene containing isobutene-depleted C{sub 4} hydrocarbons like raffinate II which are oligomerized using the Octol process in the liquid phase on a heterogeneous catalyst system to yield mainly C{sub 8} and C{sub 12} olefins. Raffinate II, the spent C{sub 4} fraction of an MTBE unit, is an ideal feedstock for further n-butene processing because of its high olefin concentration ranging between 70% and 80%. By modifications of MTBE technology, implementation of selective hydrogenation for removal of residual butadiene and superfractionating raffinate II, polymer grade 1-butene can be produced. Until the mid-70s raffinate I, the team cracker C{sub 4} cut after butadiene extraction, was mainly burned or blended into gasoline. Now nearly all raffinate I is or will be consumed for the purpose of converting isobutylene to MTBE.

Nierlich, F. (Huls AG, Marl (DE))

1992-02-01T23:59:59.000Z

209

Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston  

Broader source: Energy.gov [DOE]

Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

210

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

211

Economic and Financial Implications of the ZEROS Technology  

E-Print Network [OSTI]

IMPLICATIONS OF THE ZEROS TECHNOLOGY Introduction This project analysis is targeting the conversion of biomass and/or other renewable carbon-based feedstock for energy production. There are alternatives for biomass conversion, but to date, the cost...) may have an advantage in converting biomass to different energy forms, ranging from electricity to gasoline to diesel, as well as higher alcohols, and doing it with a broad array of feedstock. However, there is a dearth of an objective, unbiased...

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

212

DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report  

SciTech Connect (OSTI)

DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

Hakim, Nabil Balnaves, Mike

2003-05-27T23:59:59.000Z

213

Looking From A Hilltop: Automotive Propulsion System Technology...  

Broader source: Energy.gov (indexed) [DOE]

Valve Lift, Active Fuel Management Spark Ignition Direct Injection Downsized SIDI Turbo Boosting Advanced Combustion 6 DOWNSIZED TURBO GASOLINE ENGINE Diesel Particulate...

214

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network [OSTI]

and Heterogeneity in U.S. Gasoline Prices, working paper,and J. M . Perloff, 2002. Gasoline Price Differences: Taxes,Gardner, K.W. , 2004. U.S. Gasoline Requirements, ExxonMobil

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

215

Vehicle Technologies Office Merit Review 2014: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-dilution...

216

Gasoline prices continue to fall (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long version) ThelongGasoline

217

Gasoline prices continue to increase (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014 Gasoline prices

218

Gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014 Gasoline

219

Gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014Gasoline prices

220

Gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014Gasoline prices4,

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014Gasoline prices4,1,

222

Gasoline prices continue to rise (Short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014Gasoline prices4,1,

223

Gasoline prices continue to rise (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24, 2014Gasoline

224

Gasoline prices inch down (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shownshort version) The U.S.shortGasoline

225

Further improvement of conventional diesel NOx aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

226

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

227

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

228

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Electric Drivetrain Electric Drivetrain Conv. DieselDiesel Hyb. Conv. LNG-SI LNG-SI Hyb. Conv. LNG-CI LNG-CICompression Ignition Carbon Dioxide Diesel Gallon Equivalent

Zhao, Hengbing

2013-01-01T23:59:59.000Z

229

Biodiesel and Other Renewable Diesel Fuels  

SciTech Connect (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

230

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017  

SciTech Connect (OSTI)

Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

Jones, Susanne B.; Male, Jonathan L.

2012-02-01T23:59:59.000Z

231

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017  

SciTech Connect (OSTI)

This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

Jones, Susanne B.; Snowden-Swan, Lesley J.

2013-08-27T23:59:59.000Z

232

Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments  

SciTech Connect (OSTI)

The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

2011-09-15T23:59:59.000Z

233

State Gasoline Taxes  

E-Print Network [OSTI]

BULLETIN OF THE UNIVERSITY OF KANSAS HUMANISTIC STUDIES Vol. III March 15, 192S No. 4 State Gasoline Taxes BY KDMUNI) IV LKAENKI), A. B., A, M. Instructor in Economics and Commerce The Unlvmity of Kansas PUBLISHED BY THE UNIVERSITY l... vast sums of money, Oregon was the first state to adopt a tax on gasoline to provide revenue for building and maintaining roads. Since this adoption in 1919, many states have passed laws provid ing for gasoline taxes until now forty-four states...

Learned, Edmund Philip

1925-03-15T23:59:59.000Z

234

Motor gasolines, winter 1981-1982  

SciTech Connect (OSTI)

Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

Shelton, E M

1982-07-01T23:59:59.000Z

235

Application of Synergistic Technologies to Achieve High Levels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed...

236

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

237

2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...  

Energy Savers [EERE]

with a Combined SCR and DPF Technology for Heavy-Duty Diesel Retrofit Ray Conway Johnson Matthey Environmental Catalysts & Technologies (PDF 287 KB) A Soot Formation Model...

238

Impact of Biodiesel on Modern Diesel Engine Emissions  

Broader source: Energy.gov (indexed) [DOE]

Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

239

Diesel Engine Idling Test  

SciTech Connect (OSTI)

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

240

Marketing Light-Duty Diesels to U.S. Consumers  

Broader source: Energy.gov (indexed) [DOE]

levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Study of deposit formation inside diesel injectors nozzles  

E-Print Network [OSTI]

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

242

Environmental Technology Verification of Mobile Sources Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

243

Ethers help gasoline quality  

SciTech Connect (OSTI)

In this article three scenarios to evaluate the effect of etherification on gasoline production and quality are reviewed: Base case FCC/C{sub 4} alkylation complex - FCC unit operation for maximum gasoline yield, MTBE unit added to base case FCC unit operation and MTBE unit added to maximum olefins FCC unit operation. Details of the FCC, MTBE and C{sub 4} alkylation operations used in this article are reviewed, followed by a discussion of overall results.

Chang, E.J.; Leiby, S.M. (SRI International, Menlo Park, CA (US))

1992-02-01T23:59:59.000Z

244

A Dozen Reasons for Raising Gasoline Taxes  

E-Print Network [OSTI]

States have the right gasoline tax? University of Californiajuly). A primer on gasoline prices. http://www.eia.gov/pub/Reasons for Raising Gasoline Taxes Martin Wachs RESEARCH

Wachs, Martin

2003-01-01T23:59:59.000Z

245

Incidence of Federal and State Gasoline Taxes  

E-Print Network [OSTI]

State Specific * Share of Gasoline State Specific * (Share of Gasoline) 2 StateSpecific * (Share of Gasoline) 3 State Specific * (Share of

Chouinard, Hayley; Perloff, Jeffrey M.

2003-01-01T23:59:59.000Z

246

Market Power in California's Gasoline Market  

E-Print Network [OSTI]

Price Study Kayser, Hilke A. , 2000. Gasoline Demand andCar Choice: Estimating Gasoline Demand Using HouseholdIN GASOLINE MARKETS.

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

247

Gasoline-like fuel effects on advanced combustion regimes  

Broader source: Energy.gov (indexed) [DOE]

Gasoline-like fuel effects on advanced combustion regimes Project ID FT008 2011 U.S. DOE Hydrogen and Vehicle Technologies Program Annual Merit Review and Peer Evaluation May...

248

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

SciTech Connect (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

249

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

2012-01-01T23:59:59.000Z

250

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

251

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Electric Drivetrain Conv. Diesel Diesel Hyb. Conv. LNG-SI LNG-SI Hyb.Conv. LNG-CI LNG-CI Hyb. Battery EV Fuel Cell Short Haul

Zhao, Hengbing

2013-01-01T23:59:59.000Z

252

Is the gasoline tax regressive?  

E-Print Network [OSTI]

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

253

Gasoline price data systems  

SciTech Connect (OSTI)

Timely observation on prices of gasoline at the wholesale and retail level by geographical area can serve several purposes: (1) to facilitate the monitoring of compliance with controls on distributor margins; (2) to indicate changes in the competitive structure of the distribution system; (3) to measure the incidence of changes in crude oil and refiner costs on retail prices by grade of gasoline, by type of retail outlet, and by geographic area; (4) to identify anomalies in the retail pricing structure that may create incentives for misfueling; and (5) to provide detailed time series data for use in evaluating conservation response to price changes. In order to provide the needed data for these purposes, the following detail on gasoline prices and characteristics of the sampling procedure appear to be appropriate: (1) monthly sample observations on wholesale and retail prices by gasoline grade and type of wholesale or retail dealer, together with volume weights; (2) sample size sufficient to provide detail by state and large cities; (3) responses to be tabulated and reports provided within 30 days after date of observation; and (4) a quick response sampling procedure that can provide weekly data, at least at the national level, when needed in time of rapidly changing prices. Price detail by state is suggested due to its significance for administrative purposes and since gasoline consumption data are estimated by state from other sources. Price detail for large cities are suggested in view of their relevancy as problem areas for vehicle emissions, reflecting one of the analytical uses of the data. In this report, current reporting systems and data on gasoline prices are reviewed and evaluated in terms of the needs outlined above. Recommendations are made for ways to fill the gaps in existing data systems to meet these needs.

Not Available

1980-05-01T23:59:59.000Z

254

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

SciTech Connect (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

255

In Oklahoma and other parts of the Midwest, gasoline prices have been  

E-Print Network [OSTI]

's biomass for biofuels can improve profitability for farmers, enhance local economies, attract capital for the production of drop-in biofuels including propanol, butanol and hexanol. These higher alcohols can be converted with chemical catalysts to produce renewable gasoline, diesel and jet fuels. "We are advancing

Balasundaram, Balabhaskar "Baski"

256

Use TAME and heavier ethers to improve gasoline properties  

SciTech Connect (OSTI)

Producing oxygenates from all potential FCC tertiary olefins is one of the most economic methods for reducing olefins and Reid vapor pressure (Rvp) in motor gasoline. MTBE production based on FCC isobutylene has reached a very high level. But the amount of MTBE from a refinery sidestream MTBE unit is insufficient for producing reformulated gasoline (RFG) and additional oxygenates must be purchased. The next phase will see conversion of isoamylenes in FCC light gasoline to TAME. Very little attention has been given to the heavier tertiary olefins present in the FCC light gasoline like tert-hexenes and heptenes. This route allows higher levels of oxygenates production, thereby lowering Rvp and the proportion of olefins in the gasoline pool and maximizing the use of FCC olefins. By using all the components produced by an FCC efficiently, many gasoline problems can be solved. Isobutene is converted to MTBE, C[sub 3]/C[sub 4] olefins are converted to alkylate and C[sub 5] tertiary olefins can be converted to TAME. All of these are preferred components for gasoline quality. By producing more oxygenates like MTBE, TAME and heavier ethers, a refinery can be self-sufficient in blending reformulated gasoline and no oxygenates need to be purchased. The technology for producing TAME and other ethers is described.

Ignatius, J.; Jaervelin, H.; Lindqvist, P. (Neste Engineering, Porvoo (Finland))

1995-02-01T23:59:59.000Z

257

Chemistry Impacts in Gasoline HCCI  

SciTech Connect (OSTI)

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

258

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

Minnesota, University of

259

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

260

Driving Down Diesel Emissions  

E-Print Network [OSTI]

is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

Harley, Robert

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reformulated diesel fuel  

DOE Patents [OSTI]

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

262

Cleaning Up Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

263

Essays on Automotive Lending, Gasoline Prices, & Automotive Demand  

E-Print Network [OSTI]

Gasoline PriceResponse to Chang- ing Gasoline Prices,” unpublishedShort-Run Price Elasticity of Gasoline Demand. ,” The Energy

Schulz-Mahlendorf, Wilko Ziggy

2013-01-01T23:59:59.000Z

264

Motor gasoline assessment, Spring 1997  

SciTech Connect (OSTI)

The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

NONE

1997-07-01T23:59:59.000Z

265

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

266

Vehicle Technologies Office Merit Review 2014: High Compression...  

Broader source: Energy.gov (indexed) [DOE]

High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine...

267

Vehicle Technologies Office Merit Review 2014: Emissions Control...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Control for Lean Gasoline Engines Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines Presentation given by Oak Ridge National...

268

Quantifying the benefits of hybrid vehicles  

E-Print Network [OSTI]

6 W HAT ABOUT DIESEL , BIO - FUELS AND OTHER ALTERNATIVEadvanced technology. What about diesel, bio-fuels and otherthey burn gasoline, diesel, bio-fuels, natural gas, or

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

269

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

270

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

271

Diesel Soot Filter Characterization and Modeling for Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA with DOW Automotive) Presentation from the U.S. DOE Office of Vehicle Technologies...

272

Diesel Soot Filter Characterization and Modeling for Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Automotive) Diesel Soot Filter Characterization and Modeling for Advanced Substrates (CRADA and DOW Automotive) Presentation from the U.S. DOE Office of Vehicle Technologies...

273

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid...  

Energy Savers [EERE]

to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an...

274

Diesel Reforming for Fuel Cell Auxiliary Power Units  

SciTech Connect (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

275

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace037sun2012o.pdf More Documents & Publications Advanced Boost System Development for Diesel...

276

An improved visualization of diesel particulate filter/  

E-Print Network [OSTI]

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

277

Non-Catalytic Production of Hydrogen via Reforming of Diesel, Hexadecane and Bio-Diesel for Nitrogen Oxides Remediation.  

E-Print Network [OSTI]

?? After-treatment technologies are required for diesel engines to meet the current and future stringent emissions regulations. Lean NOx traps and SCR catalysts represent the… (more)

Hernandez-Gonzalez, Sergio Manuel

2008-01-01T23:59:59.000Z

278

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

279

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

280

Non-thermal plasma based technologies for the aftertreatment...  

Broader source: Energy.gov (indexed) [DOE]

Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx Non-thermal plasma based technologies for the aftertreatment of diesel exhaust...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Duty Diesel Truck Internal Combustion Engine Lower Heatinglow efficiency internal combustion engine (ICE) operation,the fuel in internal combustion engines, there are several

Zhao, Hengbing

2013-01-01T23:59:59.000Z

282

Proceedings of the 1998 diesel engine emissions reduction workshop [DEER  

SciTech Connect (OSTI)

This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

NONE

1998-12-31T23:59:59.000Z

283

Variable-Rate State Gasoline Taxes  

E-Print Network [OSTI]

1986, the average retail gasoline price dropped from $1.17Figure 4 Average US Retail Gasoline Price (excluding taxes)of the average retail price of gasoline, with a 4.0 cent per

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

1999-01-01T23:59:59.000Z

284

Variable-Rate State Gasoline Taxes  

E-Print Network [OSTI]

Recent Changes in State Gasoline Taxation: An Analysis ofMarch The excise tax on gasoline in New York is 8.0 centsis also a sales tax on gasoline which recently stood at 7.8

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

1999-01-01T23:59:59.000Z

285

Variable-Rate State Gasoline Taxes  

E-Print Network [OSTI]

J Bradshaw, "SLate ’F~es’ Gasoline Tax So ~t Wdl Rise," TheVarlable-Rate State Gasoline Taxers Jeffrey Ang-Olson MartinVariable-Rate State Gasoline Taxes Jeffrey Ang-Olson

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

2000-01-01T23:59:59.000Z

286

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Mixture Preparation Chemical Properties Pressure & Temperature (air preheating, Turbo charging, EGR & compression ratio) Octane rating, cetane rating (Fuels & Additives)...

287

Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of Gold Thin Films275 2.273 2.271 2.275

288

Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and User ExecutiveCentral Activator Keeps the Circadian549

289

U.S. Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API

290

U.S. Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API538 2.531 2.499 2.494

291

New England (PADD 1A) Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons used to studyThe4 2.450 2.443 2.435

292

New York City Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons usedDOENew Technique

293

Gasoline and Diesel Fuel Update - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring: Innovation andandASOCNEECfeature photo

294

East Coast (PADD 1) Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary Reporting Program84 2.466

295

Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 §98 3.241 3.20260 2.430

296

Midwest (PADD 2) Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 13,, 19999,8,

297

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) | DepartmentTrucks

298

West Coast less California Gasoline and Diesel Retail Prices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlender NetAdministration2.722 2.694 2.677

299

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, September 2010 |November 3, 1999Hydrotreating

300

Gasoline and Diesel Fuel Update Data Revision Notice  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608SamplingSee

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwellWestern States,FY 2014DOE's Fuel5

302

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwellWestern States,FY 2014DOE's Fuel54

303

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwellWestern States,FY 2014DOE's

304

Gasoline and Diesel Fuel Update - Energy Information Administration  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand BarrelsNatural GasCold FusionaboutE (2001)15 Retail motor

305

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of Energy Ventilation SystemNovemberActionDepartment

306

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin N.J.Department ofEngines |

307

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance aEnginesInEnergy

308

An Experimental Investigation of Low Octane Gasoline in Diesel Engines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluation of

309

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGo Map_thumbnail WorkplacePropane

310

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

311

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

312

Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

313

Variable-Rate State Gasoline Taxes  

E-Print Network [OSTI]

1986, the average retail gasoline price dropped from $I 17of the average retail price of gasoline, with a 4 oe per

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

2000-01-01T23:59:59.000Z

315

Vehicle Technologies Office Merit Review 2014: Durability of Diesel Particulate Filters (Agreement ID:10461) Project ID:18519  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about durability of...

316

Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about heavy-duty low...

317

ORNL/TM-2002/225 Estimating Impacts of Diesel Fuel  

E-Print Network [OSTI]

ORNL/TM-2002/225 Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending IMPACTS OF DIESEL FUEL REFORMULATION WITH VECTOR-BASED BLENDING G. R. Hadder Transportation Technology

318

Gasoline price forecast to stay below 3 dollar a gallon in 2015  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for thePlantDiesel FuelGasoline

319

Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

320

Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation  

SciTech Connect (OSTI)

The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D'Alembert (France)

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DIESEL FUEL TANK FOUNDATIONS  

SciTech Connect (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

322

Vehicle Technologies Office Merit Review 2014: Technology and...  

Broader source: Energy.gov (indexed) [DOE]

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

323

Gasoline price spikes and regional gasoline context regulations : a structural approach  

E-Print Network [OSTI]

Since 1999, gasoline prices in California, Illinois and Wisconsin have spiked occasionally well above gasoline prices in nearby states. In May and June 2000, for example, gasoline prices in Chicago rose twenty eight cents ...

Muehlegger, Erich J.

2004-01-01T23:59:59.000Z

324

Chemical Kinetic Models for HCCI and Diesel Combustion  

SciTech Connect (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

325

Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera  

E-Print Network [OSTI]

Join Diesel: Concurrency Primitives for Diesel Peter-Michael Osera psosera to the Diesel programming language, entitled Join Diesel. We describe the design decisions and trade-offs made in integrating these concurrency primitives into the Diesel language. We also give a typechecking algorithm

Plotkin, Joshua B.

326

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

from among existing gasoline station locations in Sacra-VOC emitted at gasoline service stations, because these arethe gasoline terminal storage and refueling stations, it is

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

327

Edgeworth Price Cycles: Evidence from the Toronto Retail Gasoline Market  

E-Print Network [OSTI]

Johnson. “Gas Wars: Retail Gasoline Price Fluctua- tions”,Canadian cities, retail gasoline prices are very volatileset of twelve-hourly retail gasoline prices for 22 service

Noel, Michael

2004-01-01T23:59:59.000Z

328

Retail Policies and Competition in the Gasoline Industry  

E-Print Network [OSTI]

wholesale gasoline prices and retail prices. It includes theTable 4 - Gasoline Price Components Year Retail Price TaxesSupply Lower Retail Gasoline Prices? ” Contemporary Economic

Borenstein, Severin; Bushnell, Jim

2005-01-01T23:59:59.000Z

329

Essays on Automotive Lending, Gasoline Prices, & Automotive Demand  

E-Print Network [OSTI]

National average retail gasoline prices peaked at over $so that average retail gasoline prices can be employed. Myrapid run-up in retail gasoline prices in recent history.

Schulz-Mahlendorf, Wilko Ziggy

2013-01-01T23:59:59.000Z

330

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

Sold On Sale and Retail Gasoline Prices Log % Purchased Onhigher gasoline prices into retail prices, by investigatingexcluding California average retail gasoline price for all

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

331

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

332

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

University. Espey, M. , 1998. "Gasoline Demand Revisited: AnRun Price Elasticity of Gasoline Demand,” working paper.Elasticities of Demand for Gasoline in Canada and the United

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

333

Edgeworth Price Cycles: Evidence from the Toronto Retail Gasoline Market  

E-Print Network [OSTI]

Robbery, An Analysis of the Gasoline Crisis”, Bloomington:Dynamic Pricing in Retail gasoline Markets”, RAND Journal ofR. Gilbert. “Do Gasoline Markets Respond Asymmetrically to

Noel, Michael

2004-01-01T23:59:59.000Z

334

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

335

Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

Jones, Susanne B.; Zhu, Yunhua

2009-05-01T23:59:59.000Z

336

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

337

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

SciTech Connect (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

338

ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES  

E-Print Network [OSTI]

ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

Jagannatham, Aditya K.

339

A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL  

SciTech Connect (OSTI)

Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry slowed progress of the demonstration unit, negotiations with potential partners are proceeding for commercialization of this process.

B.S. Turk; R.P. Gupta; S.K. Gangwal

2003-06-30T23:59:59.000Z

340

Whole Algae Hydrothermal Liquefaction Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

2013-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Diesel prices slightly increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDieselDieselDiesel

342

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

343

Incidence of Federal and State Gasoline Taxes  

E-Print Network [OSTI]

valorem taxes to the retail gasoline price. These ad valoremwholesale and retail, unleaded gasoline price equations. Wegasoline, Journal of Economic Issues 9, 409-414. Table 1: Retail and Wholesale Reduced-Form Price

Chouinard, Hayley; Perloff, Jeffrey M.

2003-01-01T23:59:59.000Z

344

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

345

Indirect conversion of coal to methanol and gasoline: product price vs product slate  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

1980-01-01T23:59:59.000Z

346

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

2003-01-01T23:59:59.000Z

347

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

348

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

SciTech Connect (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

349

Diesel particles -a health hazard 1 Diesel particles  

E-Print Network [OSTI]

Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

350

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

2013-03-31T23:59:59.000Z

351

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

352

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

353

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Broader source: Energy.gov (indexed) [DOE]

UT-Battelle for the U.S. Department of Energy Overview Timeline * Develop supporting materials technology to enable Heavy-Duty diesel efficiency of 55%, while meeting prevailing...

354

Light-duty diesel engine development status and engine needs  

SciTech Connect (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

355

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network [OSTI]

Reformulating Competition? Gasoline Content Regulationand Wholesale Gasoline Prices,” Journal of Environmentaland Heterogeneity in U.S. Gasoline Prices,” Journal of

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

356

Diesel fuel component contribution to engine emissions and performance. Final report  

SciTech Connect (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

357

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDieselDiesel

358

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

359

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

360

EPA Diesel Update  

Broader source: Energy.gov (indexed) [DOE]

for US Introduction of Tier 2 Diesels - Dr. Gerhard Schmidt, VP Research and Advanced Engineering Ford, "Our target must be 50 state programs at LEV2Bin 5. ....the prognosis...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

SciTech Connect (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

362

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

363

Essays on gasoline price spikes, environmental regulation of gasoline content, and incentives for refinery operation  

E-Print Network [OSTI]

Since 1999, regional retail and wholesale gasoline markets in the United States have experienced significant price volatility, both intertemporally and across geographic markets. In particular, gasoline prices in California, ...

Muehlegger, Erich J

2005-01-01T23:59:59.000Z

364

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

365

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

366

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

367

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

368

CLEERS Activities: Diesel Soot Filter Characterization & NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen...

369

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

370

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

371

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost-effective compliance * minimize precious metal content while maximizing fuel economy * Relevance: - U.S. passenger car fleet is dominated by gasoline-fueled...

372

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

SCR Urea TankInjector Cost Customer Acceptance Not in Project Scope Specific Key Issues: Cost, Durability, Fuel Penalty, Operating Temp., etc... Lean Gasoline SI Direct Injection...

373

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

SCR Urea TankInjector Cost Customer Acceptance Not in Project Scope Specific Key Issues: Cost, Durability, Fuel Penalty, Operating Temp.,+... Lean Gasoline SI Direct Injection...

374

Lawrence Berkeley National Laboratory 1996 Site Environmental Report Vol. I  

E-Print Network [OSTI]

corrosion protection Diesel Diesel Diesel Unleaded gasoline Diesel Single-walled tanks Diesel 70A Diesel Transformer oil

2010-01-01T23:59:59.000Z

375

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

376

Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption  

Broader source: Energy.gov [DOE]

Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

377

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

Burke, Andy

2004-01-01T23:59:59.000Z

378

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3, 2014

379

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3, 20147,

380

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3,

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3,1, 2014

382

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3,1,

383

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3,1,2,

384

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014Gasoline3,1,2,26,

385

Gasoline prices decrease nationally for first time in 4 weeks (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5,23, 2014 U.S. gasoline

386

Gasoline prices decrease nationally for first time in 4 weeks (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5,23, 2014 U.S.Gasoline

387

Gasoline prices decrease nationally for first time in 4 weeks (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5,23, 2014Gasoline

388

Gasoline prices decrease nationally for first time in 4 weeks (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5,23, 2014Gasoline4,

389

Gasoline prices decrease nationally for first time in 4 weeks (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5,23,Gasoline prices

390

Gasoline prices decrease nationally for first time in 4 weeks (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5,23,Gasoline

391

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

392

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

393

Retail Policies and Competition in the Gasoline Industry  

E-Print Network [OSTI]

Total Volume Table 4 - Gasoline Price Components Year RetailEvidence from Retail Gasoline Markets." Journal of Law,and Competition in the Gasoline Industry I. II. III. IV. V.

Borenstein, Severin; Bushnell, Jim

2005-01-01T23:59:59.000Z

394

Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels  

SciTech Connect (OSTI)

While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

2000-01-19T23:59:59.000Z

395

a Department of Civil, Construction, and Environmental Engineering b Institute for Transportation Research and Education  

E-Print Network [OSTI]

- Electric - Fuel cell - Diesel - CNG Conventional Technology Alternative Technology TravelDemand Modeling 5 Time Ã? Volume Travel Time - Diesel - Biodiesel - Gasoline - Diesel - CNG - Ethanol85 - Hybrid versus FTP cycle. = index of conventional fuels and technologies (gasoline or diesel); = facility type

Frey, H. Christopher

396

Reformulated Gasoline Foreign Refinery Rules  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet)1,576 1,608Reformulated Gasoline

397

Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT  

SciTech Connect (OSTI)

Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19:354-359) method of in vitro recombination. Methods for analysis were developed and a preliminary analysis of the library was performed. A preliminary gasoline process design was constructed and process economics were determined based upon assumptions made from experimental results. The projected cost of gasoline BDS was determined to be competitive with current competing technologies.

Pienkos, Philip T.

2002-01-15T23:59:59.000Z

398

DIESEL et CANCER Dominique Lafon  

E-Print Network [OSTI]

1/5 DIESEL et CANCER Dominique Lafon INERIS (*) De nombreuses questions se posent sur la toxicité des émissions des moteurs diesel. C'est un sujet qui a beaucoup préoccupé les scientifiques ces EMISSIONS DU DIESEL. Avant d'aborder la toxicité des émissions du diesel, un rappel de leur composition est

Boyer, Edmond

399

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

400

Impact of Ethanol Blending on U.S. Gasoline Prices  

SciTech Connect (OSTI)

This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

Not Available

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characterization of Pre-Commercial Gasoline Engine Particulates...  

Broader source: Energy.gov (indexed) [DOE]

Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods...

402

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

403

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

404

The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine  

SciTech Connect (OSTI)

Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

Becker, Paul C.

2000-08-20T23:59:59.000Z

405

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

406

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel...

407

Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.  

SciTech Connect (OSTI)

Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

1999-12-03T23:59:59.000Z

408

Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision  

SciTech Connect (OSTI)

Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

2000-05-01T23:59:59.000Z

409

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel prices

410

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices continueDiesel

411

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices decrease

412

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel pricesDiesel prices

413

Diesel prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDieselDiesel

414

Diesel prices slightly decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel prices

415

Diesel prices slightly decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDieselDiesel

416

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Fuel Cell Technologies http://www.hydrogen.energy.gov/pdfs/12020_fuel_cell_system_cost_2012.pdf; Program Record, [

Zhao, Hengbing

2013-01-01T23:59:59.000Z

417

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

418

Gasoline prices - January 7, 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for thePlantDiesellongshortlong

419

Gasoline prices - January 7, 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for

420

Gasoline prices decrease (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gasoline prices decrease (long version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014 Gasolinelong

422

Gasoline prices decrease (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for(long24,5, 2014

423

Gasoline prices increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shownshort version) Thelong

424

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

2008-05-29T23:59:59.000Z

425

Diesel Engine Alternatives  

SciTech Connect (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

426

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

427

Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines  

E-Print Network [OSTI]

from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

Wu, Mingshen

428

Gasoline price volatility and the elasticity of demand for gasoline1 C.-Y. Cynthia Lina  

E-Print Network [OSTI]

externalities including local air pollution, global climate change, accidents, congestion, and dependence at reducing demand for gasoline or reducing pollution from automobiles. The latter could be addressed

Lin, C.-Y. Cynthia

429

Insights into Spring 2008 Gasoline Prices  

Reports and Publications (EIA)

Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

2008-01-01T23:59:59.000Z

430

Edgeworth price cycles in retail gasoline markets  

E-Print Network [OSTI]

In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

Noel, Michael David, 1971-

2002-01-01T23:59:59.000Z

431

Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs  

E-Print Network [OSTI]

erentials in wholesale and retail gasoline prices, sometimesand control retail gasoline prices, while still permittingnopolize retail gasoline markets and raise prices. Several

Gilbert, Richard; Hastings, Justine

2001-01-01T23:59:59.000Z

432

The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles  

E-Print Network [OSTI]

3, 2009 Abstract Retail gasoline prices are known to respondspeed with which retail gasoline prices respond to wholesaleDeltas, George, “Retail Gasoline Price Dynamics and Local

Lewis, Matt; Noel, Michael

2009-01-01T23:59:59.000Z

433

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network [OSTI]

result in a target retail gasoline price of about $3.00 perAdministration, retail gasoline prices in Californiaprice, the expected retail gasoline price and consumption

Borenstein, Severin

2008-01-01T23:59:59.000Z

434

Gasoline Price Differences: Taxes, Pollution Regulations, Mergers, Market Power, and Market Conditions  

E-Print Network [OSTI]

of Information and Retail Gasoline Price Behavior: Anform wholesale and retail gasoline price equations usingfor some of the retail gasoline price dispersion within a

Chouinard, Hayley; Perloff, Jeffrey M.

2002-01-01T23:59:59.000Z

435

Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market  

E-Print Network [OSTI]

The Behavior of Retail Gasoline Prices: Symmetric or Not? ”Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ”documented that retail gasoline prices respond more quickly

Lewis, Matt

2003-01-01T23:59:59.000Z

436

Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Industry  

E-Print Network [OSTI]

Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ”The Behavior of Retail Gasoline Prices: Symmetric or Not? ”documented that retail gasoline prices respond more quickly

Lewis, Matt

2003-01-01T23:59:59.000Z

437

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

the gasoline-equivalent fuel retail price, excluding exciseprice is the full retail price of gasoline, including allon the retail cost and break-even gasoline price, because

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

438

Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets  

E-Print Network [OSTI]

Johnson. “Gas Wars: Retail Gasoline Price Fluctua- tions”,were collected on retail gasoline prices, wholesale (rack)ancillary information. Retail gasoline prices, RET AIL mt ,

Noel, Michael

2004-01-01T23:59:59.000Z

439

Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market  

E-Print Network [OSTI]

George. (2004) “Retail Gasoline Price Dynamics and Localof Information and Retail Gasoline Price Behavior: Andocumented that retail gasoline prices respond more quickly

Lewis, Matt

2004-01-01T23:59:59.000Z

440

Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles  

E-Print Network [OSTI]

Atkinson, B . (2006) "Retail Gasoline Price Cycles: Evidenceof Adjustment of U K Retail Gasoline Prices to Cost Changes"1993) "Gas Wars: Retail Gasoline Price Fluctuations", of and

Noel, Michael

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Premium Gasoline Overbuying in the U.S.: Consumer-Based Choice Analysis  

E-Print Network [OSTI]

1990), Economics gasoline pool octane of growth, U.S.sensitive to modest is gasoline price shifts. Theprimary1991b), Effect of gasoline octane quality on vehicle

Setiawan, Winardi; Sperling, Daniel

1993-01-01T23:59:59.000Z

442

The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles  

E-Print Network [OSTI]

An Examination of the Retail Gasoline Market,” July 2005.OH. , “Temporary Wholesale Gasoline Price Spikes have Long-from the Toronto Retail Gasoline Market,” Journal of

Lewis, Matt; Noel, Michael

2009-01-01T23:59:59.000Z

443

Clearing the Air: The Clean Air Act, GATT and the WTO's Reformulated Gasoline Decision  

E-Print Network [OSTI]

Reformulated and Conventional Gasoline, 5 MwIN. J. GLOBALReformulated and Conventional Gasoline, 35 I.L.M. 274, 277 (regulations governing gasoline formulation to ensure that

McCrory, Martin A.; Richards, Eric L.

1998-01-01T23:59:59.000Z

444

Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity  

E-Print Network [OSTI]

California Reformulated Gasoline On Motor Vehicle EmissionsCalifornia Reformulated Gasoline on Motor Vehicle EmmissionsBerkeley Environ. ScLTechnoL gasoline Impact California of

Kirchstetter, Thomas; Singer, Brett; Harley, Robert

1999-01-01T23:59:59.000Z

445

Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand  

E-Print Network [OSTI]

An Empirical-Analysis of Gasoline Demand in Denmark UsingT. (1991). "Analyzing Gasoline Demand Elasticities: AConsumer Adjustment to a Gasoline Tax." The Review of

Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

2007-01-01T23:59:59.000Z

446

Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates  

E-Print Network [OSTI]

California reformulated gasoline on motor vehicle emissions.Impact of California Reformulated Gasoline OIl Motor Vehicleprogress, increased vehicle Gasoline Motor on Vehicle travel

Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

1999-01-01T23:59:59.000Z

447

Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles  

E-Print Network [OSTI]

Atkinson, B . (2006) "Retail Gasoline Price Cycles: EvidenceEvidence on Asymmetric Gasoline Price Re­ and Statistics "of Adjustment of U K Retail Gasoline Prices to Cost Changes"

Noel, Michael

2007-01-01T23:59:59.000Z

448

Demand for gasoline is more price-inelastic than commonly thought  

E-Print Network [OSTI]

of Transportation and Gasoline Demand. ” Bell Journal ofA Semiparametric Analysis of Gasoline Demand in the Uniteda dynamic demand function for gasoline with di?erent schemes

Havranek, Tomas; Irsova, Zuzana; Janda, Karel

2011-01-01T23:59:59.000Z

449

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

of hydrogen, methanol and gasoline as fuels for fuel cellon Environmental Quality (TCEQ). Gasoline Vapor Recovery (Quality Impacts of Hydrogen and Gasoline Transportation Fuel

Wang, Guihua

2008-01-01T23:59:59.000Z

450

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network [OSTI]

May 2004. Espey, M. “Gasoline Demand Revisited: AnRun Price Elasticity of Gasoline Demand,” Energy Journal,114. Poterba, J. “Is the Gasoline Tax Regressive? ,” in D.

Borenstein, Severin

2008-01-01T23:59:59.000Z

451

Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs  

E-Print Network [OSTI]

Vertical Integration in Gasoline Supply: An Empirical Testfor the reÞning and distribution of gasoline and the whole-sale price of unbranded gasoline sold to independent

Gilbert, Richard; Hastings, Justine

2001-01-01T23:59:59.000Z

452

Gasoline Price Differences: Taxes, Pollution Regulations, Mergers, Market Power, and Market Conditions  

E-Print Network [OSTI]

1 2. A Reduced-Form Gasoline PriceThe Case of Retail Gasoline Markets,” The Journal of Law andof Organizational Form in Gasoline Retailing and the Costs

Chouinard, Hayley; Perloff, Jeffrey M.

2002-01-01T23:59:59.000Z

453

Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs  

E-Print Network [OSTI]

Vertical Integration in Gasoline Supply: An Empirical Testoligopoly, market power, gasoline Abstract: This paperand distribution of gasoline and the wholesale price of

Gilbert, Richard; Hastings, Justine

2001-01-01T23:59:59.000Z

454

Premium Gasoline Overbuying in the U.S.: Consumer-Based Choice Analysis  

E-Print Network [OSTI]

1990), Economics gasoline pool octane of growth, U.S.sensitive to modest is gasoline price shifts. Theprimary1991b), Effect of gasoline octane quality on vehicle

Setiawan, Winardi; Sperling, Daniel

2001-01-01T23:59:59.000Z

455

Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets  

E-Print Network [OSTI]

Robbery, An Analysis of the Gasoline Crisis”, Bloomington:Dynamic Pricing in Retail gasoline Markets”, RAND Journal ofR. Gilbert. “Do Gasoline Markets Respond Asymmetrically to

Noel, Michael

2004-01-01T23:59:59.000Z

456

Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market  

E-Print Network [OSTI]

and R. Gilbert (1997) “Do Gasoline Prices Respond Asymmet-George. (2004) “Retail Gasoline Price Dynamics and LocalAsymmetries in Local Gasoline Markets” Energy Economics

Lewis, Matt

2004-01-01T23:59:59.000Z

457

US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"  

SciTech Connect (OSTI)

The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

William E. Wallace

2006-09-30T23:59:59.000Z

458

Optimizing Low Temperature Diesel Combustion  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filter Regenerations," SAE Paper 2007-01-3970, SAE Fall Powertrain and Fluids Systems Conference, Chicago, IL, Oct. 2007. * "Comprehensive Characterization of...

459

Diesel prices continue to increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC Helps DevelopDieselDieselDieselDiesel

460

STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS  

SciTech Connect (OSTI)

The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

Schittler, M

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Tailored Acicular Mullite Substrates for Multifunctional Diesel...  

Broader source: Energy.gov (indexed) [DOE]

"New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications," Proceedings of the 9th Diesel Engine Emissions Reduction Conference August 24-28, 2003,...

462

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

463

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

464

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect (OSTI)

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

465

Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion  

SciTech Connect (OSTI)

The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

Confer, Keith

2014-09-30T23:59:59.000Z

466

The potential for low petroleum gasoline  

SciTech Connect (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

467

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network [OSTI]

Gasoline Ethanol Electric Diesel CNG Gasoline HybridEthanol Diesel CNG Gasoline Hybrid LPG Electric Figure 23

Zhou, Nan

2011-01-01T23:59:59.000Z

468

Reformulated diesel fuel and method  

DOE Patents [OSTI]

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

469

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ce001musculus2012o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review...

470

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace01musculus.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review...

471

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications  

SciTech Connect (OSTI)

Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

2002-08-25T23:59:59.000Z

472

Ashland's new process could boost gasoline yield  

SciTech Connect (OSTI)

According to O. E. Atkins (Ashland Oil Co.), Ashland's new fluid catalytic cracking process will convert heavy residual oil to (% by vol) 11% fuel gas, 4.8% LNG, 75.7% gasoline (if all the produced olefins are converted to gasoline), 9% distillates, and 8.1% heavy fuel oil. Ashland is building a $70 million, 40,000 bbl/day unit at its 215,000 bbl/day Catlettsburg, Ky., refinery which will increase the present 90,000 bbl/day gasoline yield by 25,000 bbl/day for the same amount of feedstock. The increased gasoline yield (no-lead octane rating of 94) is expected to increase the net margin on a barrel of feed from $8 up to $12, at the present prices of $11.50/bbl of residual oil and $40/bbl of gasoline. Ashland has not disclosed detailed information on the new process, which: can accommodate atmospheric residua that are high in sulfur and metals; is a high temperature, low (about 1 atm) pressure process; does not use hydrogen; uses a proprietary new crystalline silica-alumina microspherical (zeolite) catalyst which, via a proprietary passivating technique, will demetalize crude oil fractions of vanadium and nickel. Residuum cracking processes developed by other companies are briefly discussed.

Atkins, O.E.

1980-04-07T23:59:59.000Z

473

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

474

Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC...  

Broader source: Energy.gov (indexed) [DOE]

Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions...

475

Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC...

476

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

477

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

478

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

479

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

480

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

482

Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins...  

Broader source: Energy.gov (indexed) [DOE]

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine Presentation...

483

Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low...  

Broader source: Energy.gov (indexed) [DOE]

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion &...

484

diesel.vp  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575Diesel

485

Diesel prices decrease  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDiesel prices

486

Diesel prices flat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel prices

487

Diesel prices flat nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldiesel pricesDiesel

488

Diesel prices increase nationally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel prices

489

Diesel prices rise slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSC HelpsDieseldieselDiesel

490

Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology  

SciTech Connect (OSTI)

Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

2011-12-13T23:59:59.000Z

491

Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine  

E-Print Network [OSTI]

or liquefied petroleum gas, natural gas, biogas, hydrogen, and alcohols such as methanol, ethanol, iso-propanol, and n-butanol), and fuel additives (MTBE or methyl tertiary-butyl ether, H2O2 or hydrogen peroxide, 2-EHN or ethylhexyl nitrate and DTBP or di...

Sun, Jiafeng

2014-08-05T23:59:59.000Z

492

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

493

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

494

Fact #835: August 25, Average Historical Annual Gasoline Pump...  

Energy Savers [EERE]

5: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation,...

495

Fact #835: August 25, Average Annual Gasoline Pump Price, 1929...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5: August 25, Average Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation, the average annual...

496

Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...  

Broader source: Energy.gov (indexed) [DOE]

5: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact 835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with...

497

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

498

2008 Annual Merit Review Results Summary - 13. Health Impacts  

Broader source: Energy.gov (indexed) [DOE]

to compare this new technology with gasoline and other combustion technologies used to power vehicles. Another person stated that diesel engines present the potential for...

499

Powertrain Trends and Future Potential  

Broader source: Energy.gov (indexed) [DOE]

parties. Automotive Technology 12 Evolution in Clean Diesel & Gasoline Technology 1) turbo-charged with downsizing and var. valve timing (VVT); 2) max. potential w downsizing,...

500

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...