National Library of Energy BETA

Sample records for technologies division eetd

  1. EETD Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EETD Overview Robert Kostecki Deputy for Research February 2011 EETD Vision and Mission Vision: To be a global innovation hub for science, technology, and policy solutions to the world's most critical energy and environment challenges Mission: Perform analysis, research and development leading to better energy technologies and reduction of adverse energy-related environmental impacts "To achieve our energy and climate goals, we need a strong and sustained commitment to research and

  2. EETD Special Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slides - Initiatives program EETD Special Initiatives  Develop Partnerships with Industry, Government, and Stakeholders that:  Leverage our expertise and resources to address barriers to technology development and deployment  Establish scalable proving grounds for demonstration of emerging technologies Leveraging Our Expertise  Develop focused Consortiums with Industry, Stakeholder membership  Institutional efforts that addresses a key systemic challenge  Focal point for

  3. eetd.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Richard Gerber NERSC User Services EETD Seminar June 22, 2011 * NERSC's mission is to provide computing and storage resources for energy-related research and engineering * Broad support for fusion, materials, chemistry research - Hydrogen storage, artificial photosynthesis, solar energy storage, wind farm design, efficient combustion, understanding LED droop * Energy efficiency research is an important part of this picture - If there is a place for HPC in EETD, NERSC is capable and

  4. NERSC Intro for Environmental Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Technologies June 22, 2011 eetd software 12:00 - 13:00 PDT June 22, 2011 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory NERSC...

  5. Environmental Energy Technologies Division Newsletter, Fall 2007,Vol.4, No. 4)

    SciTech Connect (OSTI)

    Chen, Allan

    2007-12-14

    This issue's special focus is on advanced lithium ionbatteries for hybrid electric vehicle applications. The four articlesaddressing this area explore the modeling of lithium ion batterychemistries; the use of advanced diagnostic methods to study the physicsand chemistry of battery materials; a laboratory for advanced batterytesting; and approaches for improving battery safety. EETD's research isfunded by the Department of Energy's BATT (Batteries for AdvancedTransportation Technologies) program, FreedomCar and Vehicle TechnologiesProgram.

  6. Chemical Technology Division annual technical report 1997

    SciTech Connect (OSTI)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  7. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect (OSTI)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  8. Energy Technology Division research summary - 1999.

    SciTech Connect (OSTI)

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  9. Energy Technology Division research summary 1997.

    SciTech Connect (OSTI)

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

  10. Chemical Technology Division. Annual technical report, 1995

    SciTech Connect (OSTI)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  11. Chemical Technology Division annual technical report, 1994

    SciTech Connect (OSTI)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  13. Chemical Technology Division annual technical report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  14. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  15. Chemical technology division: Annual technical report 1987

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  16. Chemical Technology Division annual technical report, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  17. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  18. Chemical Technology Division annual technical report, 1993

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  19. Chemical Technology Division annual technical report, 1992

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  20. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter 1994 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory Introducing The Actinide Research Quarterly My first year as Division Director has been a challenging yet rewarding experience. Although the Division has faced many challenges, I am gratified by the "can do" attitude our personnel continually exhibit. The foundation of NMT Division's science and technology excellence is our capabilities of actinide process chemistry, plutonium metallurgy, surface and

  1. New Director to lead Technology Development and Commercialization division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory New Director to lead Technology Development and Commercialization division April 2, 2015 Tweet EmailPrint Suresh Sunderrajan has been appointed Director of Argonne's Technology Development and Commercialization Division (TDC), effective April 20. Sunderrajan comes to Argonne from United Technologies Corporation, where he served as Director of Innovation Business Development (IBD), the Corporate IP monetization organization. He was responsible for patent and

  2. Energy Technology Division research summary -- 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  3. Chemical Technology Division annual technical report, 1996

    SciTech Connect (OSTI)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  4. W. E. Mott, Director, Division of Environmental Control Technology, HQ

    Office of Legacy Management (LM)

    Eyergy pak t??pEOperatlons dak Ridge, Tennessee 37830 December 12, 1977 W. E. Mott, Director, Division of Environmental Control Technology, HQ Germantown, M.S. E-201 REPORT OF FINDINGS: ALLIED CHEMICAL CORPORATION SITES AT NORTH CLAYMONT, DELAWARE; MARCUS HOOK, PENNSYLVANIA, AND BALTIMORE, MARYLAND The following information summarizes our findings and conclusions relative to the reassessment of the subject sites. Information supplied from files of the former Atomic Energy Commission, Division of

  5. International Technology Exchange Division: 1993 Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Accelerator Technology Division annual report, FY 1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  7. Accelerator Technology Division annual report, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; {Phi} Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  8. Accelerator Technology Division progress report, FY 1993

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  9. Mr. William E. Mott, Acting Director Environmental Control Technology Division

    Office of Legacy Management (LM)

    7, I979 Mr. William E. Mott, Acting Director Environmental Control Technology Division Department of Energy Washington, D. C. 2Q545 Dear Mr. Mott: In response to your March 13, 1979 inquiry soliciting additional information regarding facilities involved in the feed materials program of MED/AEC, the following supplementary information is provided with respect to the Hood Building located at 155 Massachusetts Avenue, Cambridge, Massachusetts. The facility known as the Hood Building was built about

  10. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  11. Chemical Technology Division progress report, January 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    1996-09-01

    This progress report presents a summary of the missions and activities of the various sections and administrative groups in this Division for this period. Specific projects in areas such as energy research, waste and environmental programs, and radiochemical processing are highlighted, and special programmatic activities conducted by the Division are identified and described. The administrative summary portion features information about publications and presentations of Chemical Technology Division staff, as well as a listing of patents awarded to Division personnel during this period.

  12. The ORNL Chemical Technology Division, 1950-1994

    SciTech Connect (OSTI)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.; Mrochek, J.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment that had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.

  13. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly NMT's Contributions to the Cassini Saturn Mission Follow Division's Space Exploration Tradition Figure 1: 100-watt plutonium-238 heat source used in the 1970s space missions. The source is about 250 g and about 3 cm in diameter. Some of NMT Division's handiwork will be soaring across the solar system on its way to Saturn in the near future. Many NMT members, primarily in

  14. Code division multiple access signaling for modulated reflector technology

    DOE Patents [OSTI]

    Briles, Scott D.

    2012-05-01

    A method and apparatus for utilizing code division multiple access in modulated reflectance transmissions comprises the steps of generating a phase-modulated reflectance data bit stream; modifying the modulated reflectance data bit stream; providing the modified modulated reflectance data bit stream to a switch that connects an antenna to an infinite impedance in the event a "+1" is to be sent, or connects the antenna to ground in the event a "0" or a "-1" is to be sent.

  15. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring 1996 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 NMT Studies Fuel Fabrication Methods to Advance Efforts in Plutonium Disposition 4 Neutron Source Recovery Reduces the Nuclear Danger, Responds to National Need 6 Division Director Discusses Plutonium Future 8 NMT Designs and Fabricates Standards for Nuclear Material Assay 10 Advisory Committee Rates NMT as "Outstanding/ Excellent" 11 Recent

  16. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer 1996 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 Researcher Offers a Technical Perspective on Plutonium in the Environment 4 Plutonium Materials Science Supports Science-Based Stockpile Stewardship and Management 6 Division Director Discusses Plutonium Future-part 2 8 Does the Interaction of Plutonium Oxide with Water Pose a Potential Storage Hazard? 10 Recent Publications, Presentations, and

  17. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    SciTech Connect (OSTI)

    Pistole, C.O.

    1983-05-27

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables.

  18. Physics Division News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE ADEPS Physics Physics Division News Physics Division News Discover more about the wide-ranging scope of Physics Division science and technology. Contact Us ADEPS ...

  19. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    SciTech Connect (OSTI)

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  20. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  1. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  2. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  3. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  4. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  5. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  6. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  7. Evaluation of five waste-minimization technologies at the General Dynamics Pomona Division Plant

    SciTech Connect (OSTI)

    Apel, M.L.; Brown, L.M.

    1992-01-01

    Five technology areas encompassing eight waste reduction technologies at the General Dynamics Pomona Division (Southern California) were technically and economically evaluated under the California/EPA Waste Reduction Innovative Technology Evaluation (WRITE) Program. Evaluations were made through site visits and follow-up discussions with General Dynamics staff and equipment suppliers. The technologies and the type of waste reduction represented included (1) computerized printed circuit board plating process (process substitution), (2) sulfuric acid anodizing system (process substitution), (3) robotic paint facility operations - (a) proportional paint mixing (process substitution), (b) water-based solvent replacement (process substitution), (c) electrostatic paint sprays (process substitution), (d) solvent stills (recycling), (4) bead-blast paint stripper (process substitution), and (5) Freon recovery stills (recycling). Overall, there was a decrease in hazardous waste generation and an increase in productivity or reuse of recycled materials. In most cases, the technologies could be easily transferred to other industries except for the computerized circuit board and some processes within the robotic paint operation due to prohibitive costs.

  8. Office of Renewable Energy Technology Geothermal and Hydropower Technologies Division, FY 1983 Annual Operating Plan

    SciTech Connect (OSTI)

    1983-01-01

    There are between 700 and 3400 guads of recoverable geothermal energy in the US. Hydrothermal, geopressure and hot dry rock are the three principal types of geothermal resources (in order of technological readiness) which can supply large amounts of energy for electric power production and direct heat applications. Hydrothermal resources include water and steam trapped in fractured or porous rocks. A hydrothermal system is classified as either hot-water or vapor-dominated (steam), according to the principal physical state of the fluid. Geopressured resources consist of water at moderately high temperatures at pressures higher than normal hydrostatic pressure. This water contains dissolved methane. Geopressured sources in sedimentary formations along the Texas and Louisiana Gulf Coast are believed to be quite large. Geopressured formations also exist in sedimentary basins elsewhere in the US. Hot dry rock resources consist of relatively unfractured and unusually hot rocks at accessible depths that contain little or no water. To extract usable power from hot dry rock, the rock must be fractured and a confined fluid circulation system created. A heat transfer fluid is introduced, circulated, and withdrawn. The overall goal of the Geothermal Program is to build a technology base that will be used by the private sector to exploit geothermal resources which can supply large amounts of energy for electric power production and direct-heat applications.

  9. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  10. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies and capabilities, job opportunities, working with ORNL and the CSE Division, intellectual property, etc., contact, Shaun S. Gleason, Ph.D. Division Director,...

  11. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  12. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    SciTech Connect (OSTI)

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names.

  13. Energy Technology Division Energy Technology Division Energy...

    Office of Scientific and Technical Information (OSTI)

    ... Comparison and conversion of the resistance level differences yield an accurate digital ... The device measures the distance ahead to the next vehicle. A miniature video camera ...

  14. Energy Technology Division Energy Technology Division Energy...

    Office of Scientific and Technical Information (OSTI)

    ... 2 MARKET ANALYSIS ......23 APPENDIX 1 : COMPANY DATA ......that gave various trip statistics such as fuel and range ...

  15. Chemical Technology Division progress report, April 1, 1983-March 31, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs.

  16. Preliminary survey report: control technology for gallium arsenide processing at Morgan Semiconductor Division, Garland, Texas

    SciTech Connect (OSTI)

    Lenihan, K.L.

    1987-03-01

    The report covers a walk through survey made of the Morgan Semiconductor Facility in Garland, Texas, to evaluate control technology for gallium-arsenide dust in the semiconductor industry. Engineering controls included the synthesis of gallium-arsenide outside the crystal pullers to reduce arsenic residues in the pullers, also reducing worker exposure to arsenic during cleaning of the crystal pullers.

  17. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  18. Procurement Division | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement Division Procurement Division Introduction Travel and Conference Services Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Procurement Division Procurement Division Introduction Travel and Conference Services Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology

  19. Procurement Division Introduction | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement Division Procurement Division Introduction Travel and Conference Services Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Procurement Division Procurement Division Introduction Travel and Conference Services Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology

  20. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect (OSTI)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.

  1. Theoretical Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADTSC » T Theoretical Division Theoretical research encompasses all disciplines of science. Physics and Chemistry of Materials Nuclear and Particle Physics, Astrophysics and Cosmology Fluid Dynamics and Solid Mechanics Physics of Condensed Matter and Complex Systems Applied Mathematics and Plasma Physics Theoretical Biology and Biophysics Contacts Division Leader Jack Shlachter Email Deputy Division Leader (Acting) Anna Hayes-Sterbenz Email Point of Contact Jenny Esch (505) 667-4401 Email

  2. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids. In the area of Separations and Materials Synthesis, fundamental studies explored the use of electromagnetic fields to enhance transport processes in multiphase separations; investigated nucleation and particle growth for the synthesis, characterization, application, and processing of ultrafine particles; and examined the use of electric fields to modify phase equilibria in multiphase separations processes. Other efforts involved enhanced oxidation of organic pollutants in aqueous solutions by applying electric fields to form microbubbles and the use of electric fields to improve distillation efficiency. Research was also directed toward the use of ozonation to treat water-soluble organics, the application of electrical and acoustic methods to remediate aerosol problems, and the development of improved means of decontamination using aqueous surfactant cleaners. Fluid Structure and Properties included molecular-based studies of systems with supercritical solvents, a multi-institutional initiative to develop a molecular understanding of reverse miscelles in supercritical carbon dioxide through experimentation and molecular simulation calculations, and molecular-based prediction of the structure and properties of long-chain molecules undergoing shear flow.

  3. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  4. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Computational Sciences and Engineering Division is a major research division at the Department of Energy's Oak Ridge National Laboratory. CSED develops and applies creative information technology and modeling and simulation research solutions for National Security and National Energy Infrastructure needs. The mission of the Computational Sciences and Engineering Division is to enhance the country's capabilities in achieving important objectives in the areas of national defense, homeland

  5. Lamp Divisions

    Office of Legacy Management (LM)

    ... Very truly yours, ' Division kdministrator Accident Prevention I' ,RIr: .DRAl::S . Letters A TRri' &dL; i Sanple LOt:' ;1s : TWO Dra i n L i neS liemaed -m ' I CA"?ED WITH 6" I ...

  6. Chemical Technology Division progress report for the period April 1, 1981-March 31, 1983. [Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    Separate abstracts were prepared for eight sections of the report: nuclear waste management; fossil energy; basic science and technology; biotechnology and environmental programs; transuranium-element processing; Nuclear Regulatory Commission programs; Three Mile Island support studies; and miscellaneous programs.

  7. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    personnel, and to various experimental instrument specialists in the Physics Division. ... Barbara Weller in the Physics Division of Argonne National Laboratory at (630) 252-4044 or ...

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at ATLAS, please contact the Physics Division Safety ...

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milliron wins ARPA-E Grant Awards to Advance Energy Efficiency and Storage In the recently announced "OPEN 2012" funding opportunity from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), Delia Milliron of the Molecular Foundry received a grant of $3 million for her work on smart window technologies, in partnership with scientists in Berkeley Lab's Environmental Energy Technologies Division (EETD) and Heliotrope Technologies. The project will seek to enhance

  11. Divisions & Departments | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Financial Officer Home CFO Organization Chart Financial Systems Accounting Services ... Theoretical and Computational Physics Center Theory Center Engineering Division ...

  12. Implementation of Division D, Titles III and V, and Division...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and guidance for Division D, Titles III and V, and Division E, Title VII of the ... Implementation of Division D, Titles III and V, and Division E, Title VII of the ...

  13. Nuclear Physics Division Theoretical Study Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CEBIT 67-18 Nuclear Physics Division Theoretical Study Division 11 July 1967 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE K°K° SYSTEM G. Charpak, CERN, Geneva, Switzerland, and M. Gourdin, Faculty des Sciences, Orsay, Prance. Lectures delivered at the Matscience Institute, Madras, India, December 1966 and January 1967 G E N E V A 1967 (C) Copyright CERN, Geneve, 1967 Propriety litteraire et scientifique r&ervee pour tous les

  14. Genomics Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the most primitive soil microbe represent a watershed opportunity for biology. The Genomics Division is taking advantage of this wealth of new information. While it is well...

  15. Climate Change: The Role of Particles and Gases (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Menon, Surabi

    2011-04-28

    Summer Lecture Series 2008: A member of the Atmospheric Sciences Department in the Environmental Energy Technologies Division (EETD), Surabi Menon's work focuses on the human contribution to increasing impacts of climate change. Her talk will focus on what humans can do about the effects of global warming by examining anthropogenic influences on climate and future anticipated impacts, using a climate model and her own observations.

  16. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  17. The Energy - Water Connection: Can We Sustain Critical Resources and Make them Reliable, Affordable, and Environmentally Sound?(LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    McMahon, Jim

    2011-04-28

    Summer Lecture Series 2006: Jim McMahon of Berkeley Lab's Environmental Energy Technologies Division (EETD) is head of the Energy Analysis Department in EETD, which provides technical analysis to the Department of Energy on things like energy efficiency appliance standards. McMahon and his colleagues helped the nation save tens of billions of dollars in energy costs since the standards program began. Now his Water-Energy Technology Team (WETT) is applying its expertise to the linked problem of energy and water. Each of us requires more than 500 gallons per person per day for food production, plus an additional 465 gallons to produce household electricity. WETT hopes to mine some of the numerous opportunities to save energy and water by applying new technologies.

  18. Physics division. Progress report, January 1, 1995--December 31, 1996

    SciTech Connect (OSTI)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  19. Information Management Division (HC-14) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Management Division (HC-14) Information Management Division (HC-14) Mission Statement This division provides operational support and consultative advice to the Chief Human Capital Officer and Departmental Senior Management on matters pertaining to the acquisition, deployment and maintenance of enabling technology to support the tactical and strategic management of human capital related to accomplishing Department goals and program objectives. The mission also entails establishing and

  20. Human Capital Policy Division (HC-11) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Organization » Policy, Accountability, and Technology (HC-10) » Human Capital Policy Division (HC-11) Human Capital Policy Division (HC-11) Mission Statement This division serves as the HCM policy arm for the Department. It supports program objectives and missions of all DOE components by developing HCM-related policies and strategies and supplies advice and guidance across the Department. Functions Provide a full range of staff support to the Chief Human Capital Officer including

  1. Physics Division activities report, 1986--1987

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  2. Nanoscience and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NST Division Addressing grand challenges in nanoscience and nanotechnology More The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility,...

  3. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  4. Nuclear Chemistry Division annual report FY83

    SciTech Connect (OSTI)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  5. Physics division annual report 2005.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  6. JBEI Deconstruction Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deconstruction Division - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Division Student Liaisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Liaisons 2015 OFFICE Division Student Liaison Work # Email MailStop DIRECTOR'S OFFICE Principal Associate Directors PADSTE, PADWP, PADGS, PADOPS, PADCAP Associate Directors ADCLES, ADE, ADEPS, ADTSC --- PADSTE ADPSM, ADW, ADX --- PADWP ADTIR ---PADGS ADBI, ADESH, ADNHHO, ADSS --- PADOPS ADEP, ADPM --- PADCAP Audits & Ethics (EA-DO) Tonie V. Baros 665-3104 barost@lanl.gov A249 Chief Prime Contracts (PCM-DO) None Comm. & Public. Affairs (CGA-DO) CPA-CAS: Comm. Arts & Services

  8. National Electricity Delivery Division

    Energy Savers [EERE]

    (DOE) Office of Electricity Delivery and Energy Reliability (OE) National Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian Trust Responsibility is a legal obligation under which the United States has charged itself with moral obligations of the highest responsibility and trust toward American Indian tribes. (Seminole Nation v. United States, 1942; Cherokee Nation v. Georgia, 1831). "When the trust responsibility is acknowledged and upheld by the

  9. Biological Systems Science Division (BSSD) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Biological Systems Science Division (BSSD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER

  10. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Equipment Safety Reviews are required whenever new equipment is brought in for an experiment. The review is conducted by the Physics Division safety committee. If you plan to bring in your own detectors or other equipment for an experiment, it will need to reviewed. If a safety review is required for your equipment, you will need to fill out a Hazard Analysis form. Forms

  11. Guidance Systems Division ,

    Office of Legacy Management (LM)

    Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES NUCLEAll I-IEOULATOIJY COMMISSION REGION i 631 PARK A"LH"I KIN0 OF PR"ISIA. PCNNIVLVANIA ID40' Gentlemen: Subject: Inspectfon 81-15 _ "-- .,; .z .;; Thts refers to the closeout safety \nspectlon conducted by Ms. M. Campbell of this office on August 27, 1961, of activities formerly authorized by NRC

  12. Environmental Protection Division (ENV)

    National Nuclear Security Administration (NNSA)

    e~Alamos NATIONAL LABORATORY - - l :il . l! IIJ - - Environmental Protection Division (ENV) Environmental Stewardship (ENV-ES) P.O. Box 1663, Mail Stop J978 Los Alamos, New Mexico 87545 (505) 665-8855/FAX: (505) 667-0731 Mr. George Rael Assistant Manager for Enviromnental Operations National Nuclear Security Administration Los Alamos Site Office, MS A316 Date : October 28, 2010 Refer To: ENV-ES: 10-211 SUBJECT: 2008 SITE-WIDE ENVIRONMENTAL IMP ACT STATEMENT MITIGATION ACTION PLAN ANNUAL REPORT

  13. Procurement Division Introduction | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Business Operations Procurement Division Procurement Division Introduction Travel and Conference Services Careers Human Resources Directory Environment,...

  14. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... UTC Power, the fuel cell division of engineering conglomerate United Technologies, ... Examples of CHP Deployments The Food Industry is an emerging market for ...

  15. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Train Your Bacterium Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, and his researchers are using the bacterium Moorella thermoacetica to perform...

  16. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mission, the APS Engineering Support Division provides: Highly reliable, state-of-the-art computer infrastructure to meet the needs of the APS. Leading-edge information...

  17. Research Divisions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Analysis Computing Center, Intermediate Voltage Electron Microscopy- Tandem Facility and the National Security Facility. The Energy Systems (ES) division conducts...

  18. Operations Division at Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cmte. Safety Walkaround Checklist Jun 2015 Emergency Action Guide JHA Ergo Awareness Lessons Learned Safety Tips Safety Concerns Box DivisionsDepartments Suggestions Search:...

  19. Energy Division progress report, fiscal years 1994--1995

    SciTech Connect (OSTI)

    Moser, C.I.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  1. Physics division annual report 1999

    SciTech Connect (OSTI)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

  2. Lightning Talks 2015: Theoretical Division

    SciTech Connect (OSTI)

    Shlachter, Jack S.

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  3. IT Division | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology At Jefferson Lab High-performance computing is essential to the success of the experimental program at Jefferson Lab. A D D I T I O N A L L I N K S: IT Home...

  4. Physics division annual report - October 2000.

    SciTech Connect (OSTI)

    Thayer, K.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  5. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  6. Physics Division annual report 2004.

    SciTech Connect (OSTI)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  7. Division 1137 property control system

    SciTech Connect (OSTI)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  8. Mathematics and Computer Science Division | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics and Computer Science Division To help solve some of the nation's most critical scientific problems, the Mathematics and Computer Science (MCS) Division at Argonne ...

  9. Oregon Public Health Division | Open Energy Information

    Open Energy Info (EERE)

    Division Jump to: navigation, search Name: Oregon Public Health Division Address: 800 NE Oregon Street, Suite 930 Place: Portland, Oregon Zip: 97232 Phone Number: 971-673-1222...

  10. Nevada Division of Minerals | Open Energy Information

    Open Energy Info (EERE)

    Logo: Nevada Division of Minerals Name: Nevada Division of Minerals Address: 400 W. King St. 106 Place: Carson City, Nevada Zip: 89703 Website: minerals.state.nv.us...

  11. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  12. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  13. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  14. MHK Technologies/Uppsala Seabased AB Wave Energy Converter |...

    Open Energy Info (EERE)

    Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Description The system consists of a...

  15. Solid State Division progress report for period ending March 31, 1997

    SciTech Connect (OSTI)

    Green, P.H.; Hinton, L.W.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  16. Metals and Ceramics Division progress report for period ending December 31, 1992

    SciTech Connect (OSTI)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  17. Energy and Environmental Systems Division's publications publications 1968-1982

    SciTech Connect (OSTI)

    1982-03-01

    Books, journal articles, conference papers, and technical reports produced by the Energy and Environmental Systems Division of Argonne National Laboratory are listed in this bibliography. Subjects covered are energy resources (recovery and use); energy-efficient technology; electric utilities, and environments. (MCW)

  18. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  19. Metals and Ceramics Division progress report for period ending December 31, 1993

    SciTech Connect (OSTI)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative R and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  1. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  2. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.

  3. Computing and Computational Sciences Directorate - Divisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCSD Divisions Computational Sciences and Engineering Computer Sciences and Mathematics Information Technolgoy Services Joint Institute for Computational Sciences National Center ...

  4. New human resources division leader selected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Human Resources division leader selected New human resources division leader selected Donna J. Hampton has been named the new Human Resources Division leader. March 15, 2011 Donna Hampton Donna Hampton Contact Communications Office (505) 667-7000 March 15, 2011-Donna J. Hampton has been named the new Human Resources Division leader. She replaces Ben Glover, who will be leaving the Laboratory to pursue other interests. Hampton comes to LANL with more than 20 years of Human Resource management

  5. Division Postdoctoral Appointments Frequently Asked Questions | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Division Postdoctoral Appointments Frequently Asked Questions Are the Division Postdoctoral Appointments the same as "Regular Postdocs"? Yes. Who chooses the final candidate; DEP, the sub-committee, or the programmatic Division? The programmatic Division does. The sub-committee reviews the final candidate's application package to ensure that he or she complies with Argonne 's high standards and that all the requirements have been met. If the candidate has

  6. Jefferson Lab Divisions & Departments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions & Departments Privacy and Security Notice Skip over navigation search Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Org Charts Directorate Accelerator COO CFO IT/CIO CSO Engineering ESH&Q FEL Physics 12000 Jefferson Avenue, Newport News, VA 23606 Phone: (757) 269-7100 Fax: (757)

  7. Theoretical Division Current Job Openings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE » ADTSC » T » Job Openings Theoretical Division Job Openings Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Click in the Job Number to be directed to the description/application page. Postdoc Positions IRC49276 Theoretical and Computational Fluid Dynamics IRC49630 ACME Global Climate Model IRC49351 Mathematical/Computational Modeling

  8. New Mexico Historic Preservation Division | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Division Jump to: navigation, search Logo: New Mexico Historic Preservation Division Name: New Mexico Historic Preservation Division Abbreviation: NMHPD...

  9. Nevada Division of Water Resources Forms Webpage | Open Energy...

    Open Energy Info (EERE)

    library Web Site: Nevada Division of Water Resources Forms Webpage Abstract Provides access to State of Nevada Division of Water Resources forms. Author State of Nevada Division...

  10. Jeff Broughton Named NERSC Division Deputy for Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Division Deputy for Operations. The announcement was made Aug. 15 by NERSC Division Director Sudip Dosanjh. "Rather than this being a new position, the Division Deputy title...

  11. California Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Rights Jump to: navigation, search Logo: California Division of Water Rights Name: California Division of Water Rights Place: Sacramento, California Phone Number:...

  12. Colorado Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Resources Jump to: navigation, search Logo: Colorado Division of Water Resources Name: Colorado Division of Water Resources Address: 1313 Sherman St., Suite 818...

  13. DOE - Office of Legacy Management -- Linde Air Products Division...

    Office of Legacy Management (LM)

    Division - NY 08 FUSRAP Considered Sites Linde Air Products Division - Towanda, NY ... Also see Linde FUSRAP Site Documents Related to Linde Air Products Division - Towanda, NY ...

  14. Science & Technology - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In the next phase of the research, Baker will work out of the Naval Surface Warfare Center-Carderock Division to marry the laser and friction stir welding technologies and continue ...

  15. Laboratory I | Nuclear Physics Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN 73-11 Laboratory I | Nuclear Physics Division a 24 September 1973 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIGH-ACCURACY MEASUREMENTS OF THE CENTRE OF GRAVITY OF AVALANCHES IN PROPORTIONAL CHAMBERS G. Charpak, A. Jeavons, F. Sauli and R. Stubbs G E N E V A 1973 © Copyright CERN, Geneve, 1973 Propriety litteraire et scientiflque reservee pour tous les pays du monde Ce document ne peut etre reproduit ou traduit en tout ou en

  16. Energy Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Stone, J.N.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  17. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer...

  18. Energy Division annual progress report for period ending September 30, 1990

    SciTech Connect (OSTI)

    Selden, R.H.

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  19. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    SciTech Connect (OSTI)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  20. High Energy Physics Division, ANL Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum ...

  1. Division Director, Chemical Sciences, Geosciences and Biosciences

    Broader source: Energy.gov [DOE]

    The Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division is seeking a motivated and highly qualified individual to...

  2. Hawaii Department of Transportation Highways Division | Open...

    Open Energy Info (EERE)

    Hawaii Department of Transportation Highways Division Address: 869 Punchbowl Street, Room 513 Place: Honolulu, Hawaii Zip: 96809 Website: hawaii.govdothighways Coordinates:...

  3. Amur Energy Division | Open Energy Information

    Open Energy Info (EERE)

    Division is a company located in Spain. Related Links http:findarticles.comparticlesmim5CNKis2007Jan4ain24998390 http:www.businesswirenet.orgprindex.phpid...

  4. TO: Procurement Directors FROM: Director, Policy Division

    Broader source: Energy.gov (indexed) [DOE]

    4 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT:...

  5. TO: Procurement Directors FROM: Director, Policy Division

    Energy Savers [EERE]

    POLICY FLASH 2011-56 DATE: March 16, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance...

  6. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  7. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990

    SciTech Connect (OSTI)

    Klobe, L.E.

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I C Division staff members.

  8. Energy Division annual progress report for period ending September 30, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This report describes work done by staff of the Energy Division of Oak Ridge National Laboratory during FY 1986. The work of the Division is quite diversified, but it can be divided into four research themes: (1) technology for improving the productivity of energy use; (2) technology for electric power systems; (3) analysis and assessment of energy and environmental issues, policies, and technologies; and (4) data systems research and development (R and D). The research is supported by the US Department of Energy (DOE), numerous other federal agencies, and some private organizations. 190 refs., 60 figs., 23 tabs.

  9. Energy Division annual progress report for period ending September 30, 1993

    SciTech Connect (OSTI)

    Wolff, P.P.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  10. Physics Division progress report for period ending September 30, 1988

    SciTech Connect (OSTI)

    Livingston, A.B.

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  11. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  12. Biosciences Division Fact Sheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Division Fact Sheet Argonne's Biosciences Division conducts multidisciplinary research that increases our understanding of the fundamental mechanisms of life and enables valuable advances in bioremediation, climate change, energy production, and the protection of human health, among other applications. Through biomolecular and field research, Biosciences researchers thoroughly analyze natural processes in a variety of environments. PDF icon Biosciences_fact_sheet

  13. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department of Energy ACTION: Notice of Availability of Archival Information Package SUMMARY: The Office of Operational Safety of the Department of Energy (DOE) has, reviewed documentation relating to the decontamination and decommissioning operations conducted at the Westinghouse Advanced Reactor Division laboratories (buildings 7

  14. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  15. Energy Division annual progress report for period ending September 30, 1992

    SciTech Connect (OSTI)

    Counce, D.M.; Wolff, P.P.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  16. Staff Listing - Office of Regulation and International Engagement, Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Regulation, Division of International Engagement | Department of Energy Staff Listing - Office of Regulation and International Engagement, Division of Natural Gas Regulation, Division of International Engagement Staff Listing - Office of Regulation and International Engagement, Division of Natural Gas Regulation, Division of International Engagement Office of Regulation and International Engagement Mailing Address: Office of Regulation and International Engagement Office of

  17. Environmental Sciences Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  18. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  19. Biology and Medicine Division: Annual report 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  20. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  1. IAI MLM division Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: IAI - MLM division Ltd Place: Be'er Ya'acov, Israel Zip: 70350 Product: Developed a CPV system and plan to continue the project till the...

  2. Director, Division of Energy Market Oversight

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced senior level executive to serve as the Director, Division of Energy Market Oversight. The Director plans and implements the...

  3. Railroad Commission of Texas, Oil and Gas Division | Open Energy...

    Open Energy Info (EERE)

    Texas, Oil and Gas Division Jump to: navigation, search Name: Texas Railroad Commission, Oil and Gas Division Address: 1701 N. Congress Place: Texas Zip: 78711-2967 Website:...

  4. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    DNR Oil and Gas Division Jump to: navigation, search Name: Kentucky DNR Oil and Gas Division Address: 1025 Capital Center Drive Place: Kentucky Zip: 40601 Website:...

  5. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  6. HQ Operations Division (HC-32) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Division (HC-32) HQ Operations Division (HC-32) Functions Deliver employment operational and advisory services, including position management, recruitment, staffing and ...

  7. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  8. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  9. Getwatt KISCO s energy division | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Getwatt (KISCO's energy division) Place: Jeungpeong, North Chungcheong, Korea (Republic) Zip: 368-906 Product: Energy division of South Korean...

  10. FERC Division of Hydropower Administration and Compliance | Open...

    Open Energy Info (EERE)

    Division of Hydropower Administration and Compliance Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FERC Division of Hydropower Administration and...

  11. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Upper Division Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Upper Division Hot Spring Geothermal Area Contents 1 Area Overview 2 History...

  12. Oregon Land Management Division - Easements | Open Energy Information

    Open Energy Info (EERE)

    Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management...

  13. Uppsala University Division for Electricity | Open Energy Information

    Open Energy Info (EERE)

    University Division for Electricity Jump to: navigation, search Name: Uppsala University Division for Electricity Region: Sweden Sector: Marine and Hydrokinetic Website:...

  14. WDEQ-Air Quality Division | Open Energy Information

    Open Energy Info (EERE)

    Quality Division Jump to: navigation, search Name: WDEQ-Air Quality Division Abbreviation: WDEQ AQD Address: 122 West 25th Street, Herschler Building Place: Cheyenne, Wyoming Zip:...

  15. Kansas Corporation Commission Energy Division | Open Energy Informatio...

    Open Energy Info (EERE)

    Commission Energy Division Jump to: navigation, search Name: Kansas Corporation Commission Energy Division Address: 1500 SW Arrowhead Road Place: Topeka, KS Zip: 66604-4074 Phone...

  16. Utah Division of Water Rights Information Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  17. Earth Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  18. Medical Sciences Division report for 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  19. Weapons Experiments Division Explosives Operations Overview

    SciTech Connect (OSTI)

    Laintz, Kenneth E.

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  20. High Level Waste ManagemenfDivision ..

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Level Waste ManagemenfDivision .. . . HLWSystem Plan Revision 2(U) Westinghouse Savannah River Company . Aiken; South Carolina Jam,lary 14,1994 HIGH LEVEL WASTE SYSTEM PLAN REVISION 2 _--JANUARY 14, 1994 APPROVAL SHEET Deputy General Manager High Level Waste Management Westinghouse Savannah River Company fO ..... R. E. Erickson Director,- Vitrification Projects Division U. S. Department of Energy, Headquarters Date I Date Date " " HLW System Plan - Revision 2 (U) Table of Contents

  1. Division of Environmental Control Technology Program, 1979. [Lead abstract

    SciTech Connect (OSTI)

    1980-06-01

    Separate abstracts were prepared for the 10 sections in this progress report dealing with environmental engineering. (KRM)

  2. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Nuclear Fuels Ceramics Materials Charac- terization Synthesis Metallurgy Actinide Chemistry Separation Spectroscopy Thermochemistry Inorganic Chemistry Actinide Disposition Safeguards Review Articles NDA Measurements Calorimetry Chemical Systems Diagnostics Analytical Chemistry 5 10 15 20 25 30 Spring 1995 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory Chief Scientist's Notes: Going Back to the Basics The Actinide Research o f t h e N u c l e a r M a t e r

  3. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer 1995 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory The Actinide Research o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1-2 & 9 Separation of Plutonium from Chloride Salts is Demonstrated by High-Temperature Vacuum Distillation Method 3 Putting "System" into System Approach 4-5 NMT Evaluates Extraction Chroma- tography for Re- moval of Pu and Am from HCI Effluents 6-8 Noninvasive Chemi- cal

  4. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory * A U.S. Department of Energy Laboratory The Actinide Research Fall 1995 Zircon Promises to be A Host Phase for the Immobilization of Excess Weapon Plutonium Quarterly o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n One of the new and daunting challenges in nuclear waste management is the disposition of plutonium recovered from dismantled nuclear weapons. Under the first and second Strategic Arms Reduction Treaties, as well as

  5. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory * A U.S. Department of Energy Laboratory The Actinide Research o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 High-gradient Magnetic Separation (HGMS) Plays an Important Role in Radioactive Waste Remediation 4 Researchers Invent Novel Plutonium- Selective Anion Exchange Resins for Waste Minimization 6 LDRD Funds Seven Research Areas in NMT 7 NMT Researchers Nurture the Year-Old Actinide Research Quarterly 8

  6. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter 97-98 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 The Metallurgy and Processing of Plutonium and Its Alloys Are Topics of Ongoing Research 4 Acoustic Resonance Spectroscopy (ARS) Shows Promise for Measuring Gas Composition and Pressure in Sealed Storage Containers 6 Bacteria in Radioactive Environments Can Affect Waste Storage 9 Although Not Magic, "WAND" Helps Manage Waste LANL

  7. Programmatic Objectives of the Geothermal Technology Division: Volume 1

    SciTech Connect (OSTI)

    Meridian Corporation, Alexandria, VA

    1989-05-01

    This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

  8. Metals and Ceramics Division progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M&C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings.

  9. Metals and Ceramics Division progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings.

  10. G Subject: Implementation of Division D, Title III and Title V, and Division E, Title

    Energy Savers [EERE]

    G Subject: Implementation of Division D, Title III and Title V, and Division E, Title Title VII of the Consolidated and Further Continuing Appropriations Act, 2015, Pub. L. No.113-235 References: Consolidated and Further Continuing Division D, Title III, Sections Appropriations Act, 2015, Pub.L. No. 113-235 301(a), 304, 305, 307, and 310 and Title V, Section 501; Division E, Title VII, Sections 733, 735, 739, 743, 744, 745 and 747 When is this Acquisition Letter (AL) effective? The statutory

  11. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  12. The History of Metals and Ceramics Division

    SciTech Connect (OSTI)

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  13. Environmental Sciences Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  14. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  15. Section III, Division 5 - Development And Future Directions

    SciTech Connect (OSTI)

    Morton, Dana K.; Jetter, Robert I; Nestell, James E.; Burchell, Timothy D; Sham, Sam

    2012-01-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development.

  16. Energy Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Stone, J.N.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  17. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    SciTech Connect (OSTI)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNL by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.

  18. Jeff Broughton Named NERSC Division Deputy for Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Broughton Named NERSC Division Deputy for Operations Jeff Broughton Named NERSC Division Deputy for Operations August 15, 2013 broughton Jeff Broughton Jeff Broughton has been named as the new NERSC Division Deputy for Operations. The announcement was made Aug. 15 by NERSC Division Director Sudip Dosanjh. "Rather than this being a new position, the Division Deputy title is a fitting recognition of the duties and responsibilities Jeff has taken on since he joined NERSC four years

  19. Instrumentation and Controls Division progress report for the period July 1, 1988 to June 30, 1990. Volume 2

    SciTech Connect (OSTI)

    Klobe, L.E.

    1990-12-01

    The format of this Instrumentation and Controls Division progress report is a major departure from previous reports. This report has been published in two volumes instead of one, and the description of individual activities have been shortened considerably to make it easier document to scan and to read. Volume 1 of this report presents brief descriptions of a few highly significant programmatic and technological efforts representative of Instrumentation and Controls Division activities over the past two years. This volume contains information concerning the publications, presentations, and other professional activities and achievements of I&C Division staff members.

  20. Metals and Ceramics Division progress report for period ending June 30, 1984

    SciTech Connect (OSTI)

    Brogden, I.

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneous Activities.

  1. Earth Sciences Division annual report 1990

    SciTech Connect (OSTI)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  2. Easy come-easy go divisible cash

    SciTech Connect (OSTI)

    Chan, A.; Tsiounis, Y.; Frankel, Y.

    1996-10-16

    Recently, there has been an interest in making electronic cash protocols more practical for electronic commerce by developing e-cash which is divisible (e.g., a coin which can be spent incrementally but total purchases are limited to the monetary value of the coin). In Crypto`95, T. Okamoto presented the first practical divisible, untraceable, off-line e-cash scheme, which requires only O(log N) computations for each of the withdrawal, payment and deposit procedures, where N = (total coin value)/(smallest divisible unit). However, Okamoto`s set-up procedure is quite inefficient (on the order of 4,000 multi-exponentiations and depending on the size of the RSA modulus). The authors formalize the notion of range-bounded commitment, originally used in Okamoto`s account establishment protocol, and present a very efficient instantiation which allows one to construct the first truly efficient divisible e-cash system. The scheme only requires the equivalent of one (1) exponentiation for set-up, less than 2 exponentiations for withdrawal and around 20 for payment, while the size of the coin remains about 300 Bytes. Hence, the withdrawal protocol is 3 orders of magnitude faster than Okamoto`s, while the rest of the system remains equally efficient, allowing for implementation in smart-cards. Similar to Okamoto`s, the scheme is based on proofs whose cryptographic security assumptions are theoretically clarified.

  3. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  4. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    SciTech Connect (OSTI)

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  5. 16 TAC 3 - Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    - Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC 3 - Oil and Gas DivisionLegal Abstract This...

  6. Louisiana DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    Louisiana DNR Oil and Gas Division Jump to: navigation, search Name: Louisiana DNR Oil and Gas Division Address: P.O. Box 94396 Place: Louisiana Zip: 70804-9396 Website:...

  7. Nevada Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Resources Name: Nevada Division of Water Resources Address: 901 S. Stewart St., Suite 2002 Place: Carson city, Nevada Zip: 89701 Phone Number: 775-684-2800...

  8. Nevada Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    State Lands Jump to: navigation, search Logo: Nevada Division of State Lands Name: Nevada Division of State Lands Address: 901 S. Stewart St., Suite 5003 Place: Carson City, Nevada...

  9. WDEQ-Water Quality Division | Open Energy Information

    Open Energy Info (EERE)

    Quality Division Jump to: navigation, search Name: WDEQ-Water Quality Division Abbreviation: WDEQ WQD Address: 122 West 25th Street 3W Place: Cheyenne, Wyoming Zip: 82002 Phone...

  10. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  11. Alaska Division of Water Permit Fees | Open Energy Information

    Open Energy Info (EERE)

    Water Permit Fees Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published...

  12. Kuraray Europe GmbH Division TROSIFOL | Open Energy Information

    Open Energy Info (EERE)

    Europe GmbH Division TROSIFOL Jump to: navigation, search Name: Kuraray Europe GmbH (Division TROSIFOL) Place: Troisdorf, North Rhine-Westphalia, Germany Zip: 53840 Product: Maker...

  13. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  14. National Electricity Delivery Division (NEDD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) Timely, accurate and defensible policy and market analysis is a key ingredient to building and sustaining successful programs at DOE. The National Electricity Delivery Division coordinates OE's policy-related activities which include: Coordination of Federal Transmission Authorizations Section 1221(a) of EPACT added section 216(h) to the Federal Power Act,

  15. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  16. STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION, HAZARDOUS WASTE BUREAU, Complainant UNITED STATES DEPARTMENT OF ENERGY, and NUCLEAR WASTE PARTNERSIDP, LLC Respondents WASTE ISOLATION PILOT PLANT EDDY COUNTY, NEW MEXICO ) ) ) ) ) ) ) ) ) ) ) ) ) Compliance Order No. HWB-14-21 ORDER GRANTING AN EXTENSION OF TIME TO FILE AN ANSWER AND REQUEST FOR HEARING Responde~ts United States Department of Energy and Nuclear Waste Partnership, LLC, on December 22, 2014, filed an unopposed

  17. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 DATE: March 21, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: SBA Final Rule affecting the 8(a) Business Development Program SUMMARY: On February 11, 2011, the Small Business Administration (SBA) issued the attached final rule revising the regulations governing the 8(a) Business Development program, small business size regulations, and Small Disadvantaged Business (SDB) status

  18. Earth Sciences Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  19. DOE'S geothermal division: A period of transition

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Reed, Marshall

    1996-01-24

    The transition that the Department of Energy's geothemal research program is undergoing is discussed. This transitional period began last year and will continue at least through final implementation of the Department's reorganization and downsizing. Current and recently completed R&D programs are reviewed. New initiatives are outlined. The foci and direction of the Division's activities of particular interest to the geothermal research community are addressed.

  20. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    9 DATE: March 21, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: SBA Final Rule affecting the 8(a) Business Development Program SUMMARY: On February 11, 2011, the Small Business Administration (SBA) issued the attached final rule revising the regulations governing the 8(a) Business Development program, small business size regulations, and Small Disadvantaged Business (SDB) status

  1. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    2 DATE: February 11, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C SUMMARY: Department of Energy Acquisition Regulation (DEAR) Final Rule for Subchapters A, B, and C was published February 11, 2011, in the Federal Register 76 FR 7685. The changes are effective March 14, 2011. This Flash will

  2. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    63 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Updated Reporting Requirement Checklists and Research Performance Progress Report (RPPR) SUMMARY: Policy Flash 2011-46, transmitted updated copies of the Reporting Requirements Checklist to add coverage for For-Profit audits. This Flash transmits additional updates to the checklists to clarify the submission

  3. TO: Procurement Directors FROM: Director, Policy Division

    Office of Environmental Management (EM)

    5 DATE: June 23, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: U.S. Department of Energy - Guide to Financial Assistance - Audit Requirements for For-Profit Organizations SUMMARY: Policy Flash 2011-46, which was issued in association with the Office of Risk Management, provided the final audit guidance documents to assist for-profit recipients in complying with 10 CFR 600.316. In

  4. Workforce Analysis and Planning Division (HC-52) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Analysis and Planning Division (HC-52) Workforce Analysis and Planning Division (HC-52) Mission Statement: This division provides strategic direction guidance and advice through analysis of budget and workforce projections and plans, congressional mandates, administration goals, Departmental priorities and mission needs. FUNCTIONS: Develops business intelligence, demographic and trend analyses in support of corporate workforce planning and in response to requests from within the

  5. Employment Solutions Division (HC-13) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employment Solutions Division (HC-13) Employment Solutions Division (HC-13) Mission Statement This division develops and implements innovative HCM business solutions relating to corporate recruiting, organizational and workforce development, workforce and succession planning, talent capacity, and diversity outreach. Functions Directing the activities of the Corporate Outreach and Recruitment Council (with representatives from across the Department including NNSA, the Power Marketing

  6. Nanoscience & Technology Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscience & Technology Organization Chart The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility, the Center for Nanoscale Materials, in addition to performing programmatic science activities. PDF icon NST Org Chart_March2016.pdf

  7. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  8. Nuclear Physics Technology Saves Lives | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Technology Saves Lives January 11, 2006 Listen to this story Ribbon With early ... Group, headed by Stan Majewski, is part of the Physics Division here at Jefferson Lab. ...

  9. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  10. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its

  11. Section III, Division 5 - Development and Future Directions

    SciTech Connect (OSTI)

    D. K. Morton; R I Jetter; James E Nestell; T. D. Burchell; T L Sham

    2012-07-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, © ASME, 2012, Reference.

  12. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This report discusses fiscal year 1993 activities.

  13. Nuclear Science Division 1994 annual report

    SciTech Connect (OSTI)

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  14. Policy Flash 2014-27 Implementation of Division D, Titles III...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Division D, Titles III and V, and Division E, Title VII of the ... Policy Flash 2014-27 Implementation of Division D, Titles III and V, and Division E, Title ...

  15. Ecological Research Division, Marine Research Program

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  16. Two wavelength division multiplexing WAN trials

    SciTech Connect (OSTI)

    Lennon, W.J.; Thombley, R.L.

    1995-01-20

    Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements necessary to connect to other such sites as well as to connect to remote-sited control centers and experiments. In this paper the authors discuss their vision of the future of Wide Area Networking, describe the plans for a wavelength division multiplexed link connecting Livermore with the University of California at Berkeley and describe plans for a transparent, {approx} 10 Gb/s ring around San Francisco Bay.

  17. RCRA/CERCLA Division orientation package

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The Environmental Reporting Requirements Handbook has been developed by DOE Headquarters' Environmental Guidance Division (EH-231) in order to assist DOE Field Organizations in the identification of the various reporting the notification requirements mandated by Federal environmental laws, regulations and Executive Orders. The mission of the Office of Environmental Guidance is to develop DOE-wide environmental policies and requirements; to assure that the Department's position is appropriately represented in the development of regulatory requirements by EPA and other Federal agencies; and to assure DOE-wide understanding of DOE environmental policies, directives, and environmental laws and regulations. 10 tabs.

  18. Division, NN-43, Office of Arms Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    98 10 CFR Ch. III (1-1-10 Edition) § 810.14 Division, NN-43, Office of Arms Control and Nonproliferation. [51 FR 44574, Dec. 10, 1986, as amended at 58 FR 39639, July 16, 1993; 65 FR 16128, Mar. 27, 2000] § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically author- ized activity to submit additional in- formation. § 810.15 Violations. (a) The Atomic Energy Act provides that: (1) Permanent or temporary injunc-

  19. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

  20. Department of Energy Awards More Than $16 Million for GNEP Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Additional members: Atomic Energy of Canada Limited (AECL); Booz Allen Hamilton; Nexia ... Hill; United Technologies Corporation - Hamilton Sundstrand Rocketdyne Division (UTC); a ...

  1. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible to summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.

  2. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  3. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  4. Performance Metrics and Budget Division (HC-51) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics and Budget Division (HC-51) Performance Metrics and Budget Division (HC-51) MISSION: The mission of the Performance Metrics and Budget Division (HC-51) is to support the effective and efficient implementation of the Department of Energy's human capital initiatives and functions through the strategic integration of corporate human capital performance metrics and the budget of the Office of the Chief Human Capital Officer (HC). FUNCTIONS: Human capital performance measurement

  5. Division of Energy and Mineral Development - Project Overviews

    Energy Savers [EERE]

    Secretary-Indian Affairs Office of Indian Energy and Economic Development Project Overviews Scott Haase Renewable Energy Engineer ASIA, Division of Energy and Mineral Development Presented at: U.S. DOE Tribal Energy Program Annual Meeting October 26, 2006 Prior to April 14, 2005 the Division was under the Office of Trust Services. The Division now reports to a newly formed office - The Office of Indian Energy and Economic Development Bureau of Indian Affairs Secretary, Policy and Economic

  6. Virginia Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Virginia Division of Oil and Gas Address: 1100 Bank Street Place: Virginia Zip: 23219 Website: www.dmme.virginia.govdivision...

  7. Materials Physics and Applications Division Lead | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Physics and Applications Division Lead | National Nuclear Security Administration Facebook ... Home About Us Our People In The Spotlight Toni Taylor Materials Physics and ...

  8. Iver Anderson, Division of Materials Sciences and Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver...

  9. Division of Energy and Mineral Development | Open Energy Information

    Open Energy Info (EERE)

    in Lakewood, Colorado. The Division assists Tribes with the exploration, development and management of their energy and mineral resources to create sustainable economies for...

  10. Consolidated Appropriations Act, 2014 DIVISION E-FINANCIAL SERVICES...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Law 113-76 Consolidated Appropriations Act, 2014 DIVISION E-FINANCIAL SERVICES AND ... Subpart B-Policy 170.200 Requirements for program announcements, regulations, and ...

  11. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  12. Enforcement Letter, Westinghouse Waste Isolation Division- October 3, 2000

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant

  13. OAR - Division 100-Wildlife Diversity Plan | Open Energy Information

    Open Energy Info (EERE)

    availability: http:crossref.org Citation Retrieved from "http:en.openei.orgwindex.php?titleOAR-Division100-WildlifeDiversityPlan&oldid792434" Feedback Contact...

  14. Division of Chemical & Biological Sciences | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Biological Sciences Previous Pause Next Welcome Research teams in this Division ... We work to develop new catalysts that enable more efficient chemical reactions, discover ...

  15. California Public Resources Code Division 3, Chapter 4 - Geothermal...

    Open Energy Info (EERE)

    Public Resources Code Division 3, Chapter 4 - Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: California...

  16. Nevada Division of Environmental Protection - New Public Water...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Division of Environmental Protection - New Public Water Systems Abstract This website sets forth the...

  17. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    of Forestry and Wildlife Jump to: navigation, search Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building...

  18. Title 14 CCR, Division 6, Chapter 3 - Guidelines for Implementation...

    Open Energy Info (EERE)

    Division 6, Chapter 3 - Guidelines for Implementation of the California Environmental Quality Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  19. Consolidated Appropriations Act, 2014 DIVISION E-FINANCIAL SERVICES...

    Broader source: Energy.gov (indexed) [DOE]

    Public Law 113-76 Consolidated Appropriations Act, 2014 DIVISION E-FINANCIAL SERVICES AND ... Attachment 4 Financial Assistance Award Term Title: REPORTING AND REGISTRATION ...

  20. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  1. Vermont Agency of Natural Resources Wastewater Management Division...

    Open Energy Info (EERE)

    Wastewater Management Division Water Pollution Control Permit Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  2. Operations Division at Berkeley Lab: Who We Are: Organization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations Safety DivisionsDepartments Suggestions Search: Go | Advanced Organization Chart Glenn Kubiak Glenn's Open Door Policy Operations Org Chart Download The Chart...

  3. DOE - Office of Legacy Management -- Wolverine Tube Division...

    Office of Legacy Management (LM)

    Division of Calumet & Hecla Consolidated Copper Co. Star Tool Hermes Automotive Manufacturing Corporation MI.05-1 MI.05-2 Location: 1411 Central Avenue , Detroit , Michigan...

  4. New Mexico Oil Conservation Division | Open Energy Information

    Open Energy Info (EERE)

    is located in Santa Fe, New Mexico. About The Oil Conservation Division regulates oil, gas and geothermal activity in New Mexico. We gather well production data, permit new...

  5. Illinois DNR oil and gas division | Open Energy Information

    Open Energy Info (EERE)

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  6. Indiana DNR Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    to professional public service through the effective administration of Indiana's oil and gas exploration and production laws. References "Indiana DNR division of Oil...

  7. Colorado Division of Water Resources Substitute Water Supply...

    Open Energy Info (EERE)

    Substitute Water Supply Plans Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Substitute Water Supply...

  8. Vermont Drinking Water and Groundwater Protection Division Permit...

    Open Energy Info (EERE)

    2015 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Vermont Drinking Water and Groundwater Protection Division Permit Fees...

  9. Nevada Division of Environmental Protection online NOI system...

    Open Energy Info (EERE)

    2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Division of Environmental Protection online NOI system Citation...

  10. Oregon Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    Lands. The agency is comprised of four divisions: Director's Office, Land Management, Wetlands and Waterways Conservation, and Finance and Administration, and the South Slough...

  11. Biology and Medicine Division annual report, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  12. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect (OSTI)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from January 2006 to June 2007, along with a listing of our personnel, are also appended. Any comments on our research are appreciated and can be sent to me personally.

  13. Earth Sciences Division. Annual report 1979

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences. (ACR)

  14. Nuclear Science Division, 1995--1996 annual report

    SciTech Connect (OSTI)

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  15. HQ Operations Division (HC-32) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Division (HC-32) HQ Operations Division (HC-32) Functions Deliver employment operational and advisory services, including position management, recruitment, staffing and classification, reduction in force in Headquarters; Provide operational and advisory support for competitive sourcing initiatives and impacted serviced population; Provide information to HQ employee population on employee benefit programs (retirement; health, dental, vision, long-term care, and life insurance; thrift

  16. Energy Division annual progress report for period ending September 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agencies and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.

  17. Earth Sciences Division Research Summaries 2002-2003

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.

  18. Chemical Engineering Division research highlights, 1979

    SciTech Connect (OSTI)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  19. G Subject: Implementation of Division D, Titles III and V, and Division E,

    Office of Environmental Management (EM)

    FAL. Please request assistance from your local counsel for applicability after the end of an FY. Who is the point of contact? For DOE, contact Richard Bonnell of the Contract and Financial Assistance Policy Division, Office of Policy in the Office of Acquisition and Project Management at (202) 287-1747 or at richard.bonnell@hq.doe.gov. For NNSA, contact NNSA at (505) 845-4337. For conference spending questions, contact Jason Taylor at (202) 287-1560 or at jason.taylor@hq.doe.gov. Department of

  20. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  1. Environmental Research Division technical progress report: January 1986--October 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  2. Drilling technology/GDO

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  3. Implementation of Division F, Title I, Title II, and Title III...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6 Implementation of Division F, Title I, Title II, and Title III and Division G, ...

  4. Division of Natural Gas Regulation (Import/Export) - E-Filing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Division of Natural Gas Regulation (ImportExport) - E-Filing Division of Natural Gas Regulation (ImportExport) - E-Filing E-File Your Application Welcome to the Division of ...

  5. G Subject: Implementation of Division D, Titles III and V, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section Pub.L. No. 113-76 301(a) and Title V, Sections 501, 502, 503 Division E, Title ... of Division D, Title III and Title V, and Division E, Title VII of the ...

  6. Chemistry Division annual progress report for period ending April 30, 1993

    SciTech Connect (OSTI)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  7. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  8. Title 14 CCR, Division 2, Chapter 4 - Development, Regulation...

    Open Energy Info (EERE)

    4 CCR, Division 2, Chapter 4 - Development, Regulation, and Conservation of Oil and Gas Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  9. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Alaska Division of Oil and Gas Address: 550 W. 7th Ave., Suite 1100 Place: Alaska Zip: 99501 Website: dog.dnr.alaska.gov References:...

  10. Health and Safety Research Division RESULTS OF THE RADIOLOGICAL...

    Office of Legacy Management (LM)

    ... survey by the Nuclear Regulatory Commission.2 ... Gr-oup of the Health and Safety Research Division at Oak ... an 0RTEC 455 high voltage power supply, a Tennelec TC 211 ...

  11. Table 38. Coal Stocks at Coke Plants by Census Division

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 38. Coal Stocks at Coke ...

  12. NATIONAL LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL...

    Office of Legacy Management (LM)

    J &' fi -35-24 saps RUSH NATIONAL LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET ULO-n&s-736 (REV. 8u591 -----" . . . , -.-.-- ....

  13. NMSLO Surface Division ROW FAQs | Open Energy Information

    Open Energy Info (EERE)

    Surface Division ROW FAQsLegal Published NA Year Signed or Took Effect 2007 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  14. Biology Division. Progress report, August 1, 1982-September 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Biology Division is the component of the Oak Ridge National Laboratory that investigates the potential adverse health effects of energy-related substances. The body of this report provides summaries of the aims, scope and progress of the research of groups of investigators in the Division during the period of August 1, 1982, through September 30, 1983. At the end of each summary is a list of publications covering the same period (published or accepted for publication). For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with an overview. It will be apparent, however, that currents run throughout the Division and that the various programs support and interact with each other.

  15. X-ray Science Division (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD Groups XSD Safety and Training XSD Strategic Plan XSD Visitor Program XSD Intranet X-ray Science Division (XSD) XSD enables world-class research using x-rays by developing...

  16. DOW CHEMICAL U.S.A. + WESTERN DIVISION

    Office of Legacy Management (LM)

    DOW CHEMICAL U.S.A. + WESTERN DIVISION 2855 MITCHELL DRIVE WALNUT CREEK. CtyLlFORNlA 94598 ... cc: R.D. Axe D. L. Graham C. A. Levine AN OPEAATlNO UNIT OF ME DOW CHEMICAL COMPANY

  17. Utah Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Water Rights Address: 1594 West North Temple, Suite 220 Place: Salt Lake City, Utah Zip: 84114-6300 Phone Number: 801.538.7240 Website:...

  18. Alaska Division of Mining Land and Water | Open Energy Information

    Open Energy Info (EERE)

    Mining Land and Water Jump to: navigation, search Name: Alaska Division of Mining Land and Water Address: 550 W. 7th Ave., Suite 1260 Place: Anchorage, Alaska Zip: 99501-3557 Phone...

  19. Utah Division of Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Wildlife Resources Address: 1594 W North Temple, Suite 2110, Box 146301 Place: Salt Lake City, Utah Zip: 84114-6301 Phone Number: 801-538-4745 Website:...

  20. Colorado Division of Water Resources Denver Basin Webpage | Open...

    Open Energy Info (EERE)

    Denver Basin Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Denver Basin Webpage Abstract This is the...

  1. Earth Sciences Division annual report 1981. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  2. G Subject: Implementation of Division D, Title III and Title...

    Office of Environmental Management (EM)

    after the end of an FY. Who is the point of contact? ... Policy Division, Office of Policy at (202) ... L. No. 113-235 (2015 Act). The Congressional notification requirements of ...

  3. Assistant Director, Credit Modeling and Transaction Risk Management Division

    Broader source: Energy.gov [DOE]

    The Risk Management Division (RMD) is the group within the U.S. Department of Energys Loan Program Office (LPO) that is responsible for oversight of all risks that have the potential to impede the...

  4. Biology Division progress report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The body of this report provides summaries of the aims, scope and progress of the research by groups of investigators in the Division during the period of October 1, 1984, through September 30, 1985. At the end of each summary is a list of publications covering the same period. For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with an overview. It will be apparent, however, tha crosscurrents run throughout the Division and that the various programs support and interact with each other. In addition, this report includes information on the Division's educational activities, Advisory Committee, seminar program, and international interactions, as well as extramural activities of staff members, abstracts for technical meetings, and funding and personnel levels.

  5. Head, Material Services Division | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Services Division Department: ESH&S Supervisor(s): Rob Sheneman Staff: ADM 06 Requisition Number: 1600405 This position is responsible for leading and managing the Material Services Division of the ES&H Department in support of Laboratory operations and ensuring the effective utilization of staff, resources, facilities and budget allocation. Functional areas of responsibility include Government personal property management, vehicle fleet and mobile/heavy equipment management,

  6. TO: Procurement Directors/Contracting Officers FROM: Acting Division Chief

    Energy Savers [EERE]

    POLICY FLASH 2016-07 DATE: December 31, 2015 TO: Procurement Directors/Contracting Officers FROM: Acting Division Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: Reporting and Use of Information Concerning Recipient Integrity and Performance SUMMARY: Beginning on January 1, 2016, DOE COs are required to include the attached FOA and Award Term and Condition for Recipient Integrity and Performance Matters and review FAPIIS as part

  7. Visualization Gallery from the Computational Research Division at Lawrence

    Office of Scientific and Technical Information (OSTI)

    Berkeley National Laboratory () | Data Explorer Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory Title: Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details,

  8. Procurement IT Tools - John Makepeace, Systems Division, OAPM | Department

    Energy Savers [EERE]

    of Energy Procurement IT Tools - John Makepeace, Systems Division, OAPM Procurement IT Tools - John Makepeace, Systems Division, OAPM Topics Discussed: Procurement Systems at the Department of Energy Improving Systems & Processes M&O Subcontract Reporting Capability (MOSRC) Enhancing Reporting Capabilities Promoting Data Quality More... PDF icon Workshop 2015 - Makepeace_Procurement IT Tools.pdf More Documents & Publications Acquisition Letters No. AL 2015-08 POLICY FLASH 2015-35

  9. Chemical Sciences, Geosciences, & Biosciences (CSGB) Division Homepage |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) CSGB Home Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Print Text Size: A A A FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Chemical Sciences, Geosciences, and Biosciences (CSGB) Division supports experimental, theoretical, and computational research to provide fundamental understanding of chemical

  10. Piezoelectric motor development at AlliedSignal Inc., Kansas City Division

    SciTech Connect (OSTI)

    Pressly, R.B.; Mentesana, C.P.

    1994-11-01

    The Kansas City Division of AlliedSignal Inc. has been investigating the fabrication and use of piezoelectric motors in mechanisms for United States Department of Energy (DOE) weapons applications for about four years. These motors exhibit advantages over solenoids and other electromagnetic actuators. Prototype processes have been developed for complete fabrication of motors from stock materials, including abrasive machining of piezoelectric ceramics and more traditional machining of other motor components, electrode plating and sputtering, electric poling, cleaning, bonding and assembly. Drive circuits have been fabricated and motor controls are being developed. Laboratory facilities have been established for electrical/mechanical testing and evaluation of piezo materials and completed motors. Recent project efforts have focused on the potential of piezoelectric devices for commercial and industrial use. A broad range of various motor types and application areas has been identified, primarily in Japan. The Japanese have been developing piezo motors for many years and have more recently begun commercialization. Piezoelectric motor and actuator technology is emerging in the United States and quickly gaining in commercial interest. The Kansas City Division is continuing development of piezoelectric motors and actuators for defense applications while supporting and participating in the commercialization of piezoelectric devices with private industry through various technology transfer and cooperative development initiatives.

  11. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  12. Fusion energy division annual progress report, period ending December 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  13. Implementation of Division D, Titles III and V, and Division E, Title VII of the Consolidated Appropriations Act, 2014, Pub. L. No. 113-76.

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 provides implementing instructions and guidance for Division D, Titles III and V, and Division E, Title VII of the...

  14. Environmental Research Division technical progress report, January 1984-December 1985

    SciTech Connect (OSTI)

    Not Available

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  15. NATIONAL KAD CO. OF OHIO - HEALTH & SAFETY DIVISION

    Office of Legacy Management (LM)

    KAD CO. OF OHIO - HEALTH & SAFETY DIVISION NC) 1602 c ! 9 Hygionm or Medical Dapt. h 2 44 - - =.- Hour Sample Description 6 \ : ' _/ *. I I . ..$$$ +ri, I- .' i C "I. I I I I . 1 I * ,' z Analytical Cha4dA -K-F- Counting D&a: 4; 9 7.' __-__--__ ' T ..__ . . -~ -- --- ---_ . NATIONAL MAD CO. OP OHIO - HEALTH & SAFWY DIVISION N ? ,299 Industrial Hygiene or Medical D8pt. 1. H.#581kmph Nos. D8t8 Cobxted 3 +%ay Rtis Route to RHs Location Uaah-Rite CO- Type of Smpl8~nslyz8d for$m

  16. UNION CARBIDE MZALS DIVISION tiiAGARA FALLS, NEW YDRK

    Office of Legacy Management (LM)

    PRELIF",INARY SURVEY 0' ELECTRDMET iORPDF.&TiCIN UNION CARBIDE MZALS DIVISION tiiAGARA FALLS, NEW YDRK Work performed by the Health and Safety Research Division Dak Ridge National Laboratory Oak Ridge, Tennessee 37830 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Fornierly Utilized Sites-- Remedial Action Program ,ELECTRD?'ISi 60RPOR:TION UNiON CARBIDE METALS DIVlSIOti NiASARA FALLS, NEA YORK At the requests o f the

  17. High Level Waste Management Division High. Level Waste System Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HLW -OVP-98-0037 High Level Waste Management Division High. Level Waste System Plan Revision 9 (U) April 1998 Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U. S. Department of Energy under contract no. DE-AC09-96SR18500 HLW -OVP-98-0037 High Level Waste Management Division High Level Waste System Plan Revision 9 (U) Contributors: A. S. Choi P. Paul F. E. Wise Prepared by: ?1M.J II£) ~ N. R. Davis Approved by: HLW System Integration Manager ll\1-'-ft

  18. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  19. Physics division. Progress report for period ending September 30, 1996

    SciTech Connect (OSTI)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  20. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    SciTech Connect (OSTI)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Two major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.

  1. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  2. Environmental Sciences Division annual progress report for period ending September 30, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The Environmental Sciences Division (ESD) of Oak Ridge National Laboratory (ORNL) conducts research on the environmental aspects of existing and emerging energy systems and applies this information to ensure that technology development and energy use are consistent with national environmental health and safety goals. Offering an interdisciplinary resource of staff and facilities to address complex environmental problems, the division is currently providing technical leadership for major environmental issues of national concern: (1) acidic deposition and related environmental effects, (2) effects of increasing concentrations of atmospheric CO{sub 2} and the resulting climatic changes to ecosystems and natural and physical resources, (3) hazardous chemical and radioactive waste disposal and remediation research and development, and (4) development of commercial biomass energy production systems. This progress report outlines ESD's accomplishments in these and other areas in FY 1990. Individual reports are processed separately for the data bases in the following areas: ecosystem studies; environmental analyses; environmental toxicology; geosciences; technical and administrative support; biofuels feedstock development program; carbon dioxide information analysis and research program; and environmental waste program.

  3. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    SciTech Connect (OSTI)

    Ruby, D.S.

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  4. Oak Ridge Institute for Science and Education, Medical Sciences Division report for 1994

    SciTech Connect (OSTI)

    Snyder, F.; Poston, S.; Engle, J.

    1995-08-01

    The primary mission of the Medical Sciences Division is (1) to conduct basic and applied biomedical research on human health related to energy systems, (2) to provide technical assistance and training in occupational and environmental medicine, and (3) to make related biomedical applications available to others through technology transfer. As can be gleaned from this report, the strengths and capabilities of their staff in carrying out this mission are closely aligned with the four core competencies of ORISE: (1) occupational and environmental health, (2) environmental and safety evaluation and analysis, (3) education and training, and (4) enabling research. Brief descriptions of the various scientific and technical programs and their progress, as well as the staff responsible for the accomplishments made during 1994, are presented in this report. Research programs include the following: biochemistry; cytogenetics; Center for Epidemiologic Research; Center for Human Reliability Studies; occupational medicine; Radiation Emergency Assistance Center/Training Site; and Radiation Internal Dose Information Center.

  5. Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982

    SciTech Connect (OSTI)

    Klobe, L.E.E.

    1982-12-01

    Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

  6. Division of Biological and Medical Research research summary 1984-1985

    SciTech Connect (OSTI)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  7. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  8. Instrumentation and Controls Division progress report, July 1, 1990--June 30, 1992. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This report contains the following information from the Instrumentation and Controls Division of Oak Ridge National Laboratory: supplementary activities; seminars; publications and presentations; scientific and professional activities, achievements, and awards; and division organization charts.

  9. Siemens PG Wind Power Division formerly Bonus Energy A S | Open...

    Open Energy Info (EERE)

    PG Wind Power Division formerly Bonus Energy A S Jump to: navigation, search Name: Siemens PG Wind Power Division (formerly Bonus Energy AS) Place: Brande, Denmark Zip: DK-7330...

  10. G Subject: Implementation of Division B, Title III, Title V and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G Subject: Implementation of Division B, Title III, Title V and Division C Title VII, ... incremental funding and funding terms of grant and cooperative agreement awards (e.g. ...

  11. AGC Division of APG Inc (Indiana) EIA Revenue and Sales - August...

    Open Energy Info (EERE)

    AGC Division of APG Inc (Indiana) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for AGC Division of APG Inc...

  12. AGC Division of APG Inc (Indiana) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    AGC Division of APG Inc (Indiana) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for AGC Division of APG Inc...

  13. AGC Division of APG Inc (Indiana) EIA Revenue and Sales - February...

    Open Energy Info (EERE)

    AGC Division of APG Inc (Indiana) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for AGC Division of APG Inc...

  14. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    SciTech Connect (OSTI)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  15. Environmental Sciences Division: Summaries of research in FY 1996

    SciTech Connect (OSTI)

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  16. Health, Safety, and Environment Division: Annual progress report 1987

    SciTech Connect (OSTI)

    Rosenthal, M.A.

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  17. Environmental Sciences Division annual progress report for period ending September 30, 1992

    SciTech Connect (OSTI)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  18. Interface control document between PUREX Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Carlson, A.B.

    1995-09-01

    The interfacing responsibilities regarding solid waste management are described for the Solid Waste Disposal Division and the PUREX Transition Organization.

  19. Physics Division progress report for period ending September 30, 1987

    SciTech Connect (OSTI)

    Livingston, A.B. (ed.)

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described.

  20. CHRONOLOGY OF EVENTS IN DIVISION OF BIOLOGY AND MEDICINE PROGRAMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHRONOLOGY OF EVENTS IN DIVISION OF BIOLOGY AND MEDICINE PROGRAMS 1927 1936 December 1944 1946 August 1947 Discovery of the specific mutagenic effects of ionizing radiation by Muller. First cyclotron-produced radioisotope, phosphorus 32, administered to a patient suffering from leukemia at University of California, Berkeley. Initiation of first large scale mammalian genetics study (in mice) at the University of Rochester. First shipment of reactor-produced radioisotope, carbon 14, to independent

  1. : Frsnk K. Pittman, Director, Division of Waste Management

    Office of Legacy Management (LM)

    . _J NOV 13 1973 , : Frsnk K. Pittman, Director, Division of Waste Management snd. Transportation, HQ DECONTAMINAl!ING AND DECOWSSIONING OF AEC FACILITIES (YOUR TWX, a/29/73 1 SR has only one facility which has been decontaminated and decommissioned for unconditional release. The Sylvsnia- Corning Plant at Hicksville, Long Island, New York, was released in 1965 tG the Sylvania Corp. Cleanup was accomplished by steaming and washing the con- tsminated sectionof buildings 1 & 2, bringing

  2. Atmospheric sciences division. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Raynor, G.S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  3. TO: Procurement Directors FROM: Director Office of Policy Division

    Office of Environmental Management (EM)

    3-42 DATE: March 20, 2013 TO: Procurement Directors FROM: Director Office of Policy Division Office of Acquisition and Project Management SUBJECT: Acquisition Guide Chapter 19.1 - Summary of Small Business Administration and Department of Energy Partnership Agreement SUMMARY: Acquisition Guide Chapter 19.1 is revised to reflect changes in the new partnership agreement (attached). Revisions are indicated by bolded text. This Flash will be available online at the following website:

  4. STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION,

    Office of Environmental Management (EM)

    ENVIRONMENTAL HEALTH DIVISION, HAZARDOUS WASTE BUREAU, Complainant v. ) ) ) ) ) ) ) ) UNITED STATES DEPARTMENT ) OF ENERGY, and ) LOS ALAMOS NATIONAL SECURITY, LLC, ) Respondents. ) ) ) ) LOS ALAMOS NATIONAL LABORATORY ) LOS ALAMOS COUNTY. NEW MEXICO > COMPLIANCE ORDER NO. HWB-14-20 (CO) U. S. DEPARTMENT OF ENERGY'S REQUEST FOR HEARING AND ANSWER TO ADMINISTRATIVE ORDER REQUIRING COMPLIANCE AND ASSESSING CIVIL PENALTY Respondent U.S. Department of Energy (DOE or Respondent) submits the

  5. Physics Division progress report for period ending September 30, 1990

    SciTech Connect (OSTI)

    Livingston, A.B.

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source.

  6. Physics Division annual report, April 1, 1993--March 31, 1994

    SciTech Connect (OSTI)

    Thayer, K.J.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

  7. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  8. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  9. Chemical Technology Division. Progress report, April 1, 1979-March 31, 1981. [ORNL

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    Separate abstracts were prepared for seven sections of the report. The remaining two sections not processed separately were Fission Energy and Three Mile Island support. (DLC)

  10. G Subject: Implementation of Division F, Title I, Title II, and Title III, and

    Energy Savers [EERE]

    F, Title I, Title II, and Title III, and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113- References: Consolidated and Further Continuing Division F, Titles I, II, and III Appropriations Act, 2013, Pub. L. No. 113-6 Division G, Section 3003 Consolidated Appropriations Act, 2012, Division B, Title III, Section Pub. L. No. 112-74 301(a), 301(b), 316, and Title V, Sections 501, 504, 505 Division C, Title VII, Section 725 When is this Financial Assistance

  11. Economic advantages of Division 2 design for vessels per ASME Code Section VIII

    SciTech Connect (OSTI)

    Lengsfeld, M.; Holman, R.; Lengsfeld, P.F.

    1995-12-01

    ASME Boiler and Pressure Vessel Code Section 8, Division 2 has been available since 1968 for the design of pressure equipment. Industry has generally accepted this code for the design of high pressure vessels, high pressure being relative. Some consider high pressure above 3,000 PSIG, others look at high pressure above 1,000 or 1,500 PSIG. There are organizations who tie the use of Division 2 to thickness, meaning vessels in a thickness range above 3 to 4 inches as worthwhile to design to Division 2. In this paper the authors discuss the use of Division 2 strictly as an economic issue. Independent of thickness, if say a 3/4 in. thick vessel is lower in cost designed to Division 2 vs Division 1 why would one not build this vessel using Division 2 as the design basis?

  12. Detector Group Leader Accepts Additional Role as Lab's Chief Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Officer | Jefferson Lab Detector Group Leader Accepts Additional Role as Lab's Chief Technology Officer Detector Group Leader Accepts Additional Role as Lab's Chief Technology Officer Drew Weisenberger Drew Weisenberger, who has led the Radiation Detector and Imaging Group at Jefferson Lab since 2008, recently accepted the additional role of Chief Technology Officer (CTO) for the lab. Andrew "Drew" Weisenberger, head of the Experimental Nuclear Physics Division's Radiation Detector

  13. Physics Division progress report, January 1, 1984-September 30, 1986

    SciTech Connect (OSTI)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.

  14. Implementation of Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2013-06 and Financial Assistance Letter (FAL) 2013-04 provides implementing instructions and guidance for Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6.

  15. Implementation of Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112-74 and Related Conference Report

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-01 provides implementing instructions and guidance for Division B, Title III, Title V and Division C Title VII, Consolidated Appropriations Act, 2012, Pub. L. No.112-74 and Related Conference Report.

  16. C-Division annual review and operating plan, August 1990

    SciTech Connect (OSTI)

    Morse, N.R.

    1990-11-01

    The Computing and Communications Division is responsible for the Laboratory's Integrated Computing Network as well as Laboratory-wide communications. Our computing network, used by 8000 people distributed throughout the nation, constitutes one of the most powerful scientific computing facilities in the world. The purpose of this publication is to inform our clients of our strategic and operating plans. We review major accomplishments since early 1989 and describe our strategic planning goals and specific projects that will guide our operations over the next couple of years. Our mission statement, planning considerations, and management policies and practices are also included.

  17. Jefferson Lab Strategic Planning Experimental Nuclear Physics Division Town Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Strategic Planning Experimental Nuclear Physics Division Town Meeting December 08, 2011 - CEBAF Center Auditorium Agenda 08:30 - 08:35 Charge Bob McKeown 08:35 - 08:45 (5 + 5) Introduction Rolf Ent (Mission Statement, Scope of Current activities, Synergy) 08:45 - 09:00 (10 + 5) 12-GeV Upgrade: "<5 years" scientific program Glenn Young (Machine + Hall Equipment, Approved Experiments) 09:00 - 09:40 12-GeV Upgrade: "5-10 year" scientific program (5 + 5) Hall A

  18. Mr. William R. Augustine Deputy Chief Programs Management Division

    Office of Legacy Management (LM)

    h :.:, \ i 5 , Department of Energy Washington, DC 20585 t 7-c I-..._ .' , Mr. William R. Augustine Deputy Chief Programs Management Division U.S. Army Corps of Engineers Department of the Army Washington. D.C. 203 14- 1000 Dear Mr. Augustine: I am writing to you as a follow-up to discussions our staffs have had regarding two former Department of the Army facilities in the Formerly Used Defense Sites (FUDS) program where the former Atomic Energy Commission (AEC) also conducted activities. These

  19. Mr. William R. Augustine Deputy Chief Programs Management Division

    Office of Legacy Management (LM)

    )N i-i 5 - "i Department of Energy Washington, DC 20585 Mr. William R. Augustine Deputy Chief Programs Management Division U.S. Army Corps of Engineers Department of the Army Washington, D. C. 203 14- 1000 -' . UC-i -, :? . -0' /, \ ._ ' .;' Dear Mr. Augustine: I am writing to you as a follow-up to discussions our staffs have had regarding two former Department of the Army facilities in the Formerly Used Defense Sites (FUDS) program where the former Atomic Energy Commission (AEC) also

  20. R. S. Driof, Process Demlopnant Dranch, Production Division

    Office of Legacy Management (LM)

    S. Driof, Process Demlopnant Dranch, Production Division 7 i 7; I; $ " k>JSTI'IC AT TIE Cif~iICAL CCNSTXICTIOS COXi'O+TIO:? P$IX)T PIGIT-JUL'I 31, 19% Chemico ban fouzd tw proossses, b&h involving the initial H2SOl lwc:?, sutisfoctory. On.3 process (rerun) produces a U-Cu precipitate r&ich is ralsachad; the U and Cu can ba s+paratzd by various nothods. The second process (sts~~~ise) ?rucipitn?es co?ps~ and thee uranium. &j- ditioml 1abnretorJ xork is being dona so that thase

  1. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  2. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  3. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  4. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  5. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  6. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  7. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  8. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  9. Teknikem, A Division of RockinBoat LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teknikem, A Division of RockinBoat LLC America's Next Top Energy Innovator Challenge 17256 likes Teknikem, A Division of RockinBoat LLC Y12 National Security Complex Teknikem, a Division of RockinBoat LLC, is commercializing RonJohn, a safer more environmentally friendly paint and adhesive licensed from the Y12 National Security Complex. Unlike conventional strippers, RonJohn products are not classified as hazardous air pollutants, carcinogens, or hazardous wastes. RonJohn blends were developed

  10. Environmental Sciences Division annual progress report for period ending September 30, 1992

    SciTech Connect (OSTI)

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  11. WC_1993_008_CLASS_WAIVER_ROCKETDYNE_DIVISION_ROCKWELL_INTERN.pdf |

    Energy Savers [EERE]

    Department of Energy 08_CLASS_WAIVER_ROCKETDYNE_DIVISION_ROCKWELL_INTERN.pdf WC_1993_008_CLASS_WAIVER_ROCKETDYNE_DIVISION_ROCKWELL_INTERN.pdf PDF icon WC_1993_008_CLASS_WAIVER_ROCKETDYNE_DIVISION_ROCKWELL_INTERN.pdf More Documents & Publications WC_1993_002_CRADA_CLASS_WAIVER_SOUTHERN_UNIVERSITY_RESEARCH_.pdf WC_1990_012_CLASS_WAIVER_of_Patent_Rights_in_Inventions_Made.pdf WA_1993_041_ROCKETDYNE_AND_LLNL_Waiver_of_the_Governments_U

  12. PRELIMINARY SURVEY OF THE UNION CARBIDE CORPORATION METALS DIVISION PLANT, NIAGARA FALLS, NEW YORK

    Office of Legacy Management (LM)

    e - .' N"lr 7% PRELIMINARY SURVEY OF THE UNION CARBIDE CORPORATION METALS DIVISION PLANT, NIAGARA FALLS, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge Natjonal Laboratory Oak Ridge, Tennessee 37830 December 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program PRELIMINARY SURVEY OF THE UNION CARBIDE CORPORATION METALS DIVISION PLANT, NIAGARA FALLS,

  13. Marine Energy Technology Symposium METS2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 rd Marine Energy Technology Symposium METS2015 April 27-29, 2015, Washington, D.C. DEVELOPMENT AND RELEASE OF THE OPEN-SOURCE WAVE CLIMATE ENVIRONMENT ASSESSMENT TOOL SNL-SWAN Aaron Porter Coast and Harbor Engineering A Division of Hatch Mott MacDonald Edmonds, WA, USA Kelley Ruehl and Chris Chartrand Sandia National Laboratories Albuquerque, NM, USA Helen Smith University of Exeter Exeter, England 1 Corresponding author: Aaronp@coastharboreng.com INTRODUCTION Accurately assessing potential

  14. Employment Solutions Division (HC-13) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology in outreach and recruitment efforts, designing effective marketing and branding efforts to attract the right candidate for the right job, incorporating diversity ...

  15. OSTI employee director-elect of new SLA division | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    OSTI employee director-elect of new SLA division Valerie Allen, senior technical ... Information, was recently named director-elect of the newly formed Government Information ...

  16. X-ray Science Division: Mission and Goals | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

  17. NE-23 List of California Sites Hattie Carwell. SAN/NSQA Division

    Office of Legacy Management (LM)

    SANNSQA Division Attached for your information is the list Of Callfornia sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites ...

  18. Division of Safety of Dams:About Dam Safety | Open Energy Information

    Open Energy Info (EERE)

    briefly describes activities conducted by the agency to oversee the construction and maintenance of dams for the public safety. Author California Division of Safety of Dams...

  19. G Subject: Implementation of Division B, Title III, Title V and...

    Broader source: Energy.gov (indexed) [DOE]

    Administration (NNSA) Contracting Officers. Who is the point of contact? For DOE, contact Richard Bonnell of the Contract and Financial Assistance Policy Division, Office of Policy...

  20. Experimental Facilities Division progress report 1996--97

    SciTech Connect (OSTI)

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  1. Business Case Analysis of Prototype Fabrication Division Recapitalization Plan. Summary

    SciTech Connect (OSTI)

    Booth, Steven Richard; Benson, Faith Ann; Dinehart, Timothy Grant

    2015-04-30

    Business case studies were completed to support procurement of new machines and capital equipment in the Prototype Fabrication (PF) Division SM-39 and TA-03-0102 machine shops. Economic analysis was conducted for replacing the Mazak 30Y Mill-Turn Machine in SM-39, the Haas Vertical CNC Mill in Building 102, and the Hardinge Q10/65-SP Lathe in SM-39. Analysis was also conducted for adding a NanoTech Lathe in Building 102 and a new electrical discharge machine (EDM) in SM-39 to augment current capabilities. To determine the value of switching machinery, a baseline scenario was compared with a future scenario where new machinery was purchased and installed. Costs and benefits were defined via interviews with subject matter experts.

  2. Quality Assurance Plan for Transportation Management Division Transportation Training Programs

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The U.S. Department of Transportation (DOT) implemented new rules requiring minimum levels of training for certain key individuals who handle, package, transport, or otherwise prepare hazardous materials for transportation. In response to these rules, the U.S. Department of Energy (DOE), Transportation Management Division (TMD), has developed a transportation safety training program. This program supplies designed instructional methodology and course materials to provide basic levels of DOT training to personnel for whom training has become mandatory. In addition, this program provides advanced hazardous waste and radioactive material packaging and transportation training to help personnel achieve proficiency and/or certification as hazardous waste and radioactive material shippers. This training program does not include site-specific or task-specific training beyond DOT requirements.

  3. Physics Division annual progress report, January 1-December 31, 1983

    SciTech Connect (OSTI)

    Trela, W.J.

    1984-12-01

    The Physics Division is organized into three major research areas: Weapons Physics, Inertial Fusion Physics, and Basic Research. In Weapons Physics, new strategic defensive research initiatives were developed in response to President Reagan's speech in May 1983. Significant advances have been made in high-speed diagnostics including electro-optic technique, fiber-optic systems, and imaging. In Inertial Fusion, the 40-kJ Antares CO/sub 2/ laser facility was completed, and the 1- by 1- by 2-m-long large-aperture module amplifier (LAM) was constructed and operated. In Basic Research, our main emphasis was on development of the Weapons Neutron Research (WNR) facility as a world-class pulsed neutron research facility

  4. Physics Division progress report for period ending September 30, 1984

    SciTech Connect (OSTI)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  5. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  6. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  7. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  8. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  9. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  10. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1994

    SciTech Connect (OSTI)

    none,

    1995-09-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies. i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL. which is the only area where DOE activities have been performed. While the major focus of attention is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  11. Rocketdyne Division annual site environmental report Santa Susana Field Laboratory and Desoto sites 1995

    SciTech Connect (OSTI)

    1996-07-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the DeSoto site. The sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The DeSoto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warrants comprehensive monitoring to assure protection of the environment. SSFL consists of four administrative areas used for research, development, and test operations as well as a buffer zone. A portion of Area I and all of Area II are owned by the U.S. Government and assigned to the National Aeronautics and Space Administration (NASA). A portion of Area IV is under option for purchase by the Department of Energy (DOE).

  12. Solid State Division progress report for period ending September 30, 1990

    SciTech Connect (OSTI)

    Green, P.H.; Hinton, L.W.

    1991-03-01

    This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials.

  13. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  14. Instrumentation and Controls Division biennial progress report, September 1, 1978-September 1, 1980

    SciTech Connect (OSTI)

    Sadowski, G.S.

    1981-06-01

    Brief summaries of research work are presented in the following section: overview of the ORNL Instrumentation and Controls Division activities; new developments and methods; reactor instrumentation and controls; measurement and control engineering; electronic engineering; maintenance; studies; services; and development; and division achievements.

  15. Geothermal Technology Development Program. Annual progress report, October 1983-September 1984

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-08-01

    This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

  16. Exploration Technologies Technology Needs Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's Geothermal Technologies Program and prepared by Energetics Incorporated under the guidance of Hildigunnur (Hidda) Thorsteinsson, Technology Development Manager of the Exploration Technologies Subprogram, and Tim Reinhardt, Technology Development Manager of the Low-Temperature, Coproduced, and Geopressured Geothermal Subprogram. Amanda I. Greene of Energetics Incorporated was the lead author and designer of the

  17. Supratik Guha to direct nanoscience and technology at Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory | Argonne National Laboratory Supratik Guha to direct nanoscience and technology at Argonne National Laboratory June 18, 2015 Tweet EmailPrint Materials scientist also to join faculty at UChicago's Institute for Molecular Engineering Supratik Guha has been named the next director of the Nanoscience and Technology Division at the U.S. Department of Energy's Argonne National Laboratory, as well as director of Argonne's Center for Nanoscale Materials, a DOE Office of Science User

  18. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    SciTech Connect (OSTI)

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  19. Engineering Physics and Mathematics Division progress report for period ending March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, and technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.

  20. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    SciTech Connect (OSTI)

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department.

  1. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  2. Optical add/drop filter for wavelength division multiplexed systems

    DOE Patents [OSTI]

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  3. Carlsbad Area Office Waste Isolation Division Transition Plan

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    In October 1993, the US Department of Energy (DOE) announced the Revised Test Strategy for the Waste Isolation Pilot Plant (WIPP). The new strategy involves conducting additional radioactive waste tests in laboratories instead of the underground at the WIPP. It will likely result in an acceleration of regulatory compliance activities needed for a disposal decision, which could result in permanent disposal of transuranic waste earlier than the previous test program and regulatory compliance strategy. The Revised Test Strategy changes the near-term program activities for the WIPP site. The revised strategy deletes radioactive waste tests at the WIPP, prior to completing all activities for initiating disposal operations, and consequently the need to maintain readiness to receive waste in the near-term. However, the new strategy enables the DOE to pursue an earlier disposal decision, supported by an accelerated regulatory compliance strategy. With the new strategy, the WIPP must prepare for disposal operations in early 1998. This Westinghouse Waste Isolation Division (WID) Transition Plan addresses the WID programmatic, budgetary, and personnel changes to conform to the Revised Test Strategy, and to support the accelerated compliance strategy and earlier disposal operations at the WIPP.

  4. Physics Division progress report, January 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Hollen, G.Y.; Schappert, G.T.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division`s Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La{sub 2}CuO{sub 4+{delta}} Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  5. The National Energy Strategy - The role of geothermal technology development: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  6. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  7. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  8. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  9. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  10. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  11. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  12. Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Poutsma, M.L.

    1995-06-01

    This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

  13. Materials and Molecular Research Division annual report 1982

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  14. Materials and Molecular Research Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  15. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  16. Implementation of Division D, Titles III and V, and Division E, Title VII of the Consolidated Appropriations Act, 2014, Pub. L. No. 113-76.

    Broader source: Energy.gov [DOE]

    Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 have been revised to remove language from Section 502 that was not carried forward from previous appropriation acts. FAL 2014-01 was also revised to update the Corporate Felony Conviction and Federal Tax Liability Representations and Assurances and the Conference Spending term. As a result, AL 2014-04 (Rev 1) and FAL 2014-01 (Rev 1) provide implementing instructions and guidance for Division D, Titles III and V, and Division E, Title VII of the Consolidated Appropriations Act, 2014, Pub. L. No. 113-76.

  17. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  18. Division of Fish and Wildlife Program Summary, 1985-1986 Progress Report.

    SciTech Connect (OSTI)

    Kiilsgaard, Chris

    1986-12-01

    This report describes the organization of the Division of Fish and Wildlife programs of Bonneville Power Administration, its budget, and research programs funded by it during FY 1986. (ACR)

  19. HLW-OVP-94-00n High Level Waste Management Division HLW System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-00n High Level Waste Management Division HLW System Plan Revision 3 (U) Westinghouse Savannah River Company Aiken, South Carolina May 31, 1994 Westinghouse Savannah River Company ...

  20. Policy Flash 2013-53 Implementation of Division F, Title I, II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Flash 2013-53 Implementation of Division F, Title I, II, III AL 2013-06 and FAL 2013-04 Questions concerning conference spending, should be directed to Jason Taylor at ...

  1. 16 TAC, part 1, chapter 3 Oil and Gas Division | Open Energy...

    Open Energy Info (EERE)

    TAC, part 1, chapter 3 Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC, part 1, chapter 3 Oil...

  2. Colorado Division of Water Resources Policy 2010-4 | Open Energy...

    Open Energy Info (EERE)

    Policy 2010-4 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Colorado Division of Water Resources Policy 2010-4Legal Published NA...

  3. Energy Division annual progress report for period ending September 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This eighth annual report of the Division covers work done during FY 1981 (October 1, 1980, through September 30, 1981). As with these documents in the past, the format follows approximately the organizational structure of the Energy Division. Chapters 2 through 6 summarize the activities of the sections of the Division: Environmental Impact Section, headed by H.E. Zittel; Regional and Urban Studies Section, R.M. Davis; Economic Analysis Section, R.B. Shelton; Data and Analysis Section, A.S. Loebl; and Efficiency and Renewables Research Section, J.W. Michel. In addition, work on a variety of projects which cut across section lines is reported in Chapter 7, Integrated Programs. These activities are under the supervision of T.J. Wilbanks, Associate Director for the Division. Separate abstracts are included for individual projects.

  4. DECONZXMINATION SURVEY OF MfZNUS HETAL DIVISION, CINX4NATI, GIIIO...

    Office of Legacy Management (LM)

    L. kuhe GE JWM VIZ GPs;z For tile past ti;O years the Magnus 1letal Division of Cincinnati, Ohio has been nachining various form of uraniun netal for National Leac: Corlpany of ...

  5. Environmental Sciences Division annual progress report for period ending September 30, 1994

    SciTech Connect (OSTI)

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  7. Health and Safety Research Division progress report, May 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Kaye, S.V.

    1980-01-01

    Research activities of the Health and Safety Research Division for the period May 1978 through September 1979 are discussed. Abstracts of five individual items were prepared for the data base. (GHT)

  8. 2 C.C.R. 402 - Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 2 C.C.R. 402 - Division of Water ResourcesLegal Abstract Under this article of the Colorado...

  9. Radiological Risk Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

  10. ORNIJRASA-85/7 Health and Safety Research Division RESULTS OF TBE MOBILE GAMMA SCANNING ACTIVITIES

    Office of Legacy Management (LM)

    ORNIJRASA-85/7 Health and Safety Research Division RESULTS OF TBE MOBILE GAMMA SCANNING ACTIVITIES IN BERKELEY, BRIDGETON, AND HAZELWOOD, MISSOURI Jane 1985 Work performed as part of the RADIOLOGICAL SURVEYACXVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05840R21400 -.... ORNL/RASA-85/7 Health and Safety Research Division RESULTS OF IBE MOBILEGAMMA SCANNING

  11. HQ Employee/Labor Management Relations Division (HC-33) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Employee/Labor Management Relations Division (HC-33) HQ Employee/Labor Management Relations Division (HC-33) Functions Provide labor/employee management relations advisory services to Headquarters staff, including union negotiations, adverse actions, grievances, and performance management; Represent management in third party situations or union negotiations; Provide work life information, referral and support services to Headquarters employees covering such areas as child care, elder

  12. Solid State Division progress report for period ending September 30, 1984

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  13. Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) SUF Home Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Print Text Size: A A A FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation of scientific user facilities for the development of novel nano-materials and for materials

  14. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  15. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  16. Management support services to the Office of Utility Technologies. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1993-12-16

    The Office of Utility Technologies works cooperatively with industry and the utility sector to realize the market potential for energy efficiency and renewable energy technologies. Under this contract, BNF has provided management support services for OUT R&D activities for the following Program offices: (1) Office of Energy Management; (2) Office of Solar Energy Conversion; (3) Office of Renewable Energy Conversion; and (4) Deputy Assistant Secretary. During the period between 4/17/91 and 9/17/93, BNF furnished the necessary personnel, equipment, materials, facilities and travel required to provide management support services for each of the above Program Offices. From 9/18/93 to 12/17/93, BNF has been involved in closeout activities, including final product deliverables. Research efforts that have been supported in these Program Offices are: (1) for Energy Management -- Advanced Utility Concepts Division; Utility Systems Division; Integrated Planning; (2) for Solar Energy Conversion -- Photovoltaics Division; Solar Thermal and Biomass Power Division; (3) for Renewable Energy Conversion -- Geothermal Division; Wind, Hydroelectric and Ocean Systems Division; (4) for the Deputy Assistant Secretary -- support as required by the Supporting Staff. This final report contains summaries of the work accomplished for each of the Program Offices listed above.

  17. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year. Because the number

  18. John Shalf Is Named Chief Technology Officer for NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Shalf Is Named Chief Technology Officer for NERSC John Shalf Is Named Chief Technology Officer for NERSC December 5, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510 486 5849 XBD200503-00083.jpg John Shalf John Shalf has been named the Chief Technology Officer (CTO) of the National Energy Research Scientific Computing (NERSC) Division at Lawrence Berkeley National Laboratory (Berkeley Lab) by NERSC Director Sudip Dosanjh. Shalf will also continue to serve in his current role as head of the Computer

  19. Teknikem, A Division of RockinBoat LLC

    Broader source: Energy.gov [DOE]

    Teknikem is developing a chemical blend platform technology invented by the Y12 National Security Complex that is known as RonJohn. RonJohn is a safer, more eco-friendly alternative to dangerous chemicals and processes used to strip paints and adhesives from parts and equipment. RonJohn is not toxic, not flammable, not carcinogenic but is biodegradeable and very effective on many plastics, paints, and adhesives. Market segments and channels are being developed including the military, aerospace, shipping construction/maintenance, ground transportation, general industry, and consumer retail.

  20. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    SciTech Connect (OSTI)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-05-19

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 μCi per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

  1. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  2. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  3. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  4. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  5. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  6. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  7. Exploration Technologies Technology Needs Assessment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Hydrothermal Exploration Data Gap ...

  8. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  9. Phil Heitzenroeder named winner of the 2013 Fusion Technology Award |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Phil Heitzenroeder named winner of the 2013 Fusion Technology Award By John Greenwald April 30, 2013 Tweet Widget Google Plus One Share on Facebook Phil Heitzenroeder (Photo by Elle Starkman/PPPL Office of Communications) Phil Heitzenroeder Phil Heitzenroeder, who leads the Mechanical Engineering Division at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and whose advice is sought by engineers around the world, has won the 2013 Fusion

  10. Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |

    Energy Savers [EERE]

    Energy Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance," Lawrence Berkeley National Laboratory, presented by Dr. Mark Modera, staff scientist, Environmental Energy Technologies Division. PDF icon LBNL Duct Sealing Presentation More Documents & Publications Ventilation in Multifamily Buildings

  11. FBIS report. Science and technology: Japan, May 7, 1996

    SciTech Connect (OSTI)

    1996-05-07

    ;Partial Contents: Japan: FH1 Aerospace Division Executive on UAV R&D; JapaN: MHI Delivers First F-2 Flight Test Model; Nuclear Technologies; Japan: Nuclear Material Research in Cross-Over Research Project; Japan: MITI To Subsidize Development of Cryptography; Defense Industries; Japan: JADI Announces FY96 Major Events Schedule; Japan: Rollout Ceremony Held for First OH-X Flight Test Model; and Japan: KHI Weapons Designer OH-X Development.

  12. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  13. U.S. Department of Energy Oak Ridge Operations Offlce Procurement and Cantrads Division

    National Nuclear Security Administration (NNSA)

    Oak Ridge Operations Offlce Procurement and Cantrads Division P.O. BOX 2001 Oak Ridge. TN 37831 SOLICITATION, OFFER AND AWARD Dlrect Del very Adotess' U S Deoanmenl of Energy Oar R doe Ooerat ons Ofice ~ r m u r e i e n t s n d Contracts Division ,200 Administration Road, ATTN: Ballard A. Jackson Jr Oak Ridse. TN 37830 I . THIS CONTRACT IS ARATED ORDER UNDER DPAS (15 CFR 700) I NOTE: In sealed bid solicitations "offer" and "offeror" mean "bid" and

  14. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    SciTech Connect (OSTI)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  15. NATIONAL ,LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT.

    Office of Legacy Management (LM)

    ,LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET NO. DISTRIBUTION OF COPIES 1 Analytical Laboratory (RECORD COPP) 2 Industrial Hygiene 8 Radiotion Dept. l 3 Water Treatment Plant (Far Water Samples Only) YLO-Ii&S-736 (REV. R/4/591 __.-.-- NATIONAL LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET SAMPLE GA same 6 as 3499 l 03 5 .15 20 45.00 .27 New drill broke an. 6A s&me as 3498 .03 5 .l5 12 32 .OO .21 4

  16. DOE - Office of Legacy Management -- Bendix Corp Frieze Division - MD 0-01

    Office of Legacy Management (LM)

    Corp Frieze Division - MD 0-01 FUSRAP Considered Sites Site: BENDIX CORP., FRIEZE DIVISION (MD.0-01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore , Maryland MD.0-01-1 Evaluation Year: 1987 MD.0-01-3 Site Operations: Produced "classified units" believed to be electronics components - no radioactive materials involved. MD.0-01-1 MD.0-01-3 Site Disposition: Eliminated - No radioactive materials handled at this

  17. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  18. Inder\tMonga CTO,\tESnet Division\tDeputy\tof\tTechnology, Scien?fic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab NDN Comm 2015 Experimental and observational science deals with big and small instruments, and a lot of data 2 Data volumes are increasing faster than Moore's Law New ...

  19. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  20. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  1. Charge division using carbon filaments for obtaining coordinate information from detection of single electrons

    SciTech Connect (OSTI)

    Bird, F.; Shapiro, S.; Ashford, V.; McShurley, D.; Reif, R.; Lirth, D.W.G.S.; Williams, S.

    1985-09-01

    Seven micron diameter Carbon filaments forming the anode of a multiwire proportional chamber have been used to detect single electrons. Charge division techniques applied to the 5 cm long wire resulted in a position resolution of sigma/L < 2% for a collected signal charge of 30 fC.

  2. NATIONAL LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT.

    Office of Legacy Management (LM)

    HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET NLO NO. DISTRIBUTION OF COPIES 1 Analytical Loboratory (RECORD COPY) 2 Industrial Hygiene & Radiation Dept. 3 Water Treatment Plant (For Water Samples Only) YLO-n&s-736 (REV. s/r/59, ---_l-_ -__l_l -, -,, -.-.__-..

  3. Guidance document publications list - Office of Environmental Policy and Assistance RCRA/CERCLA Division (EH-413)

    SciTech Connect (OSTI)

    1995-08-01

    This document provides a listing of Guidance Documents from the RCRA/CERCLA Division for August 1995. Documents are listed under the following categories: RCRA Guidance Manuals; RCRA Information Briefs; CERCLA Guidance Manuals; CERCLA Regulatory Bulletins; RCRA/CERCLA Guidance Manuals; TSCA Guidance Manuals; TSCA Information Briefs; and, Cross Cut Manuals.

  4. Biology and Medicine Division annual report, 1981-1982. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    Separate abstracts were prepared for the 61 research reports in the 1981-1982 annual report for the Biology and Medicine Division of the Lawrence Berkeley Laboratory. Programs reviewed include research medicine, Donner Pavilion, environmental physiology, radiation biophysics and structural biophysics. (KRM)

  5. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  6. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  7. Solid State Division progress report for period ending September 30, 1993

    SciTech Connect (OSTI)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  8. Engineering Physics and Mathematics Division progress report for period ending August 31, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

  9. Medical Sciences Division Oak Ridge Institute for Science and Education report for 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Research programs from the medical science division of the Oak Ridge Institute for Science and Education (ORISE) are briefly described in the following areas: Biochemistry, cytogenetics, microbiology, center for epidemiologic research, radiation medicine, radiation internal dose information center, center for human reliability studies, facility safety, occupational medicine, and radiation emergency assistance center/training site.

  10. Solid State Division: Progress report for period ending September 30, 1987

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  11. PPPL engineer named winner of the 2013 Fusion Technology Award | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab engineer named winner of the 2013 Fusion Technology Award By John Greenwald May 1, 2013 Tweet Widget Google Plus One Share on Facebook Philip Heitzenroeder, who leads the Mechanical Engineering Division at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and whose advice is sought by engineers around the world, has won the 2013 Fusion Technology Award. The high honor from the Nuclear and Plasma Sciences Society of the Institute of Electrical and

  12. Picture of the Week: An explosion of 3D printing technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An explosion of 3D printing technology Scientists in Los Alamos National Laboratory's Chemistry and Explosive Science and Shock Physics divisions are exploring new methods for 3D printing that allow for the function of materials to be controlled by their internal structure. May 24, 2015 An explosion of 3D printing technology x View image on Flickr » Additive Manufacturing, known also as 3D printing, allows for the rapid production of parts with complex shapes that would be impossible to

  13. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  14. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  15. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  16. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  17. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  18. Radiance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Journal of Building Performance Simulation 7(2): 152-163, 2013. http:eetd.lbl.govsites... Journal of Building Performance Simulation 6(1): 24-37, 2012. http:eetd.lbl.govsites...

  19. Energy Technology Solutions

    Broader source: Energy.gov [DOE]

    Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

  20. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  1. The value of energy data

    Energy Savers [EERE]

    EnergyCodesandStandardsg.pdf 2 http:www.encelium.comenemssix-strategies.html 3 http:eetd.lbl.govsitesallfileslightingcontrolsincommercialbuil...

  2. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    SciTech Connect (OSTI)

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  3. Division of energy biosciences: Annual report and summaries of FY 1995 activities

    SciTech Connect (OSTI)

    1996-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanisms affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicals by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes.

  4. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect (OSTI)

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  5. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect (OSTI)

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  6. Hierarchical Diagnosis J. E. Kristjansson and C-Y.J. Kao Earth and Environmental Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristjansson and C-Y.J. Kao Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM 87545 Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen,

  7. Technical Sessions M. C. MacCracken Atmospheric amj Geophysical Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. C. MacCracken Atmospheric amj Geophysical Sciences Division Lawrence Livermore National Laboratory Li~'ermore, CA 94550 The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numeric:al approaches to represent physical, biogeochemical, and ecological pro- cesses; that fully utilizes the hardware and software capa- bilities of new computer

  8. OFFICE OF BIOLOGICAL AND ENVIRONMENTAL RESEARCH Climate and Environmental Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOLOGICAL AND ENVIRONMENTAL RESEARCH Climate and Environmental Sciences Division ARM/ASR SGP HIGH-RESOLUTION MODELING WORKSHOP EXECUTIVE SUMMARY In order to solicit community feedback, the U.S. Department of Energy (DOE) is hosting a series of workshops on how key scientifc needs, gaps, and priorities in atmospheric process understanding and climate model prediction could be addressed through strategic deployment and operation of instruments and routine high-resolution modeling at the

  9. Engineering Physics Division progress report for period ending November 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

  10. TO: Procurement Directors FROM: Chief Contract and Financial Assistance Policy Division

    Energy Savers [EERE]

    POLICY FLASH 2015-33 DATE: August 10, 2015 TO: Procurement Directors FROM: Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition Management SUBJECT: "Guidance for Procurement Officials" Webpage Refresh SUMMARY: This policy flash provides updated links to the resources provided on the "Guidance for Procurement Officials" webpage. We are refreshing the webpage to update its information and tools; provide new search capabilities; and

  11. Mr. A. F. Vondrasek Vice President and General Manager Agricultural Chemicals Division

    Office of Legacy Management (LM)

    01886 APR 8 1986 Mr. A. F. Vondrasek Vice President and General Manager Agricultural Chemicals Division W. R. Grace and Company P.O. Box 471 Bartow, Florida 33830 Dear Mr. Vondrasek: C The Department of Energy is evaluating the radiological condition of sites that were utilized by the Manhattan Engineer District and the Atomic Energy Commission (AEC) during the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to

  12. Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division

    Office of Legacy Management (LM)

    AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly

  13. NE-23 List of California Sites Hattie Carwell. SAN/NSQA Division

    Office of Legacy Management (LM)

    Hattie Carwell. SAN/NSQA Division Attached for your information is the list Of Callfornia sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified for FUSRAP. The only site in California that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Program are under San Francisco

  14. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  15. Engineering Physics and Mathematics Division progress report for period ending December 31, 1992

    SciTech Connect (OSTI)

    Ward, R.C.

    1993-05-01

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  16. Instrumentation and Controls Division Progress report, July 1, 1992--June 30, 1994

    SciTech Connect (OSTI)

    McDonald, D.W.

    1995-06-01

    The Instrumentation and Controls (I&C) Division serves a national laboratory, and as such has an expansive domain: science, industry, and national defense. The core mission is to support the scientific apparatus of the Laboratory and all of the systems that protect the safety and health of people and the environment. Progress is reported for the five sections: photonics and measurements systems, electronic systems, signal processing, controls and systems integration, and technical support.

  17. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  18. Contract No. W-7405-eng-26 Health and Safety Research Division

    Office of Legacy Management (LM)

    Contract No. W-7405-eng-26 Health and Safety Research Division PRELIMINARY SITE SURVEY REPORT FOR THE FORMER SUPERIOR STEEL MILL AT CARNEGIE, PENNSYLVANIA T. E. Myrick C. Clark Work performed as part of the REMEDIAL ACTION SURVEY AND CERTIFICATION ACTIVITIES April 1981 OAK.RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . iii LISTOFTABLES

  19. HEALXH AND SAFEIY RFSEARCH DIVISION Waste Management Research and Development Programs

    Office of Legacy Management (LM)

    HEALXH AND SAFEIY RFSEARCH DIVISION Waste Management Research and Development Programs (Activity No. AH 10 05 00 0; NEAHC01) RADIOLOGICAL SURVEY OFTHE FORMER AEROPROJECTS, FACILITY, WEST cI%mER, PENNSYL.VANIA W. D. Cottrell and R. F. Carrier Date published - October 1990 Investigation Team R. E. Swaja - Measurement Applications and Development Manager W. D. Cottrell - NSRAP Project Director Suwey Team Members J. A Roberts* J. L. Quillent l Bechtel National, Inc tNuclear Fuel Services, Inc Work

  20. Health and Safety Research Division RESULTS FROM A RADIOLOGICAL SURVEY ON YARDEORO AVENUE,

    Office of Legacy Management (LM)

    Health and Safety Research Division RESULTS FROM A RADIOLOGICAL SURVEY ON YARDEORO AVENUE, ALBANY, AND CENTRAL AVENUE,, COLONIE, NEW YORK PROPERTIES AL013 - AL028 July 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05840R21400 _- _^." .-. ..-.- _---.--_ -... .- Fk. 3 ,=. Y)*cx gs 1 XEC @ d +I? ,%r $ g