Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chapter 2 - Water Electrolysis Technologies  

Science Journals Connector (OSTI)

Abstract The purpose of this chapter is to provide an overview of the different water electrolysis technologies. In the introduction section, the general characteristics of water electrolysis (thermodynamics, kinetics, efficiency) are described. Main electrolysis technologies used to produce hydrogen and oxygen of electrolytic grade are then described in the following sections. Alkaline water electrolysis is described in Section 2.2, proton-exchange membrane water electrolysis in Section 2.3 and high-temperature water electrolysis in Section 2.4. For each technology, state-of-the-art performances are analyzed, limitations are identified and some perspectives are discussed.

Pierre Millet; Sergey Grigoriev

2013-01-01T23:59:59.000Z

2

Fuel Cell Technologies Office: Water Electrolysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Electrolysis Water Electrolysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Water Electrolysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Water Electrolysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Google Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Delicious Rank Fuel Cell Technologies Office: Water Electrolysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Water Electrolysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

3

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Twitter Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Google Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Delicious Rank Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Digg Find More places to share Fuel Cell Technologies Office:

4

Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis Electrolysis Name: John Smith Age: N/A Location: N/A Country: N/A Date: N/A Question: This topic is kind of all the sciences combined, but I'll put it here. My question is actually just asking for anybody to help me. My topic is electrolysis. Any help is appreciated. Please just tell me what you know. Thanks a lot!!! Replies: This question would be better placed in the chemistry section. Electrolysis is simply the use of an electric current to change the chemistry of a substance. Water is a good example. Water is made up of two hydrogen atoms and one oxygen atom combined in a single molecule. We can cool water to a solid and we can boil liquid water to a gas, but in all these three states, it is still water. Placing a electric current (direct current) into water will result in the formation of bubbles at both the + and - electrodes. These bubbles are the result of the water molecule being taken apart and changed into oxygen gas and hydrogen gas. This is a chemical change because these gases do not behave like the water from which they came. Electrolysis is used in a number of different applications with many different types of molecules, not just water.

5

Water Electrolysis  

Science Journals Connector (OSTI)

In this chapter, water electrolysis technology and its applications for nuclear hydrogen ... of the chapter, a general classification of water electrolysis systems is given, the fundamentals of water electrolysis

Greg F. Naterer; Ibrahim Dincer…

2013-01-01T23:59:59.000Z

6

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings Wind and hydropower are currently being evaluated in the U.S. and abroad as electricity sources that could enable large volume production of renewable hydrogen for use in transportation and distributed power applications. To further explore this prospect the Fuel Cell Technologies Office, and the Wind and Hydropower Technologies Program at the Department of Energy held a workshop to bring together stakeholders from wind, hydropower, and the electrolysis industries on September 9-10, 2003. The main objectives of the workshop were to: 1) discuss with stakeholders their current activities related to hydrogen, 2) explore with industry opportunities for low-cost hydrogen production through integration between wind and hydropower, water electrolysis and the electricity grid, and 3) review and provide feedback on a current Department of Energy/National Renewable Energy Laboratory analysis efforts to study opportunities for wind electrolysis and other renewable electricity sources.

7

Electrolysis: Technology and Infrastructure Options Today, electrolysis systems supply 4% of the world's hydrogen. Although electrolysis can be  

E-Print Network [OSTI]

economics, but electrolysis will only be cost-competitive with gasoline or other hydrogen production methods-cost, production methods, namely large centralized steam methane reformers. However, electrolysis is gaining ground produce hydrogen at a cost of $4-$6. Reducing system capital cost will help to improve hydrogen production

8

Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte  

Science Journals Connector (OSTI)

Efforts to improve water electrolysis technology are being made using three promising ... ) development of solid polymer electrolyte (SPE) water electrolysers, (b) increasing the operating temperature of alkaline...

P. W. T. Lu; S. Srinivasan

1979-05-01T23:59:59.000Z

9

Fuel Cell Technologies Office: DOE Electrolysis-Utility Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis-Utility Integration Workshop Electrolysis-Utility Integration Workshop The U.S. Department of Energy sponsored an Electrolysis-Utility Integration Workshop in Broomfield, Colorado September 22-23, 2004. Attendees included representatives from utilities and energy companies, researchers, and government officials. Water electrolysis is a leading candidate for hydrogen production as the U.S. begins the transition to a hydrogen economy. Ideally, electrolysis will be able to provide hydrogen fuel for at least 20% of our light duty fleet; at prices competitive with traditional fuels and other hydrogen production pathways, using domestically available resources; and without adverse impacts to the environment. To be successful, the utility sector must play a vital role in identifying opportunities to diversify electricity generation and markets and begin to look at transportation fuel as a high priority business opportunity for the future. This workshop was held to identify the opportunities and challenges facing the widespread deployment of electrolysis based hydrogen production in the U.S.

10

Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology  

SciTech Connect (OSTI)

Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

11

PEM Electrolysis R&D Webinar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis R&D Webinar Electrolysis R&D Webinar May 23, 2011 Presented by Dr. Katherine Ayers Outline * Key Messages About Electrolysis * Company Intro and Market Discussion - Electrolysis Technology Comparison * Infrastructure Challenges and Solutions - System Approaches: Capacity and Delivery Pressure - Materials Advancements: Cost and Efficiency Improvements * Summary and Future Vision 2 Key Takeaways for Today * Hydrogen markets exist today that can leverage advancements in on-site generation technologies * PEM electrolysis already highly cost competitive in these markets * PEM technology meets alkaline output capacities and has performance advantages for many applications * Multiple fueling stations utilizing hydrogen from electrolysis: can help bridge the infrastructure gap * Clear pathways exist for considerable cost reductions

12

PROGRESS IN HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION USING PLANAR SOFC TECHNOLOGY  

SciTech Connect (OSTI)

A research program is under way at the Idaho National Laboratory to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. The research program includes both experimental and modeling activities. Selected results from both activities are presented in this paper. Experimental results were obtained from a ten-cell planar electrolysis stack, fabricated by Ceramatec , Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Stack performance is shown to be dependent on inlet steam flow rate. A three-dimensional computational fluid dynamics (CFD) model was also created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in the experimental electrolysis stack. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT1. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with the experimental results obtained from the ten-cell stack tested at INL.

O'Brien, J. E.; Herring, J. S.; Stoots, C. M.; Hawkes, G. L.; Hartvigsen, J., J.; Mehrdad Shahnam

2005-04-01T23:59:59.000Z

13

Water Electrolysis  

Science Journals Connector (OSTI)

Production of ammonium sulfate fertilizer via synthetic ammonia was a national project in Japan just after World War II, and water electrolysis as the source of hydrogen was active....3 of hydrogen and 700 Nm3 of...

Fumio Hine

1985-01-01T23:59:59.000Z

14

Hydrogen Generation by Solid Polymer Electrolyte Water Electrolysis  

Science Journals Connector (OSTI)

The General Electric Company -water electrolysis technology, which is based on a solid ... The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are....

L. J. Nuttall; A. P. Fickett; W. A. Titterington

1975-01-01T23:59:59.000Z

15

Development and Parametric Testing of Alkaline Water Electrolysis Cells for Hydrogen Production Based on Inorganic-Membrane-Electrolyte Technology  

Science Journals Connector (OSTI)

A research programme aiming at the development of a new advanced concept in alkaline water electrolysis has been demonstrated at S.C.K....

H. Vandenborre; L. H. Baetsle; W. Hebel; R. Leysen…

1980-01-01T23:59:59.000Z

16

Sonoelectrochemical production of hydrogen via alkaline water electrolysis.  

E-Print Network [OSTI]

??Alkaline water electrolysis is a promising technology to produce clean and pure hydrogen. This technology coupled with the ultrasound results in an enhanced rate of… (more)

Hassan Zadeh, Salman

2014-01-01T23:59:59.000Z

17

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

18

Electrolysis of Sea Water  

Science Journals Connector (OSTI)

In implementation of the hydrogen economy, the electrolysis of sea water as the source of hydrogen has been ... . Two options exist for performance of this electrolysis. The first option is to subject the water t...

L. O. Williams

1975-01-01T23:59:59.000Z

19

Electrolysis of Water  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students observe the electrolysis of water using either photovoltaics or a battery as the electric energy source.

20

Hydrogen Generation From Electrolysis  

SciTech Connect (OSTI)

Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of today’s technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available today that perform in a range of efficiencies, >95%, that are suitable for the overall operational goals. The balance of plant scales well both operationally and in terms of cost becoming a smaller portion of the overall cost equation as the systems get larger. Capital cost reduction of the cell stack power supplies is achievable by modifying the system configuration to have the cell stacks in electrical series driving up the DC bus voltage, thereby allowing the use of large-scale DC power supply technologies. The single power supply approach reduces cost. Elements of the cell stack cost reduction and efficiency improvement work performed in the early stage of the program is being continued in subsequent DOE sponsored programs and through internal investment by Proton. The results of the trade study of the 100 kg H2/day system have established a conceptual platform for design and development of a next generation electrolyzer for Proton. The advancements started by this program have the possibility of being realized in systems for the developing fueling markets in 2010 period.

Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

2009-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alkaline Electrolysis Final Technical Report  

SciTech Connect (OSTI)

In this project, GE developed electrolyzer stack technologies to meet DOE’s goals for low cost electrolysis hydrogen. The main barrier to meeting the targets for electrolyzer cost was in stack assembly and construction. GE’s invention of a single piece or “monolithic” plastic electrolyzer stack reduces these costs considerably. In addition, GE developed low cost cell electrodes using a novel application of metal spray coating technology. Bench scale stack testing and cost modeling indicates that the DOE targets for stack capital cost and efficiency can be met by full-scale production of industrial electrolyzers incorporating GE’s stack technology innovations.

RIchard Bourgeois; Steven Sanborn; Eliot Assimakopoulos

2006-07-13T23:59:59.000Z

22

Anodes for alkaline electrolysis  

DOE Patents [OSTI]

A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

Soloveichik, Grigorii Lev (Latham, NY)

2011-02-01T23:59:59.000Z

23

Hydrogen Production by PEM Electrolysis: Spotlight on Giner and Proton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BY BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON US DOE WEBINAR (May 23, 2011) 2 Webinar Outline *Water Electrolysis H 2 Production Overview DOE-EERE-FCT: Eric L. Miller *Spotlight: PEM Electrolysis R&D at Giner Giner Electrochemical Systems: Monjid Hamdan *Spotlight: PEM Electrolysis R&D at Proton Proton OnSite: Kathy Ayers *Q&A 3 DOE EERE-FCT Goals and Objectives Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of $2-$4/gge Capacity (kg/day) Distributed Central 100,000,000 100,000 50,000 10,000 1,000 10 Natural Gas Reforming Photo- electro- chemical Biological Water Electrolysis (Solar) 2015-2020 Today-2015 2020-2030 Coal Gasification (No Carbon Capture) Electrolysis Water (Grid) Coal Gasification (Carbon Capture)

24

Electrolysis-Utility Integration Workshop  

E-Print Network [OSTI]

-spread deployment of electrolysis based hydrogen production in the U.S. #12;Key Drivers ! Water electrolysis Is hydrogen production via water electrolysis a viable option for the transition? Key Needs: · Low-cost, lowElectrolysis-Utility Integration Workshop September 22-23, 2004 Broomfield, CO Shawna McQueen #12

25

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

SciTech Connect (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

26

Electrolysis | Open Energy Information  

Open Energy Info (EERE)

Electrolysis Electrolysis Jump to: navigation, search Contents 1 Introduction 2 The Basics 3 Diagram 4 References Introduction By providing energy from a battery, water (H2O) can be dissociated into the diatomic molecules of hydrogen (H2) and oxygen (O2). This process is a good example of the the application of the four thermodynamic potentials.The electrolysis of one mole of water produces a mole of hydrogen gas and a half-mole of oxygen gas in their normal diatomic forms. Hydrogen electrolysis is the process of spitting water into Hydrogen gas and Oxygen gas. The Hydrogen gas can then be used as fuel either by being burnt in an engine or reacted in a fuel cell. This is the process that so-called water powered cars rely on for their energy. No car can use water as a fuel, but a car can be made to run only on Hydrogen, meaning that its

27

DOE Electrolysis-Utility Integration Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTROLYSIS-UTILITY ELECTROLYSIS-UTILITY INTEGRATION WORKSHOP Renaissance Suites at Flatirons, Broomfield, CO September 22-23, 2004 September 22, 2004 7:30 am Registration and Continental Breakfast 8:30 am Welcome and Overview of Workshop Goals, Pete Devlin, DOE/OHFCIT 8:45 am Review Agenda and Objectives, Shawna McQueen, Energetics 9:00 am Electrolysis Hydrogen Generation, Steve Cohen, Teledyne Energy Systems 9:20 am Electrolyzers Operating in Real-World Conditions, Rob Regan, DTE Energy Systems 9:40 am Break 10:00 am Technology Advancements and New Concepts, Dan Smith, GE Global Research 10:20 am DG and Renewable Energy in the Electric Cooperative Sector, Ed Torerro, National Rural Electric Cooperative Association 10:40 am Electrolytic Hydrogen from a Blend of Nuclear- and Wind-Produced Electricity,

28

Vehicle Technologies Office Merit Review 2014: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis  

Broader source: Energy.gov [DOE]

Presentation given by INFINIUM, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

29

Non-Noble Metal Water Electrolysis Catalysts - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Noble Metal Water Electrolysis Catalysts Brookhaven National Laboratory Contact BNL About This Technology a) TEM image of the stacked MoN nanosheets on carbon supports. The...

30

Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Slides presented at the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton" on May 23, 2011.

31

PRE-INVESTIGATION WATER ELECTROLYSIS  

E-Print Network [OSTI]

PRE-INVESTIGATION OF WATER ELECTROLYSIS PSO-F&U 2006-1-6287 Draft 04-02-2008 #12;2 Foreword This report is the result of an investigation of water electrolysis for hydrogen production in the energy in Denmark for in relation to water electrolysis. The report is structured as follows After an introduction

32

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

SciTech Connect (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

33

Activated carbon from grass -a green alternative catalyst support for water electrolysis Kalyani Palanichamy1,  

E-Print Network [OSTI]

cleanly producing water as the only product. Invariably it is stored in nature as water and hydrocarbons methods including water electrolysis, steam reformation of natural gas, and coal gasification are the foci of widespread production research; but water electrolysis is one of the renowned technologies which provide

Paris-Sud XI, Université de

34

NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Electrolysis Photo of wind turbines. Wind turbines can be used to produce hydrogen through a process called renewable electrolysis. NREL's renewable electrolysis research...

35

Contact glow discharge electrolysis for liquid waste processing  

E-Print Network [OSTI]

for an alka- line water electrolysis at a small pin verticaldischarge electrolysis applied to waste water treatment.water treatment induced by plasma with contact glow discharge electrolysis.

Sharma, Neeraj

2014-01-01T23:59:59.000Z

36

Wind Electrolysis: Hydrogen Cost Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd Ramsden Prepared under...

37

Thermodynamics of high-temperature, high-pressure water electrolysis  

Science Journals Connector (OSTI)

Abstract We report on a thermodynamic analysis for water electrolysis from normal conditions (P = 0.1 MPa, T = 298 K) up to heretofore unaddressed temperatures of 1000 K and pressures of 100 MPa. Thermoneutral and reversible potentials are determined using equations-of-state published by the International Association for the Properties of Water and Steam and the National Institute of Standards and Technology. The need for using accurate property models at these elevated temperatures and pressures is exemplified by contrasting results with those obtained via ideal assumptions. The utility of our results is demonstrated by their application in an analysis comparing pressurized electrolysis versus mechanical gas compression. Within the limits of our analysis, pressurized electrolysis demonstrates lower energy requirements albeit with electrical work composing a greater proportion of the total energy input.

Devin Todd; Maximilian Schwager; Walter Mérida

2014-01-01T23:59:59.000Z

38

Water Electrolysis and Solar Hydrogen Demonstration Projects  

Science Journals Connector (OSTI)

In this chapter, nearly all conventional and newly developed processes for water electrolysis will be considered, and an overview of ... After a brief historical description of hydrogen, water electrolysis, and s...

Gerd Sandstede; Reinhold Wurster

1995-01-01T23:59:59.000Z

39

Wind Electrolysis - Hydrogen Cost Optimization (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Wind-to-Hydrogen Project at NREL, part of the Renewable Electrolysis task and the examination of a grid-tied, co-located wind electrolysis hydrogen production facility.

Saur, G.

2011-02-01T23:59:59.000Z

40

DOE Hydrogen and Fuel Cells Program Record 6002: Electrolysis Analysis to Support Technical Targets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record #: 6002 Date: September 28, 2006 Title: Electrolysis Analysis to Support Technical Targets Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 16, 2008 Distributed Water Electrolysis - Technical Targets. Item #1: Table 3.1.4 and Table 3.1.4A in the Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. This Record provides further information vis-à-vis the assumptions and corresponding references used in Table 3.1.4 "Technical Targets: Distributed Water Electrolysis Hydrogen Production" and Table 3.1.4A "Distributed Electrolysis H2A Example Cost Contributions" in the Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research,

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water Vapor Electrolysis  

Science Journals Connector (OSTI)

Hydrogen plays an important role in the so-called hydrogen economy (technology). The term expresses an energy concept in which hydrogen serves as energy storage and fuel for combustion in engines or fuel cells. H...

Ulrich Guth

2014-09-01T23:59:59.000Z

42

Water Electrolysis Working Group | Department of Energy  

Energy Savers [EERE]

during periods of low electrical demand, many renewable power generators, such as wind turbines, produce excess electricity, which is lost. Electrolysis enables the storage of...

43

Photosynthetic water oxidation versus photovoltaic water electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Media about Center Center Video Library Bisfuel Picture Gallery Photosynthetic water oxidation versus photovoltaic water electrolysis 13 May 2011 Professor Tom Moore, a...

44

Solid oxide steam electrolysis for high temperature hydrogen production .  

E-Print Network [OSTI]

??This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel… (more)

Eccleston, Kelcey L.

2007-01-01T23:59:59.000Z

45

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...

46

HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland  

E-Print Network [OSTI]

HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland A. John Speranza Proton Energy Systems of the Department of Energy (DOE). Proton's goal is to drive the cost of PEM electrolysis to levels of $600 per years of the cost reduction efforts for the HOGEN 40 hydrogen generator on this program are in line

47

Solid Oxide Electrolysis Cells Performance and Durability  

E-Print Network [OSTI]

Title: Solid Oxide Electrolysis Cells ­ Performance and Durability Department: Fuel Cells and SolidSolid Oxide Electrolysis Cells ­ Performance and Durability Anne Hauch Risø-PhD-37(EN) Risø : Images from transmission electron microscopy investigation of the H2 electrode for the solid oxide cell

48

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS  

SciTech Connect (OSTI)

High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

2012-07-01T23:59:59.000Z

49

Zirfon® as Separator Material for Water Electrolysis Under Specific Conditions  

Science Journals Connector (OSTI)

Hydrogen production through alkaline water electrolysis requires improvements to use renewable energy more...

María José Lavorante; Juan Isidro Franco…

2014-01-01T23:59:59.000Z

50

Aluminum hydroxide and hydrogen produced by water electrolysis  

Science Journals Connector (OSTI)

Thermodynamic and kinetic peculiarities of the water electrolysis in a reactor with aluminum electrodes are...

R. R. Salem

2009-11-01T23:59:59.000Z

51

Electrolysis: Information and Opportunities for Electric Power Utilities  

SciTech Connect (OSTI)

Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

2006-09-01T23:59:59.000Z

52

6 - Hydrogen production by water electrolysis  

Science Journals Connector (OSTI)

Abstract: An electrolyzer combines an oxidation and a reduction reaction, driven by electricity, to produce separate streams of hydrogen gas and oxygen gas by a process called electrolysis. The hydrogen contains a portion of the electrical energy, and it can be used to generate electricity in a fuel cell by a process that is the reverse of electrolysis. If water electrolysis is driven by renewable electricity, it can be used in fuel-cell electric vehicles to displace petroleum, increase vehicle efficiency, and reduce the environmental impact of vehicles. The fundamental aspects of electrolytic hydrogen and its use as energy carrier are discussed.

N.A. Kelly

2014-01-01T23:59:59.000Z

53

Hydrogen Generation through Static Feed Water Electrolysis  

Science Journals Connector (OSTI)

Life Systems’ Static Feed Water Electrolysis System (SFWES) concept, developed under NASA...2...) production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials compat...

F. C. Jensen; F. H. Schubert

1975-01-01T23:59:59.000Z

54

Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microbial Electrolysis Cells (MECs) for High Yield H Microbial Electrolysis Cells (MECs) for High Yield H 2 Production from Biodegradable Materials Zhiyong "Jason" Ren, Ph.D Associate Professor, Environmental and Sustainability Engineering University of Colorado Boulder Jason.Ren@colorado.edu (303) 492-4137 http://spot.colorado.edu/~zhre0706/ MxC or Microbial Electrochemical System (MES) is a platform technology for energy and resource recovery Main type of MXC Products Microbial Fuel Cell (MFC) Electricity Microbial Electrolysis Cell (MEC) H 2 , H 2 O 2 , NaOH, Struvite Microbial Chemical Cell (MCC) CH 4 , C 2 H 4 O 2 , Organics Microbial Remediation Cell (MRC) Reduced/non-toxic chemicals Microbial Desalination Cell (MDC) Desalinated water >90% H 2 MEC for H 2 Recovery PS e - e - Wang and Ren, Biotechnol. Adv. 2013

55

Thermal and Electrochemical Performance of a High-Temperature Steam Electrolysis Stack  

SciTech Connect (OSTI)

A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. We are conducting a progression of electrolysis stack testing activities, at increasing scales, along with a continuation of supporting research activities in the areas of materials development, single-cell testing, detailed computational fluid dynamics (CFD) and systems modeling. This paper will present recent experimental results obtained from testing of planar solid-oxide stacks operating in the electrolysis mode. The hydrogen-production and electrochemical performance of these stacks will be presented, over a range of operating conditions. In addition, internal stack temperature measurements will be presented, with comparisons to computational fluid dynamic predictions.

J. O'Brien; C. Stoots; G. Hawkes; J. Hartvigsen

2006-11-01T23:59:59.000Z

56

A solid polymer water electrolysis system utilizing natural circulation  

Science Journals Connector (OSTI)

Abstract Solid Polymer Water Electrolysis (SPWE) is a method to efficiently produce high-purity hydrogen gas using a polymer electrolyte membrane-based system. SPWE systems that utilize natural water circulation (resulting from a difference in buoyancy) are a promising technology, which need no additional circulation pump for water supply to the electrolysis cells, and generate no pressure difference between the hydrogen generation and oxygen generation chambers. However, despite not needing an accurate pressure control, gas bubbles formed and trapped within the cell stacks can inhibit heat convection, leading to hot-spot formation and consequent destructive degradation. Improving the reliability is therefore one of the most important technological issues in natural circulation SPWEs. In this study, hot-spot formation is studied both by numerical heat and flow analysis, and by experimental in-situ visualization. This leads to insights into the degradation mechanisms of SPWE stacks, and their possible solutions. An improved design for an SPWE cell stack is successfully fabricated, and reliable operation up to 5000 h is demonstrated.

Yoshinori Kobayashi; Kenichiro Kosaka; Takashi Yamamoto; Yuya Tachikawa; Kohei Ito; Kazunari Sasaki

2014-01-01T23:59:59.000Z

57

Hydrogen Production in a Single Chamber Microbial Electrolysis Cell  

E-Print Network [OSTI]

) at greater yields than fermentation and at greater energy efficiencies than water electrolysis. It has been to produce water. A microbial electrolysis cell (MEC) operates in a manner similar to an MFC exceptHydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane D O U G L

58

Material properties of cation exchange membranes for chloralkali electrolysis, water electrolysis and fuel cells  

Science Journals Connector (OSTI)

Owing to the development of perfluorinated ion-exchange membranes, the application of the membranes in electrochemical cells has advanced greatly, especially in chloralkali electrolysis. Material properties of pe...

T. Asawa

1989-07-01T23:59:59.000Z

59

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

60

A concise model for evaluating water electrolysis  

Science Journals Connector (OSTI)

To evaluate water electrolysis in hydrogen production, a concise model was developed to analyze the current–voltage characteristics of an electrolytic cell. This model describes the water electrolysis capability by means of incorporating thermodynamic, kinetic and electrical resistance effects. These three effects are quantitatively expressed with three main parameters; the thermodynamic parameter which is the water dissociation potential; the kinetic parameter which reflects the overall electrochemical kinetic effect of both electrodes in the electrolytic cell, and the ohmic parameter which reflects the total resistance of the electrolytic cell. Using the model, different electrolytic cells with various operating conditions can be conveniently compared with each other. The modeling results are found to agree well with experimental data and previous published work.

Muzhong Shen; Nick Bennett; Yulong Ding; Keith Scott

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High temperature electrolysis for syngas production  

DOE Patents [OSTI]

Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

Stoots, Carl M. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID); Herring, James Stephen (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID); Hawkes, Grant L. (Sugar City, ID); Hartvigsen, Joseph J. (Kaysville, UT)

2011-05-31T23:59:59.000Z

62

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons… (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

63

The Composite Zirfon® Separator for Alkaline Water Electrolysis  

Science Journals Connector (OSTI)

During the last few years, VITO has been developing a new type of microporous composite separator material for use in alkaline water electrolysis [1, 2].

Ph. Vermeiren; W. Adriansens; J. P. Moreels…

1998-01-01T23:59:59.000Z

64

E-Print Network 3.0 - aluminium electrolysis tanks Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminium electrolysis tanks Page: << < 1 2 3 4 5 > >> 1 PRE-INVESTIGATION WATER ELECTROLYSIS...

65

Electrolysis of Water in a System with a Solid Polymer Electrolyte at Elevated Pressure  

Science Journals Connector (OSTI)

Electrolysis of water in a system with a solid polymer ... of the effect of elevated pressure on the electrolysis electrochemistry is proposed. A mathematical model and...

S. A. Grigor'ev; M. M. Khaliullin; N. V. Kuleshov…

2001-08-01T23:59:59.000Z

66

Improving Electrochemical Methods of Producing Hydrogen in Alkaline Media via Ammonia and Urea Electrolysis.  

E-Print Network [OSTI]

?? Theoretically, ammonia electrolysis consumes 95% less energy than its major competitor water electrolysis and offers an economical, environmental, and efficient means for reducing nitrate… (more)

Boggs, Bryan Kenneth

2010-01-01T23:59:59.000Z

67

TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES  

SciTech Connect (OSTI)

A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

2011-11-01T23:59:59.000Z

68

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS  

E-Print Network [OSTI]

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND CO2 METHANATION NOVEMBER 19th 2013 IRES. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis Gas-to-heat Gas-to-mobility Gas-to-power Excess Production = Consumption Distribution and storing

Paris-Sud XI, Université de

69

Hydrogen Evolution at Activated Nisx-Cathodes in Water Electrolysis  

Science Journals Connector (OSTI)

NiSx-coated nickel cathodes are used for commercial water electrolysis in concentrated KOH solutions. Such electrodes have ... to 5 mol% during 16 days of electrolysis and to about 0.7 mol% after...1.00–1.03. The...

B. Børresen; A. Bjørgum; G. Hagen; R. Tunold…

1998-01-01T23:59:59.000Z

70

Parametric study of solar hydrogen production from saline water electrolysis  

Science Journals Connector (OSTI)

The purpose of this work is to study the electrolysis of water for the production of hydrogen. A number of parameters, including salinity, voltage, current density and quantity of electricity, were investigated, and their effect on hydrogen production using a modified simple Hoffman electrolysis cell is reported.

S.M. El-Haggar; M. Khalil

1997-01-01T23:59:59.000Z

71

DOE Hydrogen and Fuel Cells Program Record 5040: 2005 Hydrogen Cost from Water Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 Date: December 12, 2008 40 Date: December 12, 2008 Title: 2005 Hydrogen Cost from Water Electrolysis Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 19, 2008 Item: The 2005 cost status for hydrogen produced from distributed water electrolysis is $5.90 / gge. Assumptions and References: The H2A analysis used to determine the projected cost of $5.88/gge (rounded up to $5.90/gge) was performed by Directed Technologies, Inc. and can be found in Record 5040a. The increase in cost compared to the 2004 analysis ($5.45/gge) is due to two assumptions changed in the model: (a) an increase in the industrial electricity price from 5¢/kWh to 5.5¢/kWh from the EIA Annual Energy Outlook, and (b) an increase in the capital cost estimate of the electrolyzer. The other assumptions in the analysis used standard values

72

DOE Hydrogen and Fuel Cells Program Record 5014: Electricity Price Effect on Electrolysis Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5014 Date: December 15, 2005 5014 Date: December 15, 2005 Title: Electricity Price Effect on Electrolysis Cost Originator: Roxanne Garland Approved by: JoAnn Milliken Date: January 2, 2006 Item: Effect of Electricity Price on Distributed Hydrogen Production Cost (Assumes: 1500 GGE/day, electrolyzer at 76% efficiency, and capital cost of $250/kW) The graph is based on the 2010 target of a 1500 kg/day water electrolysis refueling station described on page 3-12 of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan, February 2005. The graph uses all the same assumptions associated with the target, except for electricity price: Reference: - 76% efficient electrolyzer - 75% system efficiency

73

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

74

Materials for Hydrogen Generation via Water Electrolysis  

SciTech Connect (OSTI)

A review is presented of materials that could be utilized as electrolytes (and their associated electrodes and interconnect materials) in solid-state electrolysis cells to convert water (or steam) into hydrogen and oxygen. Electrolytes that function as oxygen ion conductors or proton conductors are considered for various operating temperatures from approximately 80 °C to 1000 °C. The fundamental electrochemical reactions are reviewed with some discussion of special sources of steam and DC electricity (advanced nuclear) to drive the reactions at the higher temperatures.

Paul A. Lessing

2007-05-01T23:59:59.000Z

75

3D CFD Model of High Temperature H2O/CO2 Co-electrolysis  

SciTech Connect (OSTI)

3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis, using high-temperature nuclear process heat and electricity. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to 55%.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

2007-06-01T23:59:59.000Z

76

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

SciTech Connect (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

77

A Thin Porous Polyantimonic Acid Based Membrane as a Separator in Alkaline Water Electrolysis  

Science Journals Connector (OSTI)

Polyantimonic acid based membranes have been evaluated as a separator in alkaline water electrolysis.

R. Leysen; W. Doyen; R. Proost; H. Vandenborre

1986-01-01T23:59:59.000Z

78

Electrochemical performances of PEM water electrolysis cells and perspectives  

Science Journals Connector (OSTI)

Proton Exchange Membrane (PEM) water electrolysis is potentially interesting for the decentralized production of hydrogen from renewable energy sources. The European Commission (EC) is actively supporting different projects within the 6th and 7th Framework Programmes. The purpose of this paper is to provide a summary of most significant scientific and technological achievements obtained at the end of the GenHyPEM project (FP6, 2005–2008), and to discuss future perspectives. Using carbon-supported platinum at the cathode for the hydrogen evolution reaction (HER) and iridium at the anode for the oxygen evolution reaction (OER), efficient membrane – electrode assemblies have been prepared and characterized using cyclic voltametry and electrochemical impedance spectroscopy. Charge densities and impedances of lab-scale PEM cells have been measured and used as references to optimize the performances of a GenHy®1000 PEM water electrolyser (1 Nm3 H2/h) and then to extend the production capacity up to 5 Nm3 H2/h. Different non-noble electrocatalysts have been successfully tested to replace platinum at the cathode. Some current limitations and future perspectives of the technology are outlined and discussed.

P. Millet; N. Mbemba; S.A. Grigoriev; V.N. Fateev; A. Aukauloo; C. Etiévant

2011-01-01T23:59:59.000Z

79

Enrichment reliability of solid polymer electrolysis for tritium water analysis  

Science Journals Connector (OSTI)

We have developed a novel advanced enrichment apparatus for environmental tritium analysis called SPET (Solid Polymer Electrolysis for Tritium Water). It generates no explosive gas, requires ... of SPET was studi...

M. Saito

2008-02-01T23:59:59.000Z

80

Process intensification: water electrolysis in a centrifugal acceleration field  

Science Journals Connector (OSTI)

Intensification of hydrogen production by carrying out water electrolysis in a centrifugal acceleration field has been demonstrated. A prototype single cell rotary water electrolyser was constructed, and a number...

L. Lao; C. Ramshaw; H. Yeung

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electrolysis: Piles of Confusion and Poles of Attraction  

Science Journals Connector (OSTI)

However one might assess the arguments about the nature of water in the Chemical Revolution (Chap. 1), it may seem that the electrolysis of water (first performed in 1800) must have ... that it was a compound sub...

Hasok Chang

2012-01-01T23:59:59.000Z

82

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

SciTech Connect (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

83

Hydrogen peroxide production by water electrolysis: Application to disinfection  

Science Journals Connector (OSTI)

Hydrogen peroxide was produced by direct current electrolysis using only two electrodes, a carbon felt...2...coated titanium anode. The required oxygen was supplied by oxidation of water and by transfer from the ...

P. Drogui; S. Elmaleh; M. Rumeau; C. Bernard…

2001-08-01T23:59:59.000Z

84

Sea Water MHD : Electrolysis and Gas Production in Flow  

Science Journals Connector (OSTI)

The work presented is principally experimental, it concerns mainly the coupling between sea water electrolysis and hydrodynamics (in both ways). The ... of measurements is much more relevant to sea water MHD prop...

P. Boissonneau; J.-P. Thibault

1999-01-01T23:59:59.000Z

85

Systems Engineering Provides Successful High Temperature Steam Electrolysis Project  

SciTech Connect (OSTI)

This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

Charles V. Park; Emmanuel Ohene Opare, Jr.

2011-06-01T23:59:59.000Z

86

Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics  

Science Journals Connector (OSTI)

This activity allows students to visualize the electrolysis of water in a microfluidic device in under 1 min. Instructional materials are provided to demonstrate how the activity meets West Virginia content standards and objectives. Electrolysis of water ...

T. A. Davis; S. L. Athey; M. L. Vandevender; C. L. Crihfield; C. C. E. Kolanko; S. Shao; M. C. G. Ellington; J. K. Dicks; J. S. Carver; L. A. Holland

2014-10-22T23:59:59.000Z

87

Theory and operation of a steady-state pH differential water electrolysis cell  

Science Journals Connector (OSTI)

The reversible potential for conventional water electrolysis is rather high, 1.23 V at ... . In this paper we present a new water electrolysis process using a steady-state pH differential. ... as a function of te...

O. Teschke

1982-03-01T23:59:59.000Z

88

Study of deuterium charging in palladium by the electrolysis of heavy water: Heat excess production  

Science Journals Connector (OSTI)

An experiment based on the electrolysis of heavy water with a palladium cathode is reported. The production of excess power during the electrolysis has been measured with the help of...

L. Bertalot; F. de Marco; A. De Ninno; A. La Barbera; F. Scaramuzzi…

1993-11-01T23:59:59.000Z

89

Tritium separation from heavy water by electrolysis with solid polymer electrolyte  

Science Journals Connector (OSTI)

A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was ... made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, ... tritium separation factor...

Y. Ogata; Y. Sakuma; N. Ohtani; M. Kotaka

2003-03-01T23:59:59.000Z

90

High Temperature Electrolysis using Electrode-Supported Cells  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.

J. E. O'Brien; C. M. Stoots

2010-07-01T23:59:59.000Z

91

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review  

SciTech Connect (OSTI)

This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

Not Available

2009-09-01T23:59:59.000Z

92

Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report  

Broader source: Energy.gov [DOE]

This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis.

93

Optimum Operating Conditions for Alkaline Water Electrolysis Coupled with Solar PV Energy System  

Science Journals Connector (OSTI)

This paper investigates theoretically and experimentally the optimum operating conditions for alkaline water electrolysis coupled with a solar photovoltaic (PV)...

Ashraf Balabel; Mohamed S. Zaky; Ismail Sakr

2014-05-01T23:59:59.000Z

94

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION  

SciTech Connect (OSTI)

Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Stoots, C.M.

2006-11-01T23:59:59.000Z

95

Overview of High-Temperature Electrolysis for Hydrogen Production  

SciTech Connect (OSTI)

Over the last five years there has been a growing interest in the use of hydrogen as an energy carrier, particularly to augment transportation fuels and thus reduce our dependence on imported petroleum. Hydrogen is now produced primarily via steam reforming of methane. However, in the long term, methane reforming is not a viable process for the large-scale hydrogen production since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. Nuclear energy can be used to produce hydrogen without consuming fossil fuels and without emitting greenhouse gases through the splitting of water into hydrogen and oxygen. The Nuclear Hydrogen Initiative of the DOE Office of Nuclear Energy is developing three general categories of high temperature processes for hydrogen production: thermochemical, electrolytic and hybrid thermo-electrolytic. This paper introduces the work being done in the development of high temperature electrolysis of steam. High Temperature Electrolysis (HTE) is built on the technology of solid oxide fuel cells (SOFCs), which were invented over a century ago, but which have been most vigorously developed during the last twenty years. SOFCs consume hydrogen and oxygen and produce steam and electricity. Solid Oxide Electrolytic Cells (SOECs) consume electricity and steam and produce hydrogen and oxygen. The purpose of the HTE research is to solve those problems unique to the electrolytic mode of operation, while building further on continuing fuel cell development. ORGANIZATION Experiments have been conducted for the last three years at the Idaho National Laboratory and at Ceramatec, Inc. on the operation of button cells and of progressively larger stacks of planar cells. In addition, the INL has been performing analyses of the cell-scale fluid dynamics and plant-scale flowsheets in order to determine optimum operating conditions and plant configurations. Argonne National Laboratory has been performing experiments for the development of new electrode materials, as well as modeling of the fluid dynamics and flowsheets for comparison with the work being done at the INL. ANL has also been performing diagnostic measures on components form long-duration tests at the INL and Ceramatec to determine the causes for the slow degradation in cell performance. Oak Ridge National Laboratory has been developing high temperature porous membranes for the separation of hydrogen from the residual steam, thus avoiding the need to condense and reheat the steam. The University of Nevada at Las Vegas has been collaborating with ANL on the development of electrode and electrolyte materials and will soon begin to investigate the causes of cell degradation. HTE research also includes NERI projects at the Virginia Polytechnic Institute on the development of toughened SOEC composite seals and at the Georgia Institute of Technology on the microstructural design of SOEC materials. EXPERIMENTAL RESULTS The most recent large-scale test of HTE was performed from June 28 through Sept 22, 2006 at the Ceramatec plant in Salt Lake City. The test apparatus consists of two stacks of 60 cells each in a configuration that will be used in the Integrated Laboratory Scale (ILS) experiment during FY-07. The ILS will contain three modules of four stacks each. The “Half-Module” initially produced 1.2 normal m3of H2/hour and 0.65 Nm3/hr at the end of the 2040-hour continuous test.

Herring, J. S.; O'Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J.; Petri, M. C.; Carter, J. D.; Bischoff, B. L.

2007-06-01T23:59:59.000Z

96

Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes  

E-Print Network [OSTI]

is water electrolysis at high temperatures using heat from a nuclear reactor, known as high temperatureMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis steam electrolysis (HTSE). The feasibility of this process is currently being demonstrated at Idaho

Yildiz, Bilge

97

The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells  

E-Print Network [OSTI]

for water electrolysis) [1,2], hydrogen can be evolved on the cathode under anoxic conditions, usually for the hydrogen evolution reaction (HER) in water electrolysis [13,14]. Hu et al. * Corresponding author. Tel.: þ1The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells Yimin

98

Electrolysis: Information and Opportunities for Electric Power Utilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis: Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Technical Report NREL/TP-581-40605 September 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Prepared under Task No. HY61.3620 Technical Report NREL/TP-581-40605 September 2006

99

CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS  

SciTech Connect (OSTI)

Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to be addressed for hydrogen to become an economical and viable option.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

2008-03-01T23:59:59.000Z

100

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hour-by-Hour Cost Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy (EERE). http://www.eere.energy.gov/topics/hydrogen_fuel_cells.html * NREL would like to thank our DOE Technology Development Managers for this project, Sara Dillich, Eric Miller, Erika Sutherland, and David Peterson. * NREL would also like to acknowledge the indirect

102

Three Dimensional CFD Model of a Planar Solid Oxide Electrolysis Cell for Co-Electrolysis of Steam and Carbon-Dioxide  

SciTech Connect (OSTI)

A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE). A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. An experimental study is also being performed at the INL to assess the SOE. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and syn-gas production over a range of stack operating conditions. Typical results of current density versus cell potential, cell current versus H2 and CO production, temperature, and voltage potential are all presented within this paper. Plots of mole fraction of CO2, CO, H2, H2O, O2, are presented. Currently there is strong interest in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. This process takes the carbon-neutral approach where the amount of CO2 in the atmosphere does not increase. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen. In the mean time, with the price of oil currently over $70 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of syn-gas production from CO2 and water, with no consumption of fossil fuels, and no production of greenhouse gases. Thermal CO2-splitting and water splitting for syn-gas production can be accomplished via high-temperature electrolysis or thermochemical processes, using high-temperature nuclear process heat. In order to achieve competitive efficiencies, both processes require high-temperature operation (~850°C). High-temperature electrolytic CO2 and water splitting supported by nuclear process heat and electricity has the potential to produce syn-gas with an overall system efficiency near those of the thermochemical processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-syn-gas conversion efficiency of 45 to

G. Hawkes; J. O'Brien; C. Stoots; S. Herring; R. Jones

2006-11-01T23:59:59.000Z

103

Author's personal copy Comparison of microbial electrolysis cells operated with  

E-Print Network [OSTI]

or by setting the anode potential Joo-Youn Nam, Justin C. Tokash, Bruce E. Logan* Department of Civil Keywords: Boosted power Energy input Hydrogen Methane Microbial electrolysis cell Set anode potential a b the anode potential with a potentiostat, or by adding voltage to the circuit with a power source. In batch

104

HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

2005-10-01T23:59:59.000Z

105

Electrolysis for Energy Storage & Grid Balancing in West Denmark  

E-Print Network [OSTI]

& Solutions 16 4. Electrolysis at West Denmark's Decentral Power Stations (incl. Stationary Fuel Cells) 24 5 teknologiudvikling ved afslutningen af den billge oilies æra) 11 3. Danish Wind Carpet Behaviour, Challenges was supported and sponsored by Energistyrelsen (Danish Energy Authority), Amaliegade 44, 1256 Copenhagen K www

106

HYDROGEN GENERATION FROM ELECTROLYSIS - REVISED FINAL TECHNICAL REPORT  

SciTech Connect (OSTI)

DOE GO13028-0001 DESCRIPTION/ABSTRACT This report is a summary of the work performed by Teledyne Energy Systems to understand high pressure electrolysis mechanisms, investigate and address safety concerns related to high pressure electrolysis, develop methods to test components and systems of a high pressure electrolyzer, and produce design specifications for a low cost high pressure electrolysis system using lessons learned throughout the project. Included in this report are data on separator materials, electrode materials, structural cell design, and dissolved gas tests. Also included are the results of trade studies for active area, component design analysis, high pressure hydrogen/oxygen reactions, and control systems design. Several key pieces of a high pressure electrolysis system were investigated in this project and the results will be useful in further attempts at high pressure and/or low cost hydrogen generator projects. An important portion of the testing and research performed in this study are the safety issues that are present in a high pressure electrolyzer system and that they can not easily be simplified to a level where units can be manufactured at the cost goals specified, or operated by other than trained personnel in a well safeguarded environment. The two key objectives of the program were to develop a system to supply hydrogen at a rate of at least 10,000 scf/day at a pressure of 5000psi, and to meet cost goals of $600/ kW in production quantities of 10,000/year. On these two points TESI was not successful. The project was halted due to concerns over safety of high pressure gas electrolysis and the associated costs of a system which reduced the safety concerns.

IBRAHIM, SAMIR; STICHTER, MICHAEL

2008-07-31T23:59:59.000Z

107

High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components  

SciTech Connect (OSTI)

Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850°C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.

Paul Demkowicz; Prateek Sachdev; Kevin DeWall; Pavel Medvedev

2007-06-01T23:59:59.000Z

108

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

May 1, 2012 May 1, 2012 CX-008288: Categorical Exclusion Determination Decommissioning of the Appliance Testing and Evaluation Center in Morgantown CX(s) Applied: B3.6 Date: 05/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008287: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9 Date: 05/01/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008286: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9, A11, B3.6 Date: 05/01/2012 Location(s): Tennessee Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008285: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22

109

Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report  

SciTech Connect (OSTI)

This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

Murray, J N

1983-03-01T23:59:59.000Z

110

Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

111

Coproduction of sulphuric acid and hydrogen by sulphur-assisted water electrolysis process  

Science Journals Connector (OSTI)

The addition of sulphur powder to the anode compartment of the sulphuric acid-water electrolysis cell resulted in the suppression of oxygen... 4 2? ...) by the ...

Y. S. Shih; M. J. Jong

1983-01-01T23:59:59.000Z

112

Hydrogen production via carbon-assisted water electrolysis at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct carbon-assisted water electrolysis at room temperature with reduced energy costs for hydrogen production and to improve upon… (more)

Bollineni, Shilpa

2008-01-01T23:59:59.000Z

113

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect (OSTI)

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

114

A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply  

Science Journals Connector (OSTI)

A novel method of hydrogen generation by water electrolysis using ultra-short-pulse power supply is ... pulse with the width of 300 ns, electrolysis takes place with a mechanism dominated by ... from the conventi...

Naohiro Shimizu; Souzaburo Hotta; Takayuki Sekiya…

2006-04-01T23:59:59.000Z

115

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

13, 2011 13, 2011 CX-007475: Categorical Exclusion Determination North Carolina Fuel Monitoring Initiative CX(s) Applied: B5.1 Date: 12/13/2011 Location(s): North Carolina Offices(s): National Energy Technology Laboratory December 13, 2011 CX-007474: Categorical Exclusion Determination A Geomechanical Analysis of Gas Shale Fracturing and Its Containment CX(s) Applied: B3.6 Date: 12/13/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 12, 2011 CX-007476: Categorical Exclusion Determination CEDF - Renewable Energy Program CX(s) Applied: B5.18 Date: 12/12/2011 Location(s): Vermont Offices(s): National Energy Technology Laboratory December 9, 2011 CX-007487: Categorical Exclusion Determination City of Las Vegas Electric Vehicle Program CX(s) Applied: B5.23

116

Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis ? Electrolytic cell)  

SciTech Connect (OSTI)

The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang [China Institute of Atomic Energy, P.O.Box 275-26, Beijing 102413 (China)

2013-07-01T23:59:59.000Z

117

Microbial electrolysis desalination and chemical-production cell for CO2 sequestration  

E-Print Network [OSTI]

Microbial electrolysis desalination and chemical-production cell for CO2 sequestration Xiuping Zhu organic matter. Desalinated water produced at the same time. Acid solutions used to accelerate Accepted 14 February 2014 Available online 23 February 2014 Keywords: Microbial electrolysis Desalination

118

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallelplate electrolysis  

E-Print Network [OSTI]

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallel­plate electrolysis Yilong Han Department of Physics and Astronomy, University of Pennsylvania 209, they appear to result from an underlying electroconvective instability during electrolysis in the parallel

Grier, David

119

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallelplate electrolysis  

E-Print Network [OSTI]

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallel­plate electrolysis Yilong Han Department of Physics and Astronomy, University of Pennsylvania 209 electrolysis in the parallel plate geometry. This contrasts with recent theoretical results suggesting

Grier, David

120

Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells  

E-Print Network [OSTI]

electrolysis cells Lu Lu a , Defeng Xing a, , Nanqi Ren a , Bruce E. Logan a,b a State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute August 2012 Available online 19 August 2012 Keywords: Hydrogen production Microbial electrolysis cell

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

American Institute of Aeronautics and Astronautics Electrolysis Propulsion for CubeSat-Scale Spacecraft  

E-Print Network [OSTI]

is becoming clear. A water-electrolysis propulsion system for 3U CubeSats is proposed that could fill the gapAmerican Institute of Aeronautics and Astronautics 1 Electrolysis Propulsion for Cube as electrolyte. With over 1 km/s of V from 1 kg of water as propellant, sample missions include compensating

Peck, Mason A.

122

Potential for Distributed and Central Electrolysis to Provide Grid Support Services (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

658 * July 2012 658 * July 2012 Potential for Distributed and Central Electrolysis to Provide Grid Support Services Project: Renewable Electrolysis Integrated System Development and Testing NREL Team: Kevin Harrison, Marc Mann, Danny Terlip, and Mike Peters Accomplishment: NREL operated both commercially available low-temperature electrolyzer technologies (PEM and alkaline) to evaluate their response to commands to increase and decrease stack power that shorten frequency disturbances on an alternating current (AC) mini-grid (Figure 1). Results show that both the PEM and alkaline electrolyzers are capable of adding or removing stack power to provide sub-second response that reduced the duration of frequency disturbances. Context: Management of distributed power systems is expected to become more commonplace as grids and devices

123

Roles of inherent mineral matters for lignite water slurry electrolysis in H2SO4 system  

Science Journals Connector (OSTI)

Abstract To understand roles of inherent mineral matters in lignite water slurry (LWS) electrolysis, lignite and demineralized lignite electrolyses were carried out in H2SO4 system. The results showed that cell voltage for LWS electrolysis was lower than that for demineralized lignite water slurry (DLWS) under constant current condition. Some inherent mineral matters changed into the corresponding metal ions which entered into electrolyte, and thus improved the electrolysis oxidation reactions for coal organic structure. Meanwhile, the relative amount of O-containing functional groups in demineralized lignite increased with electrolysis time, improving its pyrolysis reactivity. However, the pyrolysis reactivity of raw lignite decreased due to the removal of the inherent mineral matters from electrolysis.

Xuzhong Gong; Mingyong Wang; Zhi Wang; ZhanCheng Guo

2013-01-01T23:59:59.000Z

124

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

2010-06-01T23:59:59.000Z

125

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. Virkar

2012-02-01T23:59:59.000Z

126

CX-006900: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies Electrolysis CX(s) Applied: B3.6 Date: 09...

127

CX-006895: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies Electrolysis CX(s) Applied: B3.6 Date: 09...

128

CX-006897: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies Electrolysis CX(s) Applied: B3.6 Date: 09...

129

Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies  

Science Journals Connector (OSTI)

...achieve efficient treatment and excellent water quality are being used...as a part of treatment. Combining METs...Technologies Reverse electrodialysis (RED) is a...fresh and salt water using microbial reverse-electrodialysis electrolysis...

Bruce E. Logan; Korneel Rabaey

2012-08-10T23:59:59.000Z

130

Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to report on the electrochemical characterization of Polymer Electrolyte Membrane (PEM) water electrolysis cells. Results were obtained using membrane-electrode assemblies containing unsupported IrO2 catalyst at anode for the oxygen evolution reaction (OER) and carbon-supported platinum nano-particles at the cathode for the hydrogen evolution reaction (HER). Roughness factors of anodes and cathodes have been determined using an internal reference electrode. Individual cell voltage contributions have also been measured as a function of operating current density. Cell impedance spectra have been measured at different cell voltages along the polarization curve. It is shown that charge transfer processes are major cell impedance contributors at voltages up to 1.8-1.9 V. At higher cell voltages, cell impedances are mainly resistive. It is shown that the impedance associated with the HER is negligible and that the two time-constants observed on experimental impedance spectra can both be attributed to the OER. Possible mechanism options are discussed. Finally, some results related to the EIS characterization of PEM water electrolysis stacks are also reported.

C. Rozain; P. Millet

2014-01-01T23:59:59.000Z

131

Results Of Recent High Temperature Co-Electrolysis Studies At The Idaho National Laboratory  

SciTech Connect (OSTI)

For the past several years, the Idaho National Laboratory and Ceramatec, Inc. have been studying the feasibility of high temperature solid oxide electrolysis for large-scale, nuclear-powered hydrogen production. Parallel to this effort, the INL and Ceramatec have been researching high temperature solid oxide co-electrolysis of steam/CO2 mixtures to produce syngas, the raw material for synthetic fuels production. When powered by nuclear energy, high temperature co-electrolysis offers a carbon-neutral means of syngas production while consuming CO2. The INL has been conducting experiments to characterize the electrochemical performance of co-electrolysis, as well as validate INL-developed computer models. An inline methanation reactor has also been tested to study direct methane production from co-electrolysis products. Testing to date indicate that high temperature steam electrolysis cells perform equally well under co-electrolysis conditions. Process model predictions compare well with measurements for outlet product compositions. The process appears to be a promising technique for large-scale syngas production.

C. M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

2007-11-01T23:59:59.000Z

132

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

133

A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis  

Science Journals Connector (OSTI)

Abstract High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler–Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

Vikram Menon; Qingxi Fu; Vinod M. Janardhanan; Olaf Deutschmann

2015-01-01T23:59:59.000Z

134

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

135

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

September 9, 2011 September 9, 2011 CX-006745: Categorical Exclusion Determination Clean Coal Conference CX(s) Applied: A9 Date: 09/09/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006742: Categorical Exclusion Determination National Energy Technology Laboratory Pittsburgh - Replace 25 Kilovolt Air Switch 920 Area CX(s) Applied: B4.6 Date: 09/08/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006741: Categorical Exclusion Determination Information Technology Hub Relocation CX(s) Applied: B1.31 Date: 09/08/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011

136

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory September 3, 2010 CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

137

Study of cold nuclear fusion with electrolysis at low-temperature range  

Science Journals Connector (OSTI)

We carried out an electrolysis by changing the temperature from ?80°C to room temperature in order to create a dynamic condition in the electrode. No neutron emission was observed from the palladium and the ti...

Y. Nakamitsu; M. Chiba; K. Fukushima; T. Hirose; K. Kubo; M. Fujii…

1994-01-01T23:59:59.000Z

138

Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells  

E-Print Network [OSTI]

gasification that rely on non-renewable energy sources [1]. Electrohydrogenesis using microbial electrolysis cells (MEC) is a promising approach for hydrogen production from organic matter, including waste- water

139

High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance  

SciTech Connect (OSTI)

Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode of operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.

J. E. O'Brien; X. Zhang; R. C. O'Brien; G. Tao

2011-11-01T23:59:59.000Z

140

A new anode material for oxygen evolution in molten oxide electrolysis  

E-Print Network [OSTI]

Molten oxide electrolysis (MOE) is an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock and compared with traditional methods of extractive metallurgy offers ...

Allanore, Antoine

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Cost of Hydrogen from Electrolysis G. Saur and C. Ainscough Technical Report NRELTP-5600-52640 December 2011 NREL is a national laboratory of the U.S. Department of...

142

Search for neutron production during heavy water electrolysis on palladium electrodes  

Science Journals Connector (OSTI)

The results are presented from a number of experiments in search for neutrons from the heavy water electrolysis with use of different palladium cathodes. The...3 palladium cathode, which operated continuously for...

S. Blagus; M. Bogovac; D. Hodko; M. Kr?mar…

1989-01-01T23:59:59.000Z

143

Solar Generator Performance with Load Matching to Water Electrolysis Longterm Averages and Range of Instantaneous Efficiencies  

Science Journals Connector (OSTI)

The efficiency of producing hydrogen by solar energy conversion via solar cells and water electrolysis is determined by the performance of the ... wired to an electronic simulation of an advanced water electrolys...

K. Freudenberg

1982-01-01T23:59:59.000Z

144

SUPPORTING INFORMATION FOR Microbial electrolysis desalination and chemical-production cell  

E-Print Network [OSTI]

SUPPORTING INFORMATION FOR Microbial electrolysis desalination and chemical-production cell.01 LOI* 18.1 14.7 14.5 14.3 *LOI is the loss on ignition due to water content. #12; Figure S1. XRD

145

Hydrogen Economy: The Role of Nano-scaled Support Material for Electrocatalysts Aimed for Water Electrolysis  

Science Journals Connector (OSTI)

The role and importance of support materials for electrocatalysts aimed for water electrolysis is given. Besides their superior support characteristics...2, (iii) multiwalled carbon nanotubes (MWCNTs) and (iv) Ma...

Perica Paunovi?; Orce Popovski…

2011-01-01T23:59:59.000Z

146

On the Change in Properties of Water Subjected to Low-Temperature Plasma Electrolysis  

Science Journals Connector (OSTI)

Variation in the pH of water and the formation of hydrogen peroxides during contact electrolysis upon the low-pressure glow-discharge treatment of water were studied. Some physicochemical properties of the produc...

A. V. Kravchenko; S. A. Berlizova; A. F. Nesterenko…

2004-09-01T23:59:59.000Z

147

Transport properties of separating membranes MF-4SK during alkaline electrolysis of water  

Science Journals Connector (OSTI)

The transport properties of separating membranes MF-4SK are studied during electrolysis of H2O in solutions of KOH. The effective diffusion coefficients of molecules of KOH and H2O and the transfer coefficients o...

A. N. Ponomarev; Yu. L. Moskvin; S. D. Babenko

2007-03-01T23:59:59.000Z

148

Vacuum plasma spraying of high-performance electrodes for alkaline water electrolysis  

Science Journals Connector (OSTI)

Electrode coatings for advanced alkaline water electrolysis were produced by applying the vacuum plasma...3O4 matrix composite layers were developed for the anodic oxygen evolution reaction. For the preparation o...

G. Schiller; R. Henne; V. Borck

1995-06-01T23:59:59.000Z

149

Long-term stability of sulfated hydrous titania-based electrolyte for water electrolysis  

Science Journals Connector (OSTI)

The long-term stability in water was investigated for an inorganic proton conductor based on sulfated hydrous titania electrolyte in water electrolysis. Heat treatment temperature in the range of ... critical par...

Seok-Jun Kim; Takaaki Sakai; Hiroyuki Oda…

2012-11-01T23:59:59.000Z

150

Study of Anodic and Cathodic Catalysts for Water Electrolysis Activation of Membranes and Diaphragms  

Science Journals Connector (OSTI)

Optimization of the anodic and cathodic catalysts developed under the previous contract 067–76-EHI, with a view to identifying the best candidate for alkaline and acid electrolysis at temperatures up to 140°C,...

Placido M. Spaziante

1980-01-01T23:59:59.000Z

151

Deposition of carbon films by electrolysis of a water-ethylene glycol solution  

Science Journals Connector (OSTI)

An attempt was made to deposit carbon films by electrolysis of a water-ethylene glycol solution. Carbon plate and an...n...-type silicon substrate were dipped in the solution and a high d.c. potential was negativ...

T. Suzuki; Y. Manita; T. Yamazaki; S. Wada; T. Noma

1995-04-15T23:59:59.000Z

152

Stainless steel anodes for alkaline water electrolysis and methods of making  

DOE Patents [OSTI]

The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

Soloveichik, Grigorii Lev

2014-01-21T23:59:59.000Z

153

Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis  

SciTech Connect (OSTI)

An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple phase boundary) • Loss of electrical/ionic conductivity of electrolyte.

M.S. Sohal; J.E. O'Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

2009-05-01T23:59:59.000Z

154

3D CFD Model of a Tubular Porous-Metal Supported Solid Oxide Electrolysis Cell  

SciTech Connect (OSTI)

Currently there is strong interest in the large-scale production of hydrogen as an energy carrier for the non-electrical market [1, 2, and 3]. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, with no consumption of fossil fuels, no production of greenhouse gases, and no other forms of air pollution. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-hydrogen conversion efficiency of 45 to 55%. A research program is under way at the INL to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. The future SOEC market includes the 1200MW GEN4 reactor which has projected 40-50% efficiency, 400 tones H2 production per day (at 5kg H2/car/300 mile day this corresponds to 80,000 cars/day). DOE is planning for 26GW of nuclear hydrogen production by 2025.

G.L. Hawkes; B.D. Hawkes; M.S. Sohal; P.T. Torgerson; T. Armstrong; M.C. Williams

2007-10-01T23:59:59.000Z

155

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

24, 2011 24, 2011 CX-005319: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - City of Raleigh CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005318: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - North Carolina State University CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005317: Categorical Exclusion Determination University of Arkansas for Medical Sciences (UAMS), District Energy Service Modifications CX(s) Applied: A1, B5.1 Date: 02/24/2011

156

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

August 14, 2013 August 14, 2013 CX-010787: Categorical Exclusion Determination Fire Loop Soil Excavation CX(s) Applied: B3.1, B6.1 Date: 08/14/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010786: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.23 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010792: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega

157

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2012 7, 2012 CX-009374: Categorical Exclusion Determination Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009373: Categorical Exclusion Determination Testing of an Advanced Dry Cooling Technology for Power Plants CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): North Dakota Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

158

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

23, 2012 23, 2012 CX-008929: Categorical Exclusion Determination Fundamental Investigations and Rational Design of Durable, High-Performance Cathode Materials CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory August 23, 2012 CX-008928: Categorical Exclusion Determination High Efficiency Molten-Bed Oxy-Coal Combustion with Low Flue Gas Recirculation CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 22, 2012 CX-008930: Categorical Exclusion Determination Recovery Act: Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: A1 Date: 08/22/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 21, 2012 CX-008931: Categorical Exclusion Determination

159

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-002250: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002249: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002248: Categorical Exclusion Determination Competitive Renewable Grants Program - Claflin University Solar Thermal CX(s) Applied: A1, B1.5, B5.1 Date: 05/12/2010 Location(s): Orangeburg, South Carolina

160

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

20, 2012 20, 2012 CX-008446: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory June 20, 2012 CX-008445: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): New York Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008450: Categorical Exclusion Determination Building 93 Heat Exchanger Removal at National Energy Technology Laboratory Pittsburgh CX(s) Applied: B1.23, B1.31 Date: 06/19/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008449: Categorical Exclusion Determination

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

April 27, 2012 April 27, 2012 CX-008292: Categorical Exclusion Determination Waste Heat Integration with Solvent Process for More Efficient Carbon Dioxide Removal from Coal-Fired Flue Gas CX(s) Applied: A11 Date: 04/27/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008309: Categorical Exclusion Determination Evaluation of Solid Sorbents as a Retrofit Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 04/25/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008307: Categorical Exclusion Determination Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/25/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008306: Categorical Exclusion Determination

162

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

December 5, 2011 December 5, 2011 CX-007500: Categorical Exclusion Determination Carbon Absorber Retrofit Equipment (CARE) CX(s) Applied: B3.6 Date: 12/05/2011 Location(s): Colorado Offices(s): National Energy Technology Laboratory October 19, 2011 CX-007063: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A1, A9, B5.1 Date: 10/19/2011 Location(s): Windsor, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 18, 2011 CX-007065: Categorical Exclusion Determination Slipstream Pilot-Scale Demonstration of a Novel Amine-Based Post-Combustion Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 10/18/2011 Location(s): Wilsonville, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory

163

High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results  

SciTech Connect (OSTI)

A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

2012-09-01T23:59:59.000Z

164

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

165

Electrolysis of pure water in a thin layer cell  

Science Journals Connector (OSTI)

Current–voltage curves were obtained at parallel platinum electrodes in the thin layer cell including pure water. They were under the steady state in the voltage domain from 1.0 V to 1.3 V when the distance of the electrodes was less than 100 ?m. The solution resistance obtained from the current–voltage curve was much smaller than that predicted from the resistivity of pure water. The reason can be explained in terms of generation and accumulation of hydrogen ion and hydroxide ion before the recombination reaction. These kinetically survived ions decrease the resistance, and enhance the electrolysis rate. We subtract the reaction-controlled current–voltage curves from the overall curves to evaluate ion-included solution resistance. The resistivity of the solution averaged in the cell increased with an increase in the distance between the electrodes. In order to understand the above behavior, we calculated concentration profiles of the ions and potential distribution in the cell on the basis of Nernst–Planck equation including dissociation kinetics of water.

Koichi Jeremiah Aoki; Chunyan Li; Toyohiko Nishiumi; Jingyuan Chen

2013-01-01T23:59:59.000Z

166

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

20, 2011 20, 2011 CX-007453: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Georgia Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007452: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure - Electric Charging Stations CX(s) Applied: B5.23 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007451: Categorical Exclusion Determination Commuter Services Compressed Natural Gas Station CX(s) Applied: B5.1, B5.22 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007450: Categorical Exclusion Determination

167

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 CX-005342: Categorical Exclusion Determination Installation of Impalement Protection Over Existing Pointed Air Terminals at National Energy Technology Laboratory CX(s) Applied: B2.5 Date: 03/01/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005341: Categorical Exclusion Determination Solid State Energy Conversion Alliance Coal-Based Systems - FuelCell Energy CX(s) Applied: A9, B3.6 Date: 03/01/2011 Location(s): Alberta, Canada Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005340: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 03/01/2011 Location(s): Greene, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy

168

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2011 3, 2011 CX-006451: Categorical Exclusion Determination Research and Development of an Advanced Low Temperature Heat Recovery Absorption Chiller CX(s) Applied: B3.6 Date: 08/03/2011 Location(s): Park Forest, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006448: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Knightdale, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006446: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Morrow, Georgia

169

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

27, 2010 27, 2010 CX-002519: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002518: Categorical Exclusion Determination Gadsden State Community College Green Operations Plan CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Gadsen, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002517: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010

170

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

30, 2013 30, 2013 CX-010824: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010823: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010822: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010821: Categorical Exclusion Determination

171

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

25, 2012 25, 2012 CX-008442: Categorical Exclusion Determination Arizona Power Partners - Smart Grid Data Access from an Advanced Meter Reading Network CX(s) Applied: A9, B5.1 Date: 06/25/2012 Location(s): Arizona Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008448: Categorical Exclusion Determination Hurricane Natural Gas Fueling Station CX(s) Applied: B5.1, B5.22 Date: 06/21/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008447: Categorical Exclusion Determination The Shift for Good Community Program (Switch 4 Good) CX(s) Applied: A1, A8, A9, A11 Date: 06/21/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008444: Categorical Exclusion Determination Smart Cementing Materials and Drilling Muds for Real Time Monitoring of

172

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

26, 2013 26, 2013 CX-010900: Categorical Exclusion Determination Pittsburgh Building 84 Gas Line Project CX(s) Applied: B2.5 Date: 06/26/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 26, 2013 CX-010898: Categorical Exclusion Determination Minnesota ethanol-85 (E85) Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 06/26/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory June 25, 2013 CX-010906: Categorical Exclusion Determination Research and Development (R&D) to Prepare and Characterize Coal/Biomass Mixtures for Direct Co-Feeding into Gasification Systems CX(s) Applied: B3.6 Date: 09/25/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory June 20, 2013 CX-010441: Categorical Exclusion Determination

173

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0, 2012 0, 2012 CX-009354: Categorical Exclusion Determination High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair and Operations - Phase II CX(s) Applied: A9, A11, B3.6 Date: 09/20/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009353: Categorical Exclusion Determination The Sustainability Workshop (Energy Regional Innovation Cluster) CX(s) Applied: A9 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009352: Categorical Exclusion Determination Navy Yard Network Operations Center (Energy Regional Innovation Cluster) CX(s) Applied: A1, A9, B2.2 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 19, 2012

174

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

5, 2010 5, 2010 CX-004434: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Stonington, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 5, 2010 CX-004400: Categorical Exclusion Determination Repair Brick Support Plates on Connecting Bridges - Building 58 CX(s) Applied: B2.3 Date: 11/05/2010 Location(s): Allegheny City, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory November 5, 2010 CX-004399: Categorical Exclusion Determination Mississippi Energy Efficiency Appliance Rebate Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

175

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

23, 2010 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003462: Categorical Exclusion Determination Visitor's Center Conference Room CX(s) Applied: B1.7, B1.15 Date: 08/23/2010 Location(s): Morgantown,West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003461: Categorical Exclusion Determination Low-Cost Wet Gas Compressor for Stripper Gas Wells CX(s) Applied: B3.6 Date: 08/23/2010 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003460: Categorical Exclusion Determination

176

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0, 2012 0, 2012 CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock Sampling) CX(s) Applied: B3.1 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009309: Categorical Exclusion Determination Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode ORR CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 29, 2012 CX-008916: Categorical Exclusion Determination Development of a Scientific Plan for a Hydrate-Focused Marine Drilling, Logging and Coring Program CX(s) Applied: A1, A9 Date: 08/29/2012 Location(s): Washington, DC Offices(s): National Energy Technology Laboratory

177

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

30, 2012 30, 2012 CX-009314: Categorical Exclusion Determination Roof Replacement and Fall Arrest System Installation CX(s) Applied: B1.15, B2.5 Date: 08/30/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009313: Categorical Exclusion Determination Advanced Methane Hydrate Reservoir Modeling Using Rock Physics Techniques CX(s) Applied: A1, A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009312: Categorical Exclusion Determination Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional

178

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003837: Categorical Exclusion Determination Simulation of Shale Gas Reservoirs Incorporating the Correct Physics for Capillarity CX(s) Applied: A9 Date: 09/09/2010 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory September 9, 2010 CX-003836: Categorical Exclusion Determination Large Project Impact Fund Competitive Grants - Colby College CX(s) Applied: B1.15, B1.24, B2.2, B5.1 Date: 09/09/2010 Location(s): Waterville, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 9, 2010 CX-003835: Categorical Exclusion Determination SmartRam Piston Pump CX(s) Applied: B3.6 Date: 09/09/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory

179

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

4, 2010 4, 2010 CX-003817: Categorical Exclusion Determination Appliance Technology Evaluation Center (ATEC)- Modification CX(s) Applied: B3.6 Date: 09/14/2010 Location(s): Morgantown, West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003816: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Rancho Dominguez, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003815: Categorical Exclusion Determination Hardin County General Hospital Energy Efficiency Upgrades CX(s) Applied: B1.3, B2.2, B2.5, B5.1 Date: 09/14/2010 Location(s): Rosiclare, Illinois

180

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

May 10, 2013 May 10, 2013 CX-010285: Categorical Exclusion Determination Advancing Low Temperature Combustion and Lean Burning Engines for Light-and Heavy-Duty Vehicles CX(s) Applied: A9, B3.6 Date: 05/10/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 10, 2013 CX-010284: Categorical Exclusion Determination Construction of an Autogas Refueling Network CX(s) Applied: B5.22 Date: 05/10/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 8, 2013 CX-010287: Categorical Exclusion Determination Understanding Nitrous Oxide Selective Catalytic Reduction Mechanism and Activity on Copper/Chabazite Structures throughout the Catalyst Life CX(s) Applied: A9, B3.6 Date: 05/08/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

August 14, 2013 August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010799: Categorical Exclusion Determination Building 4 Lead Paint Abatement & Repainting CX(s) Applied: B2.1, B2.5 Date: 08/13/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010800: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory August 12, 2013 CX-010802: Categorical Exclusion Determination

182

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-002242: Categorical Exclusion Determination Micro-X-Ray Diffraction Laboratory CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002241: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 05/13/2010 Location(s): Aurora, Colorado Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 13, 2010 CX-002240: Categorical Exclusion Determination Heavy Oil Viscous Pressure-Volume Temperature (PVT) - Houston CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002238: Categorical Exclusion Determination

183

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

6, 2012 6, 2012 CX-007948: Categorical Exclusion Determination Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.22 Date: 02/06/2012 Location(s): California, Arizona Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007952: Categorical Exclusion Determination Esperanza Roof Replacement CX(s) Applied: A1, B2.1, B5.1 Date: 02/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007951: Categorical Exclusion Determination Puget Sound Clean Cities Petroleum Reduction Project CX(s) Applied: B5.23 Date: 02/01/2012 Location(s): Washington Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007950: Categorical Exclusion Determination Environmental Protection Agency - 5th International Environmentally

184

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

21, 2013 21, 2013 CX-010780: Categorical Exclusion Determination Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 08/21/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory August 21, 2013 CX-010782: Categorical Exclusion Determination A Geomechanical Model for Gas Shales Based on Integration of Stress CX(s) Applied: A9 Date: 08/21/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 20, 2013 CX-010783: Categorical Exclusion Determination Isothermal Compressed Air Energy Storage (ICAES) to Support Renewable Energy Integration - Phase Three CX(s) Applied: B3.6, B5.1 Date: 08/20/2013 Location(s): New Hampshire Offices(s): National Energy Technology Laboratory

185

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

16, 2011 16, 2011 CX-006772: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Fenton Township, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006771: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Brighton, New York Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006770: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): South Windsor, Connecticut Office(s): Fossil Energy, National Energy Technology Laboratory

186

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

19, 2010 19, 2010 CX-004491: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 11/19/2010 Location(s): Alabama Office(s): Fossil Energy, National Energy Technology Laboratory November 19, 2010 CX-004490: Categorical Exclusion Determination Utah Expansion Compressed Natural Gas Refueling Sites CX(s) Applied: B5.1 Date: 11/19/2010 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2010 CX-004489: Categorical Exclusion Determination Thai Process for Heavy Oil CX(s) Applied: B3.6 Date: 11/19/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

187

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

18, 2010 18, 2010 CX-004473: Categorical Exclusion Determination Deepwater Subsea Test Tree and Intervention Riser System CX(s) Applied: A9, A11 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004472: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004471: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Bainbridge, Georgia Office(s): Fossil Energy, National Energy Technology Laboratory

188

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2009 7, 2009 CX-000411: Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 12/17/2009 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory December 17, 2009 CX-000410: Categorical Exclusion Determination Deepwater Riserless Intervention System CX(s) Applied: A1, A9 Date: 12/17/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2009 CX-000375: Categorical Exclusion Determination Hydrogen Separation for Clean Coal CX(s) Applied: A9, B3.6 Date: 12/16/2009 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 15, 2009 CX-000464: Categorical Exclusion Determination

189

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

May 17, 2013 May 17, 2013 CX-010279: Categorical Exclusion Determination Clemson University's Synchrophasor Education Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): South Carolina Offices(s): National Energy Technology Laboratory May 17, 2013 CX-010278: Categorical Exclusion Determination Collaborative Industry-Academic Synchrophasor Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010282: Categorical Exclusion Determination Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010281: Categorical Exclusion Determination

190

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0, 2012 0, 2012 CX-009271: Categorical Exclusion Determination National Governors Association Energy Project - Phase II CX(s) Applied: A9, A11 Date: 09/10/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory September 10, 2012 CX-009270: Categorical Exclusion Determination Basin-Scale Produced Water Management Tools and Options CX(s) Applied: A9 Date: 09/10/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009290: Categorical Exclusion Determination Interagency Study on the Implementation of Integrated Computational Materials Engineering... CX(s) Applied: A9, A11 Date: 09/07/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009289: Categorical Exclusion Determination

191

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

June 28, 2010 June 28, 2010 CX-002841: Categorical Exclusion Determination Texas Propane Fleet Pilot Program (Summary Categorical Exclusion) CX(s) Applied: A7, B5.1 Date: 06/28/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002795: Categorical Exclusion Determination Market Transformation and Technology Deployment - Renewable Energy Projects CX(s) Applied: B5.1 Date: 06/25/2010 Location(s): Perkinston, Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002794: Categorical Exclusion Determination Advanced Implementation of A123's Community Energy Storage (CES) System for Grid Support CX(s) Applied: B4.6, B5.1 Date: 06/25/2010 Location(s): Detroit, Michigan

192

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

25, 2012 25, 2012 CX-008305: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: B5.22 Date: 04/25/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008304: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date: 04/25/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008303: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1, B5.23 Date: 04/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008302: Categorical Exclusion Determination Interstate Electrification Improvement

193

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

18, 2011 18, 2011 CX-005626: Categorical Exclusion Determination North Carolina Green Business Fund ? Kyma Technologies CX(s) Applied: A1, B1.4, B1.5, B5.1 Date: 04/18/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 18, 2011 CX-005625: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 04/18/2011 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 15, 2011 CX-005629: Categorical Exclusion Determination North Carolina Green Business Fund ? Storms Farms CX(s) Applied: A1, B1.15, B4.11, B5.1 Date: 04/15/2011

194

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-002514: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002513: Categorical Exclusion Determination Ohio Advanced Transportation Partnership CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010

195

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

10, 2010 10, 2010 CX-003879: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: A7 Date: 09/10/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003878: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/10/2010 Location(s): Melvindale, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003877: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 09/10/2010 Location(s): Des Plaines, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory

196

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

29, 2011 29, 2011 CX-005666: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 04/29/2011 Location(s): Marrow, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory April 29, 2011 CX-005663: Categorical Exclusion Determination Vortex Tube Project Decommissioning Project CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Morgantown, West Virginia

197

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

June 3, 2013 June 3, 2013 CX-010470: Categorical Exclusion Determination Boulder Smart Grid City - Plug-In Electric Hybrid CX(s) Applied: B5.1, B5.16 Date: 06/03/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010468: Categorical Exclusion Determination Evaluation of High Capacity Cells for Electric Vehicle Applications CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010467: Categorical Exclusion Determination Metal Oxide/Nitride Heterostructured Nanowire Arrays for Ultra-Sensitive and Selective Sensors CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory May 31, 2013 CX-010478: Categorical Exclusion Determination

198

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2012 7, 2012 CX-008473: Categorical Exclusion Determination Effect of Climate Variability & Change in Hurricane Activity in the North Atlantic CX(s) Applied: A9 Date: 06/07/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 7, 2012 CX-008472: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.22 Date: 06/07/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008482: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells CX(s) Applied: A9, A11 Date: 06/04/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008480: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells

199

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

April 25, 2013 April 25, 2013 CX-010181: Categorical Exclusion Determination Building 26 Air Handlers and In-Line Return Fans Replacement CX(s) Applied: B1.3, B1.22, B.1.31 Date: 04/25/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010180: Categorical Exclusion Determination A Universal Combustion Model to Predict Premixed and Non-Premixed Turbulent Flames in Compression CX(s) Applied: A9 Date: 04/25/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010179: Categorical Exclusion Determination Modeling and Experimental Studies of Controllable Cavity Turbulent Jet Ignition CX(s) Applied: B3.6 Date: 04/25/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

200

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

January 10, 2012 January 10, 2012 CX-007615: Categorical Exclusion Determination Henderson Family Young Mens Christian Association CX(s) Applied: B5.1, B5.2 Date: 01/10/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007614: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: B3.6 Date: 01/10/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007613: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007612: Categorical Exclusion Determination Geological Characterization of the South Georgia Rift Basin for Source

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

11, 2011 11, 2011 CX-005223: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005222: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Youngsville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005229: Categorical Exclusion Determination Field Testing and Diagnostics of Radial-Jet Well-Stimulation for Enhanced Oil Reserve from Marginal Reserves CX(s) Applied: B3.6 Date: 02/11/2011 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory

202

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004406: Categorical Exclusion Determination

203

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 CX-006051: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 06/07/2011 Location(s): Omaha, Nebraska Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 6, 2011 CX-006055: Categorical Exclusion Determination Installation and Abandonment of Monitoring Wells CX(s) Applied: B3.1, B6.1 Date: 06/06/2011 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2011 CX-005949: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region- TerraTek CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory

204

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

, 2013 , 2013 CX-010816: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory August 1, 2013 CX-010815: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): Indiana Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010826: Categorical Exclusion Determination Evaluation of Flow and Heat Transfer Inside Lean Pre-Mixed Combustor Systems under Reacting Flow Conditions CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

205

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

28, 2013 28, 2013 CX-010899: Categorical Exclusion Determination Pittsburgh Building 65 and Building 74 Loading Dock Railing Project CX(s) Applied: B2.1, B2.3 Date: 06/28/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010897: Categorical Exclusion Determination Data Mining and Playback of Hybrid Synchrophasor Data for Research and Education CX(s) Applied: A9 Date: 06/27/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010896: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (SUMMARY Categorical Exclusion) CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 27, 2013

206

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

28, 2011 28, 2011 CX-006119: Categorical Exclusion Determination Autonomous Inspection of Subsea Facilities (Phase II) CX(s) Applied: B3.6 Date: 06/28/2011 Location(s): Port Fourchon, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory June 28, 2011 CX-006117: Categorical Exclusion Determination Flooring Improvements CX(s) Applied: B2.1, B2.5 Date: 06/28/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006129: Categorical Exclusion Determination Optical Sensors Laboratory CX(s) Applied: B3.6 Date: 06/23/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006127: Categorical Exclusion Determination Wisconsin Biofuels Retail Availability Improvement Network (BRAIN) -

207

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

4, 2010 4, 2010 CX-002648: Categorical Exclusion Determination Surface Force Measurements Between Hydrophobic Surfaces CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Blacksburg, Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002647: Categorical Exclusion Determination Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing Coal CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002646: Categorical Exclusion Determination Polymer Nanocomposites for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

208

Experimental investigation of the effects of water electrolysis parameters on the amount of hydrogen damage in Pb(Zr,Ti)O3  

Science Journals Connector (OSTI)

Water electrolysis technique has been used in this work...3 (PZT), and the effects of water electrolysis parameters on the amount of hydrogen damage ... investigations show that increasing the current density dur...

A. Shafiei; A. Alfantazi

2014-01-01T23:59:59.000Z

209

Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

X. Zhang; J. E. O'Brien; R. C. O'Brien; N. Petigny

2011-11-01T23:59:59.000Z

210

A thermodynamic analysis of the SO2/H2SO4 system in SO2-depolarized electrolysis  

E-Print Network [OSTI]

) and a catalyst. The second reaction, the SO2-depolarized electrolysis of water, * Corresponding author. Tel.: �1A thermodynamic analysis of the SO2/H2SO4 system in SO2-depolarized electrolysis Maximilian B thermochemical water-splitting cycles, comprising only two reaction steps and having only fluid reactants

Weidner, John W.

211

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallel-plate electrolysis  

E-Print Network [OSTI]

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallel-plate electrolysis Yilong Han Department of Physics and Astronomy, University of Pennsylvania 209, they appear to result from an underlying electroconvective instability during electrolysis in the parallel

Grier, David

212

Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell  

E-Print Network [OSTI]

fuel cells, and a microbial electrolysis cell Aijie Wang a, , Dan Sun a , Guangli Cao a , Haoyu Wang a , Nanqi Ren a , Wei-Min Wu b , Bruce E. Logan c a State Key Laboratory of Urban Water Resource Microbial electrolysis cell (MEC) Microbial fuel cell (MFC) MEC�MFC coupled system Dark fermentation a b

213

Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters  

E-Print Network [OSTI]

Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion), as well as water desalination (Cao et al., 2009). The production of hydrogen from non-fermentable sub

214

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallel-plate electrolysis  

E-Print Network [OSTI]

Colloidal electroconvection in a thin horizontal cell: II. Bulk electroconvection of water during parallel-plate electrolysis Yilong Han Department of Physics and Astronomy, University of Pennsylvania 209 electrolysis in the parallel plate geometry. This contrasts with recent theoretical results suggesting

Grier, David

215

A study of electrode passivation during aqueous phenol electrolysis  

SciTech Connect (OSTI)

The process of electrode passivation during phenol electrolysis at a platinum electrode was studied in a sulfuric acid electrolyte (pH0-1). Passive film growth and the effects of concentration and potential were investigated using chronoamperometry, x-ray photoelectron spectroscopy, and gel permeation chromatography. The main products of the phenol oxidation are oligomers/polymers with weight-averaged molecular weights typically around 1000 g/mol after a 30 ms anodic pulse. X-ray photoelectron spectroscopy shows that the passivating polymer film is oxidized incompletely with many hydroxyl groups present. Increased potential increased the polymerization rate, but above 1.0 V vs. SCE film decomposition reactions also occurred. Increased phenol concentration increased the charge required to initiate passivation. Potential steps to the open-circuit potential or to mo9re cathodic values can interfere with the passivation process. Chronamperometric results show that the current decay at the passivated electrode is roughly inversely proportional to time and that the currents for a fixed amount of polymerization reaction follow a Tafel relationship. This t;type of decay is not due to a limitation caused b;y reactant diffusion through, nor IR drop across, a growing film but is more characteristic of electron tunneling through a growing insulating barrier layer. The model proposed for the observed behavior involves the formation of a region of high molecular weight, oxidized material at the electrode surface which blocks further reaction at the electrode. The rate-determining step at the passivated electrode is therefore electron tunneling through this unreactive material.

Gattrell, M.; Kirk, D.W. (Univ. of Toronto, ON (Canada))

1993-04-01T23:59:59.000Z

216

Experimental Study of Solar Hydrogen Production Performance by Water Electrolysis in the South of Algeria  

Science Journals Connector (OSTI)

Current environment problems require the uses of clean process and durable sources in industrial activities. Hydrogen, produced by water electrolysis, represents high clean energy source. In this process, a high electrical energy rate is needed which led to costly product. In order to remedy this issue, the uses of renewable energies are required. In this work, an experimental study of solar hydrogen production system by alkaline water electrolysis in Ouargla (Algeria) city is presented. The alkaline water electrolysis, with different NaOH concentrations, is feed by photovoltaic panels. The system is tested at different input conditions of voltages and currents. Effects of temperature and NaOH electrolyte concentration on hydrogen production are examined

N. Chennouf; N. Settou; B. Negrou; K. Bouziane; B. Dokkar

2012-01-01T23:59:59.000Z

217

Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis  

SciTech Connect (OSTI)

A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

2007-11-01T23:59:59.000Z

218

A Process Model for the Production of Hydrogen Using High Temperature Electrolysis  

SciTech Connect (OSTI)

High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

2006-07-01T23:59:59.000Z

219

Isotopic Enrichment of Tritiated Water by a Bipolar Electrolysis Process  

Science Journals Connector (OSTI)

Isotope Separation / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001

S. Heinze; D. Ducret; J.-P. Verdin; T. Pelletier

220

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

6, 2010 6, 2010 CX-001813: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Milford) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Milford, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001819: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Pontiac) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001817: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Warren) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Warren, Michigan

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-002341: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bloomfield CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bloomfield, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002340: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bridgeport CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bridgeport, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002338: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Hartford CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Hartford, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

222

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

March 31, 2011 March 31, 2011 CX-005483: Categorical Exclusion Determination National Biodiesel Foundation: Biodiesel Terminal Installation Project CX(s) Applied: B5.1 Date: 03/31/2011 Location(s): Port Chester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2011 CX-005482: Categorical Exclusion Determination Portable Raman Gas Composition Monitor CX(s) Applied: B3.6 Date: 03/31/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2011 CX-005481: Categorical Exclusion Determination Grant for State Sponsored Renewable Energy and Energy Efficiency Projects - Montclair State University Solar Farm CX(s) Applied: B5.1 Date: 03/29/2011 Location(s): Montclair, New Jersey

223

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

14, 2011 14, 2011 CX-005037: Categorical Exclusion Determination Field Test of Carbon Dioxide-Methane Method for Production of Gas Hydrate CX(s) Applied: B3.7 Date: 01/14/2011 Location(s): North Slope Borough, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2011 CX-004991: Categorical Exclusion Determination Ohio Advanced Transportation Partnership (OATP) - Electric Vehicle Charging Infrastructure Installation CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Hamilton, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 13, 2011 CX-004990: Categorical Exclusion Determination City of Cerritos, Photovoltaic System at the Cerritos Corporate Yard CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Cerritos, California

224

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

24, 2010 24, 2010 CX-001214: Categorical Exclusion Determination Kilby Correctional Facility Boiler Replacement CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Mount Meigs, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001213: Categorical Exclusion Determination Decatur Work Release 10 Kilowatt Photovoltaic Array CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Decatur, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001206: Categorical Exclusion Determination Tehachapi Wind Energy Storage CX(s) Applied: A9, B1.13, B3.6, B4.4, B4.6, B5.1 Date: 03/24/2010 Location(s): Kern County, California Office(s): Electricity Delivery and Energy Reliability, National Energy

225

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

, 2010 , 2010 CX-001506: Categorical Exclusion Determination State Energy Program - Renewable Energy Grants CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Conley, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001510: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Valdosta, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001504: Categorical Exclusion Determination Ocean Wind Energy Analysis CX(s) Applied: B3.1, A9, A11 Date: 04/01/2010 Location(s): Chapel Hill, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

226

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

22, 2010 22, 2010 CX-000743: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 01/22/2010 Location(s): Tuscaloosa, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 21, 2010 CX-000708: Categorical Exclusion Determination Utah All Inclusive Statewide Alternative Fuels Transportation and Education Outreach Project CX(s) Applied: B5.1 Date: 01/21/2010 Location(s): Murray, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000705: Categorical Exclusion Determination Florida - Sunshine State Buildings Parking Lot Canopies - State Energy Program CX(s) Applied: B1.15, B1.24, B2.1, B5.1

227

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

May 19, 2010 May 19, 2010 CX-002418: Categorical Exclusion Determination Energy Retrofits for State Correctional Facilities - Mobile Work Release/Work Center Facility Boiler CX(s) Applied: B1.24, B1.31, B2.2, A9, B5.1 Date: 05/19/2010 Location(s): Pritchard, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 19, 2010 CX-002289: Categorical Exclusion Determination Cavitation Pretreatment of a Flotation Feedstock for Enhanced Coal Recovery CX(s) Applied: B3.6 Date: 05/19/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory May 19, 2010 CX-002290: Categorical Exclusion Determination Recovery - Advanced Underground Compressed Air Energy Storage (CAES) CX(s) Applied: A1, A9 Date: 05/19/2010

228

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

13, 2011 13, 2011 CX-005817: Categorical Exclusion Determination Economic Development Program CX(s) Applied: A1, A9, A11, B2.2, B5.1 Date: 05/13/2011 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005821: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service II CX(s) Applied: A9, A11, B3.1 Date: 05/11/2011 Location(s): Millersville, Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005820: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service I CX(s) Applied: A9 Date: 05/11/2011 Location(s): Millersville, Maryland

229

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2011 8, 2011 CX-006458: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 08/08/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 8, 2011 CX-006456: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B2.2, B5.1 Date: 08/08/2011 Location(s): Weston, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 4, 2011 CX-006455: Categorical Exclusion Determination Pennsylvania Energy Development Authority Sustainable Business Recovery - City of Pittsburgh Natural Gas Refuse Trucks CX(s) Applied: A1, B5.1 Date: 08/04/2011 Location(s): Pittsburgh, Pennsylvania

230

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2011 3, 2011 CX-006156: Categorical Exclusion Determination Utility Metering Installation: B3, B14, B36 CX(s) Applied: B1.15, B2.2 Date: 07/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2011 CX-006155: Categorical Exclusion Determination Wisconsin Clean Transportation Program/City of Milwaukee Compressed Natural Gas Infrastructure Project CX(s) Applied: B5.1 Date: 07/13/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006154: Categorical Exclusion Determination Recovery State Energy Program - Renewable Energy Incentives - Spencer Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 07/13/2011

231

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-001022: Categorical Exclusion Determination Development of an Autogas Network (Lithia Springs) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Lithia Springs, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-000957: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 03/01/2010 Location(s): Trenton, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-001038: Categorical Exclusion Determination Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1, A7, B5.1 Date: 03/01/2010 Location(s): Idaho Office(s): Energy Efficiency and Renewable Energy, National Energy

232

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-004665: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: A9, A11 Date: 12/08/2010 Location(s): Columbia, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 8, 2010 CX-004664: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Tucson, Arizona Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 7, 2010 CX-004687: Categorical Exclusion Determination Centralized Cryptographic Key Management (CKMS) CX(s) Applied: A1, A9, A11, B1.2 Date: 12/07/2010 Location(s): Oak Ridge, Tennessee

233

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

6, 2010 6, 2010 CX-002907: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach (Summary Categorical Exclusion) CX(s) Applied: B5.1 Date: 07/06/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 1, 2010 CX-002833: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: B3.6, B4.4, A1, A9, A11, B1.7, B5.1 Date: 07/01/2010 Location(s): Salem, Oregon Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 1, 2010 CX-002835: Categorical Exclusion Determination Pennsylvania Energy Harvest Mined Project Grants - Mains Dairy Farm Biogas Project CX(s) Applied: A9, A11, B5.1 Date: 07/01/2010

234

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2011 8, 2011 CX-006042: Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06/08/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2011 CX-006050: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B3.6, B5.1 Date: 06/07/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) CX(s) Applied: A1, A9, B3.11, B4.4 Date: 06/07/2011 Location(s): Borrego Springs, California

235

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0, 2010 0, 2010 CX-002626: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 06/10/2010 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002625: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #191 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002622: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #426 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy

236

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-002510: Categorical Exclusion Determination Rhode Island Non-Utility Scale Renewable Energy Loan, Grants Initiative CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002515: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002522: Categorical Exclusion Determination Danada Solar Energy and Lighting Project CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy

237

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

16, 2010 16, 2010 CX-004689: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004688: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Rolla, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004755: Categorical Exclusion Determination State Energy Program: Program Support/Administration CX(s) Applied: A1, A9, A11, B5.1 Date: 12/16/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, National Energy

238

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

December 27, 2010 December 27, 2010 CX-004778: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Point Comfort, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004777: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004776: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6

239

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-004106: Categorical Exclusion Determination Green Oil: Carbon Dioxide Enhanced Oil Recovery for America?s Small Oil Producers CX(s) Applied: A9 Date: 09/30/2010 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004105: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004100: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Boulder, Colorado

240

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

362: Categorical Exclusion Determination 362: Categorical Exclusion Determination Heavy-Duty Liquified Natural Gas Drayage Truck Project CX(s) Applied: A9 Date: 12/11/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000363: Categorical Exclusion Determination United Parcel Service (UPS) Ontario-Las Vegas Liquified Natural Gas Corridor CX(s) Applied: A9 Date: 12/11/2009 Location(s): Diamond Bar, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Socorro, New Mexico

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

10, 2009 10, 2009 CX-000336: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Durham, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000335: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Asheville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000334: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

242

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

January 27, 2010 January 27, 2010 CX-000997: Categorical Exclusion Determination Biodiesel Infrastructure Project (PrairieFire) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Monona, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000998: Categorical Exclusion Determination Biodiesel Infrastructure Project (Coulee) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Blair, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000999: Categorical Exclusion Determination Biodiesel In-line Blending Project (Innovation) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy

243

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

September 1, 2010 September 1, 2010 CX-003669: Categorical Exclusion Determination Green Energy Works! Targeted Grants - Ecogy Pennsylvania Systems LLC- Longwood Garden Solar CX(s) Applied: A9, A11, B5.1 Date: 09/01/2010 Location(s): Chester County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 31, 2010 CX-003665: Categorical Exclusion Determination High Performance Buildings Program - Hawthorne Hotel CX(s) Applied: B5.1 Date: 08/31/2010 Location(s): Salem, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 30, 2010 CX-003664: Categorical Exclusion Determination High Performance Sustainable Energy Research Laboratory CX(s) Applied: A11, B5.1 Date: 08/30/2010 Location(s): Lexington, Kentucky

244

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

16, 2010 16, 2010 CX-003449: Categorical Exclusion Determination Energy Efficiency through Clean Combined Heat and Power (CHP) CX(s) Applied: A9, A11, B1.24, B2.2, B5.1 Date: 08/16/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003448: Categorical Exclusion Determination Curriculum for Commissioning Energy Efficient Buildings CX(s) Applied: A1, A11 Date: 08/16/2010 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14

245

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

10, 2009 10, 2009 CX-000369: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Rockaway, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000368: Categorical Exclusion Determination New York State Alternative Fuel Vehicle & Infrastructure Deployment CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Albany, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000367: Categorical Exclusion Determination Long Island Regional Energy Collaborative CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Bay Shore, New York

246

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

29, 2010 29, 2010 CX-003327: Categorical Exclusion Determination Geological and Geotechnical Site Investigations for the Design of a Carbon Dioxide Rich Flue Gas Direct Injection CX(s) Applied: A8, A9, B3.1, B3.6 Date: 07/29/2010 Location(s): Fairbanks, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory July 29, 2010 CX-003326: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Evansville, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 29, 2010 CX-003325: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Benton Harbor, Michigan

247

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

January 18, 2010 January 18, 2010 CX-000707: Categorical Exclusion Determination Florida - Clean Fuel LLC (Shovel Ready Grant project) State Energy Program CX(s) Applied: B1.24, B1.31, B2.2, B2.5, B5.1 Date: 01/18/2010 Location(s): Lakeland, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000731: Categorical Exclusion Determination Building 4 Equipment Decommissioning CX(s) Applied: B3.6 Date: 01/18/2010 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory January 15, 2010 CX-000704: Categorical Exclusion Determination Electric Drive Semiconductor Manufacturing Center - Advanced Battery Program CX(s) Applied: B1.24, B1.31 Date: 01/15/2010 Location(s): Youngwood, Pennsylvania

248

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2010 7, 2010 CX-003795: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Rancho Cucamonga, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003793: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Bastrop, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003790: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Taylor, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

249

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-003928: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003927: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets in Target Area (Kitsap County) CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003926: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1

250

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0, 2011 0, 2011 CX-007030: Categorical Exclusion Determination Chemistry of Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior CX(s) Applied: B3.6 Date: 09/20/2011 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory September 19, 2011 CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California

251

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2011 8, 2011 CX-006915: Categorical Exclusion Determination Compressed Natural Gas/Infrastructure Development CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Ogden, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006914: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006912: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 09/28/2011 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy September 28, 2011 CX-006967: Categorical Exclusion Determination

252

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-001674: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Veolia) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Veolia, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001672: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Miami) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001670: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Florida) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1

253

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

23, 2012 23, 2012 CX-008493: Categorical Exclusion Determination Liquid Carbon Dioxide Slurry for Feeding Low Rank Coal (LRC) Gasifiers CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas, Oklahoma Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008492: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008491: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: B3.6 Date: 07/23/2012

254

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

18, 2010 18, 2010 CX-001313: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001312: Categorical Exclusion Determination State Facilities Retrofit Program: Commissioning/Re-Commissioning and Metering Projects CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001315: Categorical Exclusion Determination Propane Truck Deployment CX(s) Applied: A1, A7, A9, B5.1 Date: 03/18/2010 Location(s): San Antonio, Texas

255

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

22, 2010 22, 2010 CX-001294: Categorical Exclusion Determination Heavy-Duty Natural Gas Drainage Truck Replacement Program in the South Coast Air Basin CX(s) Applied: A7, A9, A11 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001297: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach CX(s) Applied: A7 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001296: Categorical Exclusion Determination B2,3,5,17,19 and 36 Utility Meter Install CX(s) Applied: B1.15, B2.2 Date: 03/22/2010 Location(s): Morgantown, West Virginia

256

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-000995: Categorical Exclusion Determination Craftmaster Manufacturing Inc. Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Towanda, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 8, 2010 CX-000996: Categorical Exclusion Determination Divine Providence Hospital-Susquehanna Health Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 7, 2010 CX-000766: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - New Vehicle Purchase CX(s) Applied: A7, A11

257

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

258

Electrolysis of neodymium oxide. Final report for the period August 19, 1991 through February 28, 1997  

SciTech Connect (OSTI)

The objective of this research was to develop an electrolytic process for the continuous and economic production of neodymium alloys from neodymium oxide. The electrolysis of neodymium oxide continued to show promise for implementation as a low-cost process to produce high- quality neodymium or neodymium-iron alloy.

Keller, R.; Larimer, K.T.

1997-05-01T23:59:59.000Z

259

Source of methane and methods to control its formation in single chamber microbial electrolysis cells  

E-Print Network [OSTI]

Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times

260

Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with  

E-Print Network [OSTI]

of these methods so far shown sufficient promise for economical production of hydrogen (Miyake et al., 1999; WoodShort Communication High hydrogen production rate of microbial electrolysis cell (MEC) with reduced cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MOLTEN OXIDE ELECTROLYSIS FOR LUNAR OXYGEN GENERATION USING IN-SITU RESOURCES  

E-Print Network [OSTI]

.; Woburn, MA, 01801, USA Keywords: ISRU, Molten Oxide Electrolysis, Inert Anode, Oxygen Generation Abstract demonstrated suitable inert anode material, but its use had been limited to laboratory-scale testing owing 50:50 (wt%) iridium-tungsten alloy were shown to be functional inert anodes for molten oxide

Sadoway, Donald Robert

262

Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes  

Science Journals Connector (OSTI)

...acetate as a supplemental energy source and trace vitamins...the Advanced Research Projects Agency Energy (ARPA-E) is gratefully...KJ , et al. 2009. A solar-powered microbial electrolysis...lacking organic sources of energy. Results at these different...

John M. Pisciotta; Zehra Zaybak; Douglas F. Call; Joo-Youn Nam; Bruce E. Logan

2012-05-18T23:59:59.000Z

263

Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes  

Science Journals Connector (OSTI)

...Electrolysis Cell Biocathodes...Microbial Fuel Cell Bioanodes John...media lacking organic sources of...and methane production in one sample...as wind and solar energy, as...inorganic and organic products released...biocathodic hydrogen production, but it requires...microbial fuel cell [MFC...

John M. Pisciotta; Zehra Zaybak; Douglas F. Call; Joo-Youn Nam; Bruce E. Logan

2012-05-18T23:59:59.000Z

264

Electrolysis of Water and Recombination of Oxygen and Hydrogen Lecture-Demonstration Equipment  

Science Journals Connector (OSTI)

Electrolysis of water takes place in an ordinary Hoffman type apparatus. Hydrogen and oxygen are collected in an explosion chamber where the mixture is detonated using a high-voltage spark coil. The whole equipment operates under the water contained in a large tank.

V. Acosta; D. L. Nordling; K. V. Freed; C. L. Cowan

1967-01-01T23:59:59.000Z

265

Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolytesupported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

2005-05-01T23:59:59.000Z

266

Author's personal copy Synergistic roles of off-peak electrolysis and thermochemical  

E-Print Network [OSTI]

, Ontario, Canada L8S 4K1 a r t i c l e i n f o Article history: Received 10 June 2008 Received in revised, but electrolysis can take advantage of low electricity prices during off-peak hours, as well as intermittent and de million tonnes per year by 2023. In Alberta alone, oil sands development is requiring huge quantities

Naterer, Greg F.

267

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network [OSTI]

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

268

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS  

SciTech Connect (OSTI)

An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

X. Zhang; J. E. O'Brien; R. C. O'Brien

2012-07-01T23:59:59.000Z

269

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

270

Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

271

Preliminary Testing of an Electrolysis Cell for Highly Tritiated Water  

Science Journals Connector (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

A. Rahier; R. Cornelissen; A. Bruggeman; P. De Regge

272

Hydrogen Production by PEM Electrolysis: Spotlight on Giner and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

inputs for zero carbon footprint - PEM technology can be integrated with solar and wind power Cost competitive with current commercial delivered hydrogen costs - Currently...

273

Design of an Electrolysis Cell for Highly Tritiated Water  

Science Journals Connector (OSTI)

Fusion Reactor / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

A. Rahier; R. Cornelissen; A. Bruggeman; W. Goossens; L. Baetsl

274

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

National Energy Technology National Energy Technology Laboratory Categorical Exclusion Determinations: National Energy Technology Laboratory Categorical Exclusion Determinations issued by National Energy Technology Laboratory. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 2013 CX-010917: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory September 25, 2013 CX-010916: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

275

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

Technology Vehicles Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2012 CX-008810: Categorical Exclusion Determination One Nevada Optimization of Microwave Telecommunication System CX(s) Applied: B1.19, B4.6 Date: 05/29/2012 Location(s): Nevada, Nevada Offices(s): Advanced Technology Vehicles Manufacturing Loan Program January 24, 2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct Wafer/Cell Solar Facility CX(s) Applied: B1.31 Date: 01/24/2012 Location(s): Massachusetts Offices(s): Advanced Technology Vehicles Manufacturing Loan Program

276

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled  

E-Print Network [OSTI]

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis 2013 Keywords: Microbial reverse-electrodialysis electrolysis cell Ammonium bicarbonate Hydrogen reverse electrodialysis (RED) stack into the MEC, which was called a microbial reverse-electrodialysis

277

General Considerations on the Theory of the Separation of H$^{1}$ and H$^{2}$ by Electrolysis of Water  

Science Journals Connector (OSTI)

29 March 1934 research-article General Considerations on the Theory of the Separation of H and H by Electrolysis of Water R. H. Fowler The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1934-01-01T23:59:59.000Z

278

Fabrication of TiO2 film with different morphologies on Ni anode and application in photoassisted water electrolysis  

Science Journals Connector (OSTI)

The anode of an alkaline electrolytic cell for water electrolysis was modified by TiO2 photocatalysts with different morphologies. The water electrolysis was coupled with photocatalytic decomposition of water by irradiation of UV light on the modified anode. And a feasible process for the hydrogen production of water electrolysis assisted by photocatalysis (WEAP) was proposed and experimentally confirmed. The results show that the highly ordered, vertically oriented tubular arrays structure on Ni anode surface has better hydrogen production performance than random TiO2. In WEAP process, the maximum rate of hydrogen production is 2.77 ml/(h*cm2) when the anode modified by ordered TiO2 nanotube arrays, compared to traditional alkaline electrolytic cell for water electrolysis with Ni anode, H2-production rate increased by 139%.

Hongbo He; Aiping Chen; Hui Lv; Haijun Dong; Ming Chang; Chunzhong Li

2013-01-01T23:59:59.000Z

279

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

13, 2011 13, 2011 CX-006752: Categorical Exclusion Determination Energy Efficiency Vehicles for Sustainable Mobility - Department of Energy Graduate Automotive Technology Education Center of Excellence CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Columbus, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006751: Categorical Exclusion Determination University of Alabama at Birmingham Graduate Automotive Technology Education Center for Lightweight Materials and Manufacturing for Automotive Technologies CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Birmingham, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006748: Categorical Exclusion Determination

280

Preliminary study of the electrolysis of aluminum sulfide in molten salts  

SciTech Connect (OSTI)

A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

October 5, 2011 October 5, 2011 CX-007114: Categorical Exclusion Determination Compressed Natural Gas (CNG)/Infrastructure Development (Station Upgrade) CX(s) Applied: B5.1 Date: 10/05/2011 Location(s): West Jordan, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 5, 2011 CX-007112: Categorical Exclusion Determination Geologic Characterization of the South Georgia Rift Basin - 3-Dimension Seismic Survey CX(s) Applied: A9, A11, B3.1 Date: 10/05/2011 Location(s): Colleton County, South Carolina Office(s): Fossil Energy October 5, 2011 CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1 Date: 10/05/2011 Location(s): Platte County, Missouri

282

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2011 8, 2011 CX-006926: Categorical Exclusion Determination Next Generation Inverter Design CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 28, 2011 CX-006921: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006919: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): University Park, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Savannah River

283

Fuzzy Delphi method for evaluating hydrogen production technologies  

Science Journals Connector (OSTI)

The purpose of this research is to establish an evaluation model for selecting the most appropriate technology for development in Taiwan, based on 14 evaluation criteria. Due to the inherent uncertainty and imprecision associated with the mapping of decision makers’ perception to crisp values, linguistic variables are used to assess the weights of the criteria and the ratings of each technology with respect to each criterion. The criteria weights and technology ratings are collected through a seven-point linguistic scale using a Delphi questionnaire. The linguistic scores are then converted into fuzzy numbers, and a consensus of the decision makers’ opinions on weights and ratings is mathematically derived using fuzzy Delphi methodology. We have used the model to evaluate seven different hydrogen production technologies. The results indicate that hydrogen production via electrolysis by wind power and that via electrolysis by photovoltaic electricity are the two technologies that should be chosen for further development.

Pao-Long Chang; Chiung-Wen Hsu; Po-Chien Chang

2011-01-01T23:59:59.000Z

284

Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

C. Stoots; J. O'Brien; J. Herring; J. Hartvigsen

2008-11-01T23:59:59.000Z

285

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

SciTech Connect (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01T23:59:59.000Z

286

Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage  

SciTech Connect (OSTI)

Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

2011-01-01T23:59:59.000Z

287

CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy  

SciTech Connect (OSTI)

A three-dimensional computational fluid dynamics (CFD) model has been created to model hightemperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2005-10-01T23:59:59.000Z

288

Bubble Over-Potential During Two-Phase Alkaline Water Electrolysis  

Science Journals Connector (OSTI)

Abstract During two-phase water electrolysis production of bubbles at one or both electrodes is observed. This leads to a change in the electrolyser electrical and hydrodynamic properties. When gravity is present, the production of bubbles at the electrodes induces a macro-convection in the electrolyser. This leads to a local distribution of the bubbles determining the local gas void fraction and current density at the electrodes. The absence of gravity eliminates the natural convection and buoyancy forces and consequently the frictional forces. It is generally difficult to estimate the quantitative influence of each of these single phenomena due to strong coupling. In the present work, alkaline water electrolysis is performed. The formation of gas bubbles at the anode is observed using four cameras. The aim of this study is to establish the quantitative evolution laws for the electrochemical cell potential, the bubble diameter and population density during alkaline (NaOH) two-phase electrolysis in function of the two explored inputs current density and gravity.

Philippe Mandin; Zine Derhoumi; Hervé Roustan; Wüthrich Rolf

2014-01-01T23:59:59.000Z

289

Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis  

Science Journals Connector (OSTI)

Abstract Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ?25 kJ mol?1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

Karan Sandeep Kadakia; Prashanth H. Jampani; Oleg I. Velikokhatnyi; Moni Kanchan Datta; Sung Kyoo Park; Dae Ho Hong; Sung Jae Chung; Prashant N. Kumta

2014-01-01T23:59:59.000Z

290

Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode  

SciTech Connect (OSTI)

An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

J. E. O'Brien; G. K. Housley; D. G. Milobar

2009-11-01T23:59:59.000Z

291

Status of the INL high-temperature electrolysis research program –experimental and modeling  

SciTech Connect (OSTI)

This paper provides a status update on the high-temperature electrolysis (HTE) research and development program at the Idaho National Laboratory (INL), with an overview of recent large-scale system modeling results and the status of the experimental program. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor coolant outlet temperatures. In terms of experimental research, the INL has recently completed an Integrated Laboratory Scale (ILS) HTE test at the 15 kW level. The initial hydrogen production rate for the ILS test was in excess of 5000 liters per hour. Details of the ILS design and operation will be presented. Current small-scale experimental research is focused on improving the degradation characteristics of the electrolysis cells and stacks. Small-scale testing ranges from single cells to multiple-cell stacks. The INL is currently in the process of testing several state-of-the-art anode-supported cells and is working to broaden its relationship with industry in order to improve the long-term performance of the cells.

J. E. O'Brien; C. M. Stoots; M. G. McKellar; E. A. Harvego; K. G. Condie; G. K. Housley; J. S. Herring; J. J. Hartvigsen

2009-04-01T23:59:59.000Z

292

X-ray Photoelectron Spectroscopy of GaP{1-x}N(x) Photocorroded as a Result of Hydrogen Production through Water Electrolysis  

E-Print Network [OSTI]

X-ray Photoelectron Spectroscopy of GaP{1-x}N(x) Photocorroded as a Result of Hydrogen Production through Water Electrolysis

Mayer, Marie A

2006-01-01T23:59:59.000Z

293

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

31, 2010 31, 2010 CX-001453: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 03/31/2010 Location(s): Fort Worth, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2010 CX-001452: Categorical Exclusion Determination Development of Advanced Reservoir Characterization Techniques Date: 03/31/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory March 30, 2010 CX-001462: Categorical Exclusion Determination High Performance Buildings - United Teen Equality Center CX(s) Applied: B1.15, B1.24, B2.5, A9, A11, B5.1 Date: 03/30/2010 Location(s): Lowell, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy

294

A survey of alternative oxygen production technologies  

Science Journals Connector (OSTI)

Utilization of the Martian atmosphere for the production of fuel and oxygen has been extensively studied. The baseline fuel production process is a Sabatier reactor which produces methane and water from carbon dioxide and hydrogen. The oxygen produced from the electrolysis of the water is only half of that needed for methane-based rocket propellant and additional oxygen is needed for breathing air fuel cells and other energy sources. Zirconia electrolysis cells for the direct reduction of CO 2 are being developed as an alternative means of producing oxygen but present many challenges for a large-scale oxygen production system. The very high operating temperatures and fragile nature of the cells coupled with fairly high operating voltages leave room for improvement. This paper will survey alternative oxygen production technologies present data on operating characteristics materials of construction and some preliminary laboratory results on attempts to implement each.

Dale E. Lueck; Clyde F. Parrish; William J. Buttner; Jan M. Surma

2001-01-01T23:59:59.000Z

295

The extreme efficiency of producing bubbles via electrolysis of water has been put to use in a new design for an integrated  

E-Print Network [OSTI]

ABSTRACT The extreme efficiency of producing bubbles via electrolysis of water has been put to use with a catalyst. The electrolysis products have a thermodynamic proclivity to revert to water. They remain and allows the gasses to revert to water. This process allows one to control both the creation

Liepmann, Dorian

296

Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems  

SciTech Connect (OSTI)

Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs.

Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

1987-01-01T23:59:59.000Z

297

A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process  

Science Journals Connector (OSTI)

Abstract Development of the syngas production from solid oxide H2O/CO2 co-electrolysis is limited by the intensive energy input and low efficiency. Here, we present a new concept to efficiently generate syngas in both sides of the solid oxide electrolyzer by synergistically combining co-electrolysis with partial oxidation of methane (POM). Thermodynamic calculation and electrochemical measurements for the POM assisted solid oxide co-electrolysis processes on the SFM-SDC/LSGM/SFM-SDC cells exhibited an reduced electric input, increased energy conversion efficiency and decreased cathodic co-electrolysis polarization resistance in comparison with the conventional co-electrolysis. This method will be crucial to establish a clean and effective energy conversion system to meet global sustainable energy needs.

Yao Wang; Tong Liu; Shumin Fang; Guoliang Xiao; Huanting Wang; Fanglin Chen

2015-01-01T23:59:59.000Z

298

Production of anhydrous aluminum chloride composition and process for electrolysis thereof  

DOE Patents [OSTI]

A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

Vandegrift, George F. (Bolingbrook, Naperville, IL); Krumpelt, Michael (Naperville, IL); Horwitz, E. Philip (Hinsdale, IL)

1983-01-01T23:59:59.000Z

299

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes  

E-Print Network [OSTI]

% higher than separated PV electrolysis devices, and analysis work has shown that the cost of PEC hydrogenHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner

300

Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning  

Science Journals Connector (OSTI)

Abstract Polymer electrolyte membrane (PEM) water electrolysis is an efficient and environmental friendly method that can be used for the production of molecular hydrogen of electrolytic grade using zero-carbon power sources such as renewable and nuclear. However, market applications are asking for cost reduction and performances improvement. This can be achieved by increasing operating current density and lifetime of operation. Concerning performance, safety, reliability and durability issues, the membrane-electrode assembly (MEA) is the weakest cell component. Most performance losses and most accidents occurring during PEM water electrolysis are usually due to the MEA. The purpose of this communication is to report on some specific degradation mechanisms that have been identified as a potential source of performance loss and membrane failure. An accelerated degradation test has been performed on a MEA by applying galvanostatic pulses. Platinum has been used as electrocatalyst at both anode and cathode in order to accelerate degradation rate by maintaining higher cell voltage and higher anodic potential that otherwise would have occurred if conventional Ir/IrOx catalysts had been used. Experimental evidence of degradation mechanisms have been obtained by post-mortem analysis of the MEA using microscopy and chemical analysis. Details of these degradation processes are presented and discussed.

S.A. Grigoriev; K.A. Dzhus; D.G. Bessarabov; P. Millet

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investigations on degradation of the long-term proton exchange membrane water electrolysis stack  

Science Journals Connector (OSTI)

Abstract A 9-cell proton exchange membrane (PEM) water electrolysis stack is developed and tested for 7800 h. The average degradation rate of 35.5 ?V h?1 per cell is measured. The 4th MEA of the stack is offline investigated and characterized. The electrochemical impedance spectroscopy (EIS) shows that the charge transfer resistance and ionic resistance of the cell both increase. The linear sweep scan (LSV) shows the hydrogen crossover rate of the membrane has slight increase. The electron probe X-ray microanalyze (EPMA) illustrates further that Ca, Cu and Fe elements distribute in the membrane and catalyst layers of the catalyst-coated membranes (CCMs). The cations occupy the ion exchange sites of the Nafion polymer electrolyte in the catalyst layers and membrane, which results in the increase in the anode and the cathode overpotentials. The metallic impurities originate mainly from the feed water and the components of the electrolysis unit. Fortunately, the degradation was reversible and can be almost recovered to the initial performance by using 0.5 M H2SO4. This indicates the performance degradation of the stack running 7800 h is mainly caused by a recoverable contamination.

Shucheng Sun; Zhigang Shao; Hongmei Yu; Guangfu Li; Baolian Yi

2014-01-01T23:59:59.000Z

302

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks  

SciTech Connect (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

2008-07-01T23:59:59.000Z

303

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

20, 2009 20, 2009 CX-000438: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000437: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000373: Categorical Exclusion Determination Measurements of 222 Radon, 220 Radon, and Carbon Dioxide Emissions in Natural Carbon Dioxide Fields in Wyoming: Monitoring, Verification, and

304

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-001158: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins CX(s) Applied: A9 Date: 03/11/2010 Location(s): Bloomington, Indiana Office(s): Fossil Energy, National Energy Technology Laboratory March 11, 2010 CX-001153: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010 Location(s): Wilmington, Delaware Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 11, 2010 CX-001152: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Niskayuna) CX(s) Applied: B3.6

305

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

421: Categorical Exclusion Determination 421: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000420: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000419: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide

306

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-002486: Categorical Exclusion Determination Flow Battery Solution for Smart Grid Renewable Energy Applications CX(s) Applied: B3.6, B4.6, A1, B4.11 Date: 06/03/2010 Location(s): Sunnyvale, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 2, 2010 CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15, B1.24, B1.31, A9, B5.1 Date: 06/02/2010 Location(s): Franklin County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 2, 2010 CX-002505: Categorical Exclusion Determination Energy Efficiency Program for Municipalities, Schools, Hospitals, Public Colleges

307

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003053: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for University of Southern California's Portion of the Work) CX(s) Applied: A11, B3.6 Date: 07/19/2010 Location(s): Marina del Ray, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003054: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A9, B2.2, B5.1 Date: 07/19/2010 Location(s): Westchester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003052: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for General Electric Work in

308

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

January 21, 2011 January 21, 2011 CX-005058: Categorical Exclusion Determination Improving Reservoir Contact for Increased Production and Recovery of Gas Shale Reservoirs CX(s) Applied: B3.6 Date: 01/21/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005057: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance CX(s) Applied: A9, B3.1 Date: 01/20/2011 Location(s): Eau Claire, Wisconsin Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005056: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of

309

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

12, 2010 12, 2010 CX-000782: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 02/12/2010 Location(s): Camden, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 12, 2010 CX-000781: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A7 Date: 02/12/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 10, 2010 CX-000775: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama (Drill)

310

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

September 18, 2013 September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory August 23, 2013 CX-010779: Categorical Exclusion Determination Predictive Large Eddy Simulation (LES) Modeling and Validation for High-Pressure Turbulent Flames and Flashback in Hydrogen-Enriched Gas

311

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

22, 2011 22, 2011 CX-005287: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure Project: Essex Company Resource Recovery Facility CX(s) Applied: B5.1 Date: 02/22/2011 Location(s): Newark, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005283: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005282: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green

312

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

20, 2010 20, 2010 CX-003720: Categorical Exclusion Determination Recovery Act - Los Angeles Department of Water and Power Smart Grid Regional Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.4, B5.1 Date: 09/20/2010 Location(s): Los Angeles County, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 20, 2010 CX-003727: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1 Date: 09/20/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 20, 2010 CX-003726: Categorical Exclusion Determination Phipps Conservatory and Botanical Gardens Waste-to-Energy Project

313

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

19, 2011 19, 2011 CX-005634: Categorical Exclusion Determination Characterization of Hydrocarbon Samples and/or Qualitative/Quantitative Analysis of Hydrocarbon Mixtures CX(s) Applied: B3.6 Date: 04/19/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory April 19, 2011 CX-005633: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct Medium Voltage Connection CX(s) Applied: A1, A11, B3.6, B4.4, B5.1 Date: 04/19/2011 Location(s): San Jose, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April 19, 2011 CX-005632: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct

314

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3, 2011 3, 2011 CX-006170: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities Date: 07/13/2011 Location(s): Huntington Woods, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006169: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006168: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Wayne, Michigan

315

High-speed and bi-stable electrolysis-bubble actuated planar micro gate valves are demonstrated in this paper.  

E-Print Network [OSTI]

SUMMARY High-speed and bi-stable electrolysis-bubble actuated planar micro gate valves are demonstrated in this paper. The speed of previous low power planar microvalves was limited by the bubble collapse process. In addition bi-stability was unreliable. In this work, surface tension is used

Liepmann, Dorian

316

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

317

Water Electrolysis  

Science Journals Connector (OSTI)

Our energy system is currently changing significantly due to the continuing, massive integration of renewable energies. This transformation process and thereby especially the intermittency of wind and solar power...

Markus Lehner; Robert Tichler…

2014-01-01T23:59:59.000Z

318

Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL  

SciTech Connect (OSTI)

An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

2008-06-01T23:59:59.000Z

319

Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis  

Science Journals Connector (OSTI)

The applicability of a non-conductive TiO2 as the support of the anodic catalyst for PEM water electrolysis was tested. Three TiO2 samples with different specific surface areas were modified by IrO2 using a modified version of the Adams fusion method. A constant weight ratio of IrO2/TiO2 of 0.6 was maintained in all cases. The size, specific surface area and morphology of IrO2 electrocatalyst crystallites were investigated by X-ray diffraction, nitrogen adsorption (BET) and scanning electron microscopy, respectively. The electron conductivity of compressed catalyst powders was evaluated. Their electrochemical properties were studied on a rotating disk electrode (RDE) and finally in a laboratory electrolyser. Utilization of the TiO2 support resulted in a reduction in the size of the IrO2 crystallites. It was found that the lower the specific surface area of the supports, the higher was the electrochemical activity of the catalyst. This is most likely due to the formation of a conductive IrO2 film on the surface of non-conductive supports. For the supports with a higher surface area, the amount of IrO2 used was not sufficient to form an adequately compact film. This resulted in high electron resistance of such a catalyst. The RDE results were confirmed by a laboratory electrolysis test. Taken together with the excellent stability of TiO2 in an anodic environment, these results suggest that these materials are promising supports if the appropriate amount of iridium is deposited.

Petr Mazúr; Jakub Polonský; Martin Paidar; Karel Bouzek

2012-01-01T23:59:59.000Z

320

U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis  

SciTech Connect (OSTI)

This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

Saur, G.; Ainscough, C.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

322

Hydroxyl Ion Migration, Chemical Reactions, Water Transport and Other Effects As Optimizing Parameters In Cross-, Co- And Countercurrently Operated Membrane Cells For The Chlor/Alkali Electrolysis  

Science Journals Connector (OSTI)

A mathematical model describing a chloralkali-electrolysis in membrane cells including unusual flow pattern is presented. This paper discusses several influences like chemical reactions in the anolyte compartm...

K. H. Simmrock

1984-01-01T23:59:59.000Z

323

Diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells by Raman spectroscopy: A topical report on chlorides: Topical report, June 1982-June 1987  

SciTech Connect (OSTI)

Molten salt electrolysis, a very energy-intensive process, is used in the extraction of light metals. Aluminum production by the Hall process and magnesium production in the Dow and I.G. Farbenindustrie cells constitute the major commercial applications of metal electrowinning from molten-salt media at present. The energy input into the electrolysis cell is in the form of direct current, and the energy efficiencies in the magnesium or aluminum processes are only in the 30 to 40% range. Major energy reductions are achieved by reducing the cell voltage or by increasing the current efficiency. Goal of the research is to identify the sources of the current losses occurring in molten salt electrolysis. This research worked on the systems of I.G. Farben magnesium chloride and Alcoa smelting aluminum chloride processes. Raman spectra were measured and analyzed for each component or their mixtures of the electrolyte for magnesium and aluminum reduction in chloride melts. Raman measurements were also conducted on the melts of industrial composition for aluminum and magnesium electrolysis. In laboratory-scale cells which imitated industrial practice, Raman spectra were measured in situ during electrolysis in attempts to identify the streamers, coloration of electrolyte, and any subvalent species. They were known to occur only during electrolysis, and they have been reported to be possible current losses. Cyclic voltammetry was conducted to obtain information about the generation of subvalent species which were not detected by Raman measurement. These were thought to be kinetic entities present only during electrolysis. Results of Raman spectroscopy and electrochemistry of magnesium and aluminum reduction from molten chloride bath are presented. The results would be useful to establish the basis for the study of electrolysis of aluminum from molten fluoride media. 119 refs., 66 figs.

Sadoway, D. R.

1987-06-01T23:59:59.000Z

324

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

November 16, 2009 November 16, 2009 CX-000409: Categorical Exclusion Determination Wireless Subsea Communications System CX(s) Applied: B3.6 Date: 11/16/2009 Location(s): Boston, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory November 16, 2009 CX-000308: Categorical Exclusion Determination Connecticut Revision 2 - Retrofit 9 State Buildings CX(s) Applied: A9, A11, B1.3, B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/16/2009 Location(s): Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 16, 2009 CX-000435: Categorical Exclusion Determination Novel Oxygen Carriers for Coal-fueled Chemical Looping Combustion CX(s) Applied: A9, A11 Date: 11/16/2009 Location(s): Bowling Green, Kentucky

325

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents [OSTI]

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

1991-01-01T23:59:59.000Z

326

Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis  

Science Journals Connector (OSTI)

Abstract Power-to-Substitute Natural Gas processes are investigated to offer solutions for renewable energy storing or transportation. In the present study, an original Power-to-SNG process combining high-temperature steam electrolysis and CO2 methanation is implemented and simulated. A reference process is firstly defined, including a specific modelling approach of the electrolysis and a methanation modelling including a kinetic law. The process also integrates a unit to clean the gas from residual CO2, H2 and H2O for gas network injection. Having set all the units, simulations are performed with ProsimPlus 3™ software for a reference case where the electrolyser and the methanation reactors are designed. The reference case allows to produce 67.5 Nm3/h of SNG with an electrical energy consumption of 14.4 kW h/Nm3. The produced SNG satisfies specifications required for network injection. From this reference process, two sensitivity analyses on electrolysis and methanation working points and on external parameters and constraints are considered. As a main result, we observe that the reference case maximises both process efficiency and SNG production when compared with other studied cases.

Myriam De Saint Jean; Pierre Baurens; Chakib Bouallou

2014-01-01T23:59:59.000Z

327

Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis  

Science Journals Connector (OSTI)

Abstract In this work, we report a novel integrated inorganic membrane electrode assembly (I2MEA) for anion exchange membrane (AEM) water electrolysis by using inorganic Mg-Al layered double hydroxides (Mg-Al LDHs) as an ionic conductor. Mg-Al \\{LDHs\\} synthesized by a two-step approach exhibit high hydroxide ion conductivity and superior stability. The resultant ionic conducting nanoparticles are cold-pressed to form a membrane and mixed with a non-precious electrocatalyst to form the catalyst layer onto each side of the membrane. As such, an I2MEA is formed and used in a water electrolysis setup. It is shown that the present water electrolysis results in a maximum current density of 208 mA cm?2 with 0.1 M NaOH as the electrolyte and a cutoff voltage of 2.2 V at 70 °C. More impressively, using 0.1 M Na2CO3 as the electrolyte, the \\{I2MEAs\\} can continuously electrolyze at 80 mA cm?2 for 600 hours with a decay rate of as low as 100 ?V h?1. This superior stability is attributed to the integrated structure that allows hydroxide ions to transport smoothly.

L. Zeng; T.S. Zhao

2015-01-01T23:59:59.000Z

328

High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis  

SciTech Connect (OSTI)

Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.

Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I.; Jampani, Prashanth H.; Chung, Sung Jae; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

2013-01-01T23:59:59.000Z

329

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

330

SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis  

SciTech Connect (OSTI)

Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This s.thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential mechanisms of these novel electro-catalysts for OER processes.

Kumta, Prashant [University of Pittsburgh

2014-10-03T23:59:59.000Z

331

Potential oscillation during electrolysis of water in acidic solutions under numerous conditions  

Science Journals Connector (OSTI)

Abstract We have revealed that a novel potential oscillation occurs in hydrogen evolution reaction (HER) during water electrolysis, not only when H2SO4 solutions are used as electrolytes as has been reported in our earlier papers (Mukouyama et al., 2008; 2013), but also when a large variety of acid solutions are used as electrolytes. When the acid concentration is lower than ca. 0.1 M, the electrode potential oscillates spontaneously under current controlled conditions in a high overpotential region, e.g. more negative than ca. ?1.0 V vs. SHE. The oscillation appears by addition of a small amount of salts, such as LiClO4, Na2SO4, K2SO4 and MgSO4, even when the acid concentration is higher than ca. 0.1 M. We have also found that the oscillation occurs not only when Pt, Au or Cu is used as a working electrode as has been reported in the papers but also when various metal substrates such as Rh, Ag, Fe, Ni, W, Zn, Sn and In are used. It was revealed that the local pH at the electrode surface oscillates between acidic and basic synchronously with the potential oscillation. The mechanism of the oscillation can be explained by an autocatalytic bubble evolution and the changes in the local pH and in the concentration of dissolved hydrogen at the electrode surface due to the bubble evolution.

Yoshiharu Mukouyama; Ryusuke Nakazato; Tetsuaki Shiono; Shuji Nakanishi; Hiroshi Okamoto

2014-01-01T23:59:59.000Z

332

Activated carbon from grass – A green alternative catalyst support for water electrolysis  

Science Journals Connector (OSTI)

Abstract Grass blades (turf grass) have been selected as a cheap biomass source of producing activated carbon for supporting Pt particles for utilizing as electrocatalyst for H2 generation through electrolysis of water. Activation is done using ZnCl2 followed by thermal processing at 250 °C. 1% Pt was supported over the grass derived activated biomass carbon (G-ABC) powder to result in Pt@G-ABC. After physical characterization, Pt@G-ABC sample has been tested for its catalytic activity in 1 M sulfuric acid solution for H2 gas generation through Linear Sweep & Cyclic Voltammetry. Cost factor involved in the production of G-ABC has also been compared with the traditional commercially available carbon support. The studies suggest that grass may be considered not only as a potential alternative source for producing carbon supported catalyst for H2 generation but also highlight the production of low-cost carbon for further applications like electrode materials, adsorbent for color, odor and hazardous pollutants.

Palanichamy Kalyani; Ariharaputhiran Anitha; Andre Darchen

2013-01-01T23:59:59.000Z

333

Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis  

Science Journals Connector (OSTI)

Abstract In this work different amorphous melt-spun Fe-alloys (Fe82B18, Fe80Si10B10, Fe60Co20Si10B10) were investigated as cathode materials for the alkaline electrolysis of water. In particular, the influence of cobalt as well as the metalloids boron and silicon on the activity for the hydrogen evolution reaction (HER) was studied in 1 M KOH at 298 K using cyclic voltammetric, galvanostatic and polarization techniques. The electrocatalytic activity was evaluated in the view of the overpotential. It was found that cyclic voltammetric techniques can be used to activate the melt-spun Fe-alloys strongly. Different cyclic voltammetric activation procedures are discussed and the influence of the sweep rate and the potential window on the HER activity was elucidated. The experimental data indicate that the addition of metalloids and, most importantly, of cobalt improves the HER activity of the materials. Thus, the overpotential can be reduced by 200 mV compared to polycrystalline Ni.

Christian Immanuel Müller; Thomas Rauscher; Andreas Schmidt; Thomas Schubert; Thomas Weißgärber; Bernd Kieback; Lars Röntzsch

2014-01-01T23:59:59.000Z

334

Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells  

Science Journals Connector (OSTI)

Abstract Cobalt was successfully recovered with simultaneous methane and acetate production in biocathode microbial electrolysis cells (MECs). At an applied voltage of 0.2 V, 88.1% of Co(II) was reduced with concomitantly achieving yields of 0.266 ± 0.001 mol Co/mol COD, 0.113 ± 0.000 mol CH4/mol COD, and 0.103 ± 0.003 mol acetate/mol COD. Energy efficiencies relative to the electrical input were 21.2 ± 0.05% (Co), 100.9 ± 3.2% (CH4), and 1.0 ± 0.01% (acetate), and overall energy efficiencies relative to both electrical input and energy of anodic substrate averaged 3.7 ± 0.05% (Co), 17.5 ± 1.4% (CH4) and 0.5 ± 0.001% (acetate). Applied voltage, initial Co(II) concentration, and temperature affected system performance. The apparent activation energy (Ea) obtained in \\{MECs\\} was 26.7 kJ/mol compared to 40.5 kJ/mol in the abiotic controls, highlighting the importance of cathodic microbial catalysis to Co(II) reduction. Dominant microorganisms most similar to Geobacter psychrophilus, Acidovorax ebreus, Diaphorobacter oryzae, Pedobacter duraquae, and Prolixibacter bellariivorans were observed on the biocathodes. This study provides a new process for cobalt recovery and recycle of spent lithium ion batteries with simultaneous methane and acetate production in the biocathode MECs.

Liping Huang; Linjie Jiang; Qiang Wang; Xie Quan; Jinhui Yang; Lijie Chen

2014-01-01T23:59:59.000Z

335

Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack  

SciTech Connect (OSTI)

This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm × 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

336

MHK Technologies/Floating anchored OTEC plant | Open Energy Information  

Open Energy Info (EERE)

anchored OTEC plant anchored OTEC plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating anchored OTEC plant.jpg Technology Profile Primary Organization LAUSDEO Incorporated Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anchored floating OTEC plant Small volume above ocean surface so that device can avoid damage due to severe weather Water depth must exceed 600 meters Prefer to use power line to transmit electricity to shore facility Can use electrolysis to produce hydrogen and transport hydrogen to floating or shore facility Mooring Configuration The preferred mooring configuration is gravity base with three bottom weights The weights can be at depths up to 3000 meters

337

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Thermal Conversion of Water Wind Electrolysis n.s. (10 MWp)method is the electrolysis of water using a renewableobtain higher Electrolysis of Water Hydrogen can be produced

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

338

Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells  

SciTech Connect (OSTI)

A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.

J. E. O'Brien; X. Zhang; G. K. Housley; K. DeWall; L. Moore-McAteer; G. Tao

2012-06-01T23:59:59.000Z

339

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

340

Evaluating the effect of surface modifications on Ni based electrodes for alkaline water electrolysis  

Science Journals Connector (OSTI)

Abstract In an effort to improve the efficiency of alkaline water electrolysis for hydrogen production, surface modifications to Ni based electrodes were made by means of mechanical polishing using sandpapers of different sand grain sizes and chemical coating using electrochemical deposition of Ni and Co. The hydrogen evolution reaction was studied to reveal and compare the apparent and intrinsic activities of the electrodes, as indicated by the Tafel curves based on the geometric surface area and effective surface area, respectively. A relative roughness factor, which was estimated from the double layer capacitance in the impedance measurement, was introduced to characterise the effective surface area. The relative roughness factor of the six modified electrodes varied from 3.3 to 5.6. The electrode polished with the P400 sandpaper achieved the best apparent activity by possessing the lowest overpotential of 422 mV at the current density of 750 A m?2. For electrodes modified by the mechanical polishing, the Tafel curves collapsed into a narrow band when the current density was divided by the relative roughness factor, which validated the method of using the relative roughness factor for quantifying the effective surface area. The intrinsic activity of the hydrogen evolution reaction on Ni electrode can be expressed as ? = 0.02 + 0.191·Log(j?), where j? is the current density based on the effective surface area. For the electrodes modified by electrochemical depositions of Ni and Co, a variation in the intrinsic activity was observed for the different electrodes. This was attributed to their surface composition differences.

Kai Zeng; Dongke Zhang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources  

Science Journals Connector (OSTI)

Presently, there are only a few industrial PEMWEs manufacturers (GE, Giner, NorskHydro, Proton, ITM). The Proton Energy Systems produces the HOGEN® 40 for industrial applications and the HOGEN® RE for use in conj...

A. S. Aricò; S. Siracusano; N. Briguglio; V. Baglio…

2013-02-01T23:59:59.000Z

342

Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction  

DOE Patents [OSTI]

Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

Tiernan, Joan E. (Novato, CA)

1990-01-01T23:59:59.000Z

343

TEST RESULTS OF HIGH TEMPERATURE STEAM/CO2 CO-ELECTROLYSIS IN A 10-CELL STACK  

SciTech Connect (OSTI)

High temperature coelectrolysis experiments with CO2 / H2O mixtures were performed in a 10-cell planar solid oxide stack. Results indicated that stack apparent ASR values were shown not to vary significantly between pure steam electrolysis and steam / CO2 coelectrolysis values. Product gas compositions measured via an online micro gas chromatograph (GC) showed excellent agreement to predictions obtained from a chemical equilibrium coelectrolysis model developed for this study. Experimentally determined open cell potentials and thermal neutral voltages for coelectrolysis compared favorably to predictions obtained from a chemical equilibrium coelectrolysis and energy balance model, also developed for this study.

James E. O'Brien; Joseph J. Hartvigsen

2007-06-01T23:59:59.000Z

344

Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) Cell  

Science Journals Connector (OSTI)

The photoelectrochemical cell [p-type InP(Ru)]/HCl-KCl/Pt(Rh) converts 12% of the incident solar energy into two useful chemicals, hydrogen and chlorine, by photoassisted electrolysis of aqueous hydrochloric acid. At the threshold for electrolysis, the voltage required is reduced from 1.3 to 0.65 V. Hydrogen evolution takes place at microscopic islands of catalysts such as Rh, Ru, and Pt. The high efficiency of the cell derives from a thin surface oxide on InP, preventing carrier recombination, and from efficient transport of electrons to the catalyst.

Adam Heller and Richard G. Vadimsky

1981-04-27T23:59:59.000Z

345

Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

346

E-Print Network 3.0 - aided electrolysis process Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Ris National Laboratory...

347

E-Print Network 3.0 - alkali electrolysis process Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Current (2009)...

348

Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

349

A Small Closed-Cycle Combined Electrolysis and Catalytic Exchange Test System for Water Detritiation  

Science Journals Connector (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

H. Boniface; S. Suppiah; K. Krishnaswamy; L. Rodrigo; J. Robinson; P. Kwon

350

A novel catalyst coated membrane embedded with Cs-substituted phosphotungstates for proton exchange membrane water electrolysis  

Science Journals Connector (OSTI)

Abstract Catalyst coated membrane (CCM) is the core component of proton exchange membrane (PEM) water electrolysis and the main place for electrochemical reaction and mass transfer. Its properties directly affect the performance of PEM water electrolysis. Aiming at decreasing the polarization loss and the ohmic loss, a novel CCM embedded with Cs1.5HPA in the skeleton of the Nafion® ionomer and the Nafion® membrane was prepared and possessed functionality of improved protonic conductivity. Meanwhile, the Cs1.5HPA-Nafion ionomer content in the catalyst layers was further optimized. The SEM, EDS and pore volume distribution measurement showed that the Cs1.5HPA embedded in the CCM without agglomeration and the micropore and mesopore were well distributed in the catalyst layer. Furthermore, \\{CCMs\\} were tested in a PEM water electrolyser at 80 °C, beneficial effects on both the Tafel slope and the iR loss were obtained due to the improved protonic conductivity as well as the appropriate pore structure and increased specific pore volume. The performance of the electrolyser cell was obviously improved with the novel CCM. The highest cell performance of 1.59 V at 2 A cm?2 was achieved at 80 °C. At 35 °C and 300 mA cm?2, the cell showed good durability within the test period of up to 570 h.

Gaoyang Liu; Junyuan Xu; Yituo Wang; Juming Jiang; Xindong Wang

2014-01-01T23:59:59.000Z

351

Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis  

Science Journals Connector (OSTI)

Platinum and palladium nano-particles supported by graphitic nano-fibers (GNFs) have been prepared and used as cathodic electrocatalysts in proton-exchange membrane (PEM) water electrolysis cells for the hydrogen evolution reaction (HER). Raw GNF structures have been synthesized by chemical vapor deposition (CVD). Noble metal nano-particles have been deposited at the surface of \\{GNFs\\} using an impregnation-reduction method. Structural properties and electrochemical performances of the GNF-supported catalysts have been determined using TEM analysis and cyclic voltammetry. Current-voltage polarization curves have also been recorded using a PEM cell (7 cm2). The performances obtained with GNF-supported catalysts were found more efficient than those obtained with catalysts supported with conventional carbon black (Vulcan® XC-72). In particular, a reduced electrolysis cell voltage (1.67 instead 1.72 V at 1 A.cm?2 and 90 °C) has been obtained using Pt/GNF cathodes in place of Pt/XC-72 at the cathode and with similar platinum contents (40 wt.%).

S.A. Grigoriev; M.S. Mamat; K.A. Dzhus; G.S. Walker; P. Millet

2011-01-01T23:59:59.000Z

352

Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst  

Science Journals Connector (OSTI)

Abstract A series of three membrane types has been screened for medium temperature solid polymer electrolyte water electrolysis in membrane electrode assemblies coated with 2 mg cm?2 of iridium oxide as a catalyst for the oxygen evolution reaction, synthesised via a hydrolysis method from the hexachloroiridic acid precursor, and deposited on the membrane either directly by spray deposition or by decal transfer. The short-side-chain perfluorosulfonic acid Aquivion® ionomer of equivalent weight 870 meq g?1, in membranes of thickness 120 ?m, gives higher water electrolysis performance at 120 °C than a composite membrane of Aquivion® with zirconium phosphate, while a sulfonated ether-linked polybenzimidazole, sulfonated poly-[(1-(4,4?-diphenylether)-5-oxybenzimidazole)-benzimidazole], shows promising performance and no transport limitations up to 2 A cm?2. The lowest cell voltage was observed at 120 °C for an MEA prepared using spray-coating directly on the Aquivion® membrane, 1.57 V at 1 A cm?2.

Anita Skulimowska; Marc Dupont; Marta Zaton; Svein Sunde; Luca Merlo; Deborah J. Jones; Jacques Rozière

2014-01-01T23:59:59.000Z

353

SYNGAS PRODUCTION VIA HIGH-TEMPERATURE CO-ELECTROLYSIS OF STEAM AND CARBON DIOXIDE IN A SOLID-OXIDE STACK  

SciTech Connect (OSTI)

This paper presents results of recent experiments conducted at the INL studying coelectrolysis of steam and carbon dioxide in a 10-cell high-temperature solid-oxide electrolysis stack. Coelectrolysis is complicated by the fact that the reverse shift reaction occurs concurrently with the electrolytic reduction reactions. All reactions must be properly accounted for when evaluating results. Electrochemical performance of the stack was evaluated over a range of temperatures, compositions, and flow rates. The apparatus used for these tests is heavily instrumented, with precision mass-flow controllers, on-line dewpoint and CO2 sensors, and numerous pressure and temperature measurement stations. It also includes a gas chromatograph for analyzing outlet gas compositions. Comparisons of measured compositions to predictions obtained from a chemical equilibrium co-electrolysis model are presented, along with corresponding polarization curves. Results indicate excellent agreement between predicted and measured outlet compositions. Coelectrolysis significantly increases the yield of syngas over the reverse water gas shift reaction equilibrium composition. The process appears to be a promising technique for large-scale syngas production.

Carl M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

2007-06-01T23:59:59.000Z

354

High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests  

SciTech Connect (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

2007-07-01T23:59:59.000Z

355

High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests  

SciTech Connect (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

2007-06-01T23:59:59.000Z

356

Effect of Water Vapor on the Oxidation Mechanisms of a Commercial Stainless Steel for Interconnect Application in High Temperature Water Vapor Electrolysis  

Science Journals Connector (OSTI)

High temperature water vapor electrolysis is one of the most promising methods...2–5 %H2O) and cathode atmospheres (10 %H2–90 %H2O). In cathode atmosphere, ageing tests performed up to 1,000 h revealed the format...

Maria Rosa Ardigo; Ioana Popa; Sébastien Chevalier; Sylvain Weber…

2013-06-01T23:59:59.000Z

357

Experiments on a Ceramic Electrolysis Cell and a Palladium Diffuser at the Tritium Systems Test Assembly  

Science Journals Connector (OSTI)

Fusion Reactor / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

S. Konishi; H. Yoshida; H. Ohno; Y. Naruse; D. O. Coffin; C. R. Walthers; K. E. Binning

358

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production  

Broader source: Energy.gov [DOE]

Presentation slides from the US DOE Fuel Cell Technologies Office webinar, Wind-to-Hydrogen Cost Modeling and Project Findings, on held January 17, 2013.

359

Decomposition of Water with Industrial Oxygen Sensor Used as Electrolysis Cell  

Science Journals Connector (OSTI)

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

P.L. Carconi; S. Casadio; A. Moauro; L. Petrucci; C. M. Mari

360

Enrichment and Volume Reduction of Tritiated Water Using Combined Electrolysis Catalytic Exchange  

Science Journals Connector (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

D.A. Spagnolo; A.E. Everatt; P.W.K. Seto; K.T. Chuang

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - alkaline water electrolysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 WithCarbonSequestration...

362

E-Print Network 3.0 - aluminium electrolysis cells Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

363

Renewable Electrolysis Integrated Systems Development and Testing - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin Harrison National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-7091 Email: Kevin.Harrison@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contributors: Chris Ainscough and Michael Peters Subcontractor: Marc Mann, Spectrum Automation Controls, Arvada, CO Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Validate stack and system efficiency and contributing * sub-system performance of DOE-awarded advanced electrolysis systems Collaborate with industry to optimize and demonstrate *

364

Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources  

SciTech Connect (OSTI)

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2009-09-01T23:59:59.000Z

365

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

4, 2009 4, 2009 CX-000332: Categorical Exclusion Determination Kentucky Revision 2 - Industrial Facility Retrofit Showcase CX(s) Applied: B1.4, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/04/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2009 CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/03/2009 Location(s): Lexington, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 2, 2009 CX-000330: Categorical Exclusion Determination West Virginia Revision 1 - Energy Efficiency in State Buildings:

366

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

6, 2009 6, 2009 CX-000305: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Deaf CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 6, 2009 CX-000304: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Blind CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

367

Utilization of Solar Energy for Hydrogen Production by High Temperature Electrolysis of Steam  

Science Journals Connector (OSTI)

Technologies for the utilization of solar energy are commonly envisaged to be of great importance for the world’s energy supply in future. For that reason a variety of R&D programs have been and still are perf...

E. Erdle; J. Gross; V. Meyringer

1987-01-01T23:59:59.000Z

368

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

369

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

370

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

371

Fuel Cell Technologies Office: 2011 Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Webinar Archives 1 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2011 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2011: Hydrogen Storage Materials Database Demonstration Hydrogen Production by PEM Electrolysis - Spotlight on Giner and Proton Science Magazine Article Highlight: Moving Towards Near Zero Platinum Fuel Cells I2CNER: An International Collaboration to Enable a Carbon-Neutral, Energy Economy Photosynthesis for Hydrogen and Fuels Production Hydrogen Storage Materials Database Demonstration December 13, 2011 The U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has launched a hydrogen storage materials database to collect and disseminate materials data and accelerate advanced materials research and development. Marni Lenahan of BCS Incorporated demonstrated the functionality of the database including accessing and extracting data, submitting new material property data for inclusion, and performing organized searches.

372

Survey of the Economics of Hydrogen Technologies  

E-Print Network [OSTI]

Gasification Biomass Pyrolysis Electrolysis Hydrogen Storage Compressed Gas Liquefied Gas Metal Hydride Carbon Hydrogen Production Steam Methane Reforming Noncatalytic Partial Oxidation Coal Gasification Biomass

373

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

374

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

375

Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis  

Science Journals Connector (OSTI)

Abstract An Aquivion® E87-12 S short-side-chain perfluorosulfonic acid (SSC-PFSA) membrane with equivalent weight (EW) of 870 g/eq and 120 ?m thickness produced by Solvay Specialty Polymers was tested in a polymer electrolyte membrane water electrolyzer (PEMWE). For comparison, a benchmark Nafion® N115 membrane (EW 1100 g/eq) of similar thickness was investigated under similar operating conditions. Both membranes were tested in conjunction with in-house prepared unsupported IrO2 anode and carbon-supported Pt cathode electrocatalysts. The electrocatalysts consisted of nanosized IrO2 and Pt particles (particle size ~2–4 nm). Electrochemical tests showed better water splitting performance for the Aquivion® membrane and ionomer based membrane-electrode assembly (MEA) as compared to Nafion®. Lower ohmic drop constraints and smaller polarization resistance were observed for the electrocatalyst–Aquivion® ionomer interface indicating a better catalyst–electrolyte interface. A current density of 3.2 A cm?2 for water electrolysis was recorded at 1.8 V cell voltage and 90 °C with the Aquivion® based MEA. Some performance decay with time was observed indicating that the system requires further optimization of the interface characteristics.

S. Siracusano; V. Baglio; A. Stassi; L. Merlo; E. Moukheiber; A.S. Arico?

2014-01-01T23:59:59.000Z

376

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

377

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

378

Integrated Operation of the INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

Science Journals Connector (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production

Carl Stoots; Lee Shunn; James O'Brien

379

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

380

An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor  

SciTech Connect (OSTI)

Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Using of produced water associated with oil and gas production as a source of hydrogen: solar electrolysis cell application  

E-Print Network [OSTI]

Abstract In frame of the growing global concerns regarding to the high extent of environmental pollution and its serious consequences on the future of the planet. The seek out for a proper source of clean energy is considered to be a top priority. Where a substantial reduction in a present reliance on fossil fuels is achieved. This objective can not be factual without intensive efforts to find out the appropriate alternative, which are the sustainable and environmentally friendly energy alternatives. The use of hydrogen as an alternative fuel is gaining more and more acceptance as the environmental impact of hydrocarbons becomes more evident. The using of enormous amount of a polluted produced water associated oil and gas production activities to generate the hydrogen by solar hydrolysis cell, is considered to be a multi advantages alternative, where the volume of polluted and environmentally risky water been reduced and a significant volume of hydrogen been gained. This work is an attempt to design of a hydrogen generating station by water electrolysis whose energy resources are solar. The electricity supply is done by photovoltaic cells. The novelty of this work is the using of produced water to generate a clean energy (hydrogen), and in the same time reducing the threats caused by the disposal pits of the vast volume of the produced water at oilfields, which is the biggest challenge to the oil industry and the environment. In this work, the produced water has been electrolyzed by using solar energy. Standard chemical analyses methods have followed to determine the pollutants constitutes in this water. A pilot plant of

Maher A. R; Sadiq Al-baghdadi; Hashim R. Abdolhamid B; Omar A. Mkhatresh B

382

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

383

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

384

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

385

Emerging Technologies  

Broader source: Energy.gov [DOE]

The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption.

386

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

387

Tools & Technologies  

Broader source: Energy.gov [DOE]

We provide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

388

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

389

Development and Validation of a One-Dimensional Co-Electrolysis Model for Use in Large-Scale Process Modeling Analysis  

SciTech Connect (OSTI)

A one-dimensional chemical equilibrium model has been developed for analysis of simultaneous high-temperature electrolysis of steam and carbon dioxide (coelectrolysis) for the direct production of syngas, a mixture of hydrogen and carbon monoxide. The model assumes local chemical equilibrium among the four process-gas species via the shift reaction. For adiabatic or specified-heat-transfer conditions, the electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. Alternately, for isothermal operation, it allows for determination of outlet composition, mean Nernst potential, operating voltage, electrolyzer power, and the isothermal heat requirement for specified inlet gas flow rates, operating temperature, current density and area-specific resistance. This model has been developed for incorporation into a system-analysis code from which the overall performance of large-scale coelectrolysis plants can be evaluated. The one-dimensional co-electrolysis model has been validated by comparison with results obtained from a 3-D computational fluid dynamics model and by comparison with experimental results.

J. E. O'Brien; M. G. McKellar; G. L. Hawkes; C. M. Stoots

2007-07-01T23:59:59.000Z

390

Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production  

Science Journals Connector (OSTI)

Abstract A W-typed dye-sensitized serial solar module (W-typed DSSM) was designed for hydrogen production from water electrolysis. The optimal thickness and width of the TiO2 electrode film were 12 ?m and 5 mm, and the optimal thickness of Pt counter electrode film was 4 nm, respectively. The photocurrent density, open circuit voltage, and fill factor were 2.13 mA cm?2, 3.51 V, and 0.61, respectively, for a serial module assembled from five unit cells, which resulted in an overall conversion efficiency of 4.56%. The obtained voltage increased with increasing number of unit cells connected, and was 3.51 V in the five column fabricated W-typed DSSM. 2.1 mL h?1 of hydrogen gas was emitted when a W-typed DSSM assembled from five columns was connected to carbon electrodes in a water electrolysis system. The rate of hydrogen evolution in the five columned W-typed DSSM was 0.00213 L h?1. Therefore, the actual light-hydrogen conversion was calculated to be 2.02%.

Byeong Sub Kwak; Jinho Chae; Misook Kang

2014-01-01T23:59:59.000Z

391

MHK Technologies/OMI Combined Energy System | Open Energy Information  

Open Energy Info (EERE)

OMI Combined Energy System OMI Combined Energy System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OMI Combined Energy System.png Technology Profile Primary Organization Ocean Motion International LLC OMI Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Combined Energy System CES consists of four sub system components a seawater wave pump a hydro turbine electric generator a reverse osmosis filtration unit and an electrolysis hydrogen generation unit The CES is designed to operate on a large offshore platform which is essentially a modified version of a standard modular offshore drilling unit The system produces potable water electricity and hydrogen which is delivered to shore through service piping and cabling The OMI WavePump is technically described as a mass displacement wave energy conversion device The patented seawater pump and heart of the CES is an innovative design which uses a small number of simple moving components for minimal maintenance and wear The hydro turbine electric generator is driven by the output of multiple WavePumps which provide a constant flow of high volume high pressure seawater

392

Exploration Technologies Technology Needs Assessment  

Broader source: Energy.gov [DOE]

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

393

Energy Technologies  

Broader source: Energy.gov [DOE]

Best practices, project resources, and other tools on energy efficiency and renewable energy technologies.

394

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Wind electrolysis- derived hydrogen would cost about $7–11Hydrogen Production Method: Electrolysis via photovoltaic system Location: East Amwell, New Jersey Production Capacity: Sized for Residential Home Total Project Cost:Hydrogen Production Method: Electrolysis via renewable grid electricity Location: Burlington, Vermont Production Capacity: 12 kg of hydrogen per day Total Project Cost:

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

395

Speaker biographies for the Fuel Cell Technologies Program Webinar titled Hydrogen Production by PEM Electrolysis … Spotlight on Giner and Proton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Professional Bios - Kathy Ayers and Monjid Hamdan Professional Bios - Kathy Ayers and Monjid Hamdan Kathy Ayers, Director of Research, Proton Energy Systems Kathy Ayers is the Director of Research at Proton Energy Systems. She is responsible for developing the long term research direction for improvements in performance, reliability, and cost of Proton's electrolyzer cell stack as well as overseeing Proton's military and

396

Electrolysis of Water  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2003) This book discusses the pros and cons of using hydrogen power to help fight air pollution and meet our growing demand for electricity. * The Story of Hydrogen by Mark...

397

Fuel Cell Technologies Office Newsletter: July 2013 | Department...  

Energy Savers [EERE]

Hydrogen Production from Water Electrolysis Project The U.S. Department of Energy (DOE) recently announced the FY 2013 Small Business Innovation Research and Small Business...

398

Technology Roadmaps  

Broader source: Energy.gov [DOE]

This page contains links to DOE's Technology Roadmaps, multi-year plans outlining solid-state lighting goals, research and development initiatives aimed at accelerating technology advances and...

399

Technology Development  

Science Journals Connector (OSTI)

In presenting this chapter on technology development, it must be stated that attempts to make an up-to-date technology survey are restricted, unfortunately, by the proprietary nature of recent advances, detail...

B. E. Conway

1999-01-01T23:59:59.000Z

400

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department of Engineering Technology Technology Education  

E-Print Network [OSTI]

Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

Bieber, Michael

402

Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

403

Fuel Technologies  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

404

Layering Technologies  

Science Journals Connector (OSTI)

Planar technology requires that thin layers of materials be formed and patterned sequentially, commencing with a flat rigid substrate. The key aspects of each layer are its Thi...

Ivor Brodie; Julius J. Muray

1992-01-01T23:59:59.000Z

405

technology offer Research and Transfer Support | Tanja Sovic  

E-Print Network [OSTI]

| electrolysis | CaCl2 | rotating cell | A new designed rotating electrochemical reactor is proposed, especially titanium, from their oxides by reduction of the metals in a CaCl2 melt with dissolved metallic calcium as a reducing agent that is formed in situ by electrolysis of CaCl2. Due to the spatially

Szmolyan, Peter

406

Glass Technology  

Science Journals Connector (OSTI)

... WE have received from the Department of Glass Technology, University of Sheffield, a copy of vol. ii. of “Experimental Researches ... that department. The papers included have already appeared in the Journal of the Society of Glass Technology. They range over a somewhat wide field of the ...

1920-08-23T23:59:59.000Z

407

NREL: Technology Deployment - Technology Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas:...

408

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

409

Vehicle Technologies Office: Graduate Automotive Technology Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

410

Building Technologies Office: Emerging Technologies Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

411

Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China  

Science Journals Connector (OSTI)

Abstract Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision-making method by incorporating fuzzy AHP and fuzzy TOPSIS was proposed to prioritize the roles of different technologies. The proposed method is capable of allowing multiple groups of stakeholders/decision-makers to participate in the decision-making and addressing problems with uncertainty and imprecise information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen economy in China among the five assessed technologies.

Jingzheng Ren; Suzhao Gao; Shiyu Tan; Lichun Dong; Antonio Scipioni; Anna Mazzi

2015-01-01T23:59:59.000Z

412

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

413

Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

414

Coal Technology  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electrical power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado–Ute Electric Association's...14 ...

2003-01-01T23:59:59.000Z

415

Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis  

SciTech Connect (OSTI)

Electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten were characterized for the hydrogen evolution reaction (HER) in the electrolysis of 30 w/o KOH alkaline water at 25 C. The rate-determining step (rds) of the HER was suggested based on the Tafel slope of polarization and the capacitance of electrode-solution interface determined by ac impedance measurement. The HER on the nickel- and cobalt-based codeposits was enhanced significantly compared with that o the electrolytic nickel and cobalt with comparable deposit loadings. The decrease in the HER overpotential was more pronounced on the molybdenum-containing codeposits, particularly on cobalt-molybdenum which also showed a high stability. The enhancement of the HER was attributed to both the synergetic composition and the increased active surface of the codeposits. The real electrocatalytic activity of te electrodes and the effect of their and the increased active surface of the codeposits. The real electrocatalytic activity of the electrodes and the effect of their surface increase were distinguished quantitatively. The linear relations between HER overpotential and surface roughness factor of the electrodes on a Y-log(X) plot were obtained experimentally and interpreted based on the Tafel law.

Fan, C.; Piron, D.L.; Sleb, A.; Paradis, P. (Ecole Polytechnique de Montreal, Quebec (Canada). Dept. de Metallurgie et de Genie des Materiaux)

1994-02-01T23:59:59.000Z

416

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

417

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

01 - 7610 of 28,905 results. 01 - 7610 of 28,905 results. Download CX-006895: Categorical Exclusion Determination Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies Electrolysis CX(s) Applied: B3.6 Date: 09/29/2011 Location(s): Natick, Middlesex County, Massachusetts Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-006895-categorical-exclusion-determination Download CX-001349: Categorical Exclusion Determination Support for C6 Resources, LLC Phase 1 Project (North California Carbon Dioxide Reduction Project - Forestville) CX(s) Applied: A9 Date: 03/15/2010 Location(s): Forestville, California Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-001349-categorical-exclusion-determination

418

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 15050 of 26,764 results. 41 - 15050 of 26,764 results. Download CX-006891: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-006891-categorical-exclusion-determination Download CX-006895: Categorical Exclusion Determination Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies Electrolysis CX(s) Applied: B3.6 Date: 09/29/2011 Location(s): Natick, Middlesex County, Massachusetts Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-006895-categorical-exclusion-determination Download CX-006897: Categorical Exclusion Determination

419

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

420

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

422

FEMP/NTDP Technology Focus New Technology  

E-Print Network [OSTI]

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

423

(Environmental technology)  

SciTech Connect (OSTI)

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

424

COMMERCIALIZING TECHNOLOGIES &  

E-Print Network [OSTI]

measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my manufacturing costs by 20 a patent for a revolutionary new, even more shock absorbent mouthguard they will manufacture from material including a new additive. 2 Animated Talking Toys Heilbron Associates had acquired rights to a fiber optic

425

Vacuum Technology  

SciTech Connect (OSTI)

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

426

System Analyses of High and Low-Temperature Interface Designs for a Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

As part of the Next Generation Nuclear Plant (NGNP) project, an evaluation of a low-temperature heat-pump interface design for a nuclear-driven high-temperature electrolysis (HTE) hydrogen production plant was performed using the UniSim process analysis software. The lowtemperature interface design is intended to reduce the interface temperature between the reactor power conversion system and the hydrogen production plant by extracting process heat from the low temperature portion of the power cycle rather than from the high-temperature portion of the cycle as is done with the current Idaho National Laboratory (INL) reference design. The intent of this design change is to mitigate the potential for tritium migration from the reactor core to the hydrogen plant, and reduce the potential for high temperature creep in the interface structures. The UniSim model assumed a 600 MWt Very-High Temperature Reactor (VHTR) operating at a primary system pressure of 7.0 MPa and a reactor outlet temperature of 900°C. The lowtemperature heat-pump loop is a water/steam loop that operates between 2.6 MPa and 5.0 MPa. The HTE hydrogen production loop operated at 5 MPa, with plant conditions optimized to maximize plant performance (i.e., 800°C electrolysis operating temperature, area specific resistance (ASR) = 0.4 ohm-cm2, and a current density of 0.25 amps/cm2). An air sweep gas system was used to remove oxygen from the anode side of the electrolyzer. Heat was also recovered from the hydrogen and oxygen product streams to maximize hydrogen production efficiencies. The results of the UniSim analysis showed that the low-temperature interface design was an effective heat-pump concept, transferring 31.5 MWt from the low-temperature leg of the gas turbine power cycle to the HTE process boiler, while consuming 16.0 MWe of compressor power. However, when this concept was compared with the current INL reference direct Brayton cycle design and with a modification of the reference design to simulate an indirect Brayton cycle (both with heat extracted from the high-temperature portion of the power cycle), the latter two concepts had higher overall hydrogen production rates and efficiencies compared to the low-temperature heatpump concept, but at the expense of higher interface temperatures. Therefore, the ultimate decision on the viability of the low-temperature heat-pump concept involves a tradeoff between the benefits of a lower-temperature interface between the power conversion system and the hydrogen production plant, and the reduced hydrogen production efficiency of the low-temperature heat-pump concept compared to concepts using high-temperature process heat.

E. A. Harvego; J. E. O'Brien

2009-07-01T23:59:59.000Z

427

TECHNOLOGY TRANSFER  

Broader source: Energy.gov (indexed) [DOE]

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

428

Emerging technologies  

SciTech Connect (OSTI)

The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

Lu, Shin-yee

1993-03-01T23:59:59.000Z

429

CX-011727: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

INFINIUM, Inc. - Clean, Efficient Aluminum Electrolysis via SOM Anodes CX(s) Applied: B3.6 Date: 11/22/2013 Location(s): Massachusetts, Massachusetts Offices(s): Advanced Research Projects Agency-Energy

430

Building Technologies Office: About Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

431

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

432

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

433

TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer  

E-Print Network [OSTI]

Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements

Pennycook, Steve

434

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

435

Information Technology and Libraries  

E-Print Network [OSTI]

Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). ”Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |

Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

2011-01-01T23:59:59.000Z

436

Technology Transfer: Success Stories: Licensed Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

437

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

438

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

439

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

440

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technology Name  

Broader source: Energy.gov (indexed) [DOE]

Development Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To prevent the D&D knowledge and expertise from being lost over time an approach is needed to capture and maintain this valuable information in a universally available and easily usable system. Technical Solution The D&D KM-IT serves as a centralized repository

442

CSIR TECHNOLOGY AWARDS -2013  

E-Print Network [OSTI]

CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

Jayaram, Bhyravabotla

443

Lab Visits on DOE Technology Roadmap and the Technology Advisory...  

Office of Environmental Management (EM)

DOE Technology Roadmap and the Technology Advisory Board OCIO Technology Summit: High Performance Computing Lab Visits on DOE Technology Roadmap and the Technology Advisory Board...

444

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

445

Energy Technology Solutions  

Broader source: Energy.gov [DOE]

Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

446

California Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic...

447

Technology Validation Fact Sheet  

Broader source: Energy.gov [DOE]

Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts.

448

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

449

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

450

Venus Technology Plan Venus Technology Plan  

E-Print Network [OSTI]

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration a Roadmap for Venus Exploration (RVE) that is consistent with VEXAG priorities as well as Planetary Decadal Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology

Rathbun, Julie A.

451

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

452

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

453

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

454

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna Composites PDF format (145 kb) Polymer composite materials are composed of fibers in an organic matrix and can be useful in applications that require a high strength-to-weight ratio. Sandia's MS&T staff will work with you from part design, through mold and tooling design, and on through fabrication. The department is capable of fabricating small and large complex parts and will help you choose the most economical technique for your composite needs. Capabilities: The Center has a comprehensive program on the mechanical engineering design, tooling and fixturing, lay-out, complete processing of the composite structure, and technology transfer of composite structures for a

455

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Engineered Net Shaping(tm) Laser Engineered Net Shaping(tm) PDF format (140 kb) picture of processing blade Processing Blade Sandia National Laboratories has developed a new technology to fabricate three-dimensional metallic components directly from CAD solid models. This process, called Laser Engineered Net ShapingT (LENS®), exhibits enormous potential to revolutionize the way in which metal parts, such as complex prototypes, tooling, and small-lot production items, are produced. The process fabricates metal parts directly from the Computer Aided Design (CAD) solid models using a metal powder injected into a molten pool created by a focused, high-powered laser beam. Simultaneously, the substrate on which the deposition is occurring is scanned under the beam/powder interaction zone to fabricate the desired

456

ELECTROLYSIS-UTILITY INTEGRATION WORKSHOP  

E-Print Network [OSTI]

of Canada 11:00 am Wind in the Electricity Infrastructure, Mark McGree, Xcel Energy 11:20 am Hydrogen

457

The electrolysis of sea water  

E-Print Network [OSTI]

water in a cell having a mer- cer@ cathode is described, In tnis section there are data from a spectrographic analysis of the materials deposited on ths mercury cathode~ Ths concentration and recovery factors "or so:~ of the t. race elements... SCREW G ? MERCURY CATHODE - 65, 5 Gms. ANODE AREA = 0. 32 Sq In CATHODE AREA = 2. 37 Sq. In. X O O N c 8 ( ? ) 4 16 MERCURY CATHODE CELL F IGURE ? I A ~ A Japanese patent covering an electrolytic cell and diaphragm useful in the production...

Stoddard, William Bull

2012-06-07T23:59:59.000Z

458

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 CX-006971: Categorical Exclusion Determination Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: A7, B5.1 Date: 09/27/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 27, 2011 CX-006969: Categorical Exclusion Determination Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/27/2011 Location(s): Plymouth, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 26, 2011 CX-006974: Categorical Exclusion Determination Fully-Integrated Automotive Traction Inverter with Real-Time Switching Optimization CX(s) Applied: B3.6 Date: 09/26/2011 Location(s): Colorado, Massachusetts, Michigan, Pennsylvania, Vermont,

459

NETL Technologies Recognized for Technology Development, Transfer |  

Broader source: Energy.gov (indexed) [DOE]

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

460

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology  

E-Print Network [OSTI]

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

462

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

463

Building Technologies Research and  

E-Print Network [OSTI]

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

464

Degradation Mechanism in La0.8Sr0.2CoO3 as Contact Layer on the Solid Oxide Electrolysis Cell Anode  

E-Print Network [OSTI]

Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and concentrated solar plants.1,2 It is carried out in devices called solid oxide electrolytic cells SOECs at high

Yildiz, Bilge

465

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given...

466

Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

467

Emerging Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

468

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

469

Technology Transfer Ombudsman Program  

Broader source: Energy.gov [DOE]

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

470

Vehicle Technologies Office: News  

Broader source: Energy.gov [DOE]

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

471

Sandia Science & Technology Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search this site Sandia Science & Technology Park An internationally recognized technology community Home Properties Center for Collaboration & Commercialization (C3) Available...

472

Window industry technology roadmap  

SciTech Connect (OSTI)

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

473

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

474

Hydropower Program Technology Overview  

SciTech Connect (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

475

Green Purchasing & Green Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

476

Technology and energy supply  

U.S. Energy Information Administration (EIA) Indexed Site

2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and...

477

Building Technologies Office Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

data * Utilize energy performance data to inform decision making * Improve measurement and track and analyze results TECHNOLOGY TO MARKET TECHNOLOGY DEVELOPMENT 5...

478

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

479

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

480

Technology Readiness Assessment Report  

Broader source: Energy.gov [DOE]

This document has been developed to guide individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the...

Note: This page contains sample records for the topic "technologies electrolysis cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

482

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

483

Morgantown Energy Technology Center, technology summary  

SciTech Connect (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

484

Chevron, GE form Technology Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chevron, GE form Technology Alliance Chevron, GE form Technology Alliance The Chevron GE Technology Alliance will develop and commercialize valuable technologies to solve critical...

485

Innovative pollution prevention program at Air Force owned Raytheon operated facility incorporating Russian technology  

SciTech Connect (OSTI)

Air Force Plant 44 in Tucson, Arizona is owned by the Air Force and operated by Raytheon Missile Systems Company. A joint Air Force/Raytheon Pollution Prevention Team operates at AFP 44 with the ultimate goal to minimize or eliminate the use of hazardous substances. The team works together to uncover new technologies and methods that will replace chemicals used in the plant's missile manufacturing facilities. The program maximizes pollution prevention by first eliminating hazardous material use, then chemical recycling, next hazardous waste reduction and finally wastewater treatment and recycling. From fiscal years 1994 through 1997, nine pollution prevention projects have been implemented, totaling $2.6 million, with a payback averaging less than two years. A unique wastewater treatment method has been demonstrated as part of this program. This is electroflotation, a Russian technology which removes dispersed particles from liquid with gas bubbles obtained during water electrolysis. A unit was built in the US which successfully removed organic emulsions from wastewater. Operational units are planned for the removal of waste from waterfall paint booths. The pollution prevention joint team continues to be very active with two projects underway in FY 98 and two more funded for FY 99.

Stallings, J.H.; Cepeda-Calderon, S.

1999-07-01T23:59:59.000Z

486

Mineral accretion technology for coral reef restoration, shore protection, and adaptation to rising sea level  

SciTech Connect (OSTI)

Electrolysis of seawater is used to precipitate limestone on top of underwater steel structures to create growing artificial reefs to enhance coral growth, restore coral reef habitat, provide shelter for fish, shellfish, and other marine organisms, generate white sand for beach replenishment, and protect shore lines from wave erosion. Films and slides will be shown of existing structures in Jamaica, Panama, and the Maldives, and projects being developed in these and other locations will be evaluated. The method is unique because it creates the only artificial reef structures that generate the natural limestone substrate from which corals and coral reefs are composed, speeding the settlement and growth of calcareous organisms, and attracting the full range of other reef organisms. The structures are self-repairing and grow stronger with age. Power sources utilized include batteries, battery chargers, photovoltaic panels, and windmills. The cost of seawalls and breakwaters produced by this method is less than one tenth that of conventional technology. Because the technology is readily scaled up to build breakwaters and artificial islands able to keep pace with rising sea level it is capable of playing an important role in protecting low lying coastal areas from the effects of global climate change.

Goreau, T.J.; Hilbertz, W. [Global Coral Reef Alliance, Chappaqua, NY (United States)

1997-12-31T23:59:59.000Z

487

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jürgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

488

Calculus For Technology II  

E-Print Network [OSTI]

MA 22200, Spring 2012. Calculus For Technology II ... Other Information. Emergency procedures · Exam info (A Hoffman) ...

489

Tracers and Exploration Technologies  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.