National Library of Energy BETA

Sample records for technologies electrolysis cxs

  1. Panel 3, PEM Electrolysis Technology R&D and Near-Term Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Fuel: 3.82 1 "Study on the Development of Water Electrolysis in the European Union," Fuel Cells and Hydrogen Joint Undertaking Final Report, Feb. 2014. 5 Case 2: Cheap Power,...

  2. Hydrogen Production: Electrolysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production: Electrolysis Hydrogen Production: Electrolysis Electrolysis is a promising option for hydrogen production from renewable resources. Electrolysis...

  3. Electrolysis of Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis of Water Grades: 5-8 Topic: Hydrogen and Fuel Cells, Solar Owner: Florida Solar Energy Center This educational material is brought to you by the U.S. Department of...

  4. Candidate anode materials for iron production by molten oxide electrolysis

    E-Print Network [OSTI]

    Paramore, James D

    2010-01-01

    Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

  5. Vehicle Technologies Office Merit Review 2014: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    Presentation given by INFINIUM, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

  6. Vehicle Technologies Office Merit Review 2015: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    Presentation given by INFINIUM, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

  7. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  8. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells

    E-Print Network [OSTI]

    limited energy recovery (McCarty et al., 2011). Microbial electrochemical technologies (METs), such as microbial electrolysis cells (MECs), have shown great potential for recovering energy from wastewaterComparison of complex effluent treatability in different bench scale microbial electrolysis cells

  9. PEM Electrolysis H2A Production Case Study Documentation

    SciTech Connect (OSTI)

    James, Brian; Colella, Whitney; Moton, Jennie; Saur, G.; Ramsden, T.

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  10. Improved Durability of SOEC Stacks for High Temperature Electrolysis

    SciTech Connect (OSTI)

    James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang; Joseph J. Hartvigsen; Greg Tao

    2013-01-01

    High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.

  11. Wind Electrolysis - Hydrogen Cost Optimization (Presentation)

    SciTech Connect (OSTI)

    Saur, G.

    2011-02-01

    This presentation is about the Wind-to-Hydrogen Project at NREL, part of the Renewable Electrolysis task and the examination of a grid-tied, co-located wind electrolysis hydrogen production facility.

  12. Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity

    E-Print Network [OSTI]

    Kim, Hojong

    Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

  13. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on...

  14. LiT Electrolysis Research at Savannah River National Laboratory...

    Office of Environmental Management (EM)

    LiT Electrolysis Research at Savannah River National Laboratory (SRNL) LiT Electrolysis Research at Savannah River National Laboratory (SRNL) Presentation from the 35th Tritium...

  15. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton...

  16. Hydrogen and Biogas Production using Microbial Electrolysis Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Biogas Production using Microbial Electrolysis Cells Hydrogen and Biogas Production using Microbial Electrolysis Cells Breakout Session 2-C: Biogas and Beyond:...

  17. Advanced alkaline water electrolysis. Task 2 summary report. Model for alkaline water electrolysis systems

    SciTech Connect (OSTI)

    Yaffe, M.R.; Murray, J.N.

    1980-04-01

    Task 2 involved the establishment of an engineering and economic model for the evaluation of various options in water electrolysis. The mode, verification of the specific coding and four case studies are described. The model was tested by evaluation of a nearly commercial technology, i.e., an 80-kW alkaline electrolyte system, operating at 60/sup 0/C, which delivers approximately 255 SLM, hydrogen for applications such as electrical generation cooling or semiconductor manufacturing. The calculated cost of hydrogen from this installed non-optimized case system with an initial cost to the customer of $87,000 was $6.99/Kg H/sub 2/ ($1.67/100 SCF) on a 20-yr levelized basis using 2.5 cents/kWh power costs. This compares favorably to a levelized average merchant hydrogen cost value of $9.11/Kg H/sub 2/ ($2.17/100 SCF) calculated using the same program.

  18. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    SciTech Connect (OSTI)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.

  19. A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)

    SciTech Connect (OSTI)

    Donald R. Sadoway; Gerbrand Ceder

    2009-12-31

    Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

  20. Author's personal copy Synergistic roles of off-peak electrolysis and thermochemical

    E-Print Network [OSTI]

    Naterer, Greg F.

    copper­chlorine cycle Electrolysis Nuclear based hydrogen production steam-methane reforming a b s t r of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane. Hydrogen is used widely by petrochemical, agricultural (ammonia for fertilizers), manufacturing, food

  1. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  2. Author's personal copy Comparison of microbial electrolysis cells operated with

    E-Print Network [OSTI]

    Keywords: Boosted power Energy input Hydrogen Methane Microbial electrolysis cell Set anode potential a bAuthor's personal copy Comparison of microbial electrolysis cells operated with added voltage s t r a c t Hydrogen production in a microbial electrolysis cell (MEC) can be achieved by either setting

  3. High temperature electrolysis for syngas production

    DOE Patents [OSTI]

    Stoots, Carl M. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID); Herring, James Stephen (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID); Hawkes, Grant L. (Sugar City, ID); Hartvigsen, Joseph J. (Kaysville, UT)

    2011-05-31

    Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

  4. Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...

    Office of Environmental Management (EM)

    for Lightweighting Materials Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis Scale-Up of Magnesium Production by Fully Stabilized Zirconia...

  5. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect (OSTI)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  6. Critical Review Microbial Electrolysis Cells for High Yield Hydrogen Gas

    E-Print Network [OSTI]

    Critical Review Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic A S S E , , § A N D R E N ´E A . R O Z E N D A L | Hydrogen Energy Center, and Department of Civil.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield

  7. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell

    E-Print Network [OSTI]

    Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane D O U G L 7, 2008. Hydrogen gas can be produced by electrohydrogenesis in microbial electrolysis cells (MECs assumed that a membrane is needed in an MEC to avoid hydrogen losses due to bacterial consumption

  8. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  9. Solid-State Water Electrolysis with an Alkaline Membrane

    SciTech Connect (OSTI)

    Leng, YJ; Chen, G; Mendoza, AJ; Tighe, TB; Hickner, MA; Wang, CY

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cell with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.

  10. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    SciTech Connect (OSTI)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  11. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

  12. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  13. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  14. Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells

    E-Print Network [OSTI]

    Bradwell, David (David Johnathon)

    2011-01-01

    Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved ...

  15. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  16. Hydrogen and Biogas Production using Microbial Electrolysis Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste Feedstocks Hydrogen and Biogas Production using Microbial Electrolysis Cells Bruce Logan, Kappe Professor of Environmental Engineering and Evan Pugh Professor, Pennsylvania State University

  17. Modeling Degradation in Solid Oxide Electrolysis Cells

    SciTech Connect (OSTI)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  18. High Temperature Electrolysis using Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots

    2010-07-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.

  19. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

  20. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis

    SciTech Connect (OSTI)

    None

    2010-09-30

    This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

  1. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

  2. Source of methane and methods to control its formation in single chamber microbial electrolysis cells

    E-Print Network [OSTI]

    Source of methane and methods to control its formation in single chamber microbial electrolysis online 31 March 2009 Keywords: Hydrogen Microbial electrolysis cell (MEC) Methane Single chamber Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis

  3. Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with

    E-Print Network [OSTI]

    Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with reduced production rate Microbial electrolysis cell a b s t r a c t Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved

  4. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery

    E-Print Network [OSTI]

    A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery Wastewater treatment Energy consumption Coulombic efficiency a b s t r a c t Microbial electrolysis cells 2013 Accepted 31 July 2013 Available online 27 August 2013 Keywords: Microbial electrolysis cell

  5. Analysis of deformed palladium cathodes resulting from heavy water electrolysis

    SciTech Connect (OSTI)

    An, H.K.; Jeong, E.J.; Hong, J.H.; Lee, Y.

    1995-07-01

    Earlier experiments suggested that large differences in heat release between the two sides of a palladium electrode coated with gold on one side and manganese oxide on the other cause observed electrode deformation with high-pressure D{sub 2} gas loading in an electrolysis-like cell. Similar experiments were repeated using heavy water electrolysis. Palladium/titanium coatings on one side and gold coating on the other were made for the preparation of the palladium electrodes. Biaxial bending, partial discoloration, and microcracks of palladium electrodes were observed after 18 days of electrolysis. Analysis of the deformed palladium cathodes was performed. It was discovered that to convert this configuration to a practical energy-producing cell, a coating technique must be found to reduce outward diffusion of deuterium, i.e., to maintain a high D/Pd ratio over longer periods of time. 33 refs., 7 figs., 1 tab.

  6. HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION

    SciTech Connect (OSTI)

    Stoots, C.M.

    2006-11-01

    Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

  7. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  8. Durability of Solid Oxide Electrolysis Cells for Hydrogen Production

    E-Print Network [OSTI]

    such as renewable energy from wind, solar and hydropower. Regarding condition 2), economic estimates of production In the perspective of the increasing interest in renewable energy and hydrogen economy, the reversible solid oxide results from long-term electrolysis test as input and a short outlook for the future work on SOECs

  9. Short communication Powering microbial electrolysis cells by capacitor circuits charged

    E-Print Network [OSTI]

    Available online 12 December 2012 Keywords: Microbial fuel cell Microbial electrolysis cell Capacitor Energy based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen, or salinity gradient energy [5,6]. Another practical electrical energy source is a microbial fuel cell (MFC

  10. Synthesis of Anion Exchange Polystyrene Membranes for the Electrolysis of

    E-Print Network [OSTI]

    Singh, Jayant K.

    - moval of chloride ions. The composite membrane is homogeneously modified by gas phase nitration separation technique, in which electrically charged membranes are used and electrical poten- tial differenceSynthesis of Anion Exchange Polystyrene Membranes for the Electrolysis of Sodium Chloride Sonny

  11. POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    · Transportation of energy from production areas to consumption areas Substitute Natural Gas (methane) Myriam DeP · Use of existing natural gas network · Mid or long term storage · Transportation · Production. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis

  12. Electrolysis-Utility Integration Workshop September 22, 2004

    E-Print Network [OSTI]

    " Distribution substations ! Each locations has different issues " Operational " Cost " Distribution (of H2Siting and Location ! Electrolysis systems can be sited at " Existing generating stations " Transmission substations($/MWh) Baseload Intermediate Peaking #12;Transmission Substation SiteTransmission Substation Site ! Offers same

  13. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    SciTech Connect (OSTI)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  14. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    SciTech Connect (OSTI)

    J. E. O'Brien; R. C. O'Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  15. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  16. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

  17. Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production

    SciTech Connect (OSTI)

    Carl Marcel Stoots; Lee Shunn; James O'Brien

    2010-06-01

    The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

  18. First results about hydrogen loading by means of pulsed electrolysis of Y$_{1}$Ba$_{2}$Cu$_{3}$O$_{7}$ pellets

    E-Print Network [OSTI]

    Celani, F; Di Gioacchino, D; Spallone, A; Tripodi, P; Pace, S; Polichetti, M; Marini, P

    1994-01-01

    First results about hydrogen loading by means of pulsed electrolysis of Y$_{1}$Ba$_{2}$Cu$_{3}$O$_{7}$ pellets

  19. Study of deuterium charging behaviour in palladium and palladium alloy plates, changing surface treatments, by $\\mu$S pulsed electrolysis

    E-Print Network [OSTI]

    Celani, F; Tripodi, P; Petrocchi, A; Di Gioacchino, D; Marini, P; Di Stefano, V; Diociaiuti, M; Mancini, A

    1995-01-01

    Study of deuterium charging behaviour in palladium and palladium alloy plates, changing surface treatments, by $\\mu$S pulsed electrolysis

  20. Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks5

    E-Print Network [OSTI]

    Yildiz, Bilge

    by water-splitting using electricity and heat from an advanced nuclear power plant [1,2]. The process of steam and hydrogen as the feed gas. The ``stacking'' of cells provides for a reasonable electrolysis form 15 July 2008 Accepted 15 July 2008 Available online 10 October 2008 Keywords: Steam electrolysis

  1. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

    E-Print Network [OSTI]

    The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells Yimin September 2010 Keywords: Stainless steel mesh Microbial electrolysis cell Cathode a b s t r a c t Microbial- ramethylphenylporphyrin (CoTMPP & FeCoTMPP) [8], nickel oxide [9], stainless steel (SS) [9e11], and tungsten carbide [12

  2. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  3. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    M. S. Sohal; J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. Virkar

    2012-02-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

  4. Hydrogen Production by PEM Electrolysis: Spotlight on Giner and Proton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOEPRODUCTION BY PEM ELECTROLYSIS:

  5. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect (OSTI)

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  6. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  7. Analyses of palladium cathodes used for heavy water electrolysis

    SciTech Connect (OSTI)

    Kumar, K.; Dauwalter, C.R.; Stecyk, A. )

    1991-01-01

    This paper reports on the sporadic nature of the excess heat reported from heavy water electrolysis which has attributed to variability among the different palladium cathodes used. Experimental repeatability should, therefore, be enhanced if the microstructure of the palladium can be controlled. Toward this end, palladium rod samples from two heavy water electrolysis experiments were compared to a sample representative of the as-installed condition. The samples examined showed equiaxed grains and significant abnormal grain growth. The rod axes had strong textures, which were attributed to their prior thermomechanical history. The postelectrolysis palladium rods were sampled at two locations that were suspected to have operated at different average current densities. The suspected higher current density regions consisted of single-phase Pd-D{sub 0.7} microstructures. Surface-originated cracks were seen along the grain boundaries in one of two such specimens. Cracks were absent in samples from the suspected lower current density regions, which showed two-phase microstructures with Pd-D{sub 0.7} as the dominant phase. The minor phase, indexed as palladium in the X-ray pattern, was dispersed nonuniformly, mostly in the form of stringers, across the grain boundaries. It is concluded that high current densities resulted in high deuterium loadings in palladium. Smoothing effects from the electrolytic process, resulting in preferential material removal from the grain boundaries, were seen on the cathode surface. A number of high-mass impurities were seen to have deposited on the exposed surface. An initial secondary ion mass spectrometry examination of the specimen interior indicated a significant presence of mass 2 species and considerably lower concentrations of mass 3 and 4 species. Repeat analyses failed to confirm the presence of the mass 3 and 4 species.

  8. Microsoft PowerPoint - Garcia-Diaz - LiT Electrolysis Projects...

    Office of Environmental Management (EM)

    * Maroni is the Baseline for LiT Electrolysis * LLNL LDRD tries to improve molten salt liquid-liquid extraction and SRNL is contributing by investigating RbCl containing salts *...

  9. A new anode material for oxygen evolution in molten oxide electrolysis

    E-Print Network [OSTI]

    Allanore, Antoine

    Molten oxide electrolysis (MOE) is an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock and compared with traditional methods of extractive metallurgy offers ...

  10. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    E-Print Network [OSTI]

    Sirk, Aislinn H.

    The feasibility of producing oxygen by direct electrolysis of the molten lunar regolith at 1600 C was investigated and the generation of usable oxygen gas at the anode and concomitant production of iron and silicon at the ...

  11. Electrolysis of Molten Iron Oxide with an Iridium Anode: The Role of Electrolyte Basicity

    E-Print Network [OSTI]

    Kim, Hojong

    Molten oxide electrolysis (MOE) is a carbon-free, electrochemical technique to decompose a metal oxide directly into liquid metal and oxygen gas. From an environmental perspective what makes MOE attractive is its ability ...

  12. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; R. C. O'Brien; G. Tao

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode of operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.

  13. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  14. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

  15. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    SciTech Connect (OSTI)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  16. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    SciTech Connect (OSTI)

    X. Zhang; J. E. O'Brien; R. C. O'Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  17. Electrolysis byproduct D2O provides a third way to mitigate CO2

    SciTech Connect (OSTI)

    Schenewerk, William Ernest

    2009-09-01

    Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective.

  18. Deuterium overloading of palladium wires by means of high power $\\mu$s pulsed electrolysis and electromigration suggestions of a "phase transition" and a related excess heat

    E-Print Network [OSTI]

    Celani, F; Tripodi, P; Petrocchi, A; Di Gioacchino, D; Marini, P; Di Stefano, V; Pace, S; Mancini, A

    1996-01-01

    Deuterium overloading of palladium wires by means of high power $\\mu$s pulsed electrolysis and electromigration

  19. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or

    E-Print Network [OSTI]

    A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis a c t Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly electrical energy directly from the wastewater. BES such as microbial fuel cells (MFCs) and microbial

  20. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    SciTech Connect (OSTI)

    Lewis, Alex J; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P

    2015-01-01

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.

  1. Time-delayed apparent excess heat generation in electrolysis fusion experiments

    SciTech Connect (OSTI)

    Kim, Y.E. . Dept. of Physics)

    1991-04-10

    This paper reports that in many recent electrolysis fusion experiments, excess heat, tritium, and neutron production have been reported as intermittent bursts. These burst phenomena are described in terms of a surface reaction mechanism involving hysteresis of deuterium solubility in palladium as a function of the metal temperature. Excess heat generation is shown to be attributable to a hitherto neglected time-delayed chemical process due to the solubility hysteresis of deuterium in palladium. Negative results of no apparent excess heat generation from light-water electrolysis experiments is attributed to the fact that the solubility hysteresis of hydrogen occurs at a higher temperature range than that for deuterium. Apparent excess heat generation is expected to be also observable in blank electrolysis experiments with light water at higher pressures.

  2. The influence of deposits on palladium cathodes in D[sub 2]O electrolysis

    SciTech Connect (OSTI)

    Lihn, C.J.; Wan, C.C.; Wan, C.M.; Perng, T.P. )

    1993-11-01

    Platinum and silicon have been found deposited on the palladium cathode during the electrolysis of a 0.1 M LiOD solution with a platinum anode in a glass cell. Various techniques including surface analysis, cyclic voltammetry, and electrochemical permeation were used to study the surface deposits, electrochemical deuterium-sorption behavior, and permeation rate of deuterium into palladium, respectively. It was shown that palladium cathodes were contaminated by platinum and silicon deposits after a certain period of electrolysis. These deposits could affect the electrochemical processes during electrolysis. The contamination may be a cause of the sporadic results reported in [open quotes]cold fusion[close quotes] research. 18 refs., 15 figs.

  3. A Process Model for the Production of Hydrogen Using High Temperature Electrolysis

    SciTech Connect (OSTI)

    M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

    2006-07-01

    High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

  4. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    E-Print Network [OSTI]

    for biohydrogen production based on electrohydro- genesis [1]. In an MEC exoelectrogenic microbes on the anodeMulti-electrode continuous flow microbial electrolysis cell for biogas production from acetate , cathode surface area; 74 A/m3 ) within three days of operation. The maximum hydrogen production (day 3

  5. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation

    E-Print Network [OSTI]

    Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells, USA h i g h l i g h t s Fermentation effluent fed MREC produced hydrogen without grid energy in revised form 23 May 2015 Accepted 25 May 2015 Available online 29 May 2015 Keywords: Microbial reverse

  6. Hydrogen production using single-chamber membrane-free microbial electrolysis cells

    E-Print Network [OSTI]

    Tullos, Desiree

    Hydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu Received in revised form 13 June 2008 Accepted 17 June 2008 Published online - Keywords: Hydrogen Microbial electrohydrogenesis provides a new approach for hydrogen generation from renewable biomass. Membranes were used in all

  7. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    SciTech Connect (OSTI)

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  8. Experiments on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly

    SciTech Connect (OSTI)

    Konishi, Satoshi; Yoshida, Hiroshi; Ohno, Hideo; Naruse, Yuji; Coffin, D.O.; Walthers, C.R.; Binning, K.E.

    1985-01-01

    A ceramic electrolysis cell and a palladium diffuser are developed in Japan and is tested with tritium in Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory, in order to confirm the feasibility as possible upgrades for the fuel cleanup system (PCU). The ceramic electrolysis cell made of stabilized zirconia was operated at 630/sup 0/C for an extended period with a mixture of 3% T/sub 2/O in He carrier gas in the circulation system with oxidizing catalyst bed. The palladium diffuser was tested with circulated pure tritium gas at 280/sup 0/C to verify the compatibility of the alloy with tritium, since the /sup 3/He produced in the metal could cause a degradation. The isotopic effects were also measured for both devices.

  9. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  10. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  11. Surface topography of a palladium cathode after electrolysis in heavy water

    SciTech Connect (OSTI)

    Silver, D.S. ); Dash, J.; Keefe, P.S. )

    1993-12-01

    Electrolysis was performed with a palladium cathode and an electrolyte containing both hydrogen and deuterium ions. The cathode bends toward the anode during this process. Examination of both the concave and the convex surfaces with the scanning electron microscope, scanning tunneling microscope, and atomic force microscope shows unusual surface characteristics. Rimmed craters with faceted crystals inside and multitextural surfaces were observed on an electrolyzed palladium cathode but not on palladium that has not been electrolyzed. 9 refs., 9 figs.

  12. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    SciTech Connect (OSTI)

    J. E. O'Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  13. Numerical simulation of deuterium loading profile in palladium and palladium alloy plates from experimental data of absorbed mole rate obtained using $\\mu$s pulsed electrolysis

    E-Print Network [OSTI]

    Celani, F; Tripodi, P; Petrocchi, A; Nakamura, M; Di Gioacchino, D; Marini, P; Di Stefano, V; Preparata, Giuliano; Verpelli, M

    1995-01-01

    Numerical simulation of deuterium loading profile in palladium and palladium alloy plates from experimental data of absorbed mole rate obtained using $\\mu$s pulsed electrolysis

  14. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  15. Panel 3, PEM Electrolysis Technology R&D and Near-Term Market Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - .EnergyHYDROGEN ENERGY H 25 th

  16. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  17. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  18. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOE Patents [OSTI]

    Vandegrift, George F. (Bolingbrook, Naperville, IL); Krumpelt, Michael (Naperville, IL); Horwitz, E. Philip (Hinsdale, IL)

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  19. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  20. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    DOE Patents [OSTI]

    Kertesz, Vilmos (Knoxville, TN); Van Berkel, Gary (Clinton, TN)

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  1. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect (OSTI)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  2. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  3. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    SciTech Connect (OSTI)

    Kumta, Prashant

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.

  4. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  5. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  6. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E. (Novato, CA)

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  7. Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

    2010-06-01

    A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800°C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

  8. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  9. Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H2 production, as well as the anode microbial community structure were investigated. The five compounds were completelymore »transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  11. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  12. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  13. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells

    E-Print Network [OSTI]

    ) using ace- tate, making this technology a promising method for biohydrogen production even in very coldSyntrophic interactions drive the hydrogen production from glucose at low temperature in microbial, The Pennsylvania State University, University Park, PA 16802, USA h i g h l i g h t s " H2 production from glucose

  14. Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation

    E-Print Network [OSTI]

    . Published by Elsevier Ltd. All rights reserved. #12;biomass, food waste, and industrial wastewaters rich in anaerobic biological treatment technology have redefined what can be considered "waste" by demonstrating density and it has broad use in different industrial applications [3e5]. Waste products, such as crop

  15. Potential for Distributed and Central Electrolysis to Provide Grid Support Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how NREL operated both commercially available low-temperature electrolyzer technologies (PEM and alkaline) to evaluate their response to commands to increase and decrease stack power that shorten frequency disturbances on an alternating current (AC) mini-grid. Results show that both the PEM and alkaline electrolyzers are capable of adding or removing stack power to provide sub-second response that reduced the duration of frequency disturbances.

  16. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect (OSTI)

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  17. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  18. Survey of the Economics of Hydrogen Technologies

    E-Print Network [OSTI]

    Hydrogen Production Steam Methane Reforming Noncatalytic Partial Oxidation Coal Gasification Biomass Gasification Biomass Pyrolysis Electrolysis Hydrogen Storage Compressed Gas Liquefied Gas Metal Hydride Carbon

  19. Technology Assessment TECHNOLOGY ASSESSMENT

    E-Print Network [OSTI]

    Rock, Chris

    Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications

  20. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  1. Categorical Exclusion Determinations: Advanced Technology Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Group LLC, Revised Specific Project Application 2, Retooling, Reequipping and Engineering CX(s) Applied: B1.31, B5.1 Date: 09062011 Location(s): Auburn Hills, Michigan...

  2. Categorical Exclusion Determinations: National Energy Technology...

    Broader source: Energy.gov (indexed) [DOE]

    August 27, 2014 CX-012437: Categorical Exclusion Determination High Energy Density Lithium Battery CX(s) Applied: B3.6 Date: 41878 Location(s): New York Offices(s): National...

  3. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  4. Electrolysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformation atProject) |

  5. Reversible Solid Oxide Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetooling Michigan:Energy Systems |Clean,

  6. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to changeNovember 5-6, 2001Final ReportA A M M AMW

  7. Alkaline Membrane Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJune 2, 2015AlignedRPTnnnn Membrane-Based

  8. Electrolysis at Forecourt Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2 DOEofENERGY

  9. Speaker biographies for the Fuel Cell Technologies Program Webinar titled Hydrogen Production by PEM Electrolysis Â… Spotlight on Giner and Proton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof Energy Space

  10. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  11. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  12. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a...

  13. Utilizing the Inherent Electrolysis in a Chip-Based Nanoelectrospray Emitter System to Facilitate Selective Ionization and Mass Spectrometric Analysis of Metallo Alkylporphyrins

    SciTech Connect (OSTI)

    Van Berkel, Gary J; Kertesz, Vilmos

    2012-01-01

    A commercially available chip-based infusion nanoelectrospray ionization system was used to ionize metallo alkylporphyrins for mass spectrometric detection and structure elucidation by mass spectrometry. Different ionic forms of model compounds (nickel (II), vanadyl (II), copper (II) and cobalt (II) octaethylporphyrin) were created by using two different types of conductive pipette tips supplied with the device. These pipette tips provide the conductive contact to solution at which the electrolysis process inherent to electrospray takes places in the device. The original unmodified, bare carbon-impregnated plastic pipette tips, were exploited to intentionally electrochemically oxidize (ionize) the porphyrins to form molecular radical cations for detection. Use of modified pipette tips, with a surface coating devised to inhibit analyte mass transport to the surface, was shown to limit the ionic species observed in the mass spectra of these porphyrins largely, but not exclusively, to the protonated molecule. Under the conditions of these experiments, the effective upper potential limit for oxidation with the uncoated pipette tip was 1.1 V or less and the coated pipette tips effectively prevented the oxidation of analytes with redox potentials greater than about 0.25 V. Product ion spectra of either molecular ionic species could be used to determine the alkyl chain length on the porphyrin macrocycle. The utility of this electrochemical ionization approach for the analysis of naturally occurring samples was demonstrated using nickel geoporphyrin fractions isolated from Gilsonite bitumen. Acquiring neutral loss spectra as a means to improve the specificity of detection in these complex natural samples was also illustrated.

  14. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...

  15. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  16. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  17. Technology Assessment

    Office of Environmental Management (EM)

    capabilities that are energy efficient, low environmental impact 72 and lower cost and that are employed to manufacture technologies and products for clean energy 73...

  18. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Electrolysis via photovoltaic system Location: East Amwell,stown, New Jersey. The photovoltaic system is installed andNew Jersey. A photovoltaic system will be the primary

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Renewables-Based Electrolysis 12. Prince Edward Island Wind-Hydrogen Village Project Prince Edward Island is home to theCorporation and Prince Edward Island Energy Corporation.

  20. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Based Electrolysis 12. Prince Edward Island Wind-HydrogenVillage Project Prince Edward Island is home to the AtlanticCorporation and Prince Edward Island Energy Corporation.

  1. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  2. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  3. sustainable technologies

    E-Print Network [OSTI]

    Zhang, Junshan

    : · realize continuous improvements in performance (efficiency), cost and manufacturability of PV technologies, transformative PV technologies that circumvent cost/performance trade-offs and maintain compatibility with P the growing demand for energy. Photovoltaics (PV) leverages one of the 20th century's greatest scientific

  4. PRE-INVESTIGATION WATER ELECTROLYSIS

    E-Print Network [OSTI]

    of Denmark (KI/DTU), (2) Fuel Cells and Solid State Chemistry Department, Risø National Laboratory, Technical efficiency are treated. Chapter 4 is a technical review of the specific types of electrolyzers of relevance efficient. However, hydrogen has to be extracted from water in order to avoid the pollution problems

  5. Electrolysis on an Island Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2

  6. Electrolysis - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic 2015ProgramWoodwardandCElectrolysis

  7. INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY

    E-Print Network [OSTI]

    Columbia University

    1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) ­ Will guarantee performance and Operation and Maintenance ­ Serves solid waste

  8. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  9. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive...

  10. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving...

  11. Degradation Mechanism in La0.8Sr0.2CoO3 as Contact Layer on the Solid Oxide Electrolysis Cell Anode

    E-Print Network [OSTI]

    Yildiz, Bilge

    Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA­scandia stabilized zirconia ScSZ cermet. ScSZ 10% Sc2O3­ZrO2 constitutes the electrolyte. Oxygen electrolyte

  12. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  13. Engineering &Technology

    E-Print Network [OSTI]

    Southampton, University of

    Software Technologies Deloitte Dialog Semiconductor ECM Selection EDT-Year in Industry EMC Corporation to join our organisation and be based in our Ferndown, Dorset, location within our product electronics have application, design and manufacturing facilities in Canada, America, Europe and China. We

  14. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  15. Pyroprocessing Technologies

    E-Print Network [OSTI]

    Kemner, Ken

    of pyrochemical processes for the recycle of oxide, carbide and other advanced fuels and laid the foundationPyroprocessing Technologies RECYCLING USED NUCLEAR FUEL FOR A SUSTAINABLE ENERGY FUTURE #12;32 Storing Used Nuclear Fuel is a Real Waste Nuclear power is the most environmentally friendly way

  16. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  17. Vacuum Technology

    SciTech Connect (OSTI)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  18. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  19. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  20. Portal Technology

    E-Print Network [OSTI]

    Warner, Beth Forrest

    2002-03-27

    Portal Technology Beth Forrest Warner Director, KU Digital Library Initiatives bwarner@ku.edu PUAD 839 March 27, 2002 Defining the issue… Today’s government agencies at all levels should note that the citizens they serve are “little concerned... their citizens’ perspectives. Instead of launching online services on a department-by-department basis, they are aggregating services across departments, accessible through a common portal.” (Janet Caldow, “The Quest for Electronic Government: A Defining...

  1. Emerging technologies

    SciTech Connect (OSTI)

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  2. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  3. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  4. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01

    its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged

  5. Information Technology and Libraries

    E-Print Network [OSTI]

    Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

    2011-01-01

    Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). ”Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |

  6. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  7. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and Fuels VehiclesTechnologies

  8. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Environmental Management (EM)

    technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide...

  9. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce...

  10. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Technology Transfer" award from the Federal Laboratory Consortium. Application of this technology reduces the costs and energy associated with more conventional scrubbing...

  11. Nanotechnol Rev 1 (2012): 515 2012 by Walter de Gruyter Berlin Boston. DOI 10.1515/ntrev-2011-0001 Probing nanoscale behavior of magnetic materials with

    E-Print Network [OSTI]

    Fadley, Charles

    2012-01-01

    of electrolysis, which laid foundation for technological inventions such as AC power systems by Nikola Tesla. John

  12. Technology Support Bob Davis

    E-Print Network [OSTI]

    Technology Support Services · Bob Davis · Associate Director User Support Services 1 #12;Technology Support Services · NUIT Technology Support Services (TSS) helps Northwestern faculty, staff, and students Technologies · Brian Nielsen · Project Manager Faculty Initiatives 8 #12;Support for Teaching & Learning

  13. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated AcrossSolarTechnology

  14. Technologies de base Architectures

    E-Print Network [OSTI]

    Grigoras, .Romulus

    Technologies de base Architectures Cinquième partie Technologies Web Intergiciels et applications communicantes 1 / 38 #12;Technologies de base Architectures Client-serveur HTTP Présentation Plan 1 Technologies Contenu dynamique 2-tier 3-tier V ­ Technologies Web 2 / 38 #12;Technologies de base Architectures Client

  15. TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer

    E-Print Network [OSTI]

    Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements for such intellectual property with companies for commercial applications of ORNL-developed technologies. Such licenses

  16. APPROPRIATE HOME TECHNOLOGY: Depending on Dependable Technology

    E-Print Network [OSTI]

    Sommerville, Ian

    penetrate more and more into people's everyday lives and homes, the `design problem' is not so muchAPPROPRIATE HOME TECHNOLOGY: Depending on Dependable Technology Systems Guy Dewsbury, Karen Clarke 2002 #12;Dewsbury et al (2002): Appropriate Home Technology APPROPRIATE HOME TECHNOLOGY: Depending

  17. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  18. Hart Crane's attitude toward technology 

    E-Print Network [OSTI]

    Abbott, Craig Stephens

    1966-01-01

    xu4t ni'?iceneG: IG ceinses . , Esne 'ic; cnlisx neiizigs sext''xIGLXGGs 7!4 /8 csee'ici& I bcxe- ssIXIGLDJ. is stun Gxzvx' i11 tc1Lxe ins Gncl~vxizn 684iGGXuxc; LII'IX[8 'clcgnin' iXnci. !'@444u'ptt 4sCY~GLL'LGZs' ' "+CXS'C. , '4j lg4'jj nccil k...:, "i'EB; jo11 'it ) tIM si)oc '?"' Q11 c Jen t t Ete Et+it!Bl . ovt snoojo ti ~ i. 'i itp . toct "o . . EQEEEECEE "' io p '1'" . QE- trtj7LQ r Jnojtdoes '. iol I otnp t', ' 7 ) ?d t)xtktyxo' iill tax'on ' Qt n'ig Bt1c ? LE n I jte QQEEQ jet )J)- cjt...

  19. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  20. CX-007596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  1. CX-011069: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  2. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  3. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  4. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  5. CX-004351: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4351: Categorical Exclusion Determination CX-004351: Categorical Exclusion Determination Center for Development of Math, Science and Technology CX(s) Applied: B1.15 Date: 1029...

  6. CX-100022: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-100022: Categorical Exclusion Determination CX-100022: Categorical Exclusion Determination EERE Demonstration for Advanced Retro-Commissioning Technology CX(s) Applied: A9,...

  7. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  8. CX-008973: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Petrography Laboratory CX(s) Applied: B3.6 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  9. CX-009753: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Propane Corridor Development Program CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  10. CX-012482: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22Date: 41862 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  11. CX-009295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Regional Innovation Cluster CX(s) Applied: B3.6 Date: 09/05/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  12. CX-012469: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Analysis Services CX(s) Applied: B3.6Date: 41876 Location(s): OregonOffices(s): National Energy Technology Laboratory

  13. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  14. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  15. Technology Application Centers: Facilitating Technology Transfer 

    E-Print Network [OSTI]

    Kuhel, G. J.

    1994-01-01

    Industrial DSM programs cannot succeed unless customers learn about and implement new technologies in a timely manner. Why? Because this expeditious transfer of new technologies represents the key challenge for the 1990s. This paper explores...

  16. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01

    study of architecture through references to “Technology andhis new “Architecture for Man” that combines technology withArchitecture and Minarc Architects, two contemporary designers that are pushing prefab technologies

  17. Adoption of New Technology

    E-Print Network [OSTI]

    Hall, Bronwyn H.; Khan, Beethika

    2003-01-01

    Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.affect whether or not new technologies are successful, the

  18. Technology & Engineering Division

    E-Print Network [OSTI]

    Technology & Engineering Division High-Temperature Superconducting Magnets for Fusion: New & Engineering Division Contents · Background on Superconductivity · Fusion Magnets ­ Present and Future ­ Vision/15/2014 2Joseph V. Minervini #12;Technology & Engineering Division Superconductivity #12;Technology

  19. Adoption of New Technology

    E-Print Network [OSTI]

    Hall, Bronwyn H.; Khan, Beethika

    2003-01-01

    Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.the Diffusion of New Technology in the Banking Industry. ”

  20. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Details and Market Status Source Solar Photo-Electrochemicaland Market Status Source Electrolysis Grid-Tied Near Term/Future NRC, 2004 Solarand market development programs have proven to be effective in the past, particularly with regard to solar

  1. Technology Readiness Assessment Report

    Office of Environmental Management (EM)

    of management decisions by identifying key technologies that have been demonstrated to work or by highlighting immature or unproven technologies that might result in increased...

  2. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  3. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use...

  4. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  5. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  6. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge...

  7. Essays on University Technology Management

    E-Print Network [OSTI]

    Drivas, Kyriakos

    2011-01-01

    of university technology management and their implicationson University Technology Management by Kyriakos Drivas Aon University Technology Management by Kyriakos Drivas

  8. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  10. Technology Licensing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License ORNL Technologies Licensing Guidelines NDA(s) and MTA(s) Sample Agreements Technology Innovation Program Technology Assistance Program Licensing Staff Technology Search...

  11. Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Faculty Center Verification & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718

  12. TOKYO INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    TOKYO INSTITUTE OF TECHNOLOGY 2005 TOKYO INSTITUTE OF TECHNOLOGY 152-8550 2 12 1 E3-3 2005 8 TEL. 03 5734 2975 URL. http://www.titech.ac.jp/ PROFILE #12;TOKYO INSTITUTE OF TECHNOLOGY 0201 CONTENTS 03 06 06 08 09 10 15 17 25 31 33 37 41 0201 #12;TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE

  13. Predictive Maintenance Technologies

    Broader source: Energy.gov [DOE]

    Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

  14. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  15. Northwest Regional Technology Center

    E-Print Network [OSTI]

    management and public safety professionals to define and prioritize technology needs. Coordinate and leadNorthwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate

  16. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  18. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  19. Assessing Software Engineering Technology Transfer

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    , and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

  20. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  1. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

  2. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  3. Massachusetts Institute of Technology

    E-Print Network [OSTI]

    ChemE Massachusetts Institute of Technology Department of Chemical Engineering Undergraduate technology, chemical engineers play a role in almost every industry and they collaborate with all types, creating and improving pharmaceuticals, fuels, polymers, plastics, cosmetics, cereals and more." Klavs

  4. SIMULATING EVOLUTION OF TECHNOLOGY

    E-Print Network [OSTI]

    SIMULATING EVOLUTION OF TECHNOLOGY: AN AID TO ENERGY POLICY ANALYSIS A CASE STUDY OF STRATEGIES Approval Name: John Nyboer Degree: Doctor of Philosophy Title of Thesis: Simulating Evolution of Technology

  5. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  6. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  7. Utilities Inspection Technologies 

    E-Print Network [OSTI]

    Messock, R. K.

    1993-01-01

    Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been...

  8. Technology Business Incubation Programme

    E-Print Network [OSTI]

    1 Technology Business Incubation Programme Ms. Kimmie Wong Assistant Manager Incubation Admission and organization. Industry Technology Biotechnology Clusters IT & Telecomm. Pharmaceutical Precision Engg. Chinese Lab Premises Technical Support Facilities Technical and Management Assistance Management and Technical

  9. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  10. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  12. States & Emerging Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  13. Technology in water conservation 

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01

    ?? percent to ?? percent. Water reuse systems treat wastewater by various technologies including ?ltering, bioremediation and ozone exposure. ?ese technologies can involve billions of gallons of wastewater ? such as in a municipal recycling e... Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a behavioral exercise and urge...

  14. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  15. Do New Technologies Matter?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out a few stories of companies who have taken a breakthrough energy technology and run with it.

  16. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Energy Savers [EERE]

    (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

  18. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...

  19. EM Engineering & Technology Roadmap and Major Technology Demonstration...

    Office of Environmental Management (EM)

    Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction Progress made in EM cleanup...

  20. Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report The Fuel & Lubricant...

  1. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01

    Policy Brief No. 4 September 2010 Does Doctrine DriveTechnology or Does Technology Drive Doctrine? Dennis Blaskoone way. However, technology does not determine strat- egy.

  2. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  3. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    OSU Project(s) where this technology is utilized *MHK ProjectsOSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point...

  4. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...

  5. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    including issues of technology and cost un- certainties, areon NO x Control Technologies and Cost Effectiveness forand other factors on technology cost trends (hence, the

  6. Technology Advertising Contact Information

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

  7. Department of Science, Technology, &

    E-Print Network [OSTI]

    Huang, Wei

    Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

  8. Responder Technology Alert Monthly

    E-Print Network [OSTI]

    PNNL-24014 Responder Technology Alert Monthly (Oct-Nov 2014) January 2015 JF Upton SL Stein #12;#12;PNNL-24014 Responder Technology Alert Monthly (Oct-Nov 2014) JF Upton SL Stein January 2015 Prepared for the Department of Homeland Security Science and Technology Directorate under Contract HSHQPM-14-X-00058. Pacific

  9. PUBLICATIONS BRANCH OF TECHNOLOGY

    E-Print Network [OSTI]

    INDEX of PUBLICATIONS by the BRANCH OF TECHNOLOGY BUREAU OF COMMERCIAL FISHERIES, 1955-59 Inclusive OF PUBLICATIONS BY THE BRANCH OF TECHNOLOGY BUREAU OF COMMERCIAL FISHERIES 1955-59 Inclusive by F. Bruce Sanford continue s, for the year s 1955- 59, the listing of publications by the Branch of Technology given

  10. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  11. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  12. NORTHWEST REGIONAL TECHNOLOGY CENTER

    E-Print Network [OSTI]

    NORTHWEST REGIONAL TECHNOLOGY CENTER for Homeland Security Northwest Regional Technology Center May 2015 | 1 AROUND THE REGION IN HOMELAND SECURITY The Northwest Regional Technology Center (NWRTC.S. Army Cyber Command; and Michael Echols, Director, Cyber Joint Program Management Office National

  13. Web Technology (elective package)

    E-Print Network [OSTI]

    Franssen, Michael

    Web Technology (elective package) Offered by: Department of Mathematics and Computer Science? Computer Science-based approaches and enabling technologies for the web. Course descriptions Human and efficient. Web Technology The web has become the major source of information retrieval and is playing

  14. Transmission Enhancement Technology Report

    E-Print Network [OSTI]

    a recommendation of the most cost-effective methods and technologies to enhance electricity transmission from a review of methods and technologies with potential to enhance electricity transmission capability-traditional methods and technologies to increase the capacity of the high voltage electric power transmission system

  15. Advanced photoanodes for photoassisted water electrolysis

    E-Print Network [OSTI]

    Engel, Johanna, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    With continuously growing energy demands, alternative, emission-free solar energy solutions become ever more attractive. However, to achieve sustainability, efficient conversion and storage of solar energy is imperative. ...

  16. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Heat Wind Power Grid Solar Power ENERGY STORAGE P2G (HES) THE NEED THE MARKET RE curtailment is a growing occurrence Storage is required not just for hours but...

  17. HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland

    E-Print Network [OSTI]

    with traditional spring washer approaches. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610 the end of the Phase I program in December of 1999. A description of the technical performance efforts and market evaluation showed that a hydr

  18. Electrolysis cell for reprocessing plutonium reactor fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Steindler, Martin J. (Park Forest, IL); Burris, Leslie (Naperville, IL)

    1986-01-01

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.

  19. Electrolysis cell for reprocessing plutonium reactor fuel

    DOE Patents [OSTI]

    Miller, W.E.; Steindler, M.J.; Burris, L.

    1985-01-04

    An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.

  20. PEM Electrolysis R&D Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . - - 4 v - rPBS: Wind Power

  1. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - .EnergyHYDROGEN ENERGY H 2

  2. Water Electrolysis Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers TakeVoteWater Efficiency CaseWater

  3. Electrolysis of Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout2 DOEofENERGYElectrolysis

  4. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic 2015ProgramWoodwardandCElectrolysis -

  5. Photosynthetic water oxidation versus photovoltaic water electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformance andAreaPhotoinducedCenter Objective The Science

  6. Hydrogen Production: Electrolysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagement » HumanProcesses Hydrogen»

  7. Building Technologies Office Window and Envelope Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by 50% in 2030, compared to the "business-as- usual" energy consumption...

  8. Our research in society and systems is aimed at developing technologies and systems that contribute to ensuring reliable and

    E-Print Network [OSTI]

    through research into fuel cells and hydrogen. We possess competencies within · Fuel cells · Electrolysis new types of "human spare parts" that function optimally together with living tis- sue. We possess

  9. Technology Investment Roadmap 2012 -2017

    E-Print Network [OSTI]

    Hickman, Mark

    Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview ............................................................................................ 8 Trend 3: Technology Enabled Learning .................................................................................................... 16 2. Technology enabled learning and teaching

  10. Technology Policy and Economic Growth

    E-Print Network [OSTI]

    Borrus, Michael; Stowsky, Jay

    1997-01-01

    economic growth) and the Pentagon’s Technology Reinvestment20 Tassey, Technology and Economic Growth: Implications forTechnology Policy and Economic Growth Michael Borrus Jay

  11. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  14. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  15. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact TechnologiesTechnology Highlights preview early results from current technology demonstrations.  Case Studies overview...

  16. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (

  17. Technology Innovation Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...

  18. Technology reviews: Glazing systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  19. Science & Technology RoadmapScience & Technology Roadmap 03/24/20063:03 PMSOCD Science & Technology Roadmap

    E-Print Network [OSTI]

    Kuligowski, Bob

    Science & Technology RoadmapScience & Technology Roadmap #12;03/24/20063:03 PMSOCD Science & Technology Roadmap 2 TABLE OF CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................................19 4 ROADMAPS AND LINKAGES

  20. Graz University of Technology Institute for Software Technology

    E-Print Network [OSTI]

    Graz University of Technology Institute for Software Technology Birgit Vogtenhuber Problem Analysis.054, 3 VU Birgit Vogtenhuber Institute for Software Technology Graz University of Technology email: bvogt of Technology Institute for Software Technology Birgit Vogtenhuber Problem Analysis and Complexity Theory, 716

  1. Adam Merkling Major: Information Technology

    E-Print Network [OSTI]

    Hamburger, Peter

    #12;Adam Merkling Major: Information Technology Position: Student System Administrator Employed Technology Position: User Technology Services Student Technician Employed Since: February 2011 #12;Gabi Mosquera Major: Electrical/Computer Engineering Position: User Technology Services Student Technician

  2. Image credit: Dreamstime Technology for

    E-Print Network [OSTI]

    through development of superconducting magnet technology. Without that research today's high- resolutionImage credit: Dreamstime Technology for research saves lives Technology developed to advance STFC in particle physics technology not only supported important experiments at CERN but pioneered early

  3. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  4. Reactor Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Technology Advanced Reactor Concepts Advanced Instrumentation & Controls Light Water Reactor Sustainability Safety and Regulatory Technology Small Modular Reactors Nuclear...

  5. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  6. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  7. Overview: STEEL Enabling Technologies

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  8. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  9. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  10. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  11. Technology transfer issue

    SciTech Connect (OSTI)

    Jacobson, C.

    1982-05-31

    Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

  12. Supervisory Information Technology Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  13. Genome Science/Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary focus is to develop technologies to obtain near complete genomes from single cells for the purposes of improved taxonomic identification and determining metabolic...

  14. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  15. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts conducted within the Carbon Capture program include development of advanced solvents, sorbents, and membranes for both the Post- and Pre-Combustion Technology Areas...

  16. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    managed the overall development and maturation of this Energy Efficiency Technology Roadmap, the effort would not have been possible without the active engagement of a diverse...

  17. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  18. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  19. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  20. Arc Position Sensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (VAR) furnaces for industries that use specialty metals such as nickel, titanium, and zirconium. The technology could be used to help produce materials with stronger chemical and...

  1. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  2. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  3. Building Technologies Office

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Richard Karney, P.E. May 8, 2014 40% 60% National Energy Consumption Reducing consumption or improving performance calls for cutting-edge...

  4. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  5. TEAM Technologies, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that by designating TEAM Technologies as one of only a handful of Strategic Suppliers working at the Laboratories," says Sachs. Licensing Partners - Sandia's Stingray...

  6. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  7. TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    #12;06 06 TOKYO INSTITUTE OF TECHNOLOGY 0201 CONTENTS 03 08 09 10 15 17 25 31 33 37 41 0201 08 23 TokyoTech #12;TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE OF TECHNOLOGY 0403 20 1 5 11 #12;TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE OF TECHNOLOGY 0605 4 3 2 5 5 4 3 #12;TOKYO INSTITUTE OF TECHNOLOGY

  8. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  9. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  10. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect (OSTI)

    None

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  11. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  12. Gasification: A Cornerstone Technology

    SciTech Connect (OSTI)

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  13. Gasification: A Cornerstone Technology

    ScienceCinema (OSTI)

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  14. Technologies Team Leader

    E-Print Network [OSTI]

    Wood, Stephen L.

    :(321) 674-8096 Fax: (321) 674-7212 Water Wave Technologies purpose is to develop new renewable energyWater Wave Technologies Team Leader: ­ Khoury Mains (kmains@fit.edu) Members: ­ Sean Cox ­ Michael methods. We chose ocean waves and designed a wing to capture the energy from the wave. The captured energy

  15. Salinity Management Desalination Technology

    E-Print Network [OSTI]

    Scott, Christopher

    Salinity Management and Desalination Technology for Brackish Water Resources in the Arid West.S. Bureau of Reclamation August, 2008 #12;Salinity Management and Desalination Technology for Brackish Water a practical roadmap forward for achieving sustainable, viable desalination of inland, moderate salinity waters

  16. PRESSURE ACTIVATED SEALANT TECHNOLOGY

    SciTech Connect (OSTI)

    Michael A. Romano

    2004-04-01

    The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

  17. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    SciTech Connect (OSTI)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.

  18. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Technology Innovation Program Advisory Board 2011 Annual Report of the #12;#12;i 2011 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program March 2012 #12;ii For Information regarding the Technology

  19. The IDA Technology Stan Franklin

    E-Print Network [OSTI]

    Memphis, University of

    The IDA Technology Stan Franklin and the `Conscious' Software Research Group #12;FedEx Institute of Technology--The IDA Technology 2 Introducing IDA An intelligent software agent capable of entirely of Technology--The IDA Technology 3 IDA Negotiates IDA negotiates with clients in natural language

  20. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    SCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan Summary | 1 SCHOOL OF APPLIED TECHNOLOGY STRATEGIC PLAN SUMMARY MISSION STATEMENT The mission Technology and Management program to achieve national visibility. #12;School of Applied Technology Strategic

  1. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 TimelineUtility-ScaleTechnology|

  2. Technology development productivity : case studies in technology transition

    E-Print Network [OSTI]

    Taplett, Amanda Kingston

    2007-01-01

    Development of new technology is critical to the growth and success of technology-driven companies. New technology is generated in a number of ways, one of the most important being the company's own internal research and ...

  3. Indian Institute of Technology Bombay INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

    E-Print Network [OSTI]

    Narayanan, H.

    Indian Institute of Technology Bombay INDIAN INSTITUTE OF TECHNOLOGY BOMBAY INVITATION Description of work Estimated cost (1) (2) (3) 1 Construction of Institutional/Residential buildings, external development, HVAC, Elevators etc. for Indian Institute of Technology Bombay, at the campus

  4. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Environmental Management (EM)

    3 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the...

  5. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  6. OHVT technology roadmap [2000

    SciTech Connect (OSTI)

    Bradley, R.A.

    2000-02-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  7. Method and device for electroextraction of heavy metals from technological solutions and wastewater

    DOE Patents [OSTI]

    Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

    2005-05-03

    The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

  8. Water Management Technologies from Europe 

    E-Print Network [OSTI]

    Woinsky, S. G.

    2000-01-01

    EPRl is cooperating with European companies to apply their know-how and technologies in the United States. One such alliance involves Pell Frischmann (a UK engineering firm) and BG Technology (a UK technology firm). These firms have worked together...

  9. Sandia Energy - A Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Green Technology Home Energy Research EFRCs Solid-State Lighting Science EFRC A Green Technology A Green TechnologyTara Camacho-Lopez2015-05-11T21:08:32+00:00 Solid-State...

  10. Office of Information Technology Accomplishments

    E-Print Network [OSTI]

    Yorke, James

    Office of Information Technology Accomplishments Fiscal Year 2007 #12;Office of Information'scentralinformationtechnologyserviceorganization,itismypleasuretosharewithyou theOfficeofInformationTechnology'spublication,"OITAccomplishmentsFiscalYear2007,"whichfeatures's goal is to take a quantum leap forward in the information technology environmentavailabletostudents

  11. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  12. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  13. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  14. Mapping healthcare information technology

    E-Print Network [OSTI]

    Crawford, William Charles Richards

    2010-01-01

    In this thesis I have developed a map of Healthcare Information Technology applications used in the United States for care delivery, healthcare enterprise management, clinical support, research and patient engagement. No ...

  15. Engineering, Architecture & Technology

    E-Print Network [OSTI]

    Engineering, Architecture & Technology Chemistry Engineering and Engineering Sciences Mathematics ECEN 3714 ECEN 4133 IEM 3503 MAE 3123 MAE 3223 EET 1244 BIOC 3713 Chemistry Engineering and Engineering Sciences Mathematics Physics Other Chemistry Engineering and Engineering Sciences Mathematics Physics Other

  16. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  17. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and finally compressed to a short pulse and highest peak power in large compressor vessels. The new front-end technology is based on a short-pulse optical-parametric...

  18. New technologies for neuromodulation

    E-Print Network [OSTI]

    Moini, Azadeh

    2009-01-01

    Non-invasive neural stimulation techniques are of increasing importance as devices move from the lab to the clinical environment. One such technology-transcranial magnetic stimulation-has already made the transition and ...

  19. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  20. Quadrennial Technology Review 2015

    Broader source: Energy.gov (indexed) [DOE]

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  1. Stimulating Energy Technology Innovation

    E-Print Network [OSTI]

    Moniz, Ernest J.

    The innovation system has interrelated components of invention, translation, adoption, and diffusion. Energy technology innovation has lagged that in other domains, and there is a compelling public interest in picking up ...

  2. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Liu, Yijun

    turbines, jet engines, nuclear power plants and space crafts, have placed severe demands on highSCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg

  3. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    n E n v e l o p e This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  4. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 : L i g h t i n g This document is one component of the Energy Efficiency Technology Roadmap (EE Roadmap), published by the Bonneville Power Administration (BPA) on behalf of...

  5. Technology catalogue. Second edition

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy`s (DOE`s) Office of Environmental Management (EM) is responsible for remediating DOE contaminated sites and managing the DOE waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste-management programs within EM. The purpose of the Technology Catalogue is to: (a) provide performance data on OTD-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and other compliance documents for the DOE`s clean-up and waste-management programs; and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community.

  6. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality. As a component of that effort, the CCRP-administered by the Office of Clean Coal and implemented by the National Energy Technology Laboratory (NETL)-is engaged in...

  7. Agriculture, technology, and conflict 

    E-Print Network [OSTI]

    Zilverberg, Cody John

    2009-05-15

    Conflict and agriculture have a long, shared history. The purpose of this research is to look at the relationships between agriculture, agricultural technologies, and conflict during current and recent conflicts, large scale and localized...

  8. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Q3 Deliverable: Develop Site Workflows and Design Website Layout Q3 GoNo-Go DOE Decision Point: Passed Q1 Milestone: Develop Data Entry Forms Q2 Milestone: Release Technology...

  9. Voting Technology and Innovation

    E-Print Network [OSTI]

    Hall, Thad E.

    The 2008 election was different from the last two presidential elections in that there was a clear winner on Election Day and the winner was a Democrat, Barack Obama. Controversies over voting technology that raged in 2000 ...

  10. MECHANICAL ENGINEERING Calculus for Technology I

    E-Print Network [OSTI]

    -2014 Oklahoma State University College of Engineering, Architecture & Technology CEAT Engineering Technology: cc University College of Engineering, Architecture & Technology CEAT Engineering Technology: cc 3MECHANICAL ENGINEERING TECHNOLOGY Name: Advisor: Sem MATH 2123 Calculus for Technology I Grade

  11. SCHOOL OF ENGINEERING TECHNOLOGY Surveying Engineering

    E-Print Network [OSTI]

    Thomas, Andrew

    SCHOOL OF ENGINEERING TECHNOLOGY Surveying Engineering Technology practice FOCUSED WHY SURVEYING ENGINEERING TECHNOLOGY? Surveying engineering technology is a practice- focused program that provides students ENGINEERING TECHNOLOGY DEGREE? A graduate with a surveying engineering technology degree can work as a party

  12. Office of Technology Transitions

    Broader source: Energy.gov [DOE]

    DOE's Technology Commercialization activities in 2009-13 have involved three broad areas of focus. The primary focus of technology commercialization has continued to be through new technologies developed at the National Laboratories and Facilities. As a second focus, to support and streamline commercialization of these DOE technologies, DOE has carried out a number of new initiatives and pilot projects. Finally, DOE's Department-wide commitment to using commercialization as one mechanism to support U.S. economic growth has led to new cross-cutting programs. U.S. Department of Energy researchers won 31 of the 100 awards in 2014, 36 awards in each of 2013, 2012 and 2011, and 46 in 2010, for a total of 185 over the period of 2009-13. A subset of these awards and other DOE developed technologies are described in Appendix E. These represent a spectrum of commercial areas including DOE mission areas of energy, efficiency, environment and security, as well as spin-off applications in the agricultural, aeronautical, medical, semiconductor and information technology industries, and broad applications in cyber security and sensing/control systems.

  13. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  14. Technology's Impact on Production

    SciTech Connect (OSTI)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  15. Mapping Technology Space by Normalizing Technology Relatedness Networks

    E-Print Network [OSTI]

    Alstott, Jeff; Yan, Bowen; Luo, Jianxi

    2015-01-01

    Technology is a complex system, with technologies relating to each other in a space that can be mapped as a network. The technology relatedness network's structure can reveal properties of technologies and of human behavior, if it can be mapped accurately. Technology networks have been made from patent data, using several measures of relatedness. These measures, however, are influenced by factors of the patenting system that do not reflect technologies or their relatedness. We created technology networks that precisely controlled for these impinging factors and normalized them out, using data from 3.9 million patents. The normalized technology relatedness networks were sparse, with only ~20% of technology domain pairs more related than would be expected by chance. Different measures of technology relatedness became more correlated with each other after normalization, approaching a single dimension of technology relatedness. The normalized network corresponded with human behavior: we analyzed the patenting his...

  16. Climbing Up the Technology Ladder? High-Technology Exports in China and Latin America

    E-Print Network [OSTI]

    Gallagher, Kevin P.; Porzecanski, Roberto

    2008-01-01

    the Technology Ladder? High- Technology Exports in China andthe Technology Ladder? High-Technology Exports in China andin the global market for high technology products? How does

  17. Science and technology news Nanotechnology

    E-Print Network [OSTI]

    Science and technology news Home Nanotechnology Physics Space & Earth Electronics Technology, nanotechnology and medical diagnostics. Magnetism observed in gas for the first time http

  18. Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    Technologies Image of industrial pipes. District energy technologies-such as combined heat and power and microgrids-can help state, local, and tribal governments effectively...

  19. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  20. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  1. Technology Licensing Contacts | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff SHARE Technology Licensing Contacts Name TitlePosition Email Address Phone Number Biography Mike Paulus Director, Technology Transfer paulusmj@ornl.gov (865) 574-1051...

  2. Technology Commercialization Showcase - EERE Commercialization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the business community. If no one learns of a technology's promise, then that technology will indefinitely sit on the lab shelf. The Solution: The Department Of Energy...

  3. Technology Assistance Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

  4. Materials Technologies: Goals, Strategies, and Top Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Materials Technologies: Goals, Strategies, and Top Accomplishments...

  5. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  6. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  7. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  8. Quadrennial Technology Review Workshops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Technology Review Workshops Quadrennial Technology Review Workshops Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop...

  9. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

  10. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development *

  11. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development

  12. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  13. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture for SolarTechnologyNew Amber

  14. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologies Available for Licensing

  15. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologies Available for

  16. Sandia National Laboratories: Training and Technology Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Technology Demonstration Area Training and Technology Demonstration Area Sandia's Training and Technology Demonstration Area (TTD) showcases technologies that can be...

  17. 2012 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electrical Machines Technologies 4. Advanced Combustion Engine Technologies 5. Fuels and Lubricants Technologies 6. Materials Technologies 7. Materials Technologies:...

  18. 2009 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Electrical Machines Technologies 4. Advanced Combustion Engine Technologies 5. Fuels and Lubricants Technologies 6. Materials Technologies 7. Materials Technologies:...

  19. 2010 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Electrical Machines Technologies 4. Advanced Combustion Engine Technologies 5. Fuels and Lubricants Technologies 6. Materials Technologies 7. Materials Technologies:...

  20. 2011 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electrical Machines Technologies 4. Advanced Combustion Engine Technologies 5. Fuels and Lubricants Technologies 6. Materials Technologies 7. Materials Technologies:...

  1. CX-008467: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Smart Grid Data Access Utilizing Science, Technology, Engineering, and Mathematics Education as a Catalyst - Phase 1 CX(s) Applied: A9, A11 Date: 06/12/2012 Location(s): Maine Offices(s): National Energy Technology Laboratory

  2. CX-100039: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reducing Soft Costs Through Hardware Innovation CX(s) Applied: B3.6 Date: 09/04/2014 Location(s): Hawaii Offices(s): Golden Field Office Technology Office: Solar Energy Technologies Award Number: DE-EE0006689

  3. CX-100013: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Higher Efficiency HVAC Motors CX(s) Applied: A9, B3.6 Date: 08/25/2014 Location(s): Missouri Offices(s): Golden Field Office Technology Office: Building Technologies Award Number: DE-EE0006721

  4. CX-010625: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.22 Date: 07/12/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  5. CX-008908: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells CX(s) Applied: B3.6, B3.11 Date: 08/29/2012 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  6. CX-008907: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells CX(s) Applied: B3.6 Date: 08/29/2012 Location(s): Montana Offices(s): National Energy Technology Laboratory

  7. CX-012447: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial... CX(s) Applied: B3.6Date: 41877 Location(s): North CarolinaOffices(s): National Energy Technology Laboratory

  8. CX-012453: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial… CX(s) Applied: A11Date: 41877 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  9. CX-010812: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scoping Studies of Advanced Gasification Technologies for Hydrogen (H2)-Rich Syngas Production CX(s) Applied: A9, B3.6 Date: 08/02/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

  10. CX-012464: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Breakthrough Hybrid CTL Process Integrating Advanced Technologies for Coal Gasification, NG Partial... CX(s) Applied: B3.6Date: 41877 Location(s): IllinoisOffices(s): National Energy Technology Laboratory

  11. CX-100030: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    SMASH HIT 2 CX(s) Applied: A9, B3.6 Date: 09/04/2014 Location(s): California Offices(s): Golden Field Office Technology Office: Solar Energy Technologies Award Number: DE-EE0006693

  12. CX-011010: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  13. CX-011009: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): New York Offices(s): National Energy Technology Laboratory

  14. CX-011011: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  15. CX-011012: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: A1, A9 Date: 09/11/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  16. CX-012460: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology for Greenhouse Gas Emission Reduction & Cost Competitiveness of Mil-Spec Jet Fuel Production Using CTL CX(s) Applied: B3.6Date: 41877 Location(s): AlabamaOffices(s): National Energy Technology Laboratory

  17. CX-012462: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology for Greenhouse Gas Emission Reduction & Cost Competitiveness of Mil-Spec Jet Fuel Production Using CTL CX(s) Applied: B3.6Date: 41877 Location(s): UtahOffices(s): National Energy Technology Laboratory

  18. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  19. Trusted Computing Technologies, Intel Trusted Execution Technology.

    SciTech Connect (OSTI)

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

  20. FIELD-BASED TECHNOLOGY EDUCATION: JUST IN TIME TECHNOLOGY TRAINING

    E-Print Network [OSTI]

    Larkin, Teresa L.

    FIELD-BASED TECHNOLOGY EDUCATION: JUST IN TIME TECHNOLOGY TRAINING Sarah Irvine Belson1 and Teresa, Audio Technology, and Physics, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, tlarkin@american.edu Abstract -- This paper outlines the current status of technology integration

  1. Roadmap: Engineering Technology -Electronics Engineering Technology -Bachelor of Science

    E-Print Network [OSTI]

    Khan, Javed I.

    36620 Project Management in Engineering and Technology 3 ! TECH 33363 Metallurgy and Materials Science

  2. Japan Advanced Institute of Science and Technology Nano Materials Technology

    E-Print Network [OSTI]

    Ogawa, Mizuhito

    started in April 2002 as a renewal of the former Center for New Materials originally established as oneJapan Advanced Institute of Science and Technology Nano Materials Technology (Lecture) Course Center for Nano Materials and Technology #12;The Center for Nano Materials and Technology (CNMT) has

  3. Technology Available for Licensing Office of Technology Management

    E-Print Network [OSTI]

    Maroncelli, Mark

    Technology Available for Licensing Office of Technology Management The Pennsylvania State University 113 Technology Center, University Park, PA 16802 814.865.6277 phone; 814.865.3591 fax Contact: Matthew D. Smith Sr. Technology Licensing Officer The Pennsylvania State University Phone: (814) 863

  4. NASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments

    E-Print Network [OSTI]

    Christian, Eric

    investments · Risks are retired before major dollars are invested: a cost-effective approach to technologyNASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments January 7, 2009 #12;Overview: Earth Science Technology Office Science Driven, Competed, Actively Managed

  5. 2011 Webinar Archives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    membrane (PEM) electrolysis is a hydrogen-production technology that can enable a zero carbon footprint when used with renewable resources. Leaders in these research efforts,...

  6. Chief Technology Officer Opportunity Profile

    E-Print Network [OSTI]

    Mazzotti, Frank

    Chief Technology Officer Opportunity Profile #12;CHIEF TECHNOLOGY OFFICER Date: 01/23/2015 Prepared for the position and to give a deeper understanding of the role of Chief Technology Officer. We have also included: POSITION ANNOUNCEMENT TAB V: THE REGION TAB I: POSITION ANNOUNCEMENT #12;Chief Technology Officer

  7. Digital Technology and Culture Program

    E-Print Network [OSTI]

    Collins, Gary S.

    Digital Technology and Culture Program College of Arts and Sciences Degree Options Bachelor of Arts in Digital Technology and Culture Minors Digital Technology and Culture Program Strengths · Demonstrate competency with technology for designing and distributing digital works in various mediums. · Demonstrate

  8. SCANNING THE TECHNOLOGY Scanning Advanced

    E-Print Network [OSTI]

    , electronics and software technologies as shown in Fig. 2. A coarse history of the automobile reveals the broadSCANNING THE TECHNOLOGY Scanning Advanced Automobile Technology BY HAMID GHARAVI National Institute of Standards and Technology Guest Editor K. VENKATESH PRASAD Ford Motor Company Guest Editor PETROS IOANNOU

  9. Automation Direct Technology Scholarship Fund

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    in Manufacturing Engineering Technology or Industrial Management & Technology (CAD or Manufacturing area of study or Industrial Management & Technology (CAD or Manufacturing area of study). Candidates must have a minimum NIU's university account. Eligibility: Candidates must be a declared major in Manufacturing Engineering Technology

  10. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Photovoltaics subprogram 84 invests in technologies across the development pipeline that demonstrate progress

  11. Design with Uncertain Technology Evolution 

    E-Print Network [OSTI]

    Arendt, Jonathan Lee

    2012-10-19

    of technology. Techniques for modeling evolution of a technology that has multiple performance attributes are developed. An S-curve technology evolution model is used. The performance of a technology develops slowly at first, quickly during heavy R&D effort...

  12. TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS

    E-Print Network [OSTI]

    TECHNOLOGY TRANSFER: PROBLEMS AND PROSPECTS Jesse w. Fussell Department of Defense 9800 Savage Road of technology transfer in this technical area in the past, to forecast prospects for technology transfer in the future, and to suggest some ideas for stimulating the process. 2. TECHNOLOGY TRANSFER PROBLEMS Many

  13. Technology Deployment Annual Report 2010

    SciTech Connect (OSTI)

    Keith Arterburn

    2010-12-01

    This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

  14. Glovebox decontamination technology comparison

    SciTech Connect (OSTI)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  15. Technology transfer 1995

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  16. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  17. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  18. Transformational Energy Technologies

    SciTech Connect (OSTI)

    None

    2010-09-01

    Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agency’s inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-E’s investment in these projects catalyzed an additional $33 million in investments.

  19. Roof bolting equipment & technology

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  20. Energy and Technology Review

    SciTech Connect (OSTI)

    Bookless, W.A.; Quirk, W.J.

    1994-06-01

    This report discusses: The Clementine satellite, the first US satellite to the Moon in more than two decades, sent back more than 1.5 million images of the lunar surface using cameras designed and calibrated by LLNL. An LLNL-developed laser ranger provided information that will be used to construct a relief map of the Moon`s surface; and Uncertainty and the Federal Role in Science and Technology, Ralph E. Gomory was a recent participate in the Director`s Distinguished Lecturer Series at LLNL. In his lecture, he addressed some of the tensions, conflicts, and possible goals related to federal support for science and technology.

  1. Energy and technology review

    SciTech Connect (OSTI)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  2. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  3. MTCI advanced coal technologies

    SciTech Connect (OSTI)

    Mansour, M.N.; Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1994-12-31

    MTCI is pursuing the development and commercialization of several advanced combustion and gasification systems based on pulse combustion technology. The systems include indirectly heated thermochemical reactor, atmospheric pressure pulse combustor, pulsed atmospheric fluidized bed combustor, direct coal-fired gas turbine pulse combustor island, and advanced concept second-generation pressurized fluidized bed combustor island. Although the systems in toto are capable of processing lignite, subbituminous, bituminous, and anthracite coals in an efficient, economical and environmentally acceptable manner, each system is considered ideal for certain coal types. Brief descriptions of the systems, applications, selected test results and technology status are presented.

  4. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 How To Navigate the Finance Section the payment history) · Pending Financial Aid #12;Training & Technology Solutions Queens College ~ Office

  5. Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Student Center 1. Logging the period between for first and last name. #12;Training & Technology Solutions Queens College ~ Office

  6. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 How to Pay Your Tuition Using E be navigated to your Student Center page. John Smith 23145678 John's Student Center #12;Training & Technology

  7. Global Information Technologies

    E-Print Network [OSTI]

    Keromytis, Angelos D.

    Global Information Technologies: Concepts, Methodologies, Tools, and Applications Felix B. Tan in the United States of America by Information Science Reference (an imprint of IGI Global) 701 E. Chocolate (an imprint of IGI Global) 3 Henrietta Street Covent Garden London WC2E 8LU Tel: 44 20 7240 0856 Fax

  8. Applying reservoir characterization technology

    SciTech Connect (OSTI)

    Lake, L.W.

    1994-12-31

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  9. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  10. Imaging Science and Technology

    E-Print Network [OSTI]

    Funt, Brian

    and Technology. For information on reprints or reproduction contact Donna Smith Production Editor The Journal be specified as equal energy white. Color constancy can be divided into two subproblems: (1) estimate the color the chromaticity of the scene illumination based on the statistical properties of binarized color or chromaticity

  11. Normal Conducting CLIC Technology

    E-Print Network [OSTI]

    Jensen, E

    2006-01-01

    The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybri...

  12. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Ahmad, Sajjad

    SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg HU HongChang, TIAN FuQiang* & HU HePing Department of Hydraulic Engineering, State Key Laboratory as a key soil physical parameter and has been widely used to predict soil hydraulic and other related

  13. Technologies Harold Kirk

    E-Print Network [OSTI]

    McDonald, Kirk

    Front End Technologies Harold Kirk Brookhaven National Laboratory February 19, 2014 #12;The Front/Cooling talks to follow) Harold Kirk, BNL | DOE Review of MAP (FNAL, February 19-20, 2014)February 19, 2014 2 for Buncher/Rotator ­ 325 MHz with 20 MV/m in B 2T field Harold Kirk, BNL | DOE Review of MAP (FNAL, February

  14. Alumina Technology Roadmap

    SciTech Connect (OSTI)

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals. (PDF 316 KB).

  15. Information Technology Project Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-12

    This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

  16. Research & Technology Implementation

    E-Print Network [OSTI]

    Azevedo, Ricardo

    Research & Technology Implementation TxDOT RTI OFFICE #12;REVIEW OF ADMINISTRATIVE REQUIREMENTS of Instructions from RFP Message2 Administrative Components of a Proposal3 RTI Templates & Forms for Universities4 the current forms sent with the RFP. The RTI goal is to acknowledge receipt of your Project Agreement within

  17. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  18. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-05-15

    The order establishes requirements, assigns responsibilities, and provides guidance for federal mobile technology management and employee use of both government furnished and personally-owned mobile devices within DOE and NNSA. Establishes requirements for use of User Agreements to govern mobile devices used for official duties. Does not cancel other directives.

  19. Science & technology review

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    This document is the August, 1995 issue of the Science and Technology review, a Lawrence Berkeley Laboratory publication. It contains two major articles, one on Scanning Tunneling Microscopy - as applied to materials engineering studies, and one on risk assessment, in this case looking primarily at a health care problem. Separate articles will be indexed from this journal to the energy database.

  20. 9. Technology Validation Introduction

    E-Print Network [OSTI]

    system solution and that system performance and operation are met under anticipated operating scenarios & Infrastructure Analysis Keith Wipke, National Renewable Energy Laboratory (NREL) 9-6 4.00 3.75 3.75 3.75 3.50 3.60 3.40 3.38 Technology Validation: Fuel Cell Bus Evaluations Leslie Eudy, National Renewable Energy

  1. Coated Conductor Technology Development

    E-Print Network [OSTI]

    Coated Conductor Technology Development Roadmap Priority Research & Development Activities Leading for Electric Systems Program Prepared by: Energetics, Incorporated #12;Coated Conductor Development Roadmap of high-quality, low-cost coated conductors that will lead to industrial-scale commercial manufacturing

  2. Pinch Technology Without Tears 

    E-Print Network [OSTI]

    Polley, G. T.

    2001-01-01

    business in the USA with the objective of widely applying this technology. Today, neither of the companies has a USA office. The author recently had a conversation with an engineer who at one time was the Managing Director of one of these companies. He now...

  3. Vehicle Technologies Market Report

    E-Print Network [OSTI]

    billion in 2010 · The average price of a new car is just under $25,000 · Sixteen percent of household.2% · Nearly 14% of cars sold in 2010 have continuously variable transmissions · Two-thirds of new lightVehicle Technologies Market Report February 2012 2011 #12;Quick Facts Energy and Economics

  4. Technology Overview Fundamentals of Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Butterfield, S.

    2005-05-01

    A presentation that describes the technology, costs and trends, and future development of wind energy technologies.

  5. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in...

  6. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  7. Alternative Fuels, Vehicle Technologies and Urban Logistics

    E-Print Network [OSTI]

    Witt, Maggie

    2012-01-01

    Technologies and Urban Logistics Policy Note prepared byvehicle technologies, urban logistics, and VMT reduction. It

  8. OHVT Technology Roadmap

    SciTech Connect (OSTI)

    Bradley, R.A.

    2001-10-22

    The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in developing the OHVT Technology Roadmap was to: formulate goals consistent with the U.S. Department of Energy Strategic Plan required by the Government Performance and Results Act (GPRA), assess the status of the technology, identify technical targets, identify barriers to achieving the technical targets, develop an approach to overcoming the barriers, and develop schedules and milestones. This structure was followed for three groups of truck classification: Class 7 and 8: large, on-highway trucks; Class 3-6: medium-duty trucks such as delivery vans; and Class 1 and 2: pickups, vans, and sport utility vehicles (SUVs).

  9. Graduate Program Game Research Intro Game Technology

    E-Print Network [OSTI]

    Volk, Anja Fleischer

    1032015 1 Graduate Program Game Research Intro Game Technology Remco Veltkamp 16 February 2015 Technology · incl. interaction computing & media technology Software Systems · incl. software technology of Science (BSc) · Computer Science · Game Technology · Information Science Master of Science (MSc

  10. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    SciTech Connect (OSTI)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  11. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  12. Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth...

    Open Energy Info (EERE)

    Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat...

  13. UMass Office of Information Technologies Office of Information Technologies

    E-Print Network [OSTI]

    Mountziaris, T. J.

    UMass Office of Information Technologies Office of Information Technologies A218 Lederle GRC University of Massachusetts Amherst http://www.oit.umass.edu/ The Instructor's Guide to Information Security 1. Student Information at UMass Amherst What is FERPA anyway

  14. Technology acquisition through collaboration: practical insights for technology suppliers

    E-Print Network [OSTI]

    Ortiz-Gallardo, Victor G.; Tietze, Frank; Probert, David R.; Phaal, Robert

    2015-01-05

    This paper describes the conditions that influence technology acquisition through collaboration. From the analysis of semi-structured interviews and eleven case studies, we developed a technology acquisition framework that stresses the supplier...

  15. Tokyo Institute of Technology Tokyo Institute of Technology

    E-Print Network [OSTI]

    Shimodaira, Hidetoshi

    Tokyo Institute of Technology 2004 #12; Tokyo Institute of Technology k O(n-k/2) (Efron et al 1996) 2O(B) (Shimodaira 2002, 2004) O(B) #12; Tokyo Institute of Technology of Technology 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 23 4 5 1 2 3 4 5

  16. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

  17. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  18. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  19. Chlorofluorocarbon leak detection technology

    SciTech Connect (OSTI)

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  20. OHVT technology roadmap

    SciTech Connect (OSTI)

    1997-10-01

    The Office of Heavy Vehicle Technologies (OHVT) Technology Roadmap presents the OHVT multiyear program plan. It was developed in response to recommendations by DOE`s heavy vehicle industry customers, including truck and bus manufacturers, diesel engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The technical plan is presented for three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); and (3) class 1-2 (pickups, vans, and sport utility vehicles). The Roadmap documents program goals, technical targets, and technical approaches. Issues addressed include engine efficiency, fuel efficiency, power requirements, emissions, and fuel flexibility. 8 figs., 9 tabs.

  1. TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology

    E-Print Network [OSTI]

    Virtanen, Tuomas

    TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology TUOMAS VIRTANEN AUDIO SIGNAL University of Technology, Finland. The working in the Audio Research Group of TUT has been very enjoyable Anssi Klapuri #12;Preface This work has been carried out in the Signal Processing Laboratory of Tampere

  2. Technology Strategic Plan 2013 2016 Office of Information Technology

    E-Print Network [OSTI]

    Sun, Yi

    Technology Strategic Plan 2013 ­ 2016 Office of Information Technology June 2013 #12;2 T A B L E O This document presents the Technology Strategic Plan for The City College of New York (CCNY). The purpose services that support the strategic mission and goals of The City College of New York. This planning

  3. Instructional Design and Technology (M.S.) Learning Technologies Division

    E-Print Network [OSTI]

    Frantz, Kyle J.

    of instructional technology in an education or training environment. In addition, the applicant must possess basic): IT 7360 Integrating Technology in School-Based Learning Environments (3) IT 8050 Evaluation) IT 8440 eLearning Environments (3) IT 8550 Human Performance Technology (3) Other courses may

  4. Energy and technology review

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets. (GHT)

  5. Supercapacitors specialities - Technology review

    SciTech Connect (OSTI)

    Münchgesang, Wolfram; Meisner, Patrick; Yushin, Gleb

    2014-06-16

    Commercial electrochemical capacitors (supercapacitors) are not limited to mobile electronics anymore, but have reached the field of large-scale applications, like smart grid, wind turbines, power for large scale ground, water and aerial transportation, energy-efficient industrial equipment and others. This review gives a short overview of the current state-of-the-art of electrochemical capacitors, their commercial applications and the impact of technological development on performance.

  6. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  7. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  8. Normal Conducting CLIC Technology

    SciTech Connect (OSTI)

    Jensen, Erk

    2006-01-03

    The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. A newly-developed structure-optimisation procedure has been used to simultaneously balance surface fields, power flow, short and long-range transverse wakefields, RF-to-beam efficiency and the ratio of luminosity to input power. The slotted irises allow a simple structure fabrication by high-precision high-speed 3D milling of just four pieces, and an even easier bolted assembly in a vacuum chamber.

  9. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  10. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01

    -09-74 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 Utility Cool Storage Inducement Progra~ ,.,.. ?? ,.. ,., Utilities With Inducement~ CA -- Southern California Edison San Diego Gas &Electric..., electric utilities have been faced with risin~ construction costs, more strin~ent re~ulations, and increasin~ environmental constraints re~ardin~ development of new generatin~ facilities. As the viability of cool storage has been substantiated. bv...

  11. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmerging TechnologiesBuildingStandards(BTO)

  12. Vehicle Technologies Office News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy VehicleTechnology

  13. Emerging Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1Emerging Technologies Program Pat

  14. Bioenergy Technologies Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atofPyrolysisTechnologies State

  15. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  16. Transformative Wave Technologies Kent, Washington

    E-Print Network [OSTI]

    California at Davis, University of

    Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

  17. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  18. 2010 Solar Technologies Market Report

    E-Print Network [OSTI]

    2010 Solar Technologies Market Report NOVEMBER 2011 #12;ii #12;iii 2010 Solar Technologies Market Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV

  19. About the Building Technologies Program

    SciTech Connect (OSTI)

    2011-12-15

    The Building Technologies Program (BTP) actively pursues the research, development, and adoption of technologies and strategies that advance the energy efficiency of U.S. commercial and residential buildings.

  20. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Department of Energy. Solar Energy Technologies Program.U.S. DOE. (2009). DOE Solar Energy Technologies Program. FY2.6 References The American Solar Energy Society (ASES) and

  1. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    . MANUFACTURINGTECHNOLOGY. #12;BE A LEADER OF THE NEXT INDUSTRIAL REVOLUTION. An undergraduate degree in IndustrialINDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY INDUSTRIAL OPERATIONS. RESOURCE MANAGEMENT. INDUSTRIAL FACILITIES. SUPPLY CHAIN MANAGEMENT. SUSTAINABILITY

  2. DCC Technology Watch Papers: DSpace 

    E-Print Network [OSTI]

    Pennock, Maureen

    different functions. This technology watch paper provides an introduction to the features and functionality of the DSpace digital repository system....

  3. Development of MP3 Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of MP3 Technologies Impact of Basic Research on Innovation - Edited excerpts from American Competitiveness Initiative, February 2006...

  4. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  5. Innovative Exploration Technologies Subprogram Overview

    Broader source: Energy.gov [DOE]

    This overview of GTP's Innovative Exploration Technologies subprogram was given at the GTP Program Peer Review on May 18, 2010.

  6. Building Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy...

  7. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  8. Review Article RADIATION SHIELDING TECHNOLOGY

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    Review Article RADIATION SHIELDING TECHNOLOGY J. Kenneth Shultis and Richard E. Faw* Abstract Physics Society INTRODUCTION THIS IS a review of the technology of shielding against the effects to the review. The first treats the evolution of radiation-shielding technology from the beginning of the 20th

  9. Georgia Southern University Information Technology

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Information Technology Organization Chart 2014-2015 FINAL: August 29, 2014 R:\\Common\\OrgCharts\\Rev 2015 Information Technology \\CIO Produced: Strategic Research & Analysis of the groups of units reporting there. President Vice President for Information Technology and Chief

  10. James Madison University Information Technology

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    0 James Madison University Information Technology Strategic Plan 2014-2020 #12;1 James Madison University Information Technology Strategic Plan Introduction In 2012, prior to his official inauguration a new strategic roadmap for the 2014-2020 timeframe. Several Information Technology (IT) leaders

  11. Advances in Technology To Realize

    E-Print Network [OSTI]

    Advances in Technology To Realize Fusion Energy in the International Context Kathryn A. McCarthy Deputy Associate Laboratory Director Nuclear Science & Technology Idaho National Laboratory 2008 AAAS Meeting Boston, Massachusetts February 16, 2008 #12;2 The US Enabling Technology Research Mission

  12. Responder Technology Alert (February 2015)

    E-Print Network [OSTI]

    PNNL-24227 Responder Technology Alert (February 2015) April 2015 JF Upton SL Stein #12;#12;PNNL-24227 Responder Technology Alert (February 2015) JF Upton SL Stein April 2015 Prepared for the Department of Homeland Security Science and Technology Directorate under Contract HSHQPM-14-X-00058. Pacific

  13. Century Learning through Apple Technology

    E-Print Network [OSTI]

    21st Century Learning through Apple Technology July 4 ­ 5, 2013 This exciting institute will appeal to educators who wish to enhance their teaching in support of 21st century learning using Apple technology. This institute begins with a keynote address that looks at how new technologies can enhance 21st century learning

  14. TECHNOLOGY MASTER PLAN 2013 2015

    E-Print Network [OSTI]

    TECHNOLOGY MASTER PLAN 2013 ­ 2015 Endorsed by Academic Senate On October 25, 2013 & College Council On November 8, 2013 #12;Information Technology Strategic Plan 2013-2015 Prepared by Willie Pritchard & Gene Spencer, Higher Education Technology Consultants on behalf of the many participants

  15. Responder Technology Alert (April 2015)

    E-Print Network [OSTI]

    PNNL-24326 Responder Technology Alert (April 2015) May 2015 JF Upton SL Stein #12;#12;PNNL-24326 Responder Technology Alert (April 2015) JF Upton SL Stein May 2015 Prepared for the Department of Homeland Security Science and Technology Directorate under Contract HSHQPM-14-X-00058. Pacific Northwest National

  16. MSc degree in Water Technology

    E-Print Network [OSTI]

    Painter, Kevin

    MSc degree in Water Technology and Desalination This unique new degree aims to educate students who can take on leading roles in the development of technologies to provide safe, accessible freshwater with a reputation for excellence. Flexible distance learning The Water Technology and Desalination programme has

  17. Technology Performance Exchange (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  18. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  19. Technology Transfer, Entrepreneurship and Innovation

    E-Print Network [OSTI]

    Reed, Nancy E.

    Technology Transfer, Entrepreneurship and Innovation The College of Engineering at UH Ma¯noa has a strong tradition of technology transfer and entrepreneurship that supports the University of Hawai`i's innovation and technology transfer initiative. Principal units are mechanical engineering, electrical

  20. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.