Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

2

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

3

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Get the RSS feed. Release Schedule. Details... Procedures, Methodology & CV's Gasoline Diesel fuel. ... How do I calculate/find diesel fuel surcharges? ...

4

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

5

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

Notes: Conventional area is any area that does not require the sale of reformulated gasoline. ... Publication of Low Sulfur On-Highway Diesel (LSD) ...

6

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

7

Vehicle Technologies Office: Fact #27: April 21, 1997 Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 21, 1997 Gasoline and Diesel Fuel Prices for Selected Countries: 1996 to someone by E-mail Share Vehicle Technologies Office: Fact 27: April 21, 1997 Gasoline and Diesel...

8

Why has diesel fuel been more expensive than gasoline? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why has diesel fuel been more expensive than gasoline? On-highway diesel fuel prices have been higher than regular gasoline prices almost continuously ...

9

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

10

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Sampling Methodology Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail gasoline to supplement information on the frame. The individual frame outlets were mapped to counties using their zip codes. The outlets were then assigned to the published geographic areas as defined by the EPA program area, or for conventional gasoline areas, as defined by the Census Bureau's Standard Metropolitan

11

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, retail on-highway diesel prices are collected by telephone and fax from a sample of approximately 350 retail diesel outlets, including truck stops and service stations. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The Environmental Protection Agency (EPA) requires that all on-highway diesel sold be ULSD by December 1, 2010 (September 1, 2006 in California). In January 2007, the weekly on-highway diesel price survey began collecting diesel prices for low sulfur diesel (LSD) which contains between 15 and 500 parts-per-million sulfur and ULSD separately. Prior to January 2007, EIA collected the price of on-highway fuel without distinguishing the sulfur

12

Gasoline and Diesel Fuel Update Data Revision Notice  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

13

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2012 (EIA)

FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage)...

14

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Diesel Fuel Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies

15

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Data Collection Procedures Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

16

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Price Data Collection Procedures Price Data Collection Procedures Every Monday, cash self-serve on-highway diesel prices (including taxes) are collected from a sample of approximately 400 retail diesel outlets in the continental U.S. The sample includes a combination of truck stops and service stations that sell on-highway diesel fuel. The data represent the price of ultra low sulfur diesel (ULSD) which contains less than 15 parts-per-million sulfur. The prices are collected via telephone, fax, email, or the internet from participating outlets. All collected prices are subjected to automated edit checks during data collection and data processing. Data flagged by the edits are verified with the respondents. Imputation is used for companies that cannot be contacted and for reported prices that are extreme outliers.

17

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

18

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

SciTech Connect

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

19

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The sample design for the weekly diesel price survey was a two-phase design. The first phase constituted construction of a frame of 2,207 company-State units (CSUs) from the combination of two sample cycles of the EIA-782A and EIA-782B surveys that collected monthly petroleum products' sales at the State level. For sampling purposes, any combination of State and company where diesel was sold through retail outlets as reported on the EIA-782 surveys defined a CSU, the sampling unit. For the second phase, a sub-sample of the 2,207 CSUs from phase 1 was selected using probability proportional to size (PPS). The measure of size for each of the two sample cycles separately was normalized using the annual State sales' volumes from the monthly survey divided by the unit's

20

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Sampling Methodology Sampling Methodology The respondents reporting to the weekly diesel price survey represent a stratified probability proportional to size (PPS) sample selected from a frame list of retail outlets. The outlet sampling frame was constructed using commercially available lists from several sources in order to provide comprehensive coverage of truck stops and service stations that sell on-highway diesel fuel in the United States. The frame includes about 62,000 service stations and 4,000 truck stops. Due to statistical and operational considerations, outlets in the States of Alaska and Hawaii are excluded from the target population. The primary publication cells of the survey include Petroleum Administration for Defense Districts (PADDs) 2-4, three sub-PADDs within

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Pump Components History Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550 15.4 9.0 27.2 48.3 Oct-00 1.532 13.7 10.1 27.5 48.6 Nov-00 1.517 10.4 11.8 27.8 50.0 Dec-00 1.443 8.0 17.9 29.2 44.8 Jan-01 1.447 17.8 10.4 29.2 42.7 Feb-01 1.450 17.3 11.0 29.1 42.6 Mar-01 1.409 18.8 9.7 30.0 41.5

22

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network (OSTI)

Carbonyl compounds present in motor vehicle exhaust, rangingfrom gasoline and diesel motor vehicles. Environ. Sci. Tech.composition and toxicity of motor vehicle emission samples.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

23

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Diesel Fuel Release Date: November 25, 2013 | Next Release Date: December 2, 2013 Reformulated Gasoline. States in each PADD Region. Procedures & Methodology ...

24

Performance of gasoline and diesel fuels produced from COED syncrude  

DOE Green Energy (OSTI)

Fuel consumption and exhaust emissions characteristics were evaluated for gasoline and diesel fuel produced from coal liquid derived syncrude. The engine types used were: (1) current technology spark-ignition, homogeneous charge, (2) stratified-charge, and (3) Stirling. There were no significant changes in fuel consumption or exhaust emissions between syncrude-derived fuels and conventional fuels in stratified-charge and Stirling engines. Because of its low (approximately equal to 70) octane number and volatility, the synthetic gasoline required a reduction in compression ratio to achieve knock-limited, MBT spark timing. This was in comparison to the reference gasoline, in a single-cylinder spark-ignited test engine, at one speed/load point. Exhaust emissions were very similar between the two fuels.

Bechtold, R.L.; Fleming, R.D.

1978-06-01T23:59:59.000Z

25

Figure 102. U.S. motor gasoline and diesel fuel consumption ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 102. U.S. motor gasoline and diesel fuel consumption, 2000-2040 (million barrels per day) Motor Gasoline Petroleum Portion ...

26

Retail prices: diesel outpaces gasoline - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Since mid-2009 the price of retail diesel has been consistently higher than the price of retail regular grade gasoline. Strong diesel demand in emerging economies and ...

27

[98e]-Catalytic reforming of gasoline and diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

28

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube  

E-Print Network (OSTI)

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

29

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

DOE Green Energy (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

30

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

Download Series History: Definitions, Sources & Notes: Show Data By: Product: Area: Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History; Gasoline - All Grades: 3 ...

31

Washington Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

3.930: 3.875: 3.809: 2003-2013-= No Data Reported; ... EIA did not collect weekly retail motor gasoline data between December 10, 1990 and January 14, 1991.

32

Massachusetts Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

33

San Francisco Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

34

Cleveland Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

35

Chicago Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

36

Washington Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

37

Colorado Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

38

New York Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

39

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

40

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Florida Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

42

Seattle Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

43

Los Angeles Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

44

Denver Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

45

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

46

Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions  

DOE Green Energy (OSTI)

Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

2002-08-25T23:59:59.000Z

47

An experimental investigation of low octane gasoline in diesel engines.  

DOE Green Energy (OSTI)

Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

Ciatti, S. A.; Subramanian, S. (Energy Systems)

2011-09-01T23:59:59.000Z

48

Recent gasoline and diesel prices track Brent and LLS, not WTI ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

49

Why are the retail pump prices for gasoline and diesel fuel in ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? When was the last refinery built in the United States?

50

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions  

DOE Green Energy (OSTI)

To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies. This research program has two facets: (1) development and use of short-term in vitro and in vivo toxicity assays for comparing the toxicities of gasoline and diesel exhaust emissions; and (2) determination of the disposition of inhaled ultrafine particles deposited in the lung. Responses of cultured cells, cultured lung slices, and rodent lungs to various types of particles were compared to develop an improved short-term toxicity screening capability. To date, chemical toxicity indicators of cultured human A549 cells and early inflammatory and cytotoxic indicators of rat lungs have given the best distinguishing capability. A study is now underway to determine the relative toxicities of exhaust samples from in-use diesel and gasoline engines. The samples are being collected under the direction of the National Renewable Energy Laboratory with support from DOE's Office of Heavy Vehicle Technologies. The ability to generate solid ultrafine particles and to trace their movement in the body as particles and soluble material was developed. Data from rodents suggest that ultrafine particles can move from the lung to the liver in particulate form. The quantitative disposition of inhaled ultrafine particles will be determined in rodents and nonhuman primates.

Kristen J. Nikula; Gregory L. Finch; Richard A. Westhouse; JeanClare Seagrave; Joe L. Mauderly; Doughlas R. Lawson; Michael Gurevich

1999-04-26T23:59:59.000Z

51

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all petroleum reports all petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: December 16, 2013 | Next Release Date: December 23, 2013 Diesel Fuel Release Date: December 16, 2013 | Next Release Date: December 23, 2013 U.S. Regular Gasoline Prices* (dollars per gallon)full history Change from 12/02/13 12/09/13 12/16/13 week ago year ago U.S. 3.272 3.269 3.239 values are down -0.030 values are down -0.015 East Coast (PADD1) 3.389 3.382 3.373 values are down -0.009 values are up 0.023 New England (PADD1A) 3.475 3.494 3.508 values are up 0.014 values are up 0.015 Central Atlantic (PADD1B) 3.441 3.447 3.457 values are up 0.010 values are down -0.029 Lower Atlantic (PADD1C) 3.325 3.300 3.270 values are down -0.030 values are up 0.063

52

Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maximizing Potential of Diesel and Gasoline for a Cleaner, More Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient Engine Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient Engine September 27, 2011 - 3:52pm Addthis A team of researchers and engineers at Argonne National Laboratory, led by Steve Ciatti, pictured above, is looking at the possibility of using gasoline to power diesel engines, thereby increasing overall efficiency and reducing pollution. | Image courtesy of ANL A team of researchers and engineers at Argonne National Laboratory, led by Steve Ciatti, pictured above, is looking at the possibility of using gasoline to power diesel engines, thereby increasing overall efficiency and reducing pollution. | Image courtesy of ANL Bryan Wheeler Intern, Office of Science

53

Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maximizing Potential of Diesel and Gasoline for a Cleaner, More Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient Engine Maximizing Potential of Diesel and Gasoline for a Cleaner, More Efficient Engine September 27, 2011 - 3:52pm Addthis A team of researchers and engineers at Argonne National Laboratory, led by Steve Ciatti, pictured above, is looking at the possibility of using gasoline to power diesel engines, thereby increasing overall efficiency and reducing pollution. | Image courtesy of ANL A team of researchers and engineers at Argonne National Laboratory, led by Steve Ciatti, pictured above, is looking at the possibility of using gasoline to power diesel engines, thereby increasing overall efficiency and reducing pollution. | Image courtesy of ANL Bryan Wheeler Intern, Office of Science

54

,"New York Gasoline and Diesel Retail Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline and Diesel Retail Prices" Gasoline and Diesel Retail Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Gasoline and Diesel Retail Prices",12,"Weekly","12/16/2013","6/5/2000" ,"Release Date:","12/16/2013" ,"Next Release Date:","12/23/2013" ,"Excel File Name:","pet_pri_gnd_dcus_sny_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_sny_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

55

,"New York City Gasoline and Diesel Retail Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

City Gasoline and Diesel Retail Prices" City Gasoline and Diesel Retail Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York City Gasoline and Diesel Retail Prices",8,"Weekly","12/16/2013","6/5/2000" ,"Release Date:","12/16/2013" ,"Next Release Date:","12/23/2013" ,"Excel File Name:","pet_pri_gnd_dcus_y35ny_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_y35ny_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

56

Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass  

DOE Green Energy (OSTI)

Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible fuels.

Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

2013-06-09T23:59:59.000Z

57

Ethanol, Gasoline, and Ultra Low Sulfur Diesel Supply Issues in 2006  

Reports and Publications (EIA)

Presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, discussing the impact of changing product specifications on U.S. gasoline and diesel fuel supply.

Information Center

2006-08-07T23:59:59.000Z

58

2011 Brief: U.S. average gasoline and diesel prices over $3 ...  

U.S. Energy Information Administration (EIA)

The average price U.S. drivers paid for gasoline and diesel during 2011 never fell below $3 per gallon, marking the first time the national pump price for both ...

59

Vehicle Technologies Office: Fact #540: October 13, 2008 Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

40: October 13, 2008 Gasoline Prices Adjusted for Inflation to someone by E-mail Share Vehicle Technologies Office: Fact 540: October 13, 2008 Gasoline Prices Adjusted for...

60

Recent Developments in BMW's Diesel Technology  

DOE Green Energy (OSTI)

The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

Steinparzer, F

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

62

,"San Francisco Gasoline and Diesel Retail Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

San Francisco Gasoline and Diesel Retail Prices" San Francisco Gasoline and Diesel Retail Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","San Francisco Gasoline and Diesel Retail Prices",8,"Weekly","12/16/2013","6/5/2000" ,"Release Date:","12/16/2013" ,"Next Release Date:","12/23/2013" ,"Excel File Name:","pet_pri_gnd_dcus_y05sf_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_y05sf_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

63

,"Los Angeles Gasoline and Diesel Retail Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Gasoline and Diesel Retail Prices" Los Angeles Gasoline and Diesel Retail Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Los Angeles Gasoline and Diesel Retail Prices",8,"Weekly","12/16/2013","6/5/2000" ,"Release Date:","12/16/2013" ,"Next Release Date:","12/23/2013" ,"Excel File Name:","pet_pri_gnd_dcus_y05la_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_y05la_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

64

U.S. Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon, Including Taxes) Area: ... EIA did not collect weekly retail motor gasoline data between December 10, 1990 and January 14, 1991.

65

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburg, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

66

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburg, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

67

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

68

Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 26, 8: February 26, 2007 Gasoline Price Expectations to someone by E-mail Share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Facebook Tweet about Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Twitter Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Google Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Delicious Rank Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Digg Find More places to share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on AddThis.com... Fact #458: February 26, 2007 Gasoline Price Expectations

69

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Monthly and yearly energy forecasts, analysis of energy topics, ... 2013 | Next Release Date: November 18, 2013 Diesel Fuel Release Date: November 12, ...

70

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

71

Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing  

DOE Green Energy (OSTI)

In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

Hsu, D. D.

2011-03-01T23:59:59.000Z

72

Midwest (PADD 2) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

73

New England (PADD 1A) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

74

Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

75

Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

76

Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

77

U.S. Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

78

Gasoline Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

and diesel price estimates from the Energy Information Administration Understanding Gas Prices Photo of gasoline receipt What determines the cost of gasoline? What's the...

79

Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices:  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 15, 1: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries to someone by E-mail Share Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Facebook Tweet about Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Twitter Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Google Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Delicious Rank Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Digg Find More places to share Vehicle Technologies Office: Fact #491:

80

Clean Diesel Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Diesel Technologies Inc Diesel Technologies Inc Jump to: navigation, search Name Clean Diesel Technologies Inc Place Stamford, Connecticut Zip 6901 Product Clean Diesel Technologies Inc is a specialty chemical company with patented products that reduce emissions from diesel engines while simultaneously improving fuel economy and power. Coordinates 42.75294°, -73.068531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.75294,"lon":-73.068531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

82

Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER)  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Diesel Engine Emissions Reduction (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Digg Find More places to share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on

83

Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion  

DOE Green Energy (OSTI)

Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

2013-01-02T23:59:59.000Z

84

Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and Emissions...

85

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

86

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

87

Comparative Toxicity of Gasoline and Diesel Engine Emissions  

DOE Green Energy (OSTI)

Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.

JeanClare Seagrave; Joe L. Mauderly; Barbara Zielinska; John Sagebiel; Kevin Whitney; Doughlas R. Lawson; Michael Gurevich

2000-06-19T23:59:59.000Z

88

Clean Diesel Technologies | Open Energy Information  

Open Energy Info (EERE)

Clean Diesel Technologies Clean Diesel Technologies Jump to: navigation, search Name Clean Diesel Technologies Address 10 Middle Street Place Bridgeport, Connecticut Zip 06604 Sector Carbon Product Solutions for emissions and carbon reduction Website http://www.cdti.com/ Coordinates 41.178468°, -73.188243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.178468,"lon":-73.188243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

90

Fractionation of reformate: A new variant of gasoline production technology  

Science Conference Proceedings (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

91

Vehicle Technologies Office: Fact #496: November 19, 2007 Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: November 19, 2007 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes to someone by E-mail Share Vehicle Technologies Office: Fact 496: November 19, 2007 Diesel...

92

Vehicle Technologies Office: Fact #650: November 22, 2010 Diesel...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: November 22, 2010 Diesel Fuel Prices hit a Two-Year High to someone by E-mail Share Vehicle Technologies Office: Fact 650: November 22, 2010 Diesel Fuel Prices hit a Two-Year...

93

Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 26, 7: April 26, 2004 State Gasoline Tax Rates to someone by E-mail Share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Facebook Tweet about Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Twitter Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Google Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Delicious Rank Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Digg Find More places to share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on AddThis.com... Fact #317: April 26, 2004 State Gasoline Tax Rates At 7.5 cents per gallon, Georgia had the lowest state gasoline tax in the

94

Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City  

E-Print Network (OSTI)

The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

Thornhill, D. A.

95

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

Science Conference Proceedings (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

96

Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 4, 2009 9: May 4, 2009 Gasoline Prices Around the World to someone by E-mail Share Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Facebook Tweet about Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Twitter Bookmark Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Google Bookmark Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Delicious Rank Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on Digg Find More places to share Vehicle Technologies Office: Fact #569: May 4, 2009 Gasoline Prices Around the World on AddThis.com... Fact #569: May 4, 2009 Gasoline Prices Around the World

97

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Kokjohn, Sage [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin

2010-01-01T23:59:59.000Z

98

2011 Brief: U.S. average gasoline and diesel prices over $3 per ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... record U.S. diesel exports and higher diesel fuel demand from truckers transporting more finished goods and raw materials as the ...

99

Available Technologies: Alternative Diesel Fuel from Biosynthetic ...  

Imaging Tools; Lasers; ... Cold weather anticlouding additive for diesel fuels ; Diesel or jet fuel alternative; Platform for advanced biosynthetic fuels development ;

100

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office: Fact #261: March 31, 2003 U.S. Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

1: March 31, 2003 U.S. Gasoline and Crude Oil Prices, January 1998-February 2003 to someone by E-mail Share Vehicle Technologies Office: Fact 261: March 31, 2003 U.S. Gasoline and...

102

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies; Diesel exhaust after-treatment technologies.  

E-Print Network (OSTI)

??Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting… (more)

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

103

Why has diesel fuel been more expensive than gasoline? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? What was the highest U.S. average retail price of regular gasoline? What's up (and down) with gasoline prices?

104

Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by  

NLE Websites -- All DOE Office Websites (Extended Search)

5: May 16, 2011 5: May 16, 2011 Gasoline Prices by Region, May 2, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011 on Google Bookmark Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011 on Delicious Rank Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #675: May 16, 2011 Gasoline Prices by Region, May 2, 2011 on AddThis.com...

105

Table 5.24 Retail Motor Gasoline and On-Highway Diesel Fuel ...  

U.S. Energy Information Administration (EIA)

Sources: Motor Gasoline by Grade: · 1949-1973— Platt's Oil Price Handbook and Oilmanac, 1974, 51st Edition.

106

Research guidance studies to assess gasoline from coal by methanol-to-gasoline and sasol-type Fischer--Tropsch technologies. Final report  

DOE Green Energy (OSTI)

This study provides a technical and economic comparison between the new Mobil methanol-to-gasoline technology under development and the commercially available Fischer--Tropsch technology for the production of motor gasoline meeting U.S. quality standards. Conceptual plant complexes, sited in Wyoming, are complete grass-roots facilities. The Lurgi dry-ash, pressure technology is used to gasify sub-bituminous strip coal. Except for the Mobil process, processes used are commercially available. Coproduction of products, namely SNG, LPG and gasoline, is practiced. Four sensitivity cases have also been developed in less detail from the two base cases. In all areas, the Mobil technology is superior to Fischer--Tropsch: process complexity, energy usage, thermal efficiency, gasoline selectivity, gasoline quality, investment and gasoline selectivity, gasoline quality, investment and gasoline cost. Principal advantages of the Mobil process are its selective yield of excellent quality gasoline with minimum ancillary processing. Fischer--Tropsch not only yields a spectrum of products, but the production of a gasoline meeting U.S. specifications is difficult and complex. This superiority results in about a 25% reduction in the gasoline cost. Sensitivity study conclusions include: (1) the conversion of methanol into gasoline over the Mobil catalyst is highly efficient, (2) if SNG is a valuable product, increased gasoline yield via the reforming of SNG is uneconomical, and (3) fluid-bed operation is somewhat superior to fixed-bed operation for the Mobil methanol conversion technology.

Schreiner, M.

1978-08-01T23:59:59.000Z

107

Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace  

NLE Websites -- All DOE Office Websites (Extended Search)

4: October 17, 4: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel to someone by E-mail Share Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Facebook Tweet about Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Twitter Bookmark Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Google Bookmark Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Delicious Rank Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on Digg Find More places to share Vehicle Technologies Office: Fact #394: October 17, 2005 Fuel to Replace Gasoline and Diesel Fuel on AddThis.com...

108

Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for  

NLE Websites -- All DOE Office Websites (Extended Search)

2: March 31, 2: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 to someone by E-mail Share Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Facebook Tweet about Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Twitter Bookmark Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Google Bookmark Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Delicious Rank Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Digg Find More places to share Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on

109

Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and  

NLE Websites -- All DOE Office Websites (Extended Search)

3: April 10, 3: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 to someone by E-mail Share Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Facebook Tweet about Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Twitter Bookmark Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Google Bookmark Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Delicious Rank Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Digg Find More places to share Vehicle Technologies Office: Fact #123:

110

EIA: Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Summary Excerpt: Regular Gasoline Retail Price (Dollars per Gallon) 3.360 .. U.S. 3.353 ... East Coast 3.492 .... New England

111

Why are the retail pump prices for gasoline and diesel fuel in ...  

U.S. Energy Information Administration (EIA)

Does EIA have gasoline prices by city, county, or zip code? Does EIA have projections for energy production, consumption, and prices for individual states?

112

Ethanol, Gasoline, and Ultra Low Sulfur Diesel Supply Issues in 2006  

U.S. Energy Information Administration (EIA)

Ethanol, Gasoline, and ULSD Supply Issues in 2006 State Heating Oil and Propane Conference August 2006 John Hackworth Joanne Shore Energy Information Administration

113

Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline  

NLE Websites -- All DOE Office Websites (Extended Search)

5: May 22, 2006 5: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? to someone by E-mail Share Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Facebook Tweet about Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Twitter Bookmark Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Google Bookmark Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Delicious Rank Vehicle Technologies Office: Fact #425: May 22, 2006 The Price of Gasoline and Vehicle Travel: How Do They Relate? on Digg

114

Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and  

NLE Websites -- All DOE Office Websites (Extended Search)

6: April 19, 6: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Google Bookmark Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Delicious Rank Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Digg

115

Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies  

DOE Green Energy (OSTI)

This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

2011-01-01T23:59:59.000Z

116

PADD 4 Gasoline and Diesel Retail Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

117

Denver Gasoline and Diesel Retail Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

118

Ohio Gasoline and Diesel Retail Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

119

PADD 5 Gasoline and Diesel Retail Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

120

Miami Gasoline and Diesel Retail Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Boston Gasoline and Diesel Retail Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

122

Vehicle Technologies Office: Fact #545: November 17, 2008 Historical  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 17, 5: November 17, 2008 Historical Alternative Fuel Prices Compared to Gasoline and Diesel to someone by E-mail Share Vehicle Technologies Office: Fact #545: November 17, 2008 Historical Alternative Fuel Prices Compared to Gasoline and Diesel on Facebook Tweet about Vehicle Technologies Office: Fact #545: November 17, 2008 Historical Alternative Fuel Prices Compared to Gasoline and Diesel on Twitter Bookmark Vehicle Technologies Office: Fact #545: November 17, 2008 Historical Alternative Fuel Prices Compared to Gasoline and Diesel on Google Bookmark Vehicle Technologies Office: Fact #545: November 17, 2008 Historical Alternative Fuel Prices Compared to Gasoline and Diesel on Delicious Rank Vehicle Technologies Office: Fact #545: November 17, 2008 Historical Alternative Fuel Prices Compared to Gasoline and Diesel on Digg

123

Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel  

E-Print Network (OSTI)

establish criteria for engine design, operation, after-treatment, and fuel and lubri- cating oil and diesel engine exhaust Fangqun Yua, *, Thomas Lannib , Brian P. Frankb a Atmospheric Sciences Research concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust

Yu, Fangqun

124

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application  

DOE Green Energy (OSTI)

Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2002-10-01T23:59:59.000Z

125

Vehicle Technologies Office: Fact #576: June 22, 2009 Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel to someone by E-mail Share Vehicle Technologies Office: Fact 576: June 22, 2009 Carbon Dioxide from Gasoline and...

126

Vehicle Technologies Office: Fact #533: August 25, 2008 Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Rates by State, 2008 The tax rates for gasoline can vary substantially from state to state. Alaska has by far the lowest tax rate at 8 cents per gallon while Washington State...

127

Vehicle Technologies Office: Fact #639: September 6, 2010 Gasoline...  

NLE Websites -- All DOE Office Websites (Extended Search)

per gallon for all states. Each state applies additional taxes which vary from state to state. As of July 2010, Alaska had the lowest overall tax rate for gasoline at 26.4 cents...

128

Vehicle Technologies Office: Fact #526: July 7, 2008 Price Breakdown for a  

NLE Websites -- All DOE Office Websites (Extended Search)

6: July 7, 2008 6: July 7, 2008 Price Breakdown for a Gallon of Gasoline and a Gallon of Diesel to someone by E-mail Share Vehicle Technologies Office: Fact #526: July 7, 2008 Price Breakdown for a Gallon of Gasoline and a Gallon of Diesel on Facebook Tweet about Vehicle Technologies Office: Fact #526: July 7, 2008 Price Breakdown for a Gallon of Gasoline and a Gallon of Diesel on Twitter Bookmark Vehicle Technologies Office: Fact #526: July 7, 2008 Price Breakdown for a Gallon of Gasoline and a Gallon of Diesel on Google Bookmark Vehicle Technologies Office: Fact #526: July 7, 2008 Price Breakdown for a Gallon of Gasoline and a Gallon of Diesel on Delicious Rank Vehicle Technologies Office: Fact #526: July 7, 2008 Price Breakdown for a Gallon of Gasoline and a Gallon of Diesel on Digg

129

Vehicle Technologies Office: Fact #645: October 18, 2010 Price...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe to someone by E-mail Share Vehicle Technologies Office: Fact 645: October 18, 2010 Price of Diesel Fuel versus...

130

Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

3-D Animation Shows 3-D Animation Shows Complex Geometry of Diesel Particulates to someone by E-mail Share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Facebook Tweet about Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Twitter Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Google Bookmark Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Delicious Rank Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on Digg Find More places to share Vehicle Technologies Office: 3-D Animation Shows Complex Geometry of Diesel Particulates on AddThis.com... 3-D Animation Shows Complex Geometry of Diesel Particulates

131

Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel  

SciTech Connect

Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

2002-06-04T23:59:59.000Z

132

Argonne Transportation - Diesel Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti Recent DOE Award winners, (L-R) Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti, stand in front of their fuel spray injection chamber. Using the synchrotron beam at the APS, the team is able to probe the fuel spray and study the process of combustion. A team of Argonne scientists (Jin Wang, Steve Ciatti, Chris Powell, and Yong Yue) recently won the 2002 National Laboratory Combustion and Emissions Control R&D Award for groundbreaking work in diesel fuel sprays. For the first time ever, the team used x-rays to penetrate through gasoline and diesel sprays and made detailed measurements of fuel injection systems for diesel engines. This technology uncovered a previously unknown

133

SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES  

DOE Green Energy (OSTI)

The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+} by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.

Scott G. McKinley; Celedonio M. Alvarez

2003-03-01T23:59:59.000Z

134

Variable-Rate State Gasoline Taxes  

E-Print Network (OSTI)

state levy taxes on gasoline and diesel fuel. Motor fueltax on gasoline of 7.5 cents per gallon and a “second motormotor fuel taxes could keep pace with changing conditions might be by indexing gasoline taxes

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

1999-01-01T23:59:59.000Z

135

Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 21, 2004 5: June 21, 2004 Diesel and Hybrid Vehicle Preferences to someone by E-mail Share Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Facebook Tweet about Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Twitter Bookmark Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Google Bookmark Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Delicious Rank Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on Digg Find More places to share Vehicle Technologies Office: Fact #325: June 21, 2004 Diesel and Hybrid Vehicle Preferences on AddThis.com...

136

A COMPACT CORONA DISCHARGE DEVICE (CDD{trademark}) FOR NON-THERMAL PLASMA GENERATION IN GASOLINE OR DIESEL ENGINE EXHAUST  

DOE Green Energy (OSTI)

Higher fuel economy targets and hybrid vehicles are increasing the marketability of diesel engines. But in order to implement the growth of diesels to achieve the fuel economy benefits, all emission regulation issues must be met. To do this traps and catalysts are being utilized. One of the main problems is finding a technology that enables the exhaust emission system to not only meet the emission requirements when new, but also to meet them at the regulated intermediate and full life requirements. Work is being done that enables catalysts to remain highly efficient throughout their full life. It is done by using a corona discharge device (CDD{trademark}) that introduces non-thermal plasma into the exhaust ahead of the converter. This low power device creates radicals that alter the chemistry of the exhaust so as to limit the poisoning of the catalyst. This can be done without so called ''purge'' cycles that lower fuel economy and degrade catalyst long-term durability. This device has been developed, not as a laboratory tool, but as a production ready product and is the first of its kind that is commercially available for testing. It is this product, the Corona Discharge Device, CDD{trademark}, which will be described.

Nowak,Victor J.

2000-08-20T23:59:59.000Z

137

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

DOE Green Energy (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

138

Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

4: October 11, 4: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe to someone by E-mail Share Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Facebook Tweet about Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Twitter Bookmark Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Google Bookmark Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Delicious Rank Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Digg Find More places to share Vehicle Technologies Office: Fact #644:

139

Vehicle Technologies Office: 2002 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Medium-Duty Diesel Engine Shawn Whitacre National Renewable Energy Lab (PDF 356 KB) Natural Oils -- The Next Generation of Diesel Engine Lubricants? Joe Perez The...

140

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies  

E-Print Network (OSTI)

Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicle Technologies Office: Fact #502: January 21, 2008 Off-Road Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

2: January 21, 2: January 21, 2008 Off-Road Diesel Equipment Facing Tougher Emissions Regulation to someone by E-mail Share Vehicle Technologies Office: Fact #502: January 21, 2008 Off-Road Diesel Equipment Facing Tougher Emissions Regulation on Facebook Tweet about Vehicle Technologies Office: Fact #502: January 21, 2008 Off-Road Diesel Equipment Facing Tougher Emissions Regulation on Twitter Bookmark Vehicle Technologies Office: Fact #502: January 21, 2008 Off-Road Diesel Equipment Facing Tougher Emissions Regulation on Google Bookmark Vehicle Technologies Office: Fact #502: January 21, 2008 Off-Road Diesel Equipment Facing Tougher Emissions Regulation on Delicious Rank Vehicle Technologies Office: Fact #502: January 21, 2008 Off-Road Diesel Equipment Facing Tougher Emissions Regulation on Digg

142

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

143

The Gasoline Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

sae 2003-01-1789, Takaaki kiTamura eT aL. 2200 2600 LoCaL equivaLenCe raTio 3000 fueL Lean fueL riCh 0 1 2 3 4 5 6 40 MECHANICAL ENGINEERING | September 2012 ARGONNE NATIONAL...

144

Argonne TTRDC - Feature - Five Myths About Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Five Myths About Diesel Engines Five Myths About Diesel Engines by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility Diesel engines, long confined to trucks and ships, are garnering more interest for their fuel efficiency and reduced carbon dioxide emissions relative to gasoline engines. Argonne mechanical engineer Steve Ciatti takes a crack at some of the more persistent myths surrounding the technology. Myth #1: Diesel is dirty. "We all have this image of trucks belching out dirty black smoke," Ciatti said. This smoke is particulate matter from diesel exhaust: soot and small amounts of other chemicals produced by the engine. But EPA emissions requirements have significantly tightened, and diesel engines now have to meet the same criteria as gasoline engines. They do

145

THE PERFORMANCE OF SMDS DIESEL FUEL MANUFACTURED BY SHELL'S GtL TECHNOLOGY  

DOE Green Energy (OSTI)

The Royal Dutch/Shell Group's (Shell's) Gas to Liquids (GtL) technology, better known as the Shell Middle Distillate Synthesis (SMDS) process, converts natural gas into diesel and other products via a modem improved Fisher-Tropsch synthesis. The diesel cut has very good cetane quality, low density, and virtually no sulphur and aromatics; such properties make it valuable as a diesel fuel with lower emissions than conventional automotive gas oil.

Clark, Richard H.

2000-08-20T23:59:59.000Z

146

Research guidance studies to assess gasoline from coal by methanol-to-gasoline and Sasol-type Fischer--Tropsch technologies  

DOE Green Energy (OSTI)

The primary purpose of this study is to provide a technical and economic comparison between the commercial Fischer-Tropsch technology and the new Mobil methanol-to-gasoline technology for the production of motor gasoline. Several technical sensitivity cases are also part of the study and will be included in the final report. Two conceptual plant complexes - Base Case I: Mobil Technology and Base Case II: Fischer-Tropsch Technology--have been developed. They are self-supporting, grass roots facilities assumed to be located in a Wyoming coal field. Plant size is equivalent to the proposed large commercial SNG plants. Except for the Mobil methanol conversion technology, all processes used are commercial. Co-production of all products has been assumed. Products have been upgraded to meet U.S. market specifications. A summary comparison of the two base cases shows that the Mobil technology is somewhat more efficient and more effective in producing gasoline. Moreover, the number of processing steps required is considerably fewer. All products meet the target specifications.

Schreiner, M.

1977-09-01T23:59:59.000Z

147

Gasoline Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Prices Gasoline Price Data Sign showing gasoline prices Local Prices: Find the cheapest gasoline prices in your area. State & Metro Area Prices: Average prices from AAA's...

148

Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint  

DOE Green Energy (OSTI)

This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

Baring-Gould, I.; Dabo, M.

2009-02-01T23:59:59.000Z

149

Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint  

DOE Green Energy (OSTI)

This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

Baring-Gould, I.; Dabo, M.

2009-05-01T23:59:59.000Z

150

Vehicle Technologies Office: 2003 Diesel Engine Emissions Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: Fuels and Lubrication, Part 2 Emissions from Heavy-Duty Diesel Engine with Exhaust Gas Recirculation (EGR) using Oil Sands Derived Fuels Stuart Neill National Research...

151

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

Science Conference Proceedings (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL; Huff, Shean P [ORNL; Chambon, Paul H [ORNL; Thomas, John F [ORNL

2010-01-01T23:59:59.000Z

152

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

153

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

154

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

155

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

156

Does EIA have gasoline prices by city, county, or zip code ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including ... How many gallons of gasoline does ... Why is the United States exporting ...

157

Why is the United States exporting gasoline when prices are so ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? What was the highest U.S. average retail price of regular gasoline?

158

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

159

Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)  

DOE Green Energy (OSTI)

The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

Baring-Gould, E. I.; Dabo, M.

2009-05-01T23:59:59.000Z

160

Coal fueled diesel system for stationary power applications-technology development  

DOE Green Energy (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Study of Lean NOx Technology for Diesel Emission Control  

DOE Green Energy (OSTI)

Diesel engines because of their reliability and efficiency are a popular mobile source. The diesel engine operates at higher compression ratios and with leaner fuel mixtures and produces lower carbon monoxide and hydrocarbon emissions. The oxygen-rich environment leads to higher nitrogen oxides in the form of NO. Catalysts selectively promoting the reduction of NOx by HCs in a lean environment have been termed lean NOx catalyst ''LNC''. The two groups that have shown most promise are, Copper exchanged zeolite Cu/ZSM5, and Platinum on alumina Pt/Al2O3.

Mital, R.

2000-08-20T23:59:59.000Z

162

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

163

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

164

ETAG European Technology Assessment ITAS DBT viWTA POST Rathenau  

E-Print Network (OSTI)

% of the consumed electricity and 5,75% of the consumed gasoline and diesel should originate from renewable energy: Technologies for wind energy, wave energy, geothermal energy, bioenergy, solar energy, hydropower and fuel

165

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

166

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

167

Coal-fueled diesel technology development Emissions Control  

DOE Green Energy (OSTI)

GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

1994-01-01T23:59:59.000Z

168

Vehicle Technologies Office: Fact #783: June 10, 2013 Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Internal Combustion Engine Vehicles Gasoline 220 Diesel 210 Natural Gas 200 Corn Ethanol (E85) 170 Cellulosic E85 66 Cellulosic Gasoline 76 Gasoline 170 Hybrid...

169

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

170

Why is the United States exporting gasoline when prices ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural ... 2012. Other FAQs about ... Why is the United States ...

171

How can I find historical gasoline prices for each state ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural ... 2012. Other FAQs about ... Why is the United States ...

172

Alkylation is an important source for octane in gasoline - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

173

Average summer gasoline prices expected to be slightly lower than ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

174

Coal-fueled diesel emissions control technology development  

DOE Green Energy (OSTI)

The objective of this project is to develop an emissions control system for a GE locomotive powered by a Coal Water Slurry (CWS) fuel diesel engine. The development effort is directed toward reducing particulate matter, SO{sub 2} and NO{sub x} emissions from the engine exhaust gas at 700--800F and 1-2 psig. The commercial system should be economically attractive while subject to limited space constraints. After testing various alternatives, a system composed of a barrier filter with sorbent injection ups was selected for controlling particulates, SO{sub 2} and NO{sub x} emissions. In bench scale and 500 acfm slip s tests, removal efficiencies greater than 90% for SO{sub 2} and 85% for NO{sub x} were achieved. Particulate emissions from the barrier filter are within NSPS limits.

Cook, C.; Gal, E.; Mengel, M.; Van Kleunen, W.

1993-03-01T23:59:59.000Z

175

Coal-fueled diesel emissions control technology development  

DOE Green Energy (OSTI)

The objective of this project is to develop an emissions control system for a GE locomotive powered by a Coal Water Slurry (CWS) fuel diesel engine. The development effort is directed toward reducing particulate matter, SO[sub 2] and NO[sub x] emissions from the engine exhaust gas at 700--800F and 1-2 psig. The commercial system should be economically attractive while subject to limited space constraints. After testing various alternatives, a system composed of a barrier filter with sorbent injection ups was selected for controlling particulates, SO[sub 2] and NO[sub x] emissions. In bench scale and 500 acfm slip s tests, removal efficiencies greater than 90% for SO[sub 2] and 85% for NO[sub x] were achieved. Particulate emissions from the barrier filter are within NSPS limits.

Cook, C.; Gal, E.; Mengel, M.; Van Kleunen, W.

1993-01-01T23:59:59.000Z

176

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

177

Progress on the Development of Reversible SOFC Stack Technology  

E-Print Network (OSTI)

W gasoline SOFC technology development program APU applications can provide entry markets for fuel cell & Select APU Systems 2 · Summarize PEM and SOFC performance parameters · Determine most promising future Task 3: Develop design concepts · Truck Cab/SOFC/diesel · Transit bus/SOFC/CNG or diesel · Police

178

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results  

DOE Green Energy (OSTI)

The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important consideration for light trucks and other personal transportation vehicles. Integrated engine and aftertreatment systems have been developed at Detroit Diesel Corporation for multiple engine and vehicle platforms. Tier 2 emissions technologies have been demonstrated with significant fuel economy advantage compared to the respective production gasoline engines while maintaining excellent drivability.

Aneja, R.; Bolton, B.; Hakim, N.; Pavlova-MacKinnon, Z.

2002-08-25T23:59:59.000Z

179

Gasoline and Diesel Fuel Update  

Annual Energy Outlook 2012 (EIA)

Counties included in New York City metro area The list below includes the counties in the EIA-878 definition for New York City Metro Area. Bergen County, NJ Bronx County, NY Essex...

180

ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS  

DOE Green Energy (OSTI)

Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

2003-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bus application of oxygen-enrichment technology and diesel-electric hybrid systems  

DOE Green Energy (OSTI)

The amendments to the Clean Air Act (CAA) mandate very strict limits on particulate, smoke, and other emissions from city buses. The use of alternative fuels, such as compressed natural gas (CNG) or methanol, can help transit operators, such as the Chicago Transit Authority (CTA), meet the mandated limits. However, the capital investment needed to convert the fueling infrastructure and buses is large, as is the expense of training personnel. If a {open_quotes}clean diesel{close_quotes} bus can be implemented with the help of oxygen-enrichment technology or a diesel-electric hybrid system, this large investment could be postponed for many years. The Regional Transportation Authority (RTA) initiated this project to evaluate the possibility of applying these technologies to CTA buses. Argonne National Laboratory (ANL) conducted a limited number of engine tests and computer analyses and concluded that both concepts are practical and will help in a {open_quotes}clean diesel{close_quotes} bus that can meet the mandated limits of the CAA amendments. The oxygen enrichment of combustion air depends on the availability of a compact and economical membrane separator. Because the technology for this critical component is still under development, it is recommended that an actual bus demonstration be delayed until prototype membranes are available. The hybrid propulsion system is ready for the demonstration phase, and it is recommended that the CTA and RTA commence planning for a bus demonstration.

Sekar, R.R.; Marr, W.W.

1993-10-01T23:59:59.000Z

182

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

DOE Green Energy (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

183

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

184

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

185

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

DOE Green Energy (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

186

Heating Fuels and Diesel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

187

EIA: diesel prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

188

Diesel DeNOx Catalyst - Energy Innovation Portal  

Because diesel engines are more fuel-efficient than gasoline engines, ... Fossil fuel power plants; Chemical plants; Patents and Patent Applications. ID Number.

189

Available Technologies: Engineered Biosynthesis of ...  

Combustion qualities comparable to biodiesel; Fuel molecule size can be adjusted for either gasoline or diesel compatibility; ABSTRACT: Researchers at ...

190

How many gallons of gasoline does one barrel of oil make? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

191

What is the outlook for gasoline prices for 2013 and for 2014 ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

192

Drop in U.S. gasoline prices reflects decline in crude oil costs ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

193

Gasoline prices rise due to increased crude oil costs - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

194

How much ethanol is in gasoline and how does it affect fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

195

Gasoline with higher ethanol content getting closer to U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

196

Figure 10. U.S. Average Retail Regular Motor Gasoline and ...  

U.S. Energy Information Administration (EIA)

U.S. Average Retail Regular Motor Gasoline and On-Highway Diesel Fuel Prices, January 2013 to Present ... Including Taxes) Title: Weekly Petroleum ...

197

U.S. gasoline exports hit all-time high in November 2010 - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

198

Just the Basics: Diesel Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

199

Motor gasolines, Summer 1982  

Science Conference Proceedings (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

200

Learn More About the Fuel Economy Label for Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

different text and icons in the labels for other vehicles: Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Whole Algae Hydrothermal Liquefaction Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Biddy, M.; Davis, R.; Jones, S.

2013-03-01T23:59:59.000Z

202

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

DOE Green Energy (OSTI)

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

203

Trends and Transitions in the Diesel Market  

Reports and Publications (EIA)

A presentation at the 2007 NPRA Annual Meeting focusing on trends in the diesel market. The presentation reviews the status of the ULSD program and highlights recent changes and trends in the distillate market that point towards continued strength in diesel prices relative to gasoline for some time.

Information Center

2007-03-19T23:59:59.000Z

204

Technology drives natural gas production growth from shale ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Rapid increases in natural gas production from shale gas formations resulted from widespread application ...

205

Zeolite Based SCR Catalysts for Off-Road Diesel Engine Emission ...  

Since diesel engines operate under lean ... concentrations of particulates and Nox while CO and hydrocarbons are low as compared with stoichiometric gasoline

206

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

207

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION â—† DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

208

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

209

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

Science Conference Proceedings (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

210

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

211

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

212

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

213

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

2013-03-01T23:59:59.000Z

214

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

215

Reliability technology to improve and/or maintain emergency diesel generator performance  

Science Conference Proceedings (OSTI)

This paper reviews a report that demonstrates that an emergency diesel generator reliability program can be developed using risk- and reliability-based techniques that can be integrated within current plant operational activities to (a) analyze problems that have affected emergency diesel generator (EDG) performances, (b) forecast the onset of potential problems, and (c) suggest actions that could eliminate or reduce their occurrence. With only a few exceptions, commercial NPPs in the United States use EDG units as backup sources. These EDG units consist of a diesel engine connected directly to an ac generator. They are safety grade and are normally arranged so that separate EDGs supply each of the two, three, or four redundant electrical divisions of the NPP. The EDGs are typically designed to start automatically, to be at rated speed and voltage in 10 s, and to accept full load within 1 min.

Karimian, S.; Taylor, J.H.

1987-01-01T23:59:59.000Z

216

Primer on Gasoline Prices  

Reports and Publications (EIA)

This brochure answers, in laymen's terms, questions such as "What are the components of the retail price of gasoline? Why do gasoline prices fluctuate?

Information Center

2009-07-15T23:59:59.000Z

217

NIST 130 Gasoline Concerns  

Science Conference Proceedings (OSTI)

... 2004 – Added Motor Oil, ATF ... 2.1 Gasoline and Gasoline-Oxygenate Blends ... Specification for Automotive Spark-Ignition Engine Fuel,” except that ...

2011-08-30T23:59:59.000Z

218

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

219

Summer 2003 Motor Gasoline Outlook  

U.S. Energy Information Administration (EIA)

Summer 2003 Motor Gasoline Outlook ... State gasoline taxes ... that occurred between spring 1999 and fall 2001, ...

220

Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994  

DOE Green Energy (OSTI)

Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

Not Available

1944-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

vehicle efficiency and one for more advanced hybrid gasoline- electricas advanced parallel hybrid (gas or diesel) electric vehicle

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

222

Chicago Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

77 3.721 3.632 3.557 3.568 3.561 2000-2013 All Grades - Reformulated Areas 3.777 3.721 3.632 3.557 3.568 3.561 2000-2013 Regular 3.710 3.654 3.565 3.491 3.501 3.495 2000-2013...

223

Washington Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2012 (EIA)

795 3.788 3.716 3.663 3.591 3.538 2003-2013 All Grades - Conventional Areas 3.795 3.788 3.716 3.663 3.591 3.538 2003-2013 Regular 3.747 3.739 3.666 3.612 3.539 3.486 2003-2013...

224

Boston Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2012 (EIA)

03 3.662 3.615 3.575 3.523 3.481 2003-2013 All Grades - Reformulated Areas 3.703 3.662 3.615 3.575 3.523 3.481 2003-2013 Regular 3.630 3.589 3.546 3.499 3.443 3.397 2003-2013...

225

San Francisco Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

098 4.079 4.015 3.971 3.936 3.901 2000-2013 All Grades - Reformulated Areas 4.098 4.079 4.015 3.971 3.936 3.901 2000-2013 Regular 4.054 4.033 3.969 3.924 3.889 3.856 2000-2013...

226

Denver Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2012 (EIA)

588 3.565 3.509 3.456 3.417 3.380 2000-2013 All Grades - Conventional Areas 3.588 3.565 3.509 3.456 3.417 3.380 2000-2013 Regular 3.530 3.508 3.451 3.397 3.359 3.321 2000-2013...

227

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

565 3.431 3.369 3.328 3.349 3.345 2000-2013 All Grades - Conventional Areas 3.565 3.431 3.369 3.328 3.349 3.345 2000-2013 Regular 3.514 3.379 3.316 3.269 3.287 3.282 2000-2013...

228

Seattle Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

98 3.801 3.741 3.712 3.652 3.588 2003-2013 All Grades - Conventional Areas 3.798 3.801 3.741 3.712 3.652 3.588 2003-2013 Regular 3.751 3.755 3.694 3.661 3.606 3.543 2003-2013...

229

Houston Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

371 3.294 3.242 3.175 3.156 3.159 2000-2013 All Grades - Reformulated Areas 3.371 3.294 3.242 3.175 3.156 3.159 2000-2013 Regular 3.276 3.198 3.146 3.082 3.063 3.064 2000-2013...

230

Cleveland Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

480 3.554 3.409 3.297 3.371 3.416 2003-2013 All Grades - Conventional Areas 3.480 3.554 3.409 3.297 3.371 3.416 2003-2013 Regular 3.427 3.498 3.348 3.236 3.310 3.361 2003-2013...

231

Colorado Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

98 3.573 3.524 3.471 3.432 3.396 2000-2013 All Grades - Conventional Areas 3.598 3.573 3.524 3.471 3.432 3.396 2000-2013 Regular 3.543 3.518 3.469 3.414 3.376 3.339 2000-2013...

232

Miami Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

55 3.691 3.653 3.591 3.593 3.586 2003-2013 All Grades - Conventional Areas 3.755 3.691 3.653 3.591 3.593 3.586 2003-2013 Regular 3.639 3.561 3.525 3.464 3.466 3.458 2003-2013...

233

Minnesota Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

234

PADD 5 Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

531 3.526 3.538 3.581 3.602 3.581 1993-2014 531 3.526 3.538 3.581 3.602 3.581 1993-2014 All Grades - Conventional Areas 3.395 3.386 3.384 3.401 3.423 3.420 1995-2014 All Grades - Reformulated Areas 3.587 3.582 3.600 3.654 3.675 3.647 1995-2014 Regular 3.477 3.472 3.483 3.526 3.547 3.526 1992-2014 Conventional Areas 3.343 3.335 3.333 3.351 3.371 3.367 1992-2014 Reformulated Areas 3.535 3.531 3.549 3.603 3.624 3.595 1994-2014 Midgrade 3.618 3.611 3.626 3.668 3.690 3.669 1994-2014 Conventional Areas 3.479 3.471 3.470 3.483 3.510 3.508 1995-2014 Reformulated Areas 3.660 3.654 3.673 3.725 3.746 3.718 1995-2014 Premium 3.730 3.721 3.736 3.777 3.799 3.782 1994-2014 Conventional Areas 3.633 3.619 3.617 3.632 3.655 3.659 1995-2014 Reformulated Areas

235

New York Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

722 3.734 3.749 3.774 3.785 3.741 2000-2014 722 3.734 3.749 3.774 3.785 3.741 2000-2014 All Grades - Conventional Areas 3.730 3.734 3.735 3.757 3.768 3.749 2000-2014 All Grades - Reformulated Areas 3.716 3.735 3.761 3.789 3.799 3.734 2000-2014 Regular 3.618 3.635 3.649 3.679 3.690 3.644 2000-2014 Conventional Areas 3.638 3.647 3.649 3.672 3.683 3.661 2000-2014 Reformulated Areas 3.600 3.624 3.650 3.686 3.697 3.629 2000-2014 Midgrade 3.853 3.858 3.875 3.889 3.898 3.860 2000-2014 Conventional Areas 3.826 3.831 3.833 3.847 3.853 3.843 2000-2014 Reformulated Areas 3.870 3.875 3.902 3.916 3.928 3.871 2000-2014 Premium 3.984 3.988 4.001 4.016 4.025 3.988 2000-2014 Conventional Areas 3.986 3.979 3.975 3.998 4.008 3.997 2000-2014 Reformulated Areas

236

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

U.S. States. State energy information, detailed and overviews. Maps. Maps by energy source and topic, includes forecast maps. Countries. Country ...

237

Los Angeles Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

238

California Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

239

Massachusetts Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

240

Seattle Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Colorado Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

242

Gasoline and Diesel Fuel Update - Energy Information ...  

U.S. Energy Information Administration (EIA)

U.S. Department of Energy USA.gov FedStats. Stay Connected Facebook Twitter YouTube Email Updates RSS Feeds ...

243

Texas Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

034 3.066 3.217 3.198 3.179 3.120 2000-2013 034 3.066 3.217 3.198 3.179 3.120 2000-2013 All Grades - Conventional Areas 3.034 3.051 3.204 3.184 3.168 3.123 2000-2013 All Grades - Reformulated Areas 3.035 3.088 3.237 3.219 3.196 3.115 2000-2013 Regular 2.959 2.989 3.146 3.125 3.108 3.048 2000-2013 Conventional Areas 2.967 2.985 3.142 3.119 3.107 3.059 2000-2013 Reformulated Areas 2.946 2.996 3.152 3.133 3.110 3.030 2000-2013 Midgrade 3.149 3.186 3.320 3.305 3.284 3.226 2000-2013 Conventional Areas 3.130 3.153 3.286 3.275 3.254 3.212 2000-2013 Reformulated Areas 3.177 3.234 3.368 3.346 3.326 3.246 2000-2013 Premium 3.312 3.346 3.483 3.472 3.443 3.389 2000-2013 Conventional Areas 3.295 3.309 3.452 3.440 3.411 3.376 2000-2013 Reformulated Areas

244

Chicago Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

245

Engines - Fuel Injection and Spray Research - Diesel Sprays  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nationÂ’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

246

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

247

Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability  

DOE Green Energy (OSTI)

Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9 cents per gallon) for the U.S. Gulf Coast alone, financing, engineering, and construction and material availability are major issues that must be addressed, for both refinery and GTL investments.

Hadder, G.R.

2001-02-15T23:59:59.000Z

248

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

249

Electric car Gasoline car  

E-Print Network (OSTI)

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting

250

Argonne TTRDC - Engines - Compression-Ignition - diesel, fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compression Ignition Engines Clean Diesel Technologies for Greener Performance Mechanical engineer Alan Kastengren examines a diesel injection nozzle used in Argonne's X-ray spray...

251

Reformulated gasoline quality issues  

Science Conference Proceedings (OSTI)

One year ago, a panel of industry experts were interviewed in the November/December 1994 issue of Fuel Reformulation (Vol. 4, No. 6). With the focus then and now on refinery investments, the panelists were asked to forecast which refining processes would grow in importance. It is apparent from their response, and from other articles and discussions throughout the year, that hydroprocessing and catalytic conversion processes are synergistic in the overall refinery design, with flexibility and process objectives varying on a unit-by-unit case. To an extent, future refinery investments in downstream petrochemicals, such as for paraxylene production, are based on available catalytic reforming feedstock. Just a importantly, hydroprocessing units (hydrotreating, hydrocracking) needed for clean fuel production (gasoline, diesel, aviation fuel), are heavily dependent on hydrogen production from the catalytic reformer. Catalytic reforming`s significant influence in the refinery hydrogen balance, as well as its status as a significant naphtha conversion route to higher-quality fuels, make this unit a high-priority issue for engineers and planners striving for flexibility.

Gonzalez, R.G.; Felch, D.E.; Edgar, M.D.

1995-11-01T23:59:59.000Z

252

Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines  

Science Conference Proceedings (OSTI)

The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

Kass, M.D.

2008-07-15T23:59:59.000Z

253

Diesel Power: Clean Vehicles for Tomorrow  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Power: Diesel Power: Clean Vehicles for Tomorrow July 2010 VEHICLE TECHNOLOGIES PROGRAM Prepared for the U.S. Department of Energy Vehicle Technologies Program The diesel engine has changed significantly over the last quarter-century, in terms of technology and performance. For this reason, the U.S. Department of Energy (DOE) has created this series of documents about the history of the diesel engine, its current uses in transportation vehicles,

254

Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses  

DOE Green Energy (OSTI)

This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

Lammert, M.

2008-06-01T23:59:59.000Z

255

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

DOE Green Energy (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

256

Testing of a 50-kW wind-diesel hybrid system at the National Wind Technology Center  

DOE Green Energy (OSTI)

To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this paper include component characterization, such as power conversion losses for the rotary converter systems and battery round trip efficiencies. In addition, systems operation over this period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D.A.; Green, J.; Allderdice, A.; Rand, K.; Bianchi, J. [National Renewable Energy Lab., Golden, CO (United States); Linton, E. [New World Village Power, Waitsfield, VT (United States)

1996-07-01T23:59:59.000Z

257

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network (OSTI)

the volume of normal butane blended into gasoline, or bythe volume of normal butane rejected from motor gasoline.

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

258

Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications  

DOE Green Energy (OSTI)

Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2003-10-01T23:59:59.000Z

259

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

motor gasoline is projected to be about 1.38 per gallon. As was the case with heating oil, last year's peak average gasoline price, at 1.633 per gallon in June, was the...

260

GM sees octane surplus; wants improved diesel fuel in future  

Science Conference Proceedings (OSTI)

Under the subject of fuels, both gasoline and diesel fuel are discussed. A primary gasoline issue is that of the satisfaction of vehicle octane number requirements. Secondary issues are the compatibility of gasolines and vehicular fuel systems, and the plugging of exhaust gas recirculation systems with deposits. The important diesel fuel issues are water in the fuel, low temperature fuel properties, fuel effects on particulate emissions, and fuel specifications. Other matters are those concerning fuel demand in the future, and alternate fuels. Lubricants are also discussed. 9 refs.

Route, W.D.; Amann, C.A.; Gallopoulos, N.E.

1982-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report  

DOE Green Energy (OSTI)

This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

Barnitt, R.

2011-01-01T23:59:59.000Z

262

Vehicle Technologies Office: Research on Biofuels Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

on Biofuels Infrastructure and End-Use Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits,...

263

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

264

Coal-fueled diesel emissions control technology development: A status report  

DOE Green Energy (OSTI)

Since the last progress report, a 500 acfm system treating a slip stream from a single cylinder CWS fuel diesel engine was designed, constructed and tested. The system, as installed in the engine test laboratory, is shown in Figure 1. The system consists of a 6 in. diameter pipe with a flow control valve which diverts up to 500 acfm of exhaust gas from the single cylinder engine exhaust manifold. A gravity feeder injects sorbent into the exhaust gas stream which flows into the filter. In addition, anhydrous ammonia is injected into the gas stream from a pressurized cylinder to control NO[sub x] emission. The gas enters the filter housing from the top. Turning vanes direct the flow downwards toward the filter elements. The gas leaves the filter from the side. A detailed drawing of the filter, a filter element and compressed air system for cleaning the filters elements are shown in Figure 2. The filter media elements are closely spaced to increase the surface area-to-cloth ratio and to meet the space constraints. The filter media is composed of fiber metal with 3-5 micron fibers exhibiting good filtration characteristics. The fiber metal elements are relatively light and are constructed of Iconel or 316 SS, and can operate in the exhaust gas environment. High removal efficiency of particulate matter and S0[sub 2] was achieved using the barrier filter. The NO[sub x] removal efficiency was somewhat lower than was achieved in the bench scale tests, yet more than 85 % reduction of NO[sub x] level could be achieved.

Cook, C.S.; Gal, E.; Mengel, M; van Kleunen, W.

1992-01-01T23:59:59.000Z

265

Coal-fueled diesel emissions control technology development: A status report  

DOE Green Energy (OSTI)

Since the last progress report, a 500 acfm system treating a slip stream from a single cylinder CWS fuel diesel engine was designed, constructed and tested. The system, as installed in the engine test laboratory, is shown in Figure 1. The system consists of a 6 in. diameter pipe with a flow control valve which diverts up to 500 acfm of exhaust gas from the single cylinder engine exhaust manifold. A gravity feeder injects sorbent into the exhaust gas stream which flows into the filter. In addition, anhydrous ammonia is injected into the gas stream from a pressurized cylinder to control NO{sub x} emission. The gas enters the filter housing from the top. Turning vanes direct the flow downwards toward the filter elements. The gas leaves the filter from the side. A detailed drawing of the filter, a filter element and compressed air system for cleaning the filters elements are shown in Figure 2. The filter media elements are closely spaced to increase the surface area-to-cloth ratio and to meet the space constraints. The filter media is composed of fiber metal with 3-5 micron fibers exhibiting good filtration characteristics. The fiber metal elements are relatively light and are constructed of Iconel or 316 SS, and can operate in the exhaust gas environment. High removal efficiency of particulate matter and S0{sub 2} was achieved using the barrier filter. The NO{sub x} removal efficiency was somewhat lower than was achieved in the bench scale tests, yet more than 85 % reduction of NO{sub x} level could be achieved.

Cook, C.S.; Gal, E.; Mengel, M; van Kleunen, W.

1992-12-31T23:59:59.000Z

266

diesel | OpenEI  

Open Energy Info (EERE)

diesel diesel Dataset Summary Description The JodiOil World Database is freely available from the Joint Organisations Data Initiative (JODI) and is updated on or around the 20th of each month. Source JODI Date Released October 01st, 2004 (10 years ago) Date Updated March 21st, 2011 (3 years ago) Keywords crude oil diesel fuel oil gasoline kerosene LPG Data application/zip icon Text file, all JODI Database data: Jan 2002 - Jan 2011 (zip, 14.5 MiB) application/pdf icon Definitions of Abbreviations and Codes (pdf, 698.3 KiB) application/pdf icon Column Headings for Dataset (pdf, 13.4 KiB) Quality Metrics Level of Review Some Review Comment Some of the data has "some review" and some of the data has "no review"; the supplemental documentation provides definitions for the assessment codes for each piece of data in the datasets (essentially, 1 = some review, 2 = use with caution, 3 = not reviewed)

267

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

268

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

269

Conventional Gasoline Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

270

Venezuela Gasoline Production & Demand  

U.S. Energy Information Administration (EIA)

... Change and Uncertainty Today’s gasoline imports essential to meet ... Refinery-based MTBE production and some merchant MTBE facilities will be ...

271

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

272

DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report  

DOE Green Energy (OSTI)

DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

Hakim, Nabil Balnaves, Mike

2003-05-27T23:59:59.000Z

273

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

274

Idaho National Laboratory - Technology Transfer - Technologies ...  

The novel patented reaction produces unreacted methane, C1 to C4 light gases, gasoline (C5 to C12), diesel (C12 to C20), and traces of oxygenates.

275

Trends in motor gasolines: 1942-1981  

Science Conference Proceedings (OSTI)

Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

Shelton, E M; Whisman, M L; Woodward, P W

1982-06-01T23:59:59.000Z

276

Diesel Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Diesel Vehicles and Manufacturers Audi A3 (TDI models) A6 (TDI models) A7 (TDI models) A8 L (TDI model) Q5 (TDI models) Q7 (TDI models) BMW 328d Sedan 328d xDrive Sedan 328d xDrive Sports Wagon 535d Sedan 535d xDrive Sedan Chevrolet Cruze Turbo Diesel Jeep Grand Cherokee EcoDiesel Mercedes-Benz E250 BlueTEC GL350 BlueTEC GLK250 BlueTEC ML350 BlueTEC Porsche Cayenne Diesel Volkswagen Beetle (TDI models) Beetle Convertible (TDI models) Golf (TDI models) Jetta (TDI models) Jetta Sportwagen (TDI models) Passat (TDI models) Touareg (TDI models) Diesel-Related Information

277

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

two categories depending on the ignition source: spark ignition (SI), typically fueled by gasoline or natural gas; or compression ignition (CI), typically fueled by diesel oil. *...

278

NIST GCR 05-879 —Photonics Technologies:Applications in ...  

Science Conference Proceedings (OSTI)

... 1999. ... of the transmix are generally off spec relative to motor gasoline or diesel ... Without considering taxes, more than 77 percent of production and ...

2008-07-28T23:59:59.000Z

279

Imports of Total Motor Gasoline  

U.S. Energy Information Administration (EIA)

Reformulated and conventional gasoline production excludes adjustments for fuel ethanol and motor gasoline blending components. Historical data prior to June 4, ...

280

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017  

SciTech Connect

Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

Jones, Susanne B.; Male, Jonathan L.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017  

SciTech Connect

This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

Jones, Susanne B.; Snowden-Swan, Lesley J.

2013-08-27T23:59:59.000Z

282

gasoline | OpenEI  

Open Energy Info (EERE)

gasoline gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

283

Investigation Of The Ion Current Signal In Gen-Set Turbocharged Diesel Engine.  

E-Print Network (OSTI)

??Diesel powered generator sets have traditionally been and remain the number-one choice for standby and emergency power systems. As an established engine technology, diesel engines… (more)

Badawy, Tamer Hassan

2010-01-01T23:59:59.000Z

284

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

285

Biodiesel and Other Renewable Diesel Fuels  

DOE Green Energy (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

286

Enlaces Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Enlaces Diesel Enlaces Diesel Los siguientes enlaces no son parte del sitio ahorremosgasolina.gov. Le ofrecemos estos enlaces externos para que a su conveniencia tenga acceso a informaciĂłn adicional que puede serle Ăştil o interesante para usted. VehĂ­culos y Fabricantes Diesel Audi A3 (modelos TDI) Q7 (modelos TDI) Mercedes-Benz Mercedes E350 BlueTEC Mercedes GL350 BlueTEC Mercedes ML350 BlueTEC Mercedes R350 BlueTEC Volkswagen Golf (modelos TDI) Jetta (modelos TDI) Jetta Sportwagen (modelos TDI) Touareg (modelos TDI) InformaciĂłn Sobre el Diesel Biodiesel Abundante informaciĂłn sobre el biodiesel proporcionada por el Centro de Datos de Combustibles Alternativos y VehĂ­culos Avanzados (AFDC) Mezclas de Biodiesel ĂŤcono de Adobe Acrobat Informe sobre el debate de las mezclas de biodiesel desarrollado por el programa de Ciudades Limpias del EERE.

287

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

288

Biomass-based alcohol fuels: the near-term potential for use with gasoline  

DOE Green Energy (OSTI)

This report serves as an introduction to the requirements and prospects for a nationwide alcohol-gasoline fuel system based on alcohols derived from biomass resources. Technological and economic factors of the production and use of biomass-based methanol and ethanol fuels are evaluated relative to achieving 5 or 10 percent alcohol-gasoline blends by 1990. It is concluded the maximum attainable is a nationwide 5 percent methanol or ethanol-gasoline system replacing gasoline by 1990. Relative to existing gasoline systems, costs of alcohol-gasoline systems will be substantial.

Park, W.; Price, G.; Salo, D.

1978-08-01T23:59:59.000Z

289

Diesel Fuel Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Diesel Fuel Price Pass-through Diesel Fuel Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Diesel Fuel Price Pass-through Printer-Friendly PDF Diesel Fuel Price Pass-through by Michael Burdette and John Zyren* Over the past several years, the Energy Information Administration (EIA) has extensively studied the relationships between wholesale and retail markets for petroleum products. Beginning with gasoline, we looked at the two ends of the pricing structure in the U.S. market: daily spot prices, which capture sales of large quantities of product between refiners, importers/exporters, and traders; and weekly retail prices, measured at local gasoline outlets nationwide. In the course of this analysis, EIA has found that the relationships between spot and retail prices are consistent and predictable, to the extent that changes in spot prices can be used to forecast subsequent changes in retail prices for the appropriate regions. This article represents the extension of this type of analysis and modeling into the diesel fuel markets.

290

Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments  

DOE Green Energy (OSTI)

The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

2011-09-15T23:59:59.000Z

291

Motor gasolines, winter 1982-83  

Science Conference Proceedings (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

292

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

293

Tenneco upgrades natural gasoline  

SciTech Connect

Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

O'Gorman, E.K.

1986-08-01T23:59:59.000Z

294

Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.  

DOE Green Energy (OSTI)

Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

1999-08-10T23:59:59.000Z

295

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

296

Advanced Vehicle Testing Activity - Diesel Engine Idling Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Idling Test In support of the Department of Energys FreedomCAR and Vehicle Technologies Program goal to minimize diesel engine idling and reduce the consumption of...

297

Study of deposit formation inside diesel injectors nozzles  

E-Print Network (OSTI)

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

298

EIA Energy Kids - Gasoline - Energy Information Administration  

U.S. Energy Information Administration (EIA)

File Scrub L4 ::::: EE ... gasoline_home-basics ... gasoline_history-basics. History of Gasoline The first oil well was dug just before the Civil War.

299

TransForum v6n1 - Hydrogen + Advances in Fuel Cell Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

available, fuel cells could operate on conventional fuels, such as natural gas, propane, gasoline, and diesel, or alternative fuels, such as methanol, ethanol, and...

300

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

302

El Paso Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Good morning. IÂ’m glad to be here in El Paso to share some of my agencyÂ’s insights on crude oil and gasoline prices. I represent the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. My division has the responsibility to monitor petroleum supplies and prices in the United States. As part of that work, we operate a number of surveys on a weekly, monthly, and annual basis. One of these is a weekly survey of retail gasoline prices at about 800 stations nationwide. This survey in particular allows us to observe the differences between local gasoline markets in the United States. While we track relatively few stations in the El Paso area, we have compared our price data with that collected by the El Paso City-County Health and Environmental District and

303

Gasoline price data systems  

SciTech Connect

Timely observation on prices of gasoline at the wholesale and retail level by geographical area can serve several purposes: (1) to facilitate the monitoring of compliance with controls on distributor margins; (2) to indicate changes in the competitive structure of the distribution system; (3) to measure the incidence of changes in crude oil and refiner costs on retail prices by grade of gasoline, by type of retail outlet, and by geographic area; (4) to identify anomalies in the retail pricing structure that may create incentives for misfueling; and (5) to provide detailed time series data for use in evaluating conservation response to price changes. In order to provide the needed data for these purposes, the following detail on gasoline prices and characteristics of the sampling procedure appear to be appropriate: (1) monthly sample observations on wholesale and retail prices by gasoline grade and type of wholesale or retail dealer, together with volume weights; (2) sample size sufficient to provide detail by state and large cities; (3) responses to be tabulated and reports provided within 30 days after date of observation; and (4) a quick response sampling procedure that can provide weekly data, at least at the national level, when needed in time of rapidly changing prices. Price detail by state is suggested due to its significance for administrative purposes and since gasoline consumption data are estimated by state from other sources. Price detail for large cities are suggested in view of their relevancy as problem areas for vehicle emissions, reflecting one of the analytical uses of the data. In this report, current reporting systems and data on gasoline prices are reviewed and evaluated in terms of the needs outlined above. Recommendations are made for ways to fill the gaps in existing data systems to meet these needs.

1980-05-01T23:59:59.000Z

304

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

305

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

DOE Green Energy (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

306

Gasoline prices - January 7, 2013  

U.S. Energy Information Administration (EIA) Indexed Site

7, 2013 Gasoline prices flat this week (long version) The U.S. average retail price for regular gasoline showed little movement from last week. Prices remained flat at 3.30 a...

307

Gasoline prices decrease (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices decrease (long version) The U.S. average retail price for regular gasoline fell to 3.70 a gallon on Monday. That's down 1.4 cents from a week ago, based on the...

308

Is the gasoline tax regressive?  

E-Print Network (OSTI)

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

309

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

viewing this page, please call (202) 586-8800 Gasoline Price Pass-through EIA Home > Petroleum > Petroleum Feature Articles Gasoline Price Pass-through January 2003 by Michael...

310

Development of Diesel Exhaust Aftertreatment System for Tier II Emissions  

Science Conference Proceedings (OSTI)

Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

2002-06-01T23:59:59.000Z

311

Chemistry Impacts in Gasoline HCCI  

SciTech Connect

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

312

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

DOE Green Energy (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

313

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

DOE Green Energy (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL; Barone, Teresa L [ORNL; Thomas, John F [ORNL; Huff, Shean P [ORNL

2012-01-01T23:59:59.000Z

314

Low Emissions Aftertreatment and Diesel Emissions Reduction  

Science Conference Proceedings (OSTI)

Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

None

2005-05-27T23:59:59.000Z

315

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

316

Motor gasoline assessment, Spring 1997  

SciTech Connect

The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

NONE

1997-07-01T23:59:59.000Z

317

Gasoline Prices: What is Happening?  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Prices: What is Happening? Gasoline Prices: What is Happening? 5/10/01 Click here to start Table of Contents Gasoline Prices: What is Happening? Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential Volatility Midwest Looking Like Last Year RFG Responding More Strongly Gasoline Prices Vary Among Locations.Retail Regular Gasoline Price, Cents per Gallon May 8, 2001 Crude Oil Affects Gasoline Prices WTI Crude Oil Prices Are Expected To Remain Relatively High Through At Least 2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Low U.S. Stocks Indicate Tight U.S. Market Regional Inventories Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) "New Factor" Contributing to Volatility: Excess Capacity is Gone Regional Refinery Utilization Shows Gulf Coast Pressure

318

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

319

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects.  

E-Print Network (OSTI)

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumption… (more)

Sauer, William

320

Motor Gasoline Market Spring 2007 and Implications for Spring...  

Annual Energy Outlook 2012 (EIA)

...2 2. Weekly Total Motor Gasoline Inventories and Gasoline-Crude Oil Price Spread ...4 3. Gasoline Product Supplied...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Reformulated Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

322

U.S. Conventional Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

323

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

324

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

325

Diesel Reforming for Fuel Cell Auxiliary Power Units  

DOE Green Energy (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

326

An improved visualization of diesel particulate filter/  

E-Print Network (OSTI)

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

327

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

328

Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

80 3.124 3.139 3.197 3.200 3.185 1993-2014 80 3.124 3.139 3.197 3.200 3.185 1993-2014 All Grades - Conventional Areas 3.176 3.127 3.126 3.186 3.190 3.181 1994-2014 All Grades - Reformulated Areas 3.196 3.115 3.183 3.232 3.233 3.198 1994-2014 Regular 3.104 3.047 3.061 3.117 3.123 3.108 1992-2014 Conventional Areas 3.102 3.053 3.051 3.109 3.115 3.106 1992-2014 Reformulated Areas 3.110 3.030 3.096 3.146 3.149 3.113 1994-2014 Midgrade 3.278 3.223 3.242 3.299 3.299 3.285 1994-2014 Conventional Areas 3.263 3.216 3.217 3.280 3.280 3.273 1994-2014 Reformulated Areas 3.326 3.246 3.323 3.362 3.359 3.326 1994-2014 Premium 3.455 3.401 3.417 3.479 3.476 3.462 1994-2014 Conventional Areas 3.445 3.399 3.399 3.464 3.462 3.454 1994-2014 Reformulated Areas 3.487 3.408 3.475 3.528 3.522 3.489 1994-2014

329

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

330

New England (PADD 1A) Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

71 3.585 3.598 3.624 3.633 3.610 1993-2014 71 3.585 3.598 3.624 3.633 3.610 1993-2014 All Grades - Conventional Areas 3.578 3.578 3.588 3.629 3.626 3.613 1994-2014 All Grades - Reformulated Areas 3.570 3.586 3.601 3.622 3.634 3.609 1994-2014 Regular 3.494 3.508 3.520 3.548 3.556 3.530 1993-2014 Conventional Areas 3.501 3.501 3.511 3.555 3.552 3.535 1993-2014 Reformulated Areas 3.493 3.510 3.522 3.547 3.557 3.529 1994-2014 Midgrade 3.682 3.695 3.716 3.731 3.746 3.730 1994-2014 Conventional Areas 3.685 3.684 3.695 3.727 3.724 3.720 1994-2014 Reformulated Areas 3.681 3.697 3.721 3.733 3.751 3.733 1994-2014 Premium 3.829 3.840 3.858 3.875 3.889 3.872 1994-2014 Conventional Areas 3.846 3.849 3.857 3.892 3.891 3.884 1994-2014 Reformulated Areas 3.825 3.837 3.858 3.871 3.888 3.869 1994-2014

331

East Coast (PADD 1) Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

482 3.472 3.480 3.511 3.538 3.512 1993-2014 482 3.472 3.480 3.511 3.538 3.512 1993-2014 All Grades - Conventional Areas 3.457 3.438 3.442 3.471 3.511 3.488 1994-2014 All Grades - Reformulated Areas 3.522 3.529 3.542 3.577 3.581 3.550 1994-2014 Regular 3.382 3.373 3.380 3.413 3.438 3.410 1992-2014 Conventional Areas 3.359 3.339 3.343 3.372 3.410 3.386 1992-2014 Reformulated Areas 3.419 3.428 3.440 3.480 3.484 3.450 1994-2014 Midgrade 3.566 3.554 3.565 3.590 3.622 3.598 1994-2014 Conventional Areas 3.525 3.507 3.515 3.539 3.582 3.559 1994-2014 Reformulated Areas 3.642 3.644 3.659 3.687 3.695 3.670 1994-2014 Premium 3.755 3.746 3.754 3.782 3.811 3.789 1994-2014 Conventional Areas 3.733 3.716 3.720 3.751 3.797 3.778 1994-2014 Reformulated Areas

332

West Coast less California Gasoline and Diesel Retail Prices  

Gasoline and Diesel Fuel Update (EIA)

350 3.348 3.344 3.369 3.393 3.392 1998-2014 350 3.348 3.344 3.369 3.393 3.392 1998-2014 All Grades - Conventional Areas 3.395 3.386 3.384 3.401 3.423 3.420 2000-2014 All Grades - Reformulated Areas 3.138 3.162 3.155 3.214 3.252 3.258 1998-2014 Regular 3.298 3.295 3.292 3.317 3.341 3.338 1998-2014 Conventional Areas 3.343 3.335 3.333 3.351 3.371 3.367 2000-2014 Reformulated Areas 3.078 3.104 3.097 3.155 3.194 3.201 1998-2014 Midgrade 3.435 3.432 3.430 3.451 3.481 3.477 1998-2014 Conventional Areas 3.479 3.471 3.470 3.483 3.510 3.508 2000-2014 Reformulated Areas 3.238 3.257 3.249 3.309 3.348 3.336 1998-2014 Premium 3.589 3.582 3.578 3.602 3.627 3.632 1998-2014 Conventional Areas 3.633 3.619 3.617 3.632 3.655 3.659 2000-2014 Reformulated Areas

333

Lower Atlantic (PADD 1C) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

267 3.312 3.445 3.432 3.407 3.379 1993-2013 267 3.312 3.445 3.432 3.407 3.379 1993-2013 All Grades - Conventional Areas 3.272 3.313 3.446 3.433 3.409 3.381 1994-2013 All Grades - Reformulated Areas 3.215 3.295 3.432 3.420 3.392 3.356 1994-2013 Regular 3.159 3.203 3.338 3.325 3.300 3.270 1993-2013 Conventional Areas 3.165 3.206 3.341 3.327 3.303 3.274 1993-2013 Reformulated Areas 3.093 3.176 3.311 3.301 3.270 3.235 1994-2013 Midgrade 3.365 3.408 3.535 3.524 3.499 3.474 1994-2013 Conventional Areas 3.366 3.407 3.533 3.521 3.496 3.473 1994-2013 Reformulated Areas 3.354 3.426 3.561 3.550 3.526 3.489 1994-2013 Premium 3.558 3.605 3.735 3.726 3.699 3.675 1994-2013 Conventional Areas 3.561 3.605 3.734 3.726 3.698 3.675 1994-2013 Reformulated Areas

334

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency.

335

New York City Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

336

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... San Francisco : 4.023: 3.972: 3.956 -0.016: 0.084: Seattle : 3.958: 3.942: 3.911 -0.031:

337

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... San Francisco : 3.972: 3.956: 3.911 -0.045 -0.241: Seattle : 3.942: 3.911: 3.854 -0.057

338

Midwest (PADD 2) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

339

West Coast less California Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

340

Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Conventional area is any ...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gasoline and Diesel Fuel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ. Petroleum & Other Liquids. Glossary ...

342

Central Atlantic (PADD 1B) Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA) Indexed Site

00 3.439 3.518 3.537 3.548 3.555 1993-2013 00 3.439 3.518 3.537 3.548 3.555 1993-2013 All Grades - Conventional Areas 3.456 3.492 3.551 3.571 3.589 3.592 1994-2013 All Grades - Reformulated Areas 3.365 3.406 3.498 3.516 3.523 3.533 1994-2013 Regular 3.295 3.341 3.423 3.441 3.447 3.457 1993-2013 Conventional Areas 3.371 3.411 3.471 3.496 3.509 3.514 1993-2013 Reformulated Areas 3.247 3.297 3.393 3.407 3.408 3.421 1994-2013 Midgrade 3.491 3.518 3.592 3.617 3.634 3.636 1994-2013 Conventional Areas 3.484 3.524 3.581 3.592 3.609 3.611 1994-2013 Reformulated Areas 3.496 3.514 3.598 3.632 3.649 3.651 1994-2013 Premium 3.663 3.684 3.760 3.779 3.800 3.805 1994-2013 Conventional Areas 3.700 3.721 3.781 3.791 3.820 3.818 1994-2013 Reformulated Areas 3.641 3.662 3.748 3.772 3.789 3.797 1994-2013

343

Finished Motor Gasoline Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

344

California Gasoline Price Study, 2003  

Reports and Publications (EIA)

This is the final report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

Information Center

2003-05-01T23:59:59.000Z

345

Gasoline Volatility - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... anything goes wrong both because of its unique gasoline that not all refiners can make,and because of its geographic distance ... problems with ...

346

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

DOE Green Energy (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

347

EIA lowers forecast for summer gasoline prices  

Annual Energy Outlook 2012 (EIA)

EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be lower this summer than previously thought. The price for regular gasoline this summer is now...

348

Vehicle Technologies Office: Educational Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

consumption and lower emissions by using advanced vehicle technologies, such as: hydrogen fuel cells, plug-in hybrid technology, hybrid technology, diesel technology and other...

349

European Lean Gasoline Direct Injection Vehicle Benchmark  

DOE Green Energy (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL; Huff, Shean P [ORNL; Edwards, Kevin Dean [ORNL; Norman, Kevin M [ORNL; Prikhodko, Vitaly Y [ORNL; Thomas, John F [ORNL

2011-01-01T23:59:59.000Z

350

Method Based on OSEK/VDX Platform Using Model-based and Autocode Technology for Diesel ECU Software Development  

Science Conference Proceedings (OSTI)

Recently, model-based and autocode technology has become mature and brings many advantages in automotive software development. In order to take advantage of these changes, organization must adjust development process. This paper proposes a "V+v" method, ...

MU Chunyang; SUN Lining; DU Zhijiang

2007-07-01T23:59:59.000Z

351

Proceedings of the 1998 diesel engine emissions reduction workshop [DEER  

DOE Green Energy (OSTI)

This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

NONE

1998-12-31T23:59:59.000Z

352

Smokeless Gasoline Fire Test  

SciTech Connect

As a result of the recent concern by environmentalists, the hypothetical accident thermal test can no longer be performed by simply burning gasoline in an open pit. The uncontrolled open pit technique creates thick, dense, black clouds of smoke which are not permitted by local authorities. This paper deals with the design of the fire test facility and the techniques used to eliminate the smoke plume. The techniques include the addition of excess air to the fire in combination with a spray of water mist near the fuel surface. The excess air technique has been used successfully in an experimental setup; it was found that the temperature could be controlled in the neighborhood of the required 1475 degrees F environment and the smoke could be reduced to very low levels. The water spray technique has been successfully used by others in similar applications and, on completion of a permanent fire test facility at Mound Laboratory (anticipated July, 1974), test results will be available. The water is believed to interact with the combustion reaction to provide more complete combustion. The permanent facility will be a 10 x 10 ft cement block enclosure lined with firebrick. It will be 8 ft high on three sides and 4 ft high on one side to provide for observation of the test. A 5000 gal underground tank provides storage for the aviation gasoline which is gravity fed to the fire.

Williams, H.; Griffin, J. F.

1974-04-01T23:59:59.000Z

353

Delaware Rack Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.144: 2.529: 1.724: 2.165 - ...

354

South Carolina Rack Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.136: 2.576: 1.732: 2.127 - ...

355

U.S. Total Gasoline Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: Gasoline inventories in the United States began last summer's driving season low and ended low. In October 2000, with the market focusing on distillate, gasoline...

356

Price Changes in the Gasoline Market  

Annual Energy Outlook 2012 (EIA)

1999 Price Changes in the Gasoline Market Are Midwestern Gasoline Prices Downward Sticky? Energy Information Administration Washington, DC 20585 This report was prepared by the...

357

EIA initiates daily gasoline availability survey for ...  

U.S. Energy Information Administration (EIA)

To develop the emergency survey, EIA used the representative sample of retail stations selling gasoline used in EIA's Form EIA-878, "Motor Gasoline ...

358

Microturbines: Technology and End-Use PQ Application Issues  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is predicted to play an increasing role in the electric power system of the near future. One of the recent developments in DG technologies has been the advent of microturbines. Microturbines are small (typically 15-300 kW), high-speed generator power plants that can operate on a variety of fuels, including natural gas, diesel, gasoline, propane, kerosene, or other similar high-energy fossil fuels. Microturbines are also well suited to operate on lower grade (lower energy) fuel...

2001-09-12T23:59:59.000Z

359

Clean Diesel Component Improvement Program  

DOE Green Energy (OSTI)

The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

None

2005-06-30T23:59:59.000Z

360

Emissions R&D at GE/CRD coal-fueled diesel: Technology development methods for SO{sub 2} and NO{sub x} removal from coal diesel exhaust  

DOE Green Energy (OSTI)

Four processes were investigated at the GE Research and Development Center (GE-CRD) for the removal of gaseous pollutants from the exhaust of a coal-fired diesel locomotive engine. The minimum goal for emissions control was to reduce the pollutant levels at least to the levels of a conventional diesel engine. It should be noted, however, that some of the methods investigated were capable of reducing emissions below these levels. Achieving the minimum goal requires a reduction of approximately 50% in SO{sub 2} emissions and a 90 to 95% reduction in particulate emissions, the actual percentages varying with the fuel. NO{sub x} emissions from the coal diesel are approximately 50% of the conventional diesel level. The space limitations on board the locomotive present the greatest obstacle to the design of an emissions control system. The cleanup system must be compact as well as multifunctional. The development of a particulate collection device was undertaken by GE Environmental Services, Inc. (GEESI). Among the options they evaluated were high-temperature metal filters, cyclones, and a granular bed. The development of a cleanup method or SO{sub 2} and possibly NO{sub x} was undertaken at GE-CRD. A process was sought which could incorporate one of the particulate removal devices under consideration. Four processes utilizing three classes of sorbents -- copper oxide, calcium-based, and sodium bicarbonate --were investigated for SO{sub 2} capture: Two of these processes use copper oxide (CuO), a regenerable SO{sub 2} sorbent. The CuSO{sub 4} formed has the added property that it catalyzes the reduction of NO{sub x} to N{sub 2} in the presence of NH{sub 3}. This NO{sub x} removal capability was tested for both CuO processes.

Cohen, M.R.; Leonard, G.L.; Slaughter, D.M.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines  

DOE Green Energy (OSTI)

This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

Lyon, Richard

2001-08-05T23:59:59.000Z

362

California Gasoline Price Study  

Gasoline and Diesel Fuel Update (EIA)

DIRECTOR, PETROLEUM DIVISION DIRECTOR, PETROLEUM DIVISION ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND RESOURCES COMMITTEE ON GOVERNMENT REFORM U.S. HOUSE OF REPRESENTATIVES MAY 9, 2005 Mr. Chairman, I appreciate this opportunity to testify today on the Energy Information Administration's (EIA) insights into factors affecting recent gasoline prices. EIA is the statutorily chartered statistical and analytical agency within the U.S. Department of Energy. We are charged with providing objective, timely, and relevant data, analysis, and projections for the use of the Department of Energy, other Government agencies, the U.S. Congress, and the public. We produce data and analysis reports that are meant to assist policy makers in determining energy policy. Because we have an element of

363

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 4.05 a gallon on Monday. That's down 4.1 cents from a week ago, based on the weekly price...

364

Diesel prices decrease slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease slightly The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 3-tenths of a penny from a week ago,...

365

Diesel prices rise slightly  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices rise slightly The U.S. average retail price for on-highway diesel fuel rose slightly to 4.16 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based...

366

Diesel prices flat  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat The U.S. average retail price for on-highway diesel fuel saw no movement from last week. Prices remained flat at 3.89 a gallon on Monday, based on the weekly...

367

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2013 Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.1 cents from a week ago, based on...

368

Diesel prices slightly decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease The U.S. average retail price for on-highway diesel fuel fell slightly to 3.84 a gallon on Monday. That's down 8-tenths of a penny from a week ago,...

369

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.88 a gallon on Monday. That's down a penny from a week ago, based on the weekly price...

370

Diesel prices increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

371

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.85 a gallon on Monday. That's down 2 cents from a week ago, based on the weekly price...

372

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down 2.1 cents from a week ago, based on the weekly price...

373

Diesel prices flat nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices flat nationally The U.S. average retail price for on-highway diesel fuel remained the same from a week ago at 3.98 a gallon on Monday, based on the weekly price...

374

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices decrease The U.S. average retail price for on-highway diesel fuel fell to 3.87 a gallon on Monday. That's down 1.6 cents from a week ago, based on the weekly price...

375

Diesel prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price...

376

Gasoline Prices Also Influenced by Regional Gasoline Product Markets  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: Next we examine the wholesale market's added contribution to gasoline price variation and analyze the factors that impact the gasoline balance. There are two points to take away from this chart: The U.S. market moves with the world market, as can be seen with the high inventories in 1998, being drawn down to low levels during 1999. Crude and product markets are not independent. Crude oil and product markets move together fairly closely, with some lead/lag effects during transitions. The relationship between international crude oil markets and domestic product markets raises another issue. A subtle, but very important point, lost in recent discussions of gasoline price increases: The statement has been made that crude markets are not a factor in this past spring's high gasoline prices, since crude prices were

377

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

378

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

379

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

380

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect

The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Program efforts included: (1) improving the catalyst and plasma reactor efficiencies for NOx reduction; (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts; (3) evaluating the performance of prototype systems on real engine exhaust; and (4) studies of the effects of the plasma on particulate matter (PM) in real diesel engine exhaust. Figure 1 is a conceptual schematic of a plasma/catalyst device, which also shows our current best understanding of the role of the various components of the overall device for reducing NOx from the exhaust of a CIDI engine. When this program was initiated, it was not at all clear what the plasma was doing and, as such, what class of catalyst materials might be expected to produce good results. With the understanding of the role of the plasma (as depicted in Figure 1) obtained in this program, faujasite zeolite-based catalysts were developed and shown to produce high activity for NOx reduction of plasma-treated exhaust in a temperature range expected for light-duty diesel engines. These materials are the subject of a pending patent application, and were recognized with a prestigious R&D100 Award in 2002. In addition, PNNL staff were awarded a Federal Laboratory Consortium (FLC) Award in 2003 “For Excellence in Technology Transfer”. The program also received the DOE’s 2001 CIDI Combustion and Emission Control Program Special Recognition Award and 2004 Advanced Combustion Engine R&D Special Recognition Award.

Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Howden, Ken; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David J.; Nunn, Steven; Davis, Patrick

2004-12-31T23:59:59.000Z

382

Gasoline Prices at Historical Lows  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Before looking at El Paso gasoline prices, letÂ’s take a minute to look at the U.S. average price for context. Gasoline prices this year, adjusted for inflation, are the lowest ever. Back in March, before prices began to rise ahead of the traditional high-demand season, the U.S. average retail price fell to $1.00 per gallon. Prices rose an average of 7.5 cents, less than the typical seasonal runup, to peak in early June. Since then, prices have fallen back to $1.013. Given recent declines in crude oil and wholesale gasoline prices, we expect retail prices to continue to ease over at least the next few weeks. Since their sharp runup during the energy crises of the 1970Â’s, gasoline prices have actually been non-inflationary. Adjusting the historical prices by the Consumer Price Index, we can see that todayÂ’s

383

Crude Oil Affects Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: This graph illustrates how crude oil explains much of the large movements in gasoline prices that we have seen over time -- such as during the Gulf War at the end of 1990,...

384

Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation  

SciTech Connect

The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D'Alembert (France)

2008-12-15T23:59:59.000Z

385

ÂżAceite vegetal puro como combustible diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version), Programa de TecnologĂ­as de VehĂ­culos (Vehicle Technologies Program VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

* Junio 2010 * Junio 2010 rápida sino a lo largo del tiempo. Estas son las conclusiones de una cantidad significa- tiva de información técnica publicada en múltiples artículos e informes. Un artículo técnico de SAE 1 reseña los datos publicados sobre el uso de SVO en motores. El artículo señala lo siguiente: "Comparado con el combustible diesel No. 2, todos los aceites vegetales son mucho más viscosos, mucho más

386

Gasoline price spikes and regional gasoline context regulations : a structural approach  

E-Print Network (OSTI)

Since 1999, gasoline prices in California, Illinois and Wisconsin have spiked occasionally well above gasoline prices in nearby states. In May and June 2000, for example, gasoline prices in Chicago rose twenty eight cents ...

Muehlegger, Erich J.

2004-01-01T23:59:59.000Z

387

Vehicle Technologies Office: Fact #355: January 17, 2005 Comparison...  

NLE Websites -- All DOE Office Websites (Extended Search)

gasoline and diesel fuel prices for two selected weeks in 2004. The prices for CNG, propane, E85, and biodiesel (B20) are median values from a nationwide survey of stations that...

388

The impact of temperature in the fuel diesel - soy oil mixtures  

Science Conference Proceedings (OSTI)

In nowadays there are an increased number of cars and vehicles, which run on gasoline or diesel fuel. As a result of this are the production of air pollution and the need of imported oil as well. There is growing perceived economic and political need ... Keywords: biofuels, fuel temperature, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

389

Supplemental Tables to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Gases Bi-fuel Total Natural Gas Technology Electric Technology Electric Vehicle Plug-in Gasoline Hybrid Electric-Diesel Hybrid Electric-Gasoline Hybrid Total...

390

Exploring Low Emission Lubricants for Diesel Engines  

DOE Green Energy (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

391

Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process  

DOE Green Energy (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

Jones, Susanne B.; Zhu, Yunhua

2009-05-01T23:59:59.000Z

392

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline - DTW (U.S. only) Regular Gasoline - Rack (U.S. only) Regular Gasoline - Bulk (U.S. only) Midgrade Gasoline - Sales to End Users (U.S. only) Midgrade Gasoline - Through Retail Outlets Midgrade Gasoline - Other End Users Midgrade Gasoline - Sales for Resale Midgrade Gasoline - DTW (U.S. only) Midgrade Gasoline - Rack (U.S. only) Midgrade Gasoline - Bulk (U.S. only) Premium - Sales to End Users (U.S. only) Premium Gasoline - Through Retail Outlets Premium Gasoline - Other End Users Premium Gasoline - Sales for Resale Premium Gasoline - DTW (U.S. only) Premium Gasoline - Rack (U.S. only) Premium Gasoline - Bulk (U.S. only) Period: Monthly Annual

393

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

U.S. Energy Information Administration (EIA)

benzene extracted from the reformulated motor gasoline pool in their conventional motor gasoline. Importers lacking 1990 motor gasoline quality data with which to

394

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

395

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

DOE Green Energy (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

396

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

397

Comparative Analysis on the Effects of Diesel Particulate Filter and  

E-Print Network (OSTI)

with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF and secondary emissions significantly. Introduction Advances in diesel engine and aftertreatment technologies, samples were first collected from a heavy-duty diesel engine with no aftertreatment system to establish

Wu, Mingshen

398

DOE Awarded Patent for Reformulated Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded Patent for Reformulated Diesel Fuel Awarded Patent for Reformulated Diesel Fuel DOE Awarded Patent for Reformulated Diesel Fuel May 19, 2006 - 10:46am Addthis Available free of Licensing Fees, Cleaner for the Environment WASHINGTON, DC - The U.S. Department of Energy today announced that it has developed, patented, and made commercially available reformulated diesel fuels which when used can reduce nitrogen oxides up to 10% and particulate matter up to 22% compared to those currently available. The diesel fuel formulations covered under this patent will be commercially available for use without licensing or royalty fees. This reformulated diesel fuel patent resulted from research conducted by the U.S. Department of Energy, Oak Ridge National Laboratory and its subcontractors. "DOE's personnel continue to bring to the forefront technologies and

399

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

400

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Standby gasoline rationing plan: narrative  

SciTech Connect

The objectives of the rationing plan are to provide a mechanism capable of maintaining an orderly and equitable market for gasoline in a severe supply shortfall, and capable of rapid implementation; and to comply with requirements of EPCA, which mandates the development of a contingency rationing plan. Eligibility for ration allotments will be based principally on motor vehicle registration records, maintained in a national vehicle registration file. Supplemental allotments will be granted for certain priority activities to ensure the maintenance of essential public services. Supplemental allotments will also be granted to businesses and government organizations with significant off-highway gasoline requirements. Local rationing boards or other offices will be established by states, to provide special allotments to hardship applicants, within DOE guidelines. The background and history of the plan are described. The gasoline rationing plan operations, government operations, program costs, staffing, and funding are also detailed in this report. (MCW)

1979-02-01T23:59:59.000Z

402

Diesel Particle Scatterometer - Available Technologies  

... service facilities, and ... There is a growing body of evidence for the deterious health effects ... Arlon Hunt of Berkeley Lab has developed a ...

403

Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

5: April 28, 5: April 28, 2003 State Average Fuel Prices to someone by E-mail Share Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel Prices on Facebook Tweet about Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel Prices on Twitter Bookmark Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel Prices on Google Bookmark Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel Prices on Delicious Rank Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel Prices on Digg Find More places to share Vehicle Technologies Office: Fact #265: April 28, 2003 State Average Fuel Prices on AddThis.com... Fact #265: April 28, 2003 State Average Fuel Prices The American Automobile Association tracks gasoline and diesel prices

404

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

405

Gasoline prices continue to decrease (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

, 2013 Gasoline prices continue to decrease (long version) The U.S. average retail price for regular gasoline fell to 3.65 a gallon on Monday. That's down 3 12 cents from a week...

406

Gasoline prices continue to fall (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline decreased for the second week in a row to 3.71 a gallon on Monday. That's down...

407

Gasoline prices continue to rise (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to rise (long version) The U.S. average retail price for regular gasoline rose to 3.67 a gallon on Monday. That's up 7 cents from a week ago, based on the...

408

Gasoline prices continue to fall (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices continue to fall (long version) The U.S. average retail price for regular gasoline fell to 3.61 a gallon on Monday. That's down 3.7 cents from a week ago, based on...

409

Gasoline prices inch down (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

Gasoline prices inch down (long version) The U.S. average retail price for regular gasoline fell to 3.68 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

410

Variable-Rate State Gasoline Taxes  

E-Print Network (OSTI)

gasoline tax, fell correspondingly. As shown in Figure 3, state motorGasoline Taxes Inflation and increased fuel economy have reduced the buying power of the revenues collected from state and federal motor

Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

2000-01-01T23:59:59.000Z

411

Household gasoline demand in the United States  

E-Print Network (OSTI)

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

412

A Dozen Reasons for Raising Gasoline Taxes  

E-Print Network (OSTI)

Gasoline Taxes Martin Wachs University of California, Berkeley MotorMotor Fuel Taxes Are Lower Now Than In The Past. The federal gasoline taxgasoline and other motor fuels depends on changes in response to many factors in addition to tax

Wachs, Martin

2003-01-01T23:59:59.000Z

413

Washington Refiner Gasoline Prices by Grade and Sales Type  

U.S. Energy Information Administration (EIA)

Refiner Gasoline Prices by Grade and Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, All Grades : Through Retail Outlets: ...

414

North Carolina Refiner Gasoline Prices by Grade and Sales Type  

U.S. Energy Information Administration (EIA)

Refiner Gasoline Prices by Grade and Sales Type (Dollars per Gallon Excluding Taxes) Area: ... History; Gasoline, All Grades : Through Retail ...

415

METC research on coal-fired diesels  

DOE Green Energy (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

416

Standby Gasoline Rationing Plan. Contingency gasoline rationing regulations  

SciTech Connect

The Economic Regulatory Administration issues final rules with respect to standby gasoline rationing. The plan is designed for and would be used only in the event of a severe gasoline shortage. The plan provides that eligibility for ration allotments will be primarily on the basis of motor vehicle registrations. DOE will mail government ration checks to the parties named in a national vehicle registration file to be maintained by DOE. Ration recipients may cash these checks for ration coupons at various designated coupon issuance points. Retail outlets and other suppliers will be required to redeem the ration coupons received in exchange for gasoline sold. Supplemental gas will be given to high-priority activities. A ration banking system will be established with two separate and distinct of ration accounts: retail outlets and other suppliers will open redemption accounts for the deposit of redeemed ration rights; and individuals or firms may open ration rights accounts, which will operate in much the same manner as monetary checking accounts. A white market will be permitted for the sale of transfer of ration rights. A percentage of the total ration rights to be issued will be reserved for distribution to the states as a State Ration Reserve, to be used by the states primarily for the relief of hardship. A National Ration Reserave will also be established. All sections of the Standby Gasoline Rationing Regulations are analyzed. (MCW)

1979-02-01T23:59:59.000Z

417

Whole Algae Hydrothermal Liquefaction Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

2013-03-31T23:59:59.000Z

418

Why Is West Coast Gasoline So Expensive?  

Reports and Publications (EIA)

Testimony on current gasoline prices as well as the unique situations on the West Coast with regard to prices.

Information Center

2001-04-25T23:59:59.000Z

419

Market Power in California's Gasoline Market  

E-Print Network (OSTI)

price (See Figure 2.2a). Jet Fuel Distillate Fuel Oil: Reformulated Gasoline Residual Fuel Oil Petroleum Coke

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

420

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

the engine and emission aftertreatment technologies toengine technology and the utilization of complex emissions aftertreatment

Burke, Andy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL  

Science Conference Proceedings (OSTI)

Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry slowed progress of the demonstration unit, negotiations with potential partners are proceeding for commercialization of this process.

B.S. Turk; R.P. Gupta; S.K. Gangwal

2003-06-30T23:59:59.000Z

422

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

Information Center

2003-04-01T23:59:59.000Z

423

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

424

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

425

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

426

Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program  

DOE Green Energy (OSTI)

DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

George Sverdrup

1999-06-07T23:59:59.000Z

427

Status of Wind-Diesel Applications in Arctic Climates: Preprint  

DOE Green Energy (OSTI)

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

Baring-Gould, I.; Corbus, D.

2007-12-01T23:59:59.000Z

428

Microsoft Word - Gasoline_2008 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has contributed to a growing divergence between volume-based and energy-content-based measures of trends in gasoline consumption. * Consumer sensitivity to gasoline price changes increases during periods when

429

Conversion of cellulosic and waste polymer material to gasoline  

DOE Green Energy (OSTI)

The present status and future plans for a project to convert cellulosic (biomass) and waste synthetic polymer materials to quality liquid fuels is presented. A thermal gasification approach is utilized followed by catalytic liquid fuels synthesis steps. Potential products include a medium quality substitute for natural gas or liquid fuel equivalents of diesel fuel, kerosene or high octane gasoline. The process appears very flexible with regard to ability to handle different sources of feedstock. Results to date indicate quality products can be produced. Product yields need to be improved with the main thrust centered on improvement of pyrolysis gas composition. This will be a major effort in the new contract period. Other items to be addressed are study of alternate economic feedstocks, waste stream characterization, and liquid fuels synthesis and tailoring with particular attention on the effects of alternate feedstocks. A description of a proposed 10 ton/day pilot plant is presented with flow sheet, material balance and cost estimates.

Kuester, J.L.

1979-03-28T23:59:59.000Z

430

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

Science Conference Proceedings (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

431

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

Science Conference Proceedings (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

432

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

2013-03-31T23:59:59.000Z

433

Diesel Rig Mechanical Peaking System Based on Flywheel Storage Technolgy  

Science Conference Proceedings (OSTI)

Flywheel energy storage technology is an emerging energy storage technology, there is a great development in recent years promising energy storage technology, with a large energy storage, high power, no pollution, use of broad, simple maintenance, enabling ... Keywords: Flywheel energy storage technology, mechanical peaking, diesel rig, peak motor

Shuguang Liu, Jia Wang

2012-07-01T23:59:59.000Z

434

Light-duty diesel engine development status and engine needs  

DOE Green Energy (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

435

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

436

www.eia.gov  

U.S. Energy Information Administration (EIA)

Transportation Fleet Car and Truck Vehicle Miles Traveled by Type and Technology 2011- ... Plug-in 40 Gasoline Hybrid Electric-Diesel Hybrid Electric-Gasoline Hybrid

437

www.eia.gov  

U.S. Energy Information Administration (EIA)

60. Light-Duty Vehicle Miles Traveled by Technology Type 2011- ... Plug-in 40 Gasoline Hybrid Electric-Diesel Hybrid Electric-Gasoline Hybrid Natural Gas ICE

438

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

439

U.S. total motor gasoline exports down slightly from last year but ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Total motor gasoline = finished motor gasoline + motor gasoline blending components.

440

American Agri diesel LLC | Open Energy Information  

Open Energy Info (EERE)

diesel LLC Jump to: navigation, search Name American Agri-diesel LLC Place Colorado Springs, Colorado Product Biodiesel producer in Colorado. References American Agri-diesel LLC1...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Review of Diesel Exhaust Aftertreatment Programs  

DOE Green Energy (OSTI)

The DOE Office of Heavy Vehicle Technologies (OHVT) and its predecessor organizations have maintained aggressive projects in diesel exhaust aftertreatment since 1993. The Energy Policy Act of 1992, Section 2027, specifically authorized DOE to help accelerate the ability of U. S. diesel engine manufacturers to meet emissions regulations while maintaining the compression ignition engines inherently high efficiency. A variety of concepts and devices have been evaluated for NOx and Particulate matter (PM) control. Additionally, supporting technology in diagnostics for catalysis, PM measurement, and catalyst/reductant systems are being developed. This paper provides a summary of technologies that have been investigated and provides recent results from ongoing DOE-sponsored R and D. NOx control has been explored via active NOx catalysis, several plasma-assisted systems, electrochemical cells, and fuel additives. Both catalytic and non-catalytic filter technologies have been investigated for PM control.

Ronald L. Graves

1999-04-26T23:59:59.000Z

442

U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions with SCR. Ford's 2011 Super Duty diesel truck-which utilizes aftertreatment technology jointly developed by Ford and the U.S. Department of Energy (DOE)-deliv- ered a multitude of firsts for the company. It was the first Ford diesel engine developed entirely in-house, the first to operate on B20 (a blend of 20% biofuel, 80% petroleum diesel), and the first to comply with

443

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged,… (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

444

Diesel prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

to 3.88 a gallon on Monday. That's down 0.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in...

445

Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gasoline Gallon Gasoline Gallon Equivalent (GGE) Definition to someone by E-mail Share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Facebook Tweet about Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Twitter Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Google Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Delicious Rank Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Digg Find More places to share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Gasoline Gallon Equivalent (GGE) Definition

446

The diesel approach  

Science Conference Proceedings (OSTI)

Whether for standby or baseload capacity, diesel generator sets are being used in markets worldwide. Companies are taking a variety of approaches to tapping these markets. The markets for diesel generators follow two basic paths. In the US, they are used primarily for standby or peaking applications. Outside the US, the market includes standby applications but is more often for baseload or prime-power applications.

Anderson, J.L.

1993-04-01T23:59:59.000Z

447

Diesel Engine Analysis Guide  

Science Conference Proceedings (OSTI)

This guide provides a thorough background on diesel engine analysis including combustion, vibration, and ultrasonic analysis theory. Interpretation of results is also provided. This guide is intended to enable nuclear utility personnel to make informed decisions regarding the nature and use of diesel engine analysis, including how to set up an effective program, how to establish analysis guidelines, how to make use of the resulting data to plan maintenance, determine the causes of off-design operating co...

1997-10-09T23:59:59.000Z

448

Diesel fuel component contribution to engine emissions and performance. Final report  

DOE Green Energy (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

449

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

DOE Green Energy (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

450

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

451

Essays on gasoline price spikes, environmental regulation of gasoline content, and incentives for refinery operation  

E-Print Network (OSTI)

Since 1999, regional retail and wholesale gasoline markets in the United States have experienced significant price volatility, both intertemporally and across geographic markets. In particular, gasoline prices in California, ...

Muehlegger, Erich J

2005-01-01T23:59:59.000Z

452

Electric Technologies for Light-duty Vehicles in the United States Abstract  

E-Print Network (OSTI)

This paper is concerned with the present status and future projections for emerging technologies that can be utilized in light-duty vehicles in the next five to ten years to significantly reduce their CO2 emissions. The emerging technologies considered are modern clean diesel engines and hybrid-electric powertrains using batteries and/or ultracapacitors for energy storage. Throughout the study, six classes of vehicles –compact passenger cars to large SUVs-were considered. For each vehicle class, computer simulations (Advisor 2002) and cost analyses were performed for conventional ICE and mild and full parallel hybrids using port-fuel injected and lean burn gasoline engines and direct-injection turbo-charged diesel engines to determine the fuel economy and differential costs for the various vehicle designs using the conventional gasoline PFI engine vehicle as the baseline. CO2 emissions (gmCO2/mi) for each driveline and vehicle case were calculated from the fuel economy values. On a percentage or ratio basis, the analyses indicated that the fuel economy gains, CO2 emissions reductions, and cost/price increases due to the use of the advanced engines and hybrid-electric drivelines were essentially independent of vehicle class. This means that a regulation specifying the same fractional

United States; Andrew Burke; Ethan Abeles; Andrew Burke; Ethan Abeles

2004-01-01T23:59:59.000Z

453

Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project  

DOE Green Energy (OSTI)

The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

1992-06-01T23:59:59.000Z

454

DOE Energy Information Administration Motor Gasoline Watch  

U.S. Energy Information Administration (EIA)

Motor Gasoline Watch November 18, 1998. SUPPLY. Higher production levels and a decline in demand contributed to an increase in stocks last week.

455

2012 Brief: Retail gasoline prices vary significantly ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. ... Retail gasoline prices are published by region, for 9 selected states, 10 selected cities, ...

456

EIA's Testimony on Current Gasoline Situation  

Reports and Publications (EIA)

On April 25, Dr. John Cook, Petroleum Division Director in the Office of Oil and Gas, testified on West Coast gasoline prices before the Senate Subcommittee on Consumer Affairs , Foreign Commerce, and Tourism. This Subcommittee is under the jurisdiction of the Senate Committee on Commerce, Science and Transportation. Dr. Cook provided the Subcommittee with information on the current gasoline price situation as well as identified unique characteristics of the West Coast gasoline market that help make its gasoline prices generally higher than other regions of the United States.

Information Center

2001-04-25T23:59:59.000Z

457

Regular Gasoline Rack Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, ... History; U.S.-----1994-2013: East Coast (PADD 1) ... Alabama-----1994-2013: Arkansas-----

458

U.S. Motor Gasoline Prices  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) Area: ... History; Sales to End Users, Average-----1983-2013:

459

Motor Gasoline Sales Through Retail Outlets Prices  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, ... History; U.S.-----1983-2013: East Coast (PADD 1) ... Alabama-----1983-2013: Arkansas-----

460

Market Power in California's Gasoline Market  

E-Print Network (OSTI)

the difference in production costs. A number of observersgasoline. The marginal production cost of gasoline includesof imports with similar production costs as in-state, but an

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

California Gasoline Price Study, 2003 Preliminary Findings  

Reports and Publications (EIA)

This is the preliminary report to Congressman Ose describing the factors driving California's spring 2003 gasoline price spike and the subsequent price increases in June and August.

Information Center

2003-05-01T23:59:59.000Z

462

Ethanol blending provides another proxy for gasoline ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... and inventory data that enter into the traditional gasoline product supplied calculation.

463

Why are gasoline prices falling so rapidly?  

U.S. Energy Information Administration (EIA)

... this decline comes on the heels of a 33-cent drop in the national average ... the introduction of Phase 2 ... 11 combined to relieve pressure on the gasoline ...

464

100 area diesel performance data  

Science Conference Proceedings (OSTI)

Performance data for diesel engine-generator sets was collected to aid an analysis of the electric power system being conducted by an offsite consultant. Diesels in three different services were studied: emergency power (GM) diesels, 903 fan backup diesels and the Caterpillar diesels that power the dc motors for the D/sub 2/O pumps. It was convenient to collect data for the ECS booster pump diesel at the same time, even though it is not part of the electric power system. The results are published here to make them more widely available.

Smith, J.A.; Tudor, A.A.

1984-01-17T23:59:59.000Z

465

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

DOE Green Energy (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

466

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Program (Saskatchewan, Canada) Saskatchewan Renewable Diesel Program (Saskatchewan, Canada) Eligibility Agricultural Maximum Rebate 40 million litres of renewable...

467

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

468

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

469

Reformulated gasoline study, executive summary  

Science Conference Proceedings (OSTI)

The feasibility of adopting alternative standards for reformulated gasoline (RFG) in New York State has been studied for the New York State Energy Research and Development Authority (the Energy Authority). In addition to Federal RFG (EPA 1) and EPA II, California Air Resources Board RFG (CARB 2) and a modified Federal low sulfur RFG (LS-EPA II) were investigated. The effects of these alternative RFGs on petroleum refinery gasoline production costs, gasoline distribution costs, New York State air quality and the New York State economy were considered. New York has already adopted the California low emission vehicle (LEV) and other emission control programs that will affect vehicles and maintenance. From 1998 to 2012 without the introduction of any type of RFG, these programs are estimated to reduce New York State mobile source summer emissions by 341 tons per day (or 40%) of non-methane hydrocarbons (NMHC) and by 292 tons per day (or 28%) of nitrogen oxides (NO{sub x}), and to reduce winter emissions of carbon monoxide (CO) by 3,072 tons per day (or 39%). By 2012, the planned imposition of Federal RFG will produce further reductions (percent of 1998 levels) of 10 %, 4 % and 11%, respectively, for NMHC, NO{sub x} and CO. If New York State goes beyond EPA II and adopts CARB 2 specifications, further reductions achieved in 2012 are estimated to be very small, equaling 2% or less of 1998 levels of NMHC and NO{sub x} emissions, while CO emissions would actually increase by about 2%. When compared to EPA II over the same time frame, LS-EPA II would produce negligible (less than 1%) reductions in each of the above emissions categories.

Cunningham, R.E.; Michalski, G.W. [Turner, Mason & Co., Dallas, TX (United States); Baron, R.E.; Lyons, J.M.

1994-10-01T23:59:59.000Z

470

Operational test report for WESF diesel generator diesel tank installation  

Science Conference Proceedings (OSTI)

The WESF Backup Generator Underground Diesel Tank 101 has been replaced with a new above ground 1000 gallon diesel tank. Following the tank installation, inspections and tests specified in the Operational Test Procedure, WHC-SD-WM-OTP-155, were performed. Inspections performed by a Quality Control person indicated the installation was leak free and the diesel generator/engine ran as desired. There were no test and inspection exceptions, therefore, the diesel tank installation is operable.

Schwehr, B.A.

1994-08-02T23:59:59.000Z

471

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

472

Vehicle Technologies Office: Fact #449: December 25, 2006 Biodiesel to  

NLE Websites -- All DOE Office Websites (Extended Search)

9: December 25, 9: December 25, 2006 Biodiesel to Conventional Diesel: An Emissions Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #449: December 25, 2006 Biodiesel to Conventional Diesel: An Emissions Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #449: December 25, 2006 Biodiesel to Conventional Diesel: An Emissions Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #449: December 25, 2006 Biodiesel to Conventional Diesel: An Emissions Comparison on Google Bookmark Vehicle Technologies Office: Fact #449: December 25, 2006 Biodiesel to Conventional Diesel: An Emissions Comparison on Delicious Rank Vehicle Technologies Office: Fact #449: December 25, 2006 Biodiesel to Conventional Diesel: An Emissions Comparison on Digg

473

New Generation Biofuels Holdings Inc formerly H2Diesel | Open Energy  

Open Energy Info (EERE)

Generation Biofuels Holdings Inc formerly H2Diesel Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place Lake Mary, Florida Zip 32746 Product Florida-based developer of innovative biodiesel projects and technologies. References New Generation Biofuels Holdings Inc. (formerly H2Diesel)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Generation Biofuels Holdings Inc. (formerly H2Diesel) is a company located in Lake Mary, Florida . References ↑ "New Generation Biofuels Holdings Inc. (formerly H2Diesel)" Retrieved from "http://en.openei.org/w/index.php?title=New_Generation_Biofuels_Holdings_Inc_formerly_H2Diesel&oldid=349166"

474

Diesel Nuevos y Por Venir  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Nuevos y Por Venir Nuevos Modelos Diesel del 2014 Vehculo Estimados de MPG de la EPA Precios (MSRP) Audi A8 L Automvil Grande Audi A8 L Chart: Ciudad, 24; Carretera, 36;...

475

Diesel prices slightly decrease nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly decrease nationally The U.S. average retail price for on-highway diesel fuel fell to 3.97 a gallon on Monday. That's down 7-tenths of a penny from a week...

476

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.90 a gallon on Monday. That's down 1.3 cents from a week ago, based on the...

477

Diesel prices see slight drop  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices see slight drop The U.S. average retail price for on-highway diesel fuel fell slightly to 3.91 a gallon on Monday. That's down 6-tenths of a penny from a week ago,...

478

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.98 a gallon on Labor Day Monday. That's up 6.8 cents from a week ago, based...

479

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.92 a gallon on Monday. That's down 3 cents from a week ago based on the...

480

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.90 a gallon on Monday. That's up 3.6 cents from a week ago, based on the...

Note: This page contains sample records for the topic "technologies gasoline diesel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.94 a gallon on Monday. That's down 3 12 cents from a week ago, based...

482

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.98 a gallon on Monday. That's down 1.6 cents from a week ago, based on the...

483

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 1.1 cents from a week ago based on the...

484

Diesel prices remain fairly stable  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices remain fairly stable The U.S. average retail price for on-highway diesel fuel slightly fell to 3.85 a gallon on Monday. That's down 6-tenths of a penny from a week...

485

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.89 a gallon on Monday. That's down 5 12 cents from a week ago, based on the...

486

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 4.01 a gallon on Monday. That's down 4.1 cents from a week ago, based on the...

487

Diesel prices slightly increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices slightly increase nationally The U.S. average retail price for on-highway diesel fuel rose slightly to 3.90 a gallon on Monday. That's up 4-tenths of a penny from a...

488

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.87 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

489

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.92 a gallon on Monday. That's up 1.2 cents from a week ago, based on the...

490

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.89 a gallon on Monday. That's up 2.4 cents from a week ago, based on the...

491

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.82 a gallon on Monday. That's down a penny from a week ago, based on the...

492

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.83 a gallon on Monday. That's down 2 cents from a week ago, based on the...

493

Diesel prices continue to increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices continue to increase The U.S. average retail price for on-highway diesel fuel rose to 3.88 a gallon on Monday. That's up 3.9 cents from a week ago, based on the...

494

Diesel prices continue to decrease  

U.S. Energy Information Administration (EIA) Indexed Site

4, 2013 Diesel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 3.86 a gallon on Monday. That's down 1.3 cents from a week ago, based...

495

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

496

How much gasoline does the United States consume? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much gasoline does the United States consume? In 2012, ... (or 3.18 billion barrels) of gasoline where consumed 2 in the United States, ...

497

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network (OSTI)

Formulations Gasoline and Crude Oil Prices, 2000-2006 FigureI: Weekly Gasoline and Crude Oil Prices for2001- 2006 Crude Oil CA Regular Reformulated Figure II:

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

498

At end of summer driving season, gasoline prices are lower ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... the U.S. national average retail price for regular gasoline has fallen 13 cents per gallon below the apparent summer peak of ...

499