National Library of Energy BETA

Sample records for techniques resistivity tomography

  1. Electrical resistance tomography from measurements inside a steel cased borehole

    DOE Patents [OSTI]

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  2. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and ... Title: Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals ...

  3. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  4. Applications of electrical resistance tomography to subsurface environmental restoration

    SciTech Connect (OSTI)

    Ramirez, A.L.; Daily, W.D.

    1994-11-15

    We are developing a new imaging technique, Electrical Resistance Tomography (ERT), to map subsurface liquids as flow occurs during natural or clean-up processes and to map geologic structure. Natural processes (such as surface water infiltrating the vadose zone) and man-induced processes (such as tank leaks and clean-up processes such as steam injection), can create changes in a soil`s electrical properties that are readily measured. We have conducted laboratory and a variety of field experiments to investigate the capabilities and limitations of ERT for imaging underground structures and processes. In the last four years we have used ERT to successfully monitor several field processes including: a subsurface steam injection process (for VOC removal), an air injection process (below the water table) for VOC removal, water infiltration through the vadose zone, radio-frequency heating, ohmic heating, and tank and pond leaks. The information derived from ERT can be used by remediation projects to: detect and locate leaks, determine the effectiveness of clean-up processes, select appropriate clean-up alternatives, and to verify the installation and performance of subsurface barriers.

  5. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect (OSTI)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  6. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  7. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  8. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  9. Using electrical resistance tomography to map subsurface temperatures

    DOE Patents [OSTI]

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  10. Electrical resistance tomography using steel cased boreholes as long electrodes

    SciTech Connect (OSTI)

    Daily, W; Newmark, R L; Ramirez, A

    1999-07-20

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted.

  11. Electrical resistance tomography using steel cased boreholes as electrodes

    SciTech Connect (OSTI)

    Newmark, R L; Daily, W; Ramirez, A

    1999-03-22

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes.

  12. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOE Patents [OSTI]

    Ramirez, A.L.; Cooper, J.F.; Daily, W.D.

    1996-02-27

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.

  13. Using electrokinetic phenomena and electrical resistance tomography to characterize the movement of subsurface fluids

    DOE Patents [OSTI]

    Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.

    1996-01-01

    This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.

  14. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies

    SciTech Connect (OSTI)

    Newmark, R L; Ramierz, A L; Daily, W D

    2001-02-28

    If geologic formations are used to sequester carbon dioxide (CO{sub 2}), monitoring the CO{sub 2} injection will be required to confirm the performance of the reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO{sub 2} and the geologic minerals and fluids. Electrical methods are well suited for monitoring processes involving fluids, as electrical properties are sensitive to the presence and nature of the formation fluids. High resolution tomographs of electrical properties are now possible using it 3D technique called electrical resistance tomography (ERT). Surveys are commonly conducted utilizing vertical arrays of point electrodes in a cross-well configuration. Recent field results obtained using steel well casings as electrodes are promising. When 3D ERT imaging can be performed using existing well casings as long electrodes, the need for additional drilling of observation wells is minimized. Using a model patterned after an oil field undergoing CO{sub 2} flood, forward and inverse simulations of ERT surveys have been run to test the sensitivity of the method to changes resulting from CO{sub 2} migration. Factors considered include resistivity contrast, anomaly proximity to electrodes, anomaly size and shape, measurement noise, and the electrode configuration used to perform the measurements. Field data suggest that CO{sub 2} migration changes the resistivity of a layer, producing an anomalous region. In our numerical study, the anomalous region s resistivity ranges from 0.2 to 10 times that of the initial value. Its geometry ranges from a thin, horizontal finger to a planar, horizontal mass having vertical protrusions simulating leakage of CO{sub 2} through caprock. Results of simulations run assuming that well casings are used as long electrodes or with arrays of point electrodes (simulating high resolution surveys) show useful information for even the narrowest simulated CO{sub 2} fingers.

  15. Multiple-energy Techniques in Industrial Computerized Tomography

    DOE R&D Accomplishments [OSTI]

    Schneberk, D.; Martz, H.; Azevedo, S.

    1990-08-01

    Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.

  16. PILOT-SCALE FIELD VALIDATION OF THE LONG ELECTRODE ELECTRICAL RESISTIVITY TOMOGRAPHY METHOD

    SciTech Connect (OSTI)

    GLASER DR; RUCKER DF; CROOK N; LOKE MH

    2011-07-14

    Field validation for the long electrode electrical resistivity tomography (LE-ERT) method was attempted in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock-up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The LE-ERT results were compared to ERT using conventional point electrodes on the surface and buried within the survey domain. Using a pole-pole array, both point and long electrode imaging techniques identified the lateral extents of the pre-formed plume with reasonable fidelity, but the LE-ERT was handicapped in reconstructing the vertical boundaries. The pole-dipole and dipole-dipole arrays were also tested with the LE-ERT method and were shown to have the least favorable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole-dipole and dipole-dipole arrays was attributed to an inexhaustive and non-optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole-dipole and dipole-dipole arrays using long electrodes were shown to have significantly higher average and maximum values than any pole-pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole-dipole and dipole-dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.

  17. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed

  18. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    SciTech Connect (OSTI)

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; Ramirez, Abelardo L.

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the prior information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a

  19. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): A Minimally Invasive Method

    SciTech Connect (OSTI)

    Newmark, R L; Ramirez, A L; Daily, W D

    2002-08-05

    Successful geologic sequestration of carbon dioxide (CO{sub 2}), will require monitoring the CO{sub 2} injection to confirm the performance of the caprock/reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO{sub 2} and the geologic minerals and fluids. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are sensitive to the presence and nature of the formation fluids. High resolution tomographs of electrical properties are now used for site characterization and to monitor subsurface migration of fluids (i.e., leaking underground tanks, infiltration events, steam floods, contaminant movement, and to assess the integrity of engineered barriers). When electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, the method is nearly transparent to reservoir operators, and reduces the need for additional drilling. Using numerical simulations and laboratory experiments, we have conducted sensitivity studies to determine the potential of ERT methods to detect and monitor the migration of CO{sub 2} in the subsurface. These studies have in turn been applied to the design and implementation of the first field casing surveys conducted in an oil field undergoing a CO{sub 2} flood.

  20. Emission Computed Tomography: A New Technique for the Quantitative Physiologic Study of Brain and Heart in Vivo

    DOE R&D Accomplishments [OSTI]

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Schelbert, H. R.; Kuhl, D. E.

    1978-01-01

    Emission computed tomography can provide a quantitative in vivo measurement of regional tissue radionuclide tracer concentrations. This facility when combined with physiologic models and radioactively labeled physiologic tracers that behave in a predictable manner allow measurement of a wide variety of physiologic variables. This integrated technique has been referred to as Physiologic Tomography (PT). PT requires labeled compounds which trace physiologic processes in a known and predictable manner, and physiologic models which are appropriately formulated and validated to derive physiologic variables from ECT data. In order to effectively achieve this goal, PT requires an ECT system that is capable of performing truly quantitative or analytical measurements of tissue tracer concentrations and which has been well characterized in terms of spatial resolution, sensitivity and signal to noise ratios in the tomographic image. This paper illustrates the capabilities of emission computed tomography and provides examples of physiologic tomography for the regional measurement of cerebral and myocardial metabolic rate for glucose, regional measurement of cerebral blood volume, gated cardiac blood pools and capillary perfusion in brain and heart. Studies on patients with stroke and myocardial ischemia are also presented.

  1. Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex

    SciTech Connect (OSTI)

    Johnson, Timothy C.; Wellman, Dawn M.

    2013-05-01

    This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation

  2. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique

    SciTech Connect (OSTI)

    Liu, Jun; Tang, Zhilie; Wu, Yongbo; Wang, Yi

    2015-04-15

    We designed, fabricated, and tested a rapid and noncontact photoacoustic tomography (PAT) imaging system using a low-coherence interferometer with high-speed phase modulation technique. Such a rapid and noncontact probing system can greatly decrease the time of imaging. The proposed PAT imaging system is experimentally verified by capturing images of a simulated tissue sample and the blood vessels within the ear flap of a mouse (pinna) in vivo. The axial and lateral resolutions of the system are evaluated at 45 and ∼15 μm, respectively. The imaging depth of the system is 1 mm in a special phantom. Our results show that the proposed system opens a promising way to realize noncontact, real-time PAT.

  3. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect (OSTI)

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless %5Cnodes%22 which can be left in the eld for many months. Embedded software would then increase sampling frequency during periods of rainfall. We hypothesized that this contrast between no-volume ow in karst passageways dur- ing dry periods and partial- or saturated-volume ow during a rain event is detectable by these Wireless Sensor Network (WSN) geophysical nodes, we call this a Wireless Resistivity Network (WRN). The development of new methodologies to characterize semi-arid karst hydrology is intended to augment Sandia National Laboratorys mission to lead e orts in energy technologies, waste disposal and climate security by helping to identify safe and secure regions and those that are at risk. Development and initial eld testing identi ed technological barriers to using WRNs for identifying semi-arid karst, exposing R&D which can be targeted in the future. Gravity, seismic, and resis- tivity surveys elucidated how each technique might e ectively be used to characterize semi-arid karst. This research brings to light the importance and challenges with char- acterizing semi-arid karst through a multi-method geophysical study. As there have been very few studies with this emphasis, this study has expanded the body of practical experience needed to protect the nations water and energy security interests.

  4. In situ measurement of interfacial tension of Fe-S and Fe-P liquids under high pressure using X-ray radiography and tomography techniques

    SciTech Connect (OSTI)

    Terasakia, H; Urakawa, S; Funakoshi, K; Nishiyama, N; Wang, Y; Nishida, K; Sakamaki, T; Suzuki, A; Ohtani, E

    2009-09-14

    Interfacial tension is one of the most important properties of the liquid iron alloy that controls the core formation process in the early history of the Earth and planets. In this study, we made high-pressure X-ray radiography and micro-tomography measurements to determine the interfacial tension between liquid iron alloys and silicate melt using the sessile drop method. The measured interfacial tension of liquid Fe-S decreased significantly (802-112 mN/m) with increasing sulphur content (0-40 at%) at 1.5 GPa. In contrast, the phosphorus content of Fe had an almost negligible effect on the interfacial tension of liquid iron. These tendencies in the effects of light elements are consistent with those measured at ambient pressure. Our results suggest that the effect of sulphur content on the interfacial tension of liquid Fe-S (690 mN/m reduction with the addition of 40 at% S) is large compared with the effect of temperature (~273 mN/m reduction with an increase of 200 K). The three-dimensional structure of liquid Fe-S was obtained at ~2 GPa and 1373-1873 K with a high-pressure tomography technique. The Fe-S droplet was quite homogeneous when evaluated in a slice of the three-dimensional image.

  5. Three-dimensional electrical resistivity tomography and its application to Larderello-Valle Secolo geothermal field in Tuscany, Italy

    SciTech Connect (OSTI)

    Shi, Weiqun; Rodi, W.; Toksoez, M.N.; Morgan, F.D.

    1997-10-01

    The Valle Secolo region in the Larderello geothermal field in western Italy is a vapor-dominated reservoir producing steam primarily from shallow, highly fractured Miscan anhydrites. In this area, water re-injection into various wells has been carried out for many years. During this period, electrical resistivity surveys have been conducted for the purpose of monitoring distribution of re-injected water and steam displacement through changes in subsurface electrical properties. This paper describes a 3-D d.c. electrical resistivity inversion algorithm and its application to data obtained from two surveys conducted in 1991 and 1993, respectively. The objective of this effort is to relate the variations in resistivity with position and time to the injection history. Our inversion models indicate that the primary resistivity variations in the Larderello geothermal field are of structural origin, e.g., the variation of conductivity of the geologic section. However, the models from both surveys contain a low resistivity anomaly at a depth of a few hundred meters that does not correlate with structure. From its location relative to the injection wells, and from changes in its properties between the two surveys, we infer that the anomaly is related to the injection and is probably a zone of high permeability or high water saturation. These preliminary results show that it is possible to detect and monitor the re-injection of fluid through the systematic observation of electrical resistivity at the site. The method is also suitable for the detection of environmental contaminant movement. However, field measurements must be repeated using the same geometry and uniform calibration over time.

  6. Imaging and sensing based on muon tomography

    DOE Patents [OSTI]

    Morris, Christopher L; Saunders, Alexander; Sossong, Michael James; Schultz, Larry Joe; Green, J. Andrew; Borozdin, Konstantin N; Hengartner, Nicolas W; Smith, Richard A; Colthart, James M; Klugh, David C; Scoggins, Gary E; Vineyard, David C

    2012-10-16

    Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data.

  7. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    SciTech Connect (OSTI)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  8. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  9. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    SciTech Connect (OSTI)

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  10. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    SciTech Connect (OSTI)

    Matsunobu, Y; Shiotsuki, K; Morishita, J

    2015-06-15

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone image and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.

  11. Computed Tomography Status

    DOE R&D Accomplishments [OSTI]

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  12. Improvement of lateral resolution of spectral domain optical coherence tomography images in out-of-focus regions with holographic data processing techniques

    SciTech Connect (OSTI)

    Moiseev, A A; Gelikonov, G V; Terpelov, D A; Shilyagin, P A; Gelikonov, V M

    2014-08-31

    An analogy between spectral-domain optical coherence tomography (SD OCT) data and broadband digital holography data is considered. Based on this analogy, a method for processing SD OCT data, which makes it possible to construct images with a lateral resolution in the whole investigated volume equal to the resolution in the in-focus region, is developed. Several issues concerning practical application of the proposed method are discussed. (laser biophotonics)

  13. Pseudolocal tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.

  14. Pseudolocal tomography

    DOE Patents [OSTI]

    Katsevich, A.J.; Ramm, A.G.

    1996-07-23

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density. 7 figs.

  15. Positron Emission Tomography (PET)

    DOE R&D Accomplishments [OSTI]

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  16. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOE Patents [OSTI]

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  17. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOE Patents [OSTI]

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  18. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOE Patents [OSTI]

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  19. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast...

  20. Waste inspection tomography (WIT)

    SciTech Connect (OSTI)

    Bernardi, R.T.

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  1. Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current modulation technique

    SciTech Connect (OSTI)

    Gandhi, Diksha; Schmidt, Taly Gilat; Crotty, Dominic J.; Stevens, Grant M.

    2015-11-15

    Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head

  2. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect (OSTI)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  3. Spatial resolution of diffraction tomography

    SciTech Connect (OSTI)

    Dickens, T.A.; Winbow, G.A.

    1997-01-01

    Diffraction tomography is an imaging technique applicable to crosshole seismic data and aimed at achieving optimal spatial resolution away from the borehole. In principle the method can form acoustic images equivalent to extending acoustic well logs away from the wellbore and into the formation with a spatial resolution less than one wavelength of the radiation employed to gather the crosshole data. This paper reports on the capability of diffraction tomography to produce high-resolution reconstructions of simple targets from limited-view-angle data. The goal is to quantify the resolution and velocity-reconstruction capability of diffraction tomography with realistic source{endash}receiver geometries. Simple targets (disks and low-contrast sequences of layers) are used for this study. The scattering from these targets can be calculated without approximation, making them ideal test cases for the algorithm. The resolution capability of diffraction tomography is determined to be on the order of one wavelength for several experimental geometries. It is shown that the image-formation characteristics of diffraction tomography, in terms of its ability to determine object boundaries and velocities, are closely related to the experimental geometry. Reflection and vertical seismic profiling (VSP) experiments tend to reproduce boundaries well, while crosshole experiments give the best overall reconstruction of both target boundaries and velocity. The quantitative accuracy of the velocity reconstruction depends upon the match between the spatial-frequency content of the object and the spatial-frequency response of the algorithm. For some targets, the velocity cannot be correctly reproduced from limited-view-angle data. {copyright} {ital 1997 Acoustical Society of America.}

  4. Turbocharging Quantum Tomography.

    SciTech Connect (OSTI)

    Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  5. Highly attrition-resistant zinc oxide-based sorbents for H{sub 2}S removal by spray-drying technique

    SciTech Connect (OSTI)

    Lee, J.B.; Baek, J.I.; Ryu, C.K.; Yi, C.K.; Jo, S.H.; Kim, S.H.

    2008-07-15

    A ZnO-based sorbent, ZAC 32N, applicable to transport reactors was successfully prepared by the spray-drying technique. Another sorbent, ZAC 32SU, was prepared by scale-up preparation of ZAC 32N sorbent. The physical properties of the sorbents such as attrition resistance, specific surface area, pore volume, and particle size were extensively characterized and exhibited a good potential for use in transport applications. The chemical reactivity tested in the thermogravimetric analyzer and microreactor exhibited desirable characteristics for effective desulfurization of syngas streams in the range of 450-550{sup o}C. Bench-scale tests for the sorbent ZAC 32SU were performed for a continuous 160 h with a steady solid circulation of 54.6 kg/h. The results showed 99.5%+ desulfurization at 500-550{sup o}C and reasonable regenerability at 550-620{sup o}C. Test results on the physical properties and chemical reactivity indicated that the performance of developed sorbents proved to be outstanding.

  6. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  7. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    SciTech Connect (OSTI)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  8. Three-Dimensional Thermal Tomography Advances Cancer Treatment | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast cancer patients. Lowers medical costs due to lessened side effects Noninvasive, enhances healing and detects other conditions PDF icon thermal_tomography

  9. Physically motivated global alignment method for electron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less

  10. Physically motivated global alignment method for electron tomography

    SciTech Connect (OSTI)

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop a new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.

  11. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  12. University of Wisconsin-Madison - Poroelastic Tomography | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy University of Wisconsin-Madison - Poroelastic Tomography University of Wisconsin-Madison - Poroelastic Tomography Armed with a wealth of data and new data analysis and integration techniques, images of the subsurface are getting clearer. Image Source: University of Wisconsin-Madison Armed with a wealth of data and new data analysis and integration techniques, images of the subsurface are getting clearer. Image Source: University of Wisconsin-Madison The images and behavior of

  13. Calibration of electrical impedance tomography

    SciTech Connect (OSTI)

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  14. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  15. Microwave surface resistance of epitaxial YBa[sub 2]Cu[sub 3]O[sub 7] thin films at 18. 7 GHz measured by a dielectric resonator technique

    SciTech Connect (OSTI)

    Klein, N.; Daehne, U.; Poppe, U.; Tellmann, N.; Urban, K. ); Orbach, S.; Hensen, S.; Mueller, G.; Piel, H. )

    1992-04-01

    We used a dielectric resonator technique for highly sensitive measurements of the temperature dependence of the microwave surface resistance R[sub s] of 1 x 1 cm[sup 2] superconducting films at 18.7 GHz. It consists of a sapphire disc positioned on the film under investigation within a copper cavity which is acting as a radiation shield. In the TE[sub 01[delta

  16. Resisting Bacterial Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resisting Bacterial Resistance 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Resisting Bacterial Resistance Los Alamos scientists are taking an in-depth look at how bacteria defeat death-by-antibiotics. March 8, 2016 Artist rendering of green bacteria Gram-negative bacteria have evolved multiple strategies for self-defense-including mechanisms to pump out any molecules that could kill them, such as antibiotics. "We want to ensure

  17. DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information

    Open Energy Info (EERE)

    Techniques Potential Pitfalls See Direct-Current Resistivity Survey References (Smith, 1986) "Application of the pole-dipole resistivity technique to the detection of...

  18. Monitoring DNAPL pumping using integrated geophysical techniques

    SciTech Connect (OSTI)

    Newmark, R.L.; Daily, W.D.; Kyle, K.R.; Ramirez, A.L.

    1996-11-01

    The removal of DNAPL during pumping has been monitored using integrated in situ geophysical techniques. At Hill Air Force Base in Utah, a free-product DNAPL plume (consisting predominantly of TCE) is pooled in water-wet soil on a thick clay aquitard. Groundwater pumping at Operable Unit 2 (OU 2) began in 1994; to date, nearly 30,000 gallons of DNAPL have been recovered from the site. From September, 1994 through September, 1995, changes in the basin during DNAPL pumping were monitored using an integrated geophysical system. Fiber optic sensors and neutron logs verify the presence of DNAPL in the vicinity of three boreholes which form a cross section from the perimeter of the basin to its center. Cross borehole electrical resistance tomography (ERT) images the changes in formation electrical properties due to the removal of DNAPL, extending the understanding of DNAPL removal between the boreholes. During pumping, electrical resistivities decreased; we suggest that these decreases are directly caused by the reduction in DNAPL. During ground water pumping, water with relatively low resistivity replaces some of the DNAPL pockets as the highly insulating DNAPL is removed. The results suggest that, as DNAPL is pumped from a nearby well, product slowly drains along the top of an aquitard and into the pump well, where it collects.

  19. Category:Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Resistivity Survey E Electrical Techniques Electromagnetic Techniques R Radiometrics S Self Potential T Telluric Survey Retrieved from "http:en.openei.orgw...

  20. Compton tomography system

    DOE Patents [OSTI]

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  1. Generalized local emission tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  2. Enhanced local tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.

  3. Radial reflection diffraction tomography

    DOE Patents [OSTI]

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  4. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    SciTech Connect (OSTI)

    Huang, B-T; Lu, J-Y

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  5. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice"...

  6. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect (OSTI)

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  7. Wear-Resistant, Nano-Composite Steel Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant, Nano-Composite Steel Coatings Laser Processing Techniques Used for the ... wear resistant nano-composite coatings and components for a wide range of applications. ...

  8. Fast Resistive Bolometry

    SciTech Connect (OSTI)

    Deeney, C.; Fehl, D.L.; Hanson, D.L.; Keltner, N.R.; McGurn, J.S.; McKenney, J.L.; Spielman, R.B.

    1999-02-01

    Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of {approximately}1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.

  9. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOE Patents [OSTI]

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  10. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the...

  11. Surface-wave and refraction tomography at the FACT Site, Sandia National

    Office of Scientific and Technical Information (OSTI)

    Laboratories, Albuquerque, New Mexico. (Technical Report) | SciTech Connect Surface-wave and refraction tomography at the FACT Site, Sandia National Laboratories, Albuquerque, New Mexico. Citation Details In-Document Search Title: Surface-wave and refraction tomography at the FACT Site, Sandia National Laboratories, Albuquerque, New Mexico. We present a technique that allows for the simultaneous acquisition and interpretation of both shear-wave and compressive-wave 3-D velocities. The

  12. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments [OSTI]

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  13. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High energy neutron Computed Tomography developed High energy neutron Computed Tomography developed LANSCE now has a high-energy neutron imaging capability that can be deployed on WNR flight paths for unclassified and classified objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs.

  14. Resistivity analysis

    DOE Patents [OSTI]

    Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Edward Jr. I.; Hawkins, Charles F.; Tangyungong, Paiboon

    2006-06-13

    According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

  15. Magnified Weak Lensing Cross Correlation Tomography

    SciTech Connect (OSTI)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60

  16. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; Burke, M. Grace; Zaluzec, Nestor J.; Haigh, Sarah J.

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensatemore » for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations« less

  17. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    SciTech Connect (OSTI)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; Burke, M. Grace; Zaluzec, Nestor J.; Haigh, Sarah J.

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensate for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations

  18. Positron Emission Tomography (PET) and Positron Scanning

    Office of Scientific and Technical Information (OSTI)

    track chemical reactions in living tissues and merges chemistry with biological imaging. ... Positron Emission Tomography (PET) for Imaging Body Chemistry, a Fermilab Colloquium ...

  19. Optimization of X-ray tomography through a cooperative computing system in grid

    SciTech Connect (OSTI)

    Hasan, Moin Goraya, Major Singh

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  20. Passive seismic tomography application for cave monitoring in DOZ underground mine PT. Freeport Indonesia

    SciTech Connect (OSTI)

    Nurhandoko, Bagus Endar B.; Wely, Woen; Setiadi, Herlan; Riyanto, Erwin

    2015-04-16

    It is already known that tomography has a great impact for analyzing and mapping unknown objects based on inversion, travel time as well as waveform inversion. Therefore, tomography has used in wide area, not only in medical but also in petroleum as well as mining. Recently, tomography method is being applied in several mining industries. A case study of tomography imaging has been carried out in DOZ ( Deep Ore Zone ) block caving mine, Tembagapura, Papua. Many researchers are undergoing to investigate the properties of DOZ cave not only outside but also inside which is unknown. Tomography takes a part for determining this objective.The sources are natural from the seismic events that caused by mining induced seismicity and rocks deformation activity, therefore it is called as passive seismic. These microseismic travel time data are processed by Simultaneous Iterative Reconstruction Technique (SIRT). The result of the inversion can be used for DOZ cave monitoring. These information must be used for identifying weak zone inside the cave. In addition, these results of tomography can be used to determine DOZ and cave information to support mine activity in PT. Freeport Indonesia.

  1. Diffraction scattering computed tomography: a window into the...

    Office of Scientific and Technical Information (OSTI)

    tomography: a window into the structures of complex nanomaterials Citation Details In-Document Search Title: Diffraction scattering computed tomography: a window into the ...

  2. X-Ray Microcomputed Tomography for the Durability Characterization...

    Office of Scientific and Technical Information (OSTI)

    Conference: X-Ray Microcomputed Tomography for the Durability Characterization of Limestone Aggregate Citation Details In-Document Search Title: X-Ray Microcomputed Tomography for...

  3. Pre-resistance-welding resistance check

    DOE Patents [OSTI]

    Destefan, Dennis E.; Stompro, David A.

    1991-01-01

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  4. AFIP-7 Tomography – 2013 Status Report

    SciTech Connect (OSTI)

    Craft, A. E.; Williams, W. J.; Abir, M. I.K.; Wachs, D. M.

    2013-10-01

    This project seeks to assess the geometric stability of the U-Mo monolithic fuel system by evaluating the radiation-induced changes in the AFIP-7 experiment device. Neutron radiography and computed tomography (CT) provide valuable information about the post-irradiation condition of the fuel specimen. Tomographic reconstructions of the AFIP-7 fuel element will be analyzed to assess the geometric condition of the element after irradiation and provide information regarding the condition of the fuel, including gross geometric defects, bowing, twist, plate buckling, cracks, and other defects. The INL, in collaboration with Oregon State University (OSU), Missouri University of Science and Technology (Missouri S&T), and Real Time Tomography, is developing advanced neutron detector systems and tomographic reconstruction techniques to evaluate the AFIP-7 fuel element. Neutron computed tomography using the current neutron radiography technique available at the Neutron Radiography reactor (NRAD) is impractical due to the long time and high cost to produce a set of images for tomographic reconstruction. Advanced neutron radiography systems such as the micro-channel plate (MCP) detector and neutron computed radiography (CR) may reduce the time and cost of acquiring images for neutron CT. The MCP detector system tested at OSU and Missouri S&T provides neutron radiographs and has lower gamma sensitivity compared to other digital acquisition image systems. However, some significant, but not prohibitive, challenges must be overcome to make its use for imaging nuclear fuel more practical. Images taken with the MCP require significant image processing to reduce distortions and correct for the dynamic detector response. Also, the small active area of the detector (~30 mm diameter) requires the collection and combination of several images of a specimen, which may become time-consuming. The MCP is tested in low gamma dose environments, but should also be tested in the gamma field at the

  5. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  6. High-performance computational and geostatistical experiments for testing the capabilities of 3-d electrical tomography

    SciTech Connect (OSTI)

    Carle, S. F.; Daily, W. D.; Newmark, R. L.; Ramirez, A.; Tompson, A.

    1999-01-19

    This project explores the feasibility of combining geologic insight, geostatistics, and high-performance computing to analyze the capabilities of 3-D electrical resistance tomography (ERT). Geostatistical methods are used to characterize the spatial variability of geologic facies that control sub-surface variability of permeability and electrical resistivity Synthetic ERT data sets are generated from geostatistical realizations of alluvial facies architecture. The synthetic data sets enable comparison of the "truth" to inversion results, quantification of the ability to detect particular facies at particular locations, and sensitivity studies on inversion parameters

  7. Positron emission tomography wrist detector

    DOE Patents [OSTI]

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  8. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F. Avraham; Barbour, Randall L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  9. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  10. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Valley Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis The Goals of this...

  11. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect (OSTI)

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  12. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments [OSTI]

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  13. Wavelength-encoded tomography based on optical temporal Fourier transform

    SciTech Connect (OSTI)

    Zhang, Chi; Wong, Kenneth K. Y.

    2014-09-01

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150?-?m (ideally 36??m) resolution is achieved based on a 7.5-nm bandwidth swept-pump, using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.

  14. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the $13 billion global company designs and manufactures more than 500,000 different electronic connectivity products for the automotive, energy, industrial, broadband communications, consumer device, healthcare, aerospace, and defense industries. TE Connectivity has a long-standing commitment to innovation and engineering

  15. TE Connectivity Finds Answers in Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TE Connectivity Finds Answers in Tomography TE Connectivity Finds Answers in Tomography Print Thursday, 22 August 2013 10:50 TE Connectivity is a world leader in connectivity-the $13 billion global company designs and manufactures more than 500,000 different electronic connectivity products for the automotive, energy, industrial, broadband communications, consumer device, healthcare, aerospace, and defense industries. TE Connectivity has a long-standing commitment to innovation and engineering

  16. Seismic Surface-Wave Tomography of Waste Sites

    SciTech Connect (OSTI)

    Leland Timothy Long

    2002-12-17

    Surface-wave group-velocity tomography is an efficient way to obtain images of the group velocity over a test area. Because Rayleigh-wave group velocity depends on frequency, there are separate images for each frequency. Thus, at each point in these images the group velocities define a dispersion curve, a curve that relates group velocity to frequency. The objective of this study has been to find an accurate and efficient way to find the shear-wave structure from these dispersion curves. The conventional inversion techniques match theoretical and observed dispersion curves to determine the structure. These conventional methods do not always succeed in correctly differentiating the fundamental and higher modes, and for some velocity structures can become unstable. In this research a perturbation technique was developed. The perturbation method allows the pre-computation of a global inversion matrix which improves efficiency in obtaining solutions for the structure. Perturbation methods are stable and mimic the averaging process in wave propagation; hence. leading to more accurate solutions. Finite difference techniques and synthetic trace generation techniques were developed to define the perturbations. A new differential trace technique was developed for slight variations in dispersion. The improvements in analysis speed and the accuracy of the solution could lead to real-time field analysis systems, making it possible to obtain immediate results or to monitor temporal change in structure, such as might develop in using fluids for soil remediation.

  17. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    SciTech Connect (OSTI)

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang; Luo, Jia

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  18. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  19. Towards adaptive, streaming analysis of x-ray tomography data

    SciTech Connect (OSTI)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  20. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  1. X-ray computed tomography using curvelet sparse regularization

    SciTech Connect (OSTI)

    Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.

    2015-04-15

    Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  2. Application of reconstructive tomography to the measurement of density distribution in two-phase flow

    SciTech Connect (OSTI)

    Fincke, J.R.; Berggren, M.J.; Johnson, S.A.

    1980-01-01

    The technique of reconstructive tomography has been applied to the measurement of average density and density distribution in multiphase flows. The technique of reconstructive tomography provides a model independent method of obtaining flow field density information. The unique features of interest in application of a practical tomographic densitometer system are the limited number of data values and the correspondingly coarse reconstruction grid (0.5 by 0.5 cm). These features were studied both experimentally, through the use of prototype hardware on a 3-in. pipe, and analytically, through computer generation of simulated data. Prototypical data were taken on phantoms constructed of Plexiglas and laminated Plexiglas, wood, and polyurethane foam. Reconstructions obtained from prototype data were compared with reconstructions from the simulated data.

  3. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    SciTech Connect (OSTI)

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  4. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments [OSTI]

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  5. tomoRecon : High-speed tomography reconstruction on workstations...

    Office of Scientific and Technical Information (OSTI)

    tomoRecon : High-speed tomography reconstruction on workstations using multi-threading Citation Details In-Document Search Title: tomoRecon : High-speed tomography reconstruction ...

  6. Hyperspectral image reconstruction for x-ray fluorescence tomography

    SciTech Connect (OSTI)

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversion approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.

  7. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  8. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grsoy, Do?a; Bier, Tekin; Lanzirotti, Antonio; Newville, Matthew G.; De Carlo, Francesco

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmoreapproaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.less

  9. Seismic Surface-Wave Tomography of Waste Sites - Final Report

    SciTech Connect (OSTI)

    Long, Timothy L.

    2000-09-14

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.

  10. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments [OSTI]

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  11. Monitoring DNAPL pumping using integrated geophysical techniques

    SciTech Connect (OSTI)

    Newmark, R.L.

    1997-01-01

    The removal of DNAPL during pumping was monitored. At Hill AFB in Utah, a free-product DNAPL plume (predominantly TCE, with some TCA, PCE, methylene chloride) is pooled in water-wet soil on a thick clay aquitard. Groundwater pumping at Operable Unit 2 began in 1994; to date, nearly 30,000 gal DNAPL have been recovered. From Sept. 1994 through Sept. 1995, changes in the basin during DNAPL pumping were monitored using fiber optic chemical sensors, neutron logs, and electrical resistance tomography (ERT). The first two sensor types verify the presence of DNAPL in vicinity of 3 boreholes which form a cross section from the perimeter of the basin to its center. Cross borehole ERT images the changes in formation electrical properties due to removal of DNAPL, extending the understanding of DNAPL removal between the boreholes. During pumping, electrical resistivities decreased; we suggest these decreases are directly caused by the reduction in DNAPL. During ground water pumping, water with relatively low resistivity replaces some of the DNAPL pockets as the highly insulating DNAPL is removed. Results suggest that, as DNAPL is pumped from a nearby well, product slowly drains along the top of an aquitard and into the pump well, where it collects.

  12. Weather-Resistive Barriers

    SciTech Connect (OSTI)

    2000-10-01

    How to select and install housewrap and other types of weather-resistive barriers: Building Technology Fact Sheet

  13. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; et al

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  14. Process tomography for unitary quantum channels

    SciTech Connect (OSTI)

    Gutoski, Gus; Johnston, Nathaniel

    2014-03-15

    We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a d-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only O(d{sup 2}) interactive observables, as opposed to the O(d{sup 4}) required for tomography of arbitrary channels. This result generalizes to the problem of identifying channels with at most q Kraus operators, and slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with q Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.

  15. Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques

    SciTech Connect (OSTI)

    Grenier, A.; Barnes, J. P.; Serra, R.; Audoit, G.; Cooper, D.; Duguay, S.; Rolland, N.; Blavette, D.; Vurpillot, F.; Morin, P.; Gouraud, P.

    2015-05-25

    The analysis of a same sample using nanometre or atomic-scale techniques is fundamental to fully understand device properties. This is especially true for the dopant distribution within last generation nano-transistors such as MOSFET or FINFETs. In this work, the spatial distribution of boron in a nano-transistor at the atomic scale has been investigated using a correlative approach combining electron and atom probe tomography. The distortions present in the reconstructed volume using atom probe tomography have been discussed by simulations of surface atoms using a cylindrical symmetry taking into account the evaporation fields. Electron tomography combined with correction of atomic density was used so that to correct image distortions observed in atom probe tomography reconstructions. These corrected atom probe tomography reconstructions then enable a detailed boron doping analysis of the device.

  16. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  17. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  18. Method of producing titanium-modified austenitic steel having improved swelling resistance

    DOE Patents [OSTI]

    Megusar, Janez; Grant, Nicholas J.

    1989-01-01

    A process for improving the swelling resistance of a titanium-modified austenitic stainless steel that involves a combination of rapid solidification and dynamic compaction techniques.

  19. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Gttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  20. Time-dependent seismic tomography and its application to the...

    Open Energy Info (EERE)

    changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...

  1. Hyperspectral image reconstruction for X-ray fluorescence tomography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groups Imaging Data Science Related People Doga Gursoy Tekin Bicer Next article: Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography...

  2. Time-Dependent Seismic Tomography of the Coso Geothermal Area...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-Dependent Seismic Tomography of the Coso Geothermal Area, 1996-2004 Abstract...

  3. Time-dependent seismic tomography of the Coso geothermal area...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-dependent seismic tomography of the Coso geothermal area, 1996-2004 Abstract...

  4. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial...

  5. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    treatment. A recent advance in thermal imaging allows more rapid, yet still non-invasive, detection. The process, called three-dimensional thermal tomography, or 3DTT, is...

  6. On the general constraints in single qubit quantum process tomography...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: On the general constraints in single qubit quantum process tomography Citation Details In-Document Search This content will become ...

  7. SU-E-I-12: Flexible Geometry Computed Tomography

    SciTech Connect (OSTI)

    Shaw, R

    2015-06-15

    Purpose: The concept separates the mechanical connection between the radiation source and detector. This design allows the trajectory and orientation of the radiation source/detector to be customized to the object that is being imaged. This is in contrast to the formulaic rotation-translation image acquisition of conventional computed tomography(CT).Background/significance:CT devices that image a full range of: anatomy, patient populations, and imaging procedures are large. The root cause of the expanding size of comprehensive CT is due to the commitment to helical geometry that is hardwired into the image reconstruction. FGCT extends the application of alternative reconstruction techniques, i.e. tomosynthesis, by separating the two main components— radiation source and detector— and allow for 6 degrees of freedom motion for radiation source, detector, or both. The image acquisition geometry is then tailored to how the patient/object is positioned. This provides greater flexibility on the position and location that the patient/object is being imaged. Additionally, removing the need of a rotating gantry reduces the footprint so that CT is more mobile and more available to move to where the patient/object is at, instead of the other way around. Methods: As proof-of-principle, a reconstruction algorithm is designed to produce FGCT images. Using simulated detector data, voxels intersecting a line drawn between the radiation source and an individual detector are traced and modified using the detector signal. The detector signal is modified to compensate for changes in the source to detector distance. Adjacent voxels are modified in proportion to the detector signal, providing a simple image filter. Results: Image-quality from the proposed FGCT reconstruction technique is proving to be a challenge, producing hardily recognizable images from limited projections angles. Conclusion: Preliminary assessment of the reconstruction technique demonstrates the inevitable

  8. Resistive-ideal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resistive-ideal transition of pressure-driven instabilities in current-carrying plasmas beyond the Suydam criterion F. Ebrahimi, S. C. Prager, and C. R. Sovinec University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 14 January 2002; accepted 8 April 2002͒ The linear magnetohydrodynamics stability of local and global resistive pressure-driven instabilities is examined computationally in a cylinder. Both instabilities are resistive from beta values of zero up to several times the

  9. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  10. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, Joseph C.; Brehm, William F.

    1982-01-01

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  11. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOE Patents [OSTI]

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  12. Double-Difference Tomography for Sequestration MVA

    SciTech Connect (OSTI)

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  13. A constrained conjugate gradient algorithm for computed tomography

    SciTech Connect (OSTI)

    Azevedo, S.G.; Goodman, D.M.

    1994-11-15

    Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.

  14. Artifact reduction in industrial computed tomography via data fusion

    SciTech Connect (OSTI)

    Schrapp, Michael; Goldammer, Matthias; Stephan, Jürgen

    2014-02-18

    As the most stressed part of a gas turbine the first row of turbine blades is not only a challenge for the materials used. Also the testing of these parts have to meet the highest standards. Computed tomography (CT) as the technique which could reveal the most details also provides the biggest challenges [1]: A full penetration of large sized turbine blades is often only possible at high X-ray voltages causing disproportional high costs. A reduction of the X-ray voltage is able to reduce these arising costs but yields non penetration artifacts in the reconstructed CT image. In most instances, these artifacts manifests itself as blurred and smeared regions at concave edges due to a reduced signal to noise ratio. In order to complement the missing information and to increase the overall image quality of our reconstruction, we use further imaging modalities such as a 3-D Scanner and ultrasonic imaging. A 3-D scanner is easy and cost effective to implement and is able to acquire all relevant data simultaneously with the CT projections. If, however, the interior structure is of supplemental interest, an ultrasonic imaging method is additionally used. We consider this data as a priori knowledge to employ them in an iterative reconstruction. To do so, standard iterative reconstruction methods are modified to incorporate the a priori data in a regularization approach in combination with minimizing the total variation of our image. Applying this procedure on turbine blades, we are able to reduce the apparent artifacts almost completely.

  15. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography

    SciTech Connect (OSTI)

    Colston, Bill W.; Everett, Mathew J.; Da Silva, Luiz B. Otis, Linda L. Stroeve, Pieter Nathel, Howard

    1998-06-01

    We have developed a prototype optical coherent tomography (OCT) system for the imaging of hard and soft tissue in the oral cavity. High-resolution images of {ital in vitro} porcine periodontal tissues have been obtained with this system. The images clearly show the enamel{endash}cementum and the gingiva{endash}tooth interfaces, indicating OCT is a potentially useful technique for diagnosis of periodontal diseases. To our knowledge, this is the first application of OCT for imaging biologic hard tissue. {copyright} 1998 Optical Society of America

  16. SU-E-I-74: Image-Matching Technique of Computed Tomography Images...

    Office of Scientific and Technical Information (OSTI)

    between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). ...

  17. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  18. AC resistance measuring instrument

    DOE Patents [OSTI]

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  19. AC Resistance measuring instrument

    DOE Patents [OSTI]

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  20. Compact conscious animal positron emission tomography scanner

    DOE Patents [OSTI]

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  1. Field trials results of guided wave tomography

    SciTech Connect (OSTI)

    Volker, Arno Zon, Tim van; Leden, Edwin van der

    2015-03-31

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  2. Ultra-high resolution computed tomography imaging

    DOE Patents [OSTI]

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  4. Freeze resistant buoy system

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Greenbaum, Elias [Knoxville, TN

    2007-08-21

    A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

  5. Fe-implanted 6H-SiC: Direct evidence of Fe{sub 3}Si nanoparticles observed by atom probe tomography and {sup 57}Fe Mssbauer spectroscopy

    SciTech Connect (OSTI)

    Diallo, M. L.; Fnidiki, A. Lard, R.; Cuvilly, F.; Blum, I.; Lechevallier, L.; Debelle, A.; Thom, L.; Viret, M.; Marteau, M.; Eyidi, D.; Declmy, A.

    2015-05-14

    In order to understand ferromagnetic ordering in SiC-based diluted magnetic semiconductors, Fe-implanted 6H-SiC subsequently annealed was studied by Atom Probe Tomography, {sup 57}Fe Mssbauer spectroscopy and SQUID magnetometry. Thanks to its 3D imaging capabilities at the atomic scale, Atom Probe Tomography appears as the most suitable technique to investigate the Fe distribution in the 6H-SiC host semiconductor and to evidence secondary phases. This study definitely evidences the formation of Fe{sub 3}Si nano-sized clusters after annealing. These clusters are unambiguously responsible for the main part of the magnetic properties observed in the annealed samples.

  6. Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography

    SciTech Connect (OSTI)

    Mast, J.E.; Johansson, E.M.

    1994-11-15

    In this talk we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pule-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

  7. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes ... The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Laser ...

  8. Applicability of moire deflection tomography for diagnosing arc plasmas

    SciTech Connect (OSTI)

    Chen Yunyun; Song Yang; He Anzhi; Li Zhenhua

    2009-01-20

    The argon arc plasma whose central temperature, 1.90x10{sup 4} K, is used as a practical example for an experiment to research the applicability of moire deflection tomography in arc plasma flow-field diagnosis. The experimental result indicates that moire deflection of the measured argon arc plasma is very small, even smaller than that of a common flame with the maximal temperature of nearly 1.80x10{sup 3} K. The refractive-index gradient in moire deflection tomography mainly contributes to the temperature gradient in essence when the probe wavelength and pressure are certain in plasma diagnosis. The applicable temperature ranges of moire deflection tomography in the argon arc plasma diagnosis are given with the probe wavelength 532 nm at 1 atm in certain measuring error requirements. In a word, the applicable temperature range of moire deflection tomography for arc plasma diagnosis is intimately related to the probe wavelength and the practical measuring requirements.

  9. Full-3D Waveform Tomography for Southern California | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Full-3D Waveform Tomography for Southern California Authors: Lee, E., Chenm P., Jordan, ... Model Version 4.0 (CVM4) in Southern California as initial model, a staggered-grid ...

  10. Atom-probe tomography of tribological boundary films resulting from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boron-based oil additives | Argonne National Laboratory Atom-probe tomography of tribological boundary films resulting from boron-based oil additives Title Atom-probe tomography of tribological boundary films resulting from boron-based oil additives Publication Type Journal Article Year of Publication 2016 Authors Kim, Y-J, Baik, S-I, Bertolucci-Coelho, L, Mazzaferro, L, Ramirez, G, Erdemir, A, Seidman, DN Journal Scripta Materialia Volume 111 Start Page 65 Issue 15 Pagination 4 Date

  11. Emittance and Phase Space Tomography for the Fermilab Linac

    SciTech Connect (OSTI)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the

  12. X-ray Computed Tomography of coal: Final report

    SciTech Connect (OSTI)

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  13. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information...

  14. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  15. Portable Digital Radiography and Computed Tomography Manual

    SciTech Connect (OSTI)

    Not Available

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  16. A Detector for Proton Computed Tomography

    SciTech Connect (OSTI)

    Blazey, G.; et al.,

    2013-12-06

    Radiation therapy is a widely recognized treatment for cancer. Energetic protons have distinct features that set them apart from photons and make them desirable for cancer therapy as well as medical imaging. The clinical interest in heavy ion therapy is due to the fact that ions deposit almost all of their energy in a sharp peak – the Bragg peak- at the very end of their path. Proton beams can be used to precisely localize a tumor and deliver an exact dose to the tumor with small doses to the surrounding tissue. Proton computed tomography (pCT) provides direct information on the location on the target tumor, and avoids position uncertainty caused by treatment planning based on imaging with X-ray CT. The pCT project goal is to measure and reconstruct the proton relative stopping power distribution directly in situ. To ensure the full advantage of cancer treatment with 200 MeV proton beams, pCT must be realized.

  17. Dedicated breast computed tomography: Basic aspects

    SciTech Connect (OSTI)

    Sarno, Antonio; Mettivier, Giovanni Russo, Paolo

    2015-06-15

    X-ray mammography of the compressed breast is well recognized as the “gold standard” for early detection of breast cancer, but its performance is not ideal. One limitation of screening mammography is tissue superposition, particularly for dense breasts. Since 2001, several research groups in the USA and in the European Union have developed computed tomography (CT) systems with digital detector technology dedicated to x-ray imaging of the uncompressed breast (breast CT or BCT) for breast cancer screening and diagnosis. This CT technology—tracing back to initial studies in the 1970s—allows some of the limitations of mammography to be overcome, keeping the levels of radiation dose to the radiosensitive breast glandular tissue similar to that of two-view mammography for the same breast size and composition. This paper presents an evaluation of the research efforts carried out in the invention, development, and improvement of BCT with dedicated scanners with state-of-the-art technology, including initial steps toward commercialization, after more than a decade of R and D in the laboratory and/or in the clinic. The intended focus here is on the technological/engineering aspects of BCT and on outlining advantages and limitations as reported in the related literature. Prospects for future research in this field are discussed.

  18. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect (OSTI)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  19. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  20. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose /sup 18/F. Their use in adults with gliomas

    SciTech Connect (OSTI)

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-10-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus.

  1. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  2. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  3. Penetration resistant barrier

    DOE Patents [OSTI]

    Hoover, William R.; Mead, Keith E.; Street, Henry K.

    1977-01-01

    The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.

  4. Oxidation resistance of eight heat-resistant alloys at 870, 980...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; HEAT RESISTING ALLOYS; CORROSION RESISTANCE; OXIDATION; ... COMPOUNDS; CHROMIUM-NICKEL STEELS; CORROSION RESISTANT ALLOYS; DATA; HEAT RESISTANT ...

  5. CNEEC - Synchrotron Techniques Tutorial by Profs. Pianetta and Toney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Techniques

  6. Survey of computed tomography scanners in Taiwan: Dose descriptors, dose guidance levels, and effective doses

    SciTech Connect (OSTI)

    Tsai, H. Y.; Tung, C. J.; Yu, C. C.; Tyan, Y. S.

    2007-04-15

    The IAEA and the ICRP recommended dose guidance levels for the most frequent computed tomography (CT) examinations to promote strategies for the optimization of radiation dose to CT patients. A national survey, including on-site measurements and questionnaires, was conducted in Taiwan in order to establish dose guidance levels and evaluate effective doses for CT. The beam quality and output and the phantom doses were measured for nine representative CT scanners. Questionnaire forms were completed by respondents from facilities of 146 CT scanners out of 285 total scanners. Information on patient, procedure, scanner, and technique for the head and body examinations was provided. The weighted computed tomography dose index (CTDI{sub w}), the dose length product (DLP), organ doses and effective dose were calculated using measured data, questionnaire information and Monte Carlo simulation results. A cost-effective analysis was applied to derive the dose guidance levels on CTDI{sub w} and DLP for several CT examinations. The mean effective dose{+-}standard deviation distributes from 1.6{+-}0.9 mSv for the routine head examination to 13{+-}11 mSv for the examination of liver, spleen, and pancreas. The surveyed results and the dose guidance levels were provided to the national authorities to develop quality control standards and protocols for CT examinations.

  7. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  8. Electrical resistivity probes

    DOE Patents [OSTI]

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  9. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured

  10. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the

  11. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect (OSTI)

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 0.15, 0.74 0.07 and 0.72 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 0.1, P ? 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  12. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  13. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  14. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  15. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of iStockphotodrewhadley...

  16. Degenerate resistive switching and ultrahigh density storage in resistive memory

    SciTech Connect (OSTI)

    Lohn, Andrew J. Mickel, Patrick R. James, Conrad D.; Marinella, Matthew J.

    2014-09-08

    We show that in tantalum oxide resistive memories, activation power provides a multi-level variable for information storage that can be set and read separately from the resistance. These two state variables (resistance and activation power) can be precisely controlled in two steps: (1) the possible activation power states are selected by partially reducing resistance, then (2) a subsequent partial increase in resistance specifies the resistance state and the final activation power state. We show that these states can be precisely written and read electrically, making this approach potentially amenable for ultra-high density memories. We provide a theoretical explanation for information storage and retrieval from activation power and experimentally demonstrate information storage in a third dimension related to the change in activation power with resistance.

  17. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (MRI) Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial tomography, commonly known as CAT scanning, was introduced in 1972. During a CAT scan, a large coil of x-ray tubes rotates around the patient's body, taking x-rays from all angles. A computer integrates all of these x-rays into a single, three-dimensional image on a television screen. The data can be

  18. Computer tomography of large dust clouds in complex plasmas

    SciTech Connect (OSTI)

    Killer, Carsten; Himpel, Michael; Melzer, Andr

    2014-10-15

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  19. Compensator models for fluence field modulated computed tomography

    SciTech Connect (OSTI)

    Bartolac, Steven; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-12-15

    Purpose: Fluence field modulated computed tomography (FFMCT) presents a novel approach for acquiring CT images, whereby a patient model guides dynamically changing fluence patterns in an attempt to achieve task-based, user-prescribed, regional variations in image quality, while also controlling dose to the patient. This work aims to compare the relative effectiveness of FFMCT applied to different thoracic imaging tasks (routine diagnostic CT, lung cancer screening, and cardiac CT) when the modulator is subject to limiting constraints, such as might be present in realistic implementations.Methods: An image quality plan was defined for a simulated anthropomorphic chest slice, including regions of high and low image quality, for each of the thoracic imaging tasks. Modulated fluence patterns were generated using a simulated annealing optimization script, which attempts to achieve the image quality plan under a global dosimetric constraint. Optimization was repeated under different types of modulation constraints (e.g., fixed or gantry angle dependent patterns, continuous or comprised of discrete apertures) with the most limiting case being a fixed conventional bowtie filter. For each thoracic imaging task, an image quality map (IQM{sub sd}) representing the regionally varying standard deviation is predicted for each modulation method and compared to the prescribed image quality plan as well as against results from uniform fluence fields. Relative integral dose measures were also compared.Results: Each IQM{sub sd} resulting from FFMCT showed improved agreement with planned objectives compared to those from uniform fluence fields for all cases. Dynamically changing modulation patterns yielded better uniformity, improved image quality, and lower dose compared to fixed filter patterns with optimized tube current. For the latter fixed filter cases, the optimal choice of tube current modulation was found to depend heavily on the task. Average integral dose reduction compared

  20. The attribute measurement technique

    SciTech Connect (OSTI)

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  1. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOE Patents [OSTI]

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  2. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOE Patents [OSTI]

    Beller, Laurence S.

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  3. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    SciTech Connect (OSTI)

    Minati, Ludovico

    2006-06-08

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  4. Application of resistivity monitoring to evaluate cement grouting effect in earth filled dam

    SciTech Connect (OSTI)

    Kim, Jin-Mo; Yoon, Wang-Jung

    2015-03-10

    In this paper, we applied electrical resistivity monitoring method to evaluate the cement grouting effect. There are a lot of ways to evaluate cement grouting effect. In order to do this evaluation in a great safety, high efficiency, and lower cost, resistivity monitoring is found to be the most appropriate technique. In this paper we have selected a dam site from Korea to acquire resistivity monitoring data and compare the results of inversion to estimate the cement grouting effect.

  5. Evaluating iterative reconstruction performance in computed tomography

    SciTech Connect (OSTI)

    Chen, Baiyu Solomon, Justin; Ramirez Giraldo, Juan Carlos; Samei, Ehsan

    2014-12-15

    Purpose: Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. Methods: The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d′). d′ was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1–4 mm), contrast levels (10–100 HU), and edge profiles (sharp and soft). Unique d′ values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDI{sub vol}: 3.4–64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d′ values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. Results: IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction

  6. Abrasion resistant composition

    DOE Patents [OSTI]

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  7. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  8. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  9. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  10. Weld braze technique

    DOE Patents [OSTI]

    Kanne, Jr., William R.; Kelker, Jr., John W.; Alexander, Robert J.

    1982-01-01

    High-strength metal joints are formed by a combined weld-braze technique. A hollow cylindrical metal member is forced into an undersized counterbore in another metal member with a suitable braze metal disposed along the bottom of the counterbore. Force and current applied to the members in an evacuated chamber results in the concurrent formation of the weld along the sides of the counterbore and a braze along the bottom of the counterbore in one continuous operation.

  11. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments [OSTI]

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  12. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect (OSTI)

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  13. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  14. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  15. Image segmentation of nanoscale Zernike phase contrast X-ray computed tomography images

    SciTech Connect (OSTI)

    Kumar, Arjun S.; Mandal, Pratiti; Zhang, Yongjie; Litster, Shawn

    2015-05-14

    Zernike phase contrast is a useful technique for nanoscale X-ray computed tomography (CT) imaging of materials with a low X-ray absorption coefficient. It enhances the image contrast by phase shifting X-ray waves to create changes in amplitude. However, it creates artifacts that hinder the use of traditional image segmentation techniques. We propose an image restoration method that models the X-ray phase contrast optics and the three-dimensional image reconstruction method. We generate artifact-free images through an optimization problem that inverts this model. Though similar approaches have been used for Zernike phase contrast in visible light microscopy, this optimization employs an effective edge detection method tailored to handle Zernike phase contrast artifacts. We characterize this optics-based restoration method by removing the artifacts in and thresholding multiple Zernike phase contrast X-ray CT images to produce segmented results that are consistent with the physical specimens. We quantitatively evaluate and compare our method to other segmentation techniques to demonstrate its high accuracy.

  16. Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Physical Properties See Electrical Techniques Electromagnetic techniques utilize EM induction processes to measure one or more electric or magnetic field components resulting...

  17. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  18. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  19. High-speed digitization readout of silicon photomultipliers for time of flight positron emission tomography

    SciTech Connect (OSTI)

    Ronzhin, A.; Los, S.; Martens, M.; Ramberg, E.; Kim, H.; Chen, C.; Kao, C.; Niessen, K.; Zatserklyaniy, A.; Mazzillo, M.; Carbone, B.; /SGS Thomson, Catania

    2011-02-01

    We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomography (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage

  20. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  1. Computer interactive resistance simulator (CIRS)

    DOE Patents [OSTI]

    Mayn, Bobby G.

    1976-01-01

    A system for simulating the insertion of electric resistance values of either positive or negative quantity into an electric circuit and for cancelling drift errors therefrom.

  2. Calculation of resistivity of irreducible water for reserves estimation

    SciTech Connect (OSTI)

    Krieger, F.W.; Eadington, P.J.; Lisk, M.

    1996-12-31

    A new fluid inclusion technique that allows determination of the resistivity of irreducible water trapped during oil accumulation has been developed. The technique is directly applicable to problems associated with the evaluation of oil accumulations which arise when the salinity and thus the resistivity of present day formation waters differ from those of the irreducible water trapped during oil accumulation. It is possible by measuring the ice melting temperature of samples of formation water trapped during creation of three phase, oil-water-vapour inclusions to calculate a salinity for the irreducible water and thus calculate a resistivity to be used in reserves calculations. Salinities of 71,000 to 85,000 parts per million have been measured on three phase inclusions in oil zone samples from the Papuan Foldbelt. Present day salinities in the Papuan Foldbelt are about 10,000-12,000 parts per million indicating that oil charge occurred before the present day hydrologic system was emplaced. Using salinity data from three phase inclusions results in resistivity values of about 0.05 ohm/m for irreducible water while present day formation waters have a resistivity of about 0.3 ohm/m at formation temperatures of 60{degrees}C. Using the water saturation calculated from three phase fluid inclusion salinity data compared with using the water saturation from present day formation water results in an estimated 25 % increase in reserves for oil fields studied in the Papuan Foldbelt.

  3. Calculation of resistivity of irreducible water for reserves estimation

    SciTech Connect (OSTI)

    Krieger, F.W.; Eadington, P.J.; Lisk, M. )

    1996-01-01

    A new fluid inclusion technique that allows determination of the resistivity of irreducible water trapped during oil accumulation has been developed. The technique is directly applicable to problems associated with the evaluation of oil accumulations which arise when the salinity and thus the resistivity of present day formation waters differ from those of the irreducible water trapped during oil accumulation. It is possible by measuring the ice melting temperature of samples of formation water trapped during creation of three phase, oil-water-vapour inclusions to calculate a salinity for the irreducible water and thus calculate a resistivity to be used in reserves calculations. Salinities of 71,000 to 85,000 parts per million have been measured on three phase inclusions in oil zone samples from the Papuan Foldbelt. Present day salinities in the Papuan Foldbelt are about 10,000-12,000 parts per million indicating that oil charge occurred before the present day hydrologic system was emplaced. Using salinity data from three phase inclusions results in resistivity values of about 0.05 ohm/m for irreducible water while present day formation waters have a resistivity of about 0.3 ohm/m at formation temperatures of 60[degrees]C. Using the water saturation calculated from three phase fluid inclusion salinity data compared with using the water saturation from present day formation water results in an estimated 25 % increase in reserves for oil fields studied in the Papuan Foldbelt.

  4. Regional cerebral glucose metabolism in aging and senile dementia as determined by 18F-deoxyglucose and positron emission tomography

    SciTech Connect (OSTI)

    Alavi, A.; Reivich, M.; Ferris, S.

    1981-01-01

    The use of positron emission tomography in the evaluation of aging and senile dementia is discussed.

  5. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    SciTech Connect (OSTI)

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  6. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect (OSTI)

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  7. Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography

    SciTech Connect (OSTI)

    Jianchao He; Farong Wan; Kumar Sridharan; Todd R. Allen; A. Certain; V. Shutthanandan; Y.Q. Wu

    2014-12-01

    14YWT oxide dispersion strengthened (ODS) ferritic steel was irradiated with of 5 MeV Ni2+ ions, at 300 C, 450 C, and 600 C to a damage level of 100 dpa. The stability of Ti–Y–O nanoclusters was investigated by applying atom probe tomography (APT) in voltage mode, of the samples before and after irradiations. The average size and number density of the nanoclusters was determined using the maximum separation method. These techniques allowed for the imaging of nanoclusters to sizes well below the resolution limit of conventional transmission electron microscopy techniques. The most significant changes were observed for samples irradiated at 300 C where the size (average Guinier radius) and number density of nanoclusters were observed to decrease from 1.1 nm to 0.8 nm and 12 1023 to 3.6 1023, respectively. In this study, the nanoclusters are more stable at higher temperature.

  8. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  9. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOE Patents [OSTI]

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  10. Corrosion resistant PEM fuel cell

    SciTech Connect (OSTI)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  11. Corrosion resistant PEM fuel cell

    SciTech Connect (OSTI)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  12. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  13. Quantum tomography meets dynamical systems and bifurcations theory

    SciTech Connect (OSTI)

    Goyeneche, D.; Torre, A. C. de la

    2014-06-01

    A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ? 32.

  14. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    SciTech Connect (OSTI)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  15. Orbital apex fractures: the contribution of computed tomography

    SciTech Connect (OSTI)

    Unger, J.M.

    1984-03-01

    The conventional radiographs, computed tomograms, and clinical course of 17 patients with 23 orbital apex fractures were reviewed. The type of fracture was identified, and the presence of optic nerve damage, the superior orbital fissure syndrome, or the orbital apex syndrome was noted. It was concluded that fractures of the orbital apex may frequently be unsuspected clinically and are not as rare as the literature indicates. Computed tomography provides an excellent means of radiologic diagnosis in the acutely traumatized patient.

  16. On the general constraints in single qubit quantum process tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhandari, Ramesh; Peters, Nicholas A.

    2016-05-18

    In this study, we briefly review single-qubit quantum process tomography for trace-preserving and nontrace-preserving processes, and derive explicit forms of the general constraints for fitting experimental data. These forms provide additional insight into the structure of the process matrix. We illustrate this with several examples, including a discussion of qubit leakage error models and the intuition which can be gained from their process matrices.

  17. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography

    SciTech Connect (OSTI)

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang

    2014-03-24

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope = 1.00, R{sup 2} = 1.00, and p < 10{sup −5} in simulation and regression slope ≥ 0.97, R{sup 2} ≥ 0.96, and p < 10{sup −3} in phantom. These results exhibit promise of our ncDCT technique for 3-D imaging of deep tissue blood flow heterogeneities.

  18. Data fusion in X-ray computed tomography using a superiorization approach

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Herman, Gabor T.

    2014-05-15

    X-ray computed tomography (CT) is an important and widespread inspection technique in industrial non-destructive testing. However, large-sized and heavily absorbing objects cause artifacts due to either the lack of penetration of the specimen in specific directions or by having data from only a limited angular range of views. In such cases, valuable information about the specimen is not revealed by the CT measurements alone. Further imaging modalities, such as optical scanning and ultrasonic testing, are able to provide data (such as an edge map) that are complementary to the CT acquisition. In this paper, a superiorization approach (a newly developed method for constrained optimization) is used to incorporate the complementary data into the CT reconstruction; this allows precise localization of edges that are not resolvable from the CT data by itself. Superiorization, as presented in this paper, exploits the fact that the simultaneous algebraic reconstruction technique (SART), often used for CT reconstruction, is resilient to perturbations; i.e., it can be modified to produce an output that is as consistent with the CT measurements as the output of unmodified SART, but is more consistent with the complementary data. The application of this superiorized SART method to measured data of a turbine blade demonstrates a clear improvement in the quality of the reconstructed image.

  19. Recent developments in guided wave travel time tomography

    SciTech Connect (OSTI)

    Zon, Tim van; Volker, Arno

    2014-02-18

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

  20. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect (OSTI)

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  1. Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  2. Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities StratigraphicStructural: Structural geology-...

  3. Novel techniques for slurry bubble column hydrodynamics

    SciTech Connect (OSTI)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  4. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  5. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  6. High resolution evaluation techniques in thinly laminated shaly sands

    SciTech Connect (OSTI)

    Coll, C.; Chacartegui, F.; Suarez, O.; Alvarez, G. ); Monsegui, G.; Lambertini, R.; Haines, P. )

    1993-02-01

    Significant hydrocarbon production may occur from thin layers which were previously considered non-economic. Improved processing methods for detecting and evaluating thin beds have shown these reservoirs to be attractive prospects. Such thinly bedded laminated shale-sand sequences exist within some of the producing formations in Venezuela. These shale sand packages may contain significant bypassed or undeveloped reserves. A new technique using deconvolution of the deep resistivity through the microresistivity curves (Microlog) identifies potential thinly bedded reservoirs. This methodology appears to be the most reliable permeability indicator of the prospective intervals within the Misoa Formation at Ceuta Field in Maracaibo Lake. The prospective intervals within this field have been calibrated with cores and with sedimentological information. This calibration shows only two lithofacies contained hydrocarbons previously not evaluated as oil saturated by traditional methods. These facies exhibited low values for deep resistivity curves which indicated high levels of water saturation. Deep resistivity deconvolution processing has been successfully applied to solve this problem in the Ceuta field. The resulting resistivity curve exhibits a vertical resolution of better than 1 ft., while retaining the essential advantages of deep resistivity curve. Laminated sand analyses were carried out and prove to be very useful in the integration of petrophysical and sedimentological data for detection of prospective intervals.

  7. Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NMR) Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Computed Tomography (CT) Scanner CT Scanner - Courtesy Stanford University Department of Energy Resources Engineering Computed tomography (CT) and Nuclear Magnetic Resonance (NMR) have been used to resolve industrial problems, for materials characterizations, and to provide non-destructive evaluations for discovering flaws in parts before their use, resulting in

  8. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance P-Glycoprotein Structure and Chemotherapy Resistance Print Wednesday, 27 May 2009 00:00 A research team from the Scripps ...

  9. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  10. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, William G.; Lindbo, John A.

    1996-01-01

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

  11. The multigap resistive plate chamber

    SciTech Connect (OSTI)

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  12. Erosion-resistant composite material

    DOE Patents [OSTI]

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  13. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  14. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  15. Non-medical Uses of Computed Tomography (CT) and Nuclear Magnetic...

    Office of Scientific and Technical Information (OSTI)

    to resolve industrial problems, for materials characterizations, and to provide ... Additional Web Pages: Some Aspects Concerning the 2d and 3d Computerized Tomography ...

  16. Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification

    SciTech Connect (OSTI)

    Bonior, Jason D; Hu, Zhen; Guo, Terry N.; Qiu, Robert C.; Browning, James P.; Wicks, Michael C.

    2015-01-01

    This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.

  17. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meher, Subhashish; Rojhirunsakool, Tanaporn; Nandwana, Peeyush; Tiley, Jamie; Banerjee, Rajarshi

    2015-04-28

    In this study, the analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L12-ordered g precipitates to form Ni3(Al,Cr) precipitates in a Ni-14Al-7Cr(at.%) alloy. Interestingly, the additionmore » of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within g precipitates to form (Ni,Al)3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.« less

  18. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    SciTech Connect (OSTI)

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  19. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; Specht, Eliot D.; Terrani, Kurt A.; Katoh, Yutai

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less

  20. THE ATTENUATED RADON TRANSFORM: APPLICATION TO SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY IN THE PRESENCE OF A VARIABLE ATTENUATING MEDIUM

    SciTech Connect (OSTI)

    Gullberg, Grant T.

    1980-03-01

    The properties of the attenuated Radon transform and its application to single-photon emission computed tomography (ECT) are analyzed in detail. In nuclear medicine and biological research, the objective of ECT is to describe quantitatively the position and strengths of internal sources of injected radiopharmaceuticals and radionuclides where the attenuation between the sources and detector is unknown. The problem is mathematically and practically quite different from well-known methods in transmission computed tomography (TCT) where only the attenuation is unknown. A mathematical structure using function theory and the theory of linear operators on Hilbert spaces is developed to better understand the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform is reduced to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For variable attenuation coefficients frequently found in imaging internal organs, the numerical methods developed in this paper involve iterative techniques of performing the generalized inverse. Its application to nuclear medicine is demonstrated by reconstructions of transverse sections of the brain, heart, and liver.

  1. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    SciTech Connect (OSTI)

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; Specht, Eliot D.; Terrani, Kurt A.; Katoh, Yutai

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.

  2. Fiber optic based optical coherence tomography (OCT) for dental applications

    SciTech Connect (OSTI)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  3. Cone-beam breast computed tomography with a displaced flat panel detector array

    SciTech Connect (OSTI)

    Mettivier, Giovanni; Russo, Paolo; Lanconelli, Nico; Meo, Sergio Lo

    2012-05-15

    Purpose: In cone-beam computed tomography (CBCT), and in particular in cone-beam breast computed tomography (CBBCT), an important issue is the reduction of the image artifacts produced by photon scatter and the reduction of patient dose. In this work, the authors propose to apply the detector displacement technique (also known as asymmetric detector or ''extended view'' geometry) to approach this goal. Potentially, this type of geometry, and the accompanying use of a beam collimator to mask the unirradiated half-object in each projection, permits some reduction of radiation dose with respect to conventional CBBCT and a sizeable reduction of the overall amount of scatter in the object, for a fixed contrast-to-noise ratio (CNR). Methods: The authors consider a scan configuration in which the projection data are acquired from an asymmetrically positioned detector that covers only one half of the scan field of view. Monte Carlo simulations and measurements, with their CBBCT laboratory scanner, were performed using PMMA phantoms of cylindrical (70-mm diameter) and hemiellipsoidal (140-mm diameter) shape simulating the average pendant breast, at 80 kVp. Image quality was evaluated in terms of contrast, noise, CNR, contrast-to-noise ratio per unit of dose (CNRD), and spatial resolution as width of line spread function for high contrast details. Results: Reconstructed images with the asymmetric detector technique deviate less than 1% from reconstruction with a conventional symmetric detector (detector view) and indicate a reduction of the cupping artifact in CT slices. The maximum scatter-to-primary ratio at the center of the phantom decreases by about 50% for both small and large diameter phantoms (e.g., from 0.75 in detector view to 0.40 in extended view geometry at the central axis of the 140-mm diameter PMMA phantom). Less cupping produces an increase of the CT number accuracy and an improved image detail contrast, but the associated increase of noise observed may

  4. Diagnostic techniques used in AVLIS

    SciTech Connect (OSTI)

    Heestand, G.M.; Beeler, R.G.

    1992-12-01

    This is the second part of a general overview talk on the atomic vapor laser isotope separation (AVLIS) process. In this presentation the authors will discuss the diagnostic techniques used to measure key parameters in their atomic vapor including densities, temperature, velocities charge exchange rates and background ionization levels. Although these techniques have been extensively applied to their uranium program they do have applicability to other systems. Relevant data demonstrating these techniques will be shown.

  5. Gravity Techniques | Open Energy Information

    Open Energy Info (EERE)

    in density, such as at fault contacts. 2 Gravity techniques are also applied towards reservoir monitoring for subsidence and mass gain or loss within a geothermal reservoir...

  6. Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    in-situ within the well, downhole techniques are capable of accurately constraining these reservoir parameters relative to depth.2 Gaining an understanding of these reservoir...

  7. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  8. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  9. techniques | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  10. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  11. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  12. Simultaneous CT and SPECT tomography using CZT detectors

    DOE Patents [OSTI]

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  13. Using computerized tomography to determine ionospheric structures. Part 1, Notivation and basic approaches

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1993-08-01

    Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.

  14. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating is 100% energy efficient in the sense that all the incoming electric energy is converted to heat. However, most electricity is produced from coal, gas, or

  15. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    2015-07-02

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statisticalmore » analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.« less

  16. Performance of a Drift Chamber Candidate for a Cosmic Muon Tomography System

    SciTech Connect (OSTI)

    Anghel, V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Oakham, G.; Bueno, J.; Bryman, D.; Liu, Z.; Charles, E.; Gallant, G.; Cousins, T.; Noel, S.; Drouin, P.-L.; Waller, D.; Stocki, T. J.

    2011-12-13

    In the last decade, many groups around the world have been exploring different ways to probe transport containers which may contain illicit Special Nuclear Materials such as uranium. The muon tomography technique has been proposed as a cost effective system with an acceptable accuracy. A group of Canadian institutions (see above), funded by Defence Research and Development Canada, is testing different technologies to track the cosmic muons. One candidate is the single wire Drift Chamber. With the capability of a 2D impact position measurement, two detectors will be placed above and two below the object to be probed. In order to achieve a good 3D image quality of the cargo content, a good angular resolution is required. The simulation showed that 1mrad was required implying the spatial resolution of the trackers must be in the range of 1 to 2 mm for 1 m separation. A tracking system using three prototypes has been built and tested. The spatial resolution obtained is 1.7 mm perpendicular to the wire and 3 mm along the wire.

  17. MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN-ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS

    SciTech Connect (OSTI)

    Fujii, Yuka [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Kawahara, Hajime, E-mail: yuka.fujii@utap.phys.s.u-tokyo.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)

    2012-08-20

    Aiming at obtaining detailed information on the surface environment of Earth analogs, Kawahara and Fujii proposed an inversion technique of annual scattered light curves named spin-orbit tomography (SOT), which enables us to sketch a two-dimensional albedo map from annual variation of the disk-integrated scattered light, and demonstrated the method with a planet in a face-on orbit. We extend it to be applicable to general geometric configurations, including low-obliquity planets like the Earth in inclined orbits. We simulate light curves of the Earth in an inclined orbit in three photometric bands (0.4-0.5 {mu}m, 0.6-0.7 {mu}m, and 0.8-0.9 {mu}m) and show that the distribution of clouds, snow, and continents is retrieved with the aid of the SOT. We also demonstrate the SOT by applying it to an upright Earth, a tidally locked Earth, and Earth analogs with ancient continental configurations. The inversion is model independent in the sense that we do not assume specific albedo models when mapping the surface, and hence applicable in principle to any kind of inhomogeneity. This method can potentially serve as a unique tool to investigate the exohabitats/exoclimes of Earth analogs.

  18. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    SciTech Connect (OSTI)

    Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc

    2015-04-24

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  19. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  20. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect (OSTI)

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  1. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    SciTech Connect (OSTI)

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    2015-07-02

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.

  2. Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity

    DOE Patents [OSTI]

    Werner, Thomas R.; Falco, Charles M.; Schuller, Ivan K.

    1984-01-01

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  3. The influence of temperature and grain boundary volume on the resistivity of nanocrystalline nickel

    SciTech Connect (OSTI)

    Darnbrough, J. E. Flewitt, P. E. J.; Roebuck, B.

    2015-11-14

    The thermal stability and modes of recrystallisation of nanocrystalline nickel has been observed through a conduction-based non-destructive test. Resistivity measurements have been utilised to quantify grain boundary volume fraction and microstructure. This observation makes clear the distinction of the factors that contribute to resistivity and demonstrates that these contributions are related to microstructure, either directly or in-directly. In static systems, the contribution of ordered grains and low-order grain boundary atomic arrangements in small grained material has been measured and correlated with resistivity. Measurements of in-situ resistivity conducted at high temperature gives changes with time which are related to grain growth, during heat treatment. This shows that resistivity can be used as a technique for observing the microstructure and grain growth of small grained material.

  4. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    SciTech Connect (OSTI)

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral

  5. Form:ExplorationTechnique | Open Energy Information

    Open Energy Info (EERE)

    Exploration Technique below. If the technique already exists, you will be able to edit its information. AddEdit Technique Retrieved from "http:en.openei.orgw...

  6. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  7. Twistor inspired techniques in QCD

    SciTech Connect (OSTI)

    Duhr, C.

    2008-08-29

    I present a short review of the new twistor inspired techniques in perturbative QCD, which are the result of Witten's conjecture of a duality between twistors and string theory. I give an introduction to the main two tree-level techniques, the BCFW recursion and the CSW formalism, and show how the idea of using on-shell QCD amplitudes evaluated for complex momenta can lead to efficient techniques to perform analytic computations. Finally, I briefly discuss how these ideas can be applied to loop calculations if they are combined to the generalized unitarity approach.

  8. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  9. Resistive band for turbomachine blade

    DOE Patents [OSTI]

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  10. CORROSION RESISTANT JACKETED METAL BODY

    DOE Patents [OSTI]

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  11. Corrosion resistant metallic bipolar plate

    DOE Patents [OSTI]

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  12. Fire resistant nuclear fuel cask

    DOE Patents [OSTI]

    Heckman, Richard C.; Moss, Marvin

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

  13. PFT Air Infiltration Measurement Technique

    Broader source: Energy.gov [DOE]

    The airtightness of a building can be determined by using several methods. Learn how the PFT (PerFluorocarbon tracer gas) technique provides information about air leakage and energy loss.

  14. Iterative methods for dose reduction and image enhancement in tomography

    DOE Patents [OSTI]

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  15. Reconstruction of petrophysical images using cross-well traveltime tomography

    SciTech Connect (OSTI)

    Mendoza-Amuchastegui, J.A.; Ramirez-Cruz, L.C.

    1994-12-31

    In this paper the authors present the results obtained from a cross-well seismic tomography experiment carried out in an oil producing field of the West Permian Basin, Texas. Three fundamental stages can be identified from the tomographic method: field data acquisition, data conditioning, and the actual tomographic process including forward modeling and inversion. For this case, they present a synopsis of each. The resulting V{sub P} and V{sub S} tomograms show a clear separation of high and low velocity zones that are in agreement with sonic logs. From the final tomograms, they computed images of V{sub P}/V{sub S} ratio, Poisson ratio, porosity and density using well known empirical formulas. The results attained from the experiment provide an idea of the potential usefulness of the tomographic method as an alternative for in-field exploration and detailed characterization of hydrocarbon producing reservoirs.

  16. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  17. Electrical impedance tomography of the 1995 OGI perchloroethelyne release

    SciTech Connect (OSTI)

    Dailey, W.; Ramirez, A.

    1996-10-01

    Goal is to determine if electrical impedance tomography (EIT) might be useful to map free product DNAPL (dense nonaqueous phase liquids) contamination. EIT was used to image the plume resulting from a release of 189 liters (50 gallons) of perchloroethylene (PCE) into a saturated aquifer constructed of sand with two layers of bentonite. Images were made in 4 planes, before, during, and after the release, to generate a detailed picture of the spatial and temporal development of the plume. Information of the EI (both in phase and out of phase voltages) was used at several different frequencies to produce images. Some frequency dispersion was observed in the images before and after the PCE release. Laboratory measurements of organic contamination in soil indicate detectable dispersion. A search for this effect in EIT images reveals weak evidence, the signal appearing just above the measurement uncertainty, of a change in the reactance in the soil because of the PCE.

  18. Electrical impedance tomography of the 1995 OGI gasoline release

    SciTech Connect (OSTI)

    Daily, W.; Ramirez, A.

    1996-10-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline.

  19. Thermal stability of curved ray tomography for corrosion monitoring

    SciTech Connect (OSTI)

    Willey, C. L.; Simonetti, F.; Nagy, P. B.; Instanes, G.

    2014-02-18

    Guided wave tomography is being developed as an effective tool for continuous monitoring of corrosion and erosion depth in pipelines. A pair of transmit- and receive-ring arrays of ultrasonic transducers encircles the pipe and delimits the section to be monitored. In curved ray tomography (CRT), the depth profile is estimated from the time delay matrix, Δτ, whose ij-th entry is the phase traveltime difference between the current and baseline signals measured between transducers i and j of the transmit and receive-ring arrays, respectively. Under perfectly stable experimental conditions, the non-zero entries of Δτ are only due to the occurrence of damage and provide a reliable input to CRT. However, during field operation, Δτ can develop non-zero entries due to a number of environmental changes ranging from temperature variations to degradation of transducer-pipe coupling and transducer intrinsic performance. Here, we demonstrate that these sources of instability can be eliminated by exploiting the spatial diversity of array measurements in conjunction with EMAT transducer technology which is intrinsically stable owing to its non-contact nature. The study is based on a full-scale experiment performed on a schedule 40, 8’ diameter, 3 m length steel pipe, monitored with two EMAT ring arrays. It is shown that for an irregularly shaped defect the proposed method yields maximum depth estimations that are as accurate as single point ultrasonic thickness gaging measurements and over a wide temperature range up to 175°C. The results indicate that advanced inversion schemes in combination with EMAT transduction offer great potential for continuously monitoring the progression of corrosion or erosion damage in the oil and gas industry.

  20. Techniques for multiboson interferometry (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Techniques for multiboson interferometry Citation Details In-Document Search Title: Techniques for multiboson interferometry Authors: Gangadharan, Dhevan Publication Date: ...

  1. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetotelluric Techniques page? For detailed...

  2. A metallography and x-ray tomography study of spall damage in ultrapure Al

    SciTech Connect (OSTI)

    Qi, M. L.; Bie, B. X.; Zhao, F. P.; Fan, D.; Luo, S. N.; Hu, C. M.; Ran, X. X.; Xiao, X. H.; Yang, W. G.; Li, P.

    2014-07-15

    We characterize spall damage in shock-recovered ultrapure Al with metallography and x-ray tomography. The measured damage profiles in ultrapure Al induced by planar impact at different shock strengths, can be described with a Gaussian function, and showed dependence on shock strengths. Optical metallography is reasonably accurate for damage profile measurements, and agrees within 10–25% with x-ray tomography. Full tomography analysis showed that void size distributions followed a power law with an exponent of γ = 1.5 ± 2.0, which is likely due to void nucleation and growth, and the exponent is considerably smaller than the predictions from percolation models.

  3. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments [OSTI]

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  4. Method of making sulfur-resistant composite metal membranes

    DOE Patents [OSTI]

    Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  5. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  6. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect (OSTI)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  7. Methods for resistive switching of memristors

    DOE Patents [OSTI]

    Mickel, Patrick R.; James, Conrad D.; Lohn, Andrew; Marinella, Matthew; Hsia, Alexander H.

    2016-05-10

    The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as methods of employing a thermal resistive model to understand and determine switching of such devices. In particular example, the method includes generating a power-resistance measurement for the memristor device and applying an isothermal model to the power-resistance measurement in order to determine one or more parameters of the device (e.g., filament state).

  8. Authentication techniques for smart cards

    SciTech Connect (OSTI)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  9. Thermal shock resistance ceramic insulator (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators ...

  10. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well ...

  11. Resistance of a water spark.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  12. Multi-scale Shock Technique

    Energy Science and Technology Software Center (OSTI)

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore » waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  13. Endovascular Management of Visceral Artery Pseudoaneurysms: Transcatheter Coil Embolization Using the Isolation Technique

    SciTech Connect (OSTI)

    Ikeda, Osamu Nakasone, Yutaka; Tamura, Yoshitaka; Yamashita, Yasuyuki

    2010-12-15

    PurposeTo describe our experiences with treatment of visceral artery pseudoaneurysms (VAPA) by transcatheter coil embolization using an isolation technique and to propose indications for treating VAPA with this method.Materials and MethodsWe treated 37 patients with VAPA endovascularly: There were 15 pancreaticoduodenal arcade, 10 hepatic, 5 renal, 3 splenic, and 1 each left gastric, gastroepiploic, adrenal, and superior mesenteric artery pseudoaneurysms. Preprocedure computed tomography (CT) and/or angiographic studies confirmed the presence of VAPA in all 37 patients. Using the isolation technique, we embolized vessels at sites distal and proximal to the pseudoaneurysm.ResultsTranscatheter coil embolization with the isolation technique was technically successful in 33 (89%) of 37 patients, and angiogram confirmed the complete disappearance of the VAPA in 32 patients. No major complications occurred during the procedures. In a patient with a pancreaticoduodenal arcade artery pseudoaneurysm, we were unable to control hemorrhage. In 30 of 32 patients who recovered after transcatheter coil embolization using the isolation technique, follow-up CT scan showed no flow in VAPA; they survived without rebleeding. Two of the 32 patients (6%) with confirmed complete disappearance of VAPA on angiogram and CT scan obtained the day after the procedure manifested rebleeding during follow-up.ConclusionTranscatheter coil embolization using the isolation technique is an effective alternative treatment in patients with VAPA. In combination with coil embolization, the isolation technique is particularly useful in patients whose pseudoaneurysms present surgical difficulties.

  14. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    SciTech Connect (OSTI)

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than

  15. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less

  16. New Techniques for Particle Acclerators

    SciTech Connect (OSTI)

    Sessler, Andrew M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers.

  17. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    SciTech Connect (OSTI)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  18. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Wednesday, 24 February 2010 00:00 Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in

  19. Jet Tomography of Hot Matter | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jet Tomography of Hot Matter Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 07.29.16 Jet Tomography of Hot Matter Using fast particles to probe hot matter in nuclear

  20. Online monitoring of oil film using electrical capacitance tomography and level set method

    SciTech Connect (OSTI)

    Xue, Q. Ma, M.; Sun, B. Y.; Cui, Z. Q.; Wang, H. X.

    2015-08-15

    In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.

  1. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  2. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    SciTech Connect (OSTI)

    Cazzato, Roberto Luigi Battistuzzi, Jean-Benoit Catena, Vittorio; Grasso, Rosario Francesco Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier Palussiere, Jean

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  3. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    SciTech Connect (OSTI)

    Parodi, Katia

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  4. Investigating the mesostructure of ordered porous silica nanocomposites by transmission electron microscopy techniques

    SciTech Connect (OSTI)

    Bullita, S.; Casula, M. F.; Piludu, M.; Falqui, A.; Carta, D.; Corrias, A.

    2014-10-21

    Nanocomposites made out of FeCo alloy nanocrystals supported onto pre-formed mesoporous ordered silica which features a cubic arrangement of pores (SBA-16) were investigated. Information on the effect of the nanocrystals on the mesostructure (i.e. pore arrangement symmetry, pore size, and shape) were deduced by a multitechnique approach including N2 physisorption, low angle X-ray diffraction, and Transmission electron microscopy. It is shown that advanced transmission electron microscopy techniques are required, however, to gain direct evidence on key compositional and textural features of the nanocomposites. In particular, electron tomography and microtomy techniques make clear that the FeCo nanocrystals are located within the pores of the SBA-16 silica, and that the ordered mesostructure of the nanocomposite is retained throughout the observed specimen.

  5. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  6. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect (OSTI)

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  7. Accounting for baryonic effects in cosmic shear tomography: Determining a minimal set of nuisance parameters using PCA

    SciTech Connect (OSTI)

    Eifler, Tim; Krause, Elisabeth; Dodelson, Scott; Zentner, Andrew; Hearin, Andrew; Gnedin, Nickolay

    2014-05-28

    Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.

  8. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets

    SciTech Connect (OSTI)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    2014-06-15

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance and diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand

  9. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    SciTech Connect (OSTI)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  10. Review methods for image segmentation from computed tomography images

    SciTech Connect (OSTI)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-12-04

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.

  11. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  12. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  13. CORROSION RESISTANT JACKETED METAL BODY

    DOE Patents [OSTI]

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  14. Abrasion resistant track shoe grouser

    DOE Patents [OSTI]

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  15. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  16. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  17. CORROSION RESISTANT JACKETED METAL BODY

    DOE Patents [OSTI]

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  18. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect (OSTI)

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes

  19. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    SciTech Connect (OSTI)

    Gray, Matthew

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  20. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    SciTech Connect (OSTI)

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.

    1982-10-01

    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  1. Data mining and visualization techniques

    DOE Patents [OSTI]

    Wong, Pak Chung; Whitney, Paul; Thomas, Jim

    2004-03-23

    Disclosed are association rule identification and visualization methods, systems, and apparatus. An association rule in data mining is an implication of the form X.fwdarw.Y where X is a set of antecedent items and Y is the consequent item. A unique visualization technique that provides multiple antecedent, consequent, confidence, and support information is disclosed to facilitate better presentation of large quantities of complex association rules.

  2. Uncertainty Analysis Technique for OMEGA Dante Measurements ...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Analysis Technique for OMEGA Dante Measurements Citation Details In-Document Search Title: Uncertainty Analysis Technique for OMEGA Dante Measurements You are...

  3. Techniques for multiboson interferometry (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Techniques for multiboson interferometry Title: Techniques for multiboson interferometry Authors: Gangadharan, Dhevan Publication Date: 2015-07-08 OSTI Identifier: 1198623 Grant...

  4. Category:Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole...

  5. Category:Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Seismic Techniques page? For detailed information on Seismic...

  6. Category:Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on...

  7. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  8. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  9. Hyperspectral Remote Sensing Techniques For Locating Geothermal...

    Open Energy Info (EERE)

    Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For...

  10. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Technique Subcategories This category has only the following subcategory. G + Geochemical Data Analysis (2 categories) 4 pages Pages in category "Geochemical...

  11. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration ...

  12. Analysis Of Dynamic Dent Resistance Of Auto Body Panel

    SciTech Connect (OSTI)

    Deolgaonkar, S. S.; Nandedkar, V. M.

    2007-04-07

    In automotive industry there is increasing demand for higher quality exterior panels, better functional properties and lower weight. The demand for weight reduction has led to thinner sheets, greater use of high strength steels and a change from steel to aluminum grades. This thickness reduction, which causes decrease in the dent resistance, promoted examination of the dent resistance against static and dynamic concentrated loads. This paper describes an investigation of the suitability of explicit dynamic FE analysis as a mean to determine the dynamic dent properties of the panel. This investigation is carried out on the body panel of utility vehicle and covers two parts, in first experimental analysis is carried out on developed test rig, which is interfaced with the computer. This test rig measures deflection with accuracy of .001mm. The experimental results are then compared with the simulation results, which is the second part. Simulation is carried with non-linear transient dynamic explicit analysis using Ansys -Ls Dyna. The experimental results show great accuracy with simulation results. The effect of change in thickness and geometry of the existing fender is then studied with help of simulation technique. By considering the best possible option overall weight of fender is reduced by 7.07 % by keeping the dent resistance of the panel constant.

  13. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    SciTech Connect (OSTI)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  14. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOE Patents [OSTI]

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  15. In vivo breast sound-speed imaging with ultrasound tomography

    SciTech Connect (OSTI)

    Huang, Lianjie; Li, Cuiping; Duric, Neb; Littrup, Peter

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided p

  16. Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography

    SciTech Connect (OSTI)

    Lo, P. Brown, M. S.; Kim, H.; Kim, H.; Goldin, J. G.; Argula, R.; Strange, C.

    2015-05-15

    Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select a small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.

  17. Superconductive microstrip exhibiting negative differential resistivity

    DOE Patents [OSTI]

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  18. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance P-Glycoprotein Structure and Chemotherapy Resistance Print Wednesday, 27 May 2009 00:00 A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs.

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tomography

  20. Integrated test plan for crosswell compressional and shear wave seismic tomography for site characterization at the VOC Arid Site

    SciTech Connect (OSTI)

    Elbring, G.J.; Narbutovskih, S.M.

    1994-02-01

    This integrated test plan describes the demonstration of the crosswell acoustic tomography technique as part of the Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID). The purpose of this demonstration is to image the subsurface seismic velocity structure and to relate the resulting velocity model to lithology and saturation. In fiscal year (FY) 1994 an initial fielding will test three different downhole sources at two different sites at the Hanford US Department of Energy facility to identify which sources will provide the energy required to propagate between existing steel-cased wells at these two sites. Once this has been established, a second fielding will perform a full compressional and shear wave tomographic survey at the most favorable site. Data reduction, analysis, and interpretation of this full data set will be completed by the end of this fiscal year. Data collection for a second survey will be completed by the end of the fiscal year, and data reduction for this data set will be completed in FY 1995. The specific need is detailed subsurface characterization with minimum intrusion. This technique also has applications for long term vadose zone monitoring for both Resource Conservation and Recovery Act (RCRA) waste storage facilities and for remediation monitoring. Images produced are continuous between boreholes. This is a significant improvement over the single point data derived solely from core information. Saturation changes, either naturally occurring (e.g., perched water tables) or remediation induced (e.g., water table mounding from injection wells or during inwell air sparging) could be imaged. These crosswell data allow optimal borehole placement for groundwater remediation, associated monitoring wells and possibly evaluation of the effective influence of a particular remediation technique.

  1. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    that the anomaly does not represent resistivity complexity in just the upper few kilometers. A fundamental, calderawide 3-D effect is documented by comparison of observed and...

  2. Geothermal resistivity resource evaluation survey Waunita Hot...

    Open Energy Info (EERE)

    resistivity resource evaluation survey Waunita Hot Springs project, Gunnison County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  3. Acid soluble, pepsin resistant platelet aggregating material

    DOE Patents [OSTI]

    Schneider, Morris D.

    1982-08-31

    Acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid, method of isolation and use to control bleeding.

  4. Crosswell Electromagnetic Resistivity Imaging: Illuminating the...

    Open Energy Info (EERE)

    Reviiew, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior...

  5. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the ...

  6. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

    SciTech Connect (OSTI)

    Wick, Carson A.; McClellan, James H.; Arepalli, Chesnal D.; Auffermann, William F.; Henry, Travis S.; Khosa, Faisal; Coy, Adam M.; Tridandapani, Srini

    2015-02-15

    Purpose: Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. Methods: Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33–74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. Results: Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (P{sub AGG}) and IVS (P{sub IV} {sub S}) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (P{sub CT}). The one exception was the RCA, which improved for P{sub AGG} for 18 of the 20 subjects when compared to P

  7. Techniques for Automated Performance Analysis

    SciTech Connect (OSTI)

    Marcus, Ryan C.

    2014-09-02

    The performance of a particular HPC code depends on a multitude of variables, including compiler selection, optimization flags, OpenMP pool size, file system load, memory usage, MPI configuration, etc. As a result of this complexity, current predictive models have limited applicability, especially at scale. We present a formulation of scientific codes, nodes, and clusters that reduces complex performance analysis to well-known mathematical techniques. Building accurate predictive models and enhancing our understanding of scientific codes at scale is an important step towards exascale computing.

  8. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  9. Thermal shock resistance ceramic insulator

    DOE Patents [OSTI]

    Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  10. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, J.A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

  11. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, James A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  12. Shapeable short circuit resistant capacitor

    DOE Patents [OSTI]

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  13. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  14. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  15. Repositioning of Covered Stents: The Grip Technique

    SciTech Connect (OSTI)

    Kirby, John Martin; Guo Xiaofeng; Midia, Mehran

    2011-06-15

    Introduction: Retrieval and repositioning of a stent deployed beyond its intended target region may be a difficult technical challenge. Materials and Methods: A balloon-mounted snare technique, a variant of the coaxial loop snare technique, is described. Results: The technique is described for the repositioning of a covered transjugular intrahepatic portosystemic shunt stent and a covered biliary stent. Conclusion: The balloon-mounted snare technique is a useful technique for retrieval of migrated stents.

  16. Negative resistance in an organic thin film

    SciTech Connect (OSTI)

    Ehara, S. ); Takagi, T. ); Yoshida, T.; Inaba, H.; Naito, H.; Okuda, M. )

    1992-08-20

    This paper reports that the negative resistance of the tunneling currents was observed in a semiconducting organic thin film on a graphite substrate by an STM (Scanning Tunneling Microscopy). This negative resistance may be understood by the theory of a molecular resonance tunneling effect.

  17. Sparse-view proton computed tomography using modulated proton beams

    SciTech Connect (OSTI)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  18. Improved proton computed tomography by dual modality image reconstruction

    SciTech Connect (OSTI)

    Hansen, David C. Bassler, Niels; Petersen, Jørgen Breede Baltzer; Sørensen, Thomas Sangild

    2014-03-15

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  19. Subranging technique using superconducting technology

    DOE Patents [OSTI]

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  20. Resistivity measurements of halide-salt/MgO separators for thermal cells

    SciTech Connect (OSTI)

    Redey, L.; McParland, M. ); Guidotti, R. )

    1990-01-01

    Resistivities of 20 compositions of halide-salt/MgO mixtures (various selections and percentages of LiF, LiCl, LiBr, KCl, KBr, CsBr, and MgO) to be used in Li-alloy/metal sulfide cells have been measured at temperatures between the melting point of a particular mixture and 500{degrees}C. The resistivities were determined with cold-pressed electrolyte-binder pellets by using a special cell and DC measuring technique. Temperature, salt composition, and MgO content were found to have a strong influence on resistivity. These factors are listed in decreasing order of the magnitude of the effect. The fabrication density (porosity) of the pellet also has some effect on resistivity. These measured resistivities provide a data base to select optimum compositions of electrolyte-binder pellets for LiSi/FeS{sub 2} thermal batteries and to calculate area-specific resistances of these components for battery modeling and optimization. 5 refs., 7 figs.

  1. Proliferation resistance: issues, initiatives and evaluation

    SciTech Connect (OSTI)

    Pilat, Joseph F

    2009-01-01

    The vision of a nuclear renaissance has highlighted the issue of proliferation resistance. The prospects for a dramatic growth in nuclear power may depend on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance. The GenIV International Forum (GIF) and others have devoted attention and resources to proliferation resistance. However, the hope of finding a way to make the peaceful uses of nuclear energy resistant to proliferation has reappeared again and again in the history of nuclear power with little practical consequence. The concept of proliferation resistance has usually focused on intrinsic (technological) as opposed to extrinsic (institutional) factors. However, if there are benefits that may yet be realized from reactors and other facilities designed to minimize proliferation risks, it is their coupling with effective safeguards and other nonproliferation measures that likely will be critical. Proliferation resistance has also traditionally been applied only to state threats. Although there are no technologies that can wholly eliminate the risk of proliferation by a determined state, technology can play a limited role in reducing state threats and perhaps in eliminating many non-state threats. These and other issues are not academic. They affect efforts to evaluate proliferation resistance, including the methodology developed by GIF's Proliferation Resistance and Physical Protection (PR&PP) Working Group as well as the proliferation resistance initiatives that are being pursued or may be developed in the future. This paper will offer a new framework for thinking about proliferation resistance issues, including the ways the output of the methodology could be developed to inform the decisions that states, the International Atomic Energy (IAEA) and others will have to make in order to fully realize the promise of a nuclear renaissance.

  2. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  3. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    SciTech Connect (OSTI)

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong Woo, Eung Je; Kim, Hyun Bum; Kyung, Eun Jung; Kwon, Oh In

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  4. Swept source optical coherence tomography for in vivo imaging and vibrometry in the apex of the mouse cochlea

    SciTech Connect (OSTI)

    Lee, Hee Yoon; Raphael, Patrick D.; Oghalai, John S.; Ellerbee, Audrey K.; Applegate, Brian E.

    2015-12-31

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane, tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.

  5. Cell shunt resistance and photovoltaic module performance

    SciTech Connect (OSTI)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  6. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A.

    1996-11-01

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  7. EERE's Usability and Analysis Techniques Guidebook

    Office of Energy Efficiency and Renewable Energy (EERE)

    For more information on the usability techniques associated with the templates, see EERE's Usability and Analysis Techniques Guidebook, which is a collection of best practices for creating and running different kinds of user-centered design projects.

  8. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    SciTech Connect (OSTI)

    Wang, Jinguo; Zhao, Zhiqin Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-05-15

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.

  9. NREL: Measurements and Characterization - Capacitance Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoluminescence Spectroscopy Minority-Carrier Lifetime Spectroscopy Fourier-Transform Infrared & Raman Spectroscopy Spectroscopic Ellipsometry Capacitance Techniques Scanning ...

  10. Enhancing carburization resistance in fossil fuel environments

    SciTech Connect (OSTI)

    Smith, G.D.; Tassen, C.S.

    1995-11-01

    There has been steady progress in the development of wrought alloys for use in gaseous carburizing environments. Contributing significantly to this progress is a growing knowledge base of the role of scales in enhancing carburization resistance. Future improvements in carburization resistance must build upon this level of understanding. This paper seeks to survey some of this wealth of information regarding scale characteristics of commercial wrought nickel-containing alloys as these scales are influenced by environment and alloy composition. Some suggestions as to the future direction of alloy development with regard to scale optimization and minimization of carburization resistance are proposed.

  11. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  12. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  13. Technique development for field inspection of cracking in seam welded ducts

    SciTech Connect (OSTI)

    Shell, Eric B.; Benson, Craig; Liljestrom, Greg C.; Shanahan, Stephen

    2014-02-18

    The resistance seam weld interfaces between alloyed and pure titanium are an in service concern due to precipitation of titanium hydride and resulting embrittlement and cracking. Several inspection techniques were developed and evaluated for field use to characterize the damage in the fleet. Electromagnetic, ultrasonic, florescent penetrant, thermographic, and radiographic techniques were considered. The ultrasonic and electromagnetic approaches were both found suitable. However, the electromagnetic approach is more desirable for field inspections, due to consistency and ease of use. The electromagnetic inspection procedure is able to discriminate between precursor damage and through cracking with sufficient sensitivity to small cracks.

  14. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    SciTech Connect (OSTI)

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A.; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E.

    2015-10-29

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. Furthermore, these results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.

  15. Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uberuaga, Blas Pedro; Tang, Ming; Jiang, Chao; Valdez, James A.; Smith, Roger; Wang, Yongqiang; Sickafus, Kurt E.

    2015-10-29

    Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinelmore » that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. Furthermore, these results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.« less

  16. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    SciTech Connect (OSTI)

    Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  17. Survey of data compression techniques

    SciTech Connect (OSTI)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM's design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  18. Survey of data compression techniques

    SciTech Connect (OSTI)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM`s design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  19. Alternative Fuels Data Center: Low Rolling Resistance Tires

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Rolling Resistance Tires to someone by E-mail Share Alternative Fuels Data Center: Low Rolling Resistance Tires on Facebook Tweet about Alternative Fuels Data Center: Low Rolling Resistance Tires on Twitter Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Google Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Delicious Rank Alternative Fuels Data Center: Low Rolling Resistance Tires on Digg Find More places to share Alternative Fuels Data

  20. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    SciTech Connect (OSTI)

    Frey, K.; Lombardo, M; Wright, D; Anderson, A

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  1. How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    SciTech Connect (OSTI)

    Kuah, Aik-meng; Modi, Kavan; Rodriguez-Rosario, Cesar A.; Sudarshan, E. C. G. [Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-10-15

    We study the effects of the preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well-known dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures: stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to nonlinear processes and can only be consistently described by a bilinear process map. A process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bilinear processes. We also emphasize that the preparation procedure will have a nontrivial effect for any quantum experiment in which the system of interest interacts with its environment.

  2. Direct-Current Resistivity At Honokowai Area (Thomas, 1986) ...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  3. Direct-Current Resistivity At Lualualei Valley Area (Thomas,...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  4. Direct-Current Resistivity Survey At Honokowai Area (Thomas,...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  5. Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  6. An introduction to electrical resistivity in geophysics | Open...

    Open Energy Info (EERE)

    introduction to electrical resistivity in geophysics Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An introduction to electrical resistivity...

  7. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency & ...

  8. Evolution of extreme resistance to ionizing radiation via genetic...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Prev Next Title: Evolution of extreme resistance to ionizing ...

  9. Thermal shock resistance ceramic insulator (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator You are accessing a document from the ...

  10. Energy scaling advantages of resistive memory crossbar based...

    Office of Scientific and Technical Information (OSTI)

    Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding Prev Next Title: Energy scaling advantages of resistive memory ...

  11. High PID Resistant Cross-Linked Encapsulnt Based on Polyolefin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PID Resistant Cross-Linked Encapsulnt Based on Polyolefin SOLAR ASCE High PID Resistant Cross-Linked Encapsulnt Based on Polyolefin SOLAR ASCE Presented at the PV Module ...

  12. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines ...

  13. Resistivity Log At Alum Area (Moos & Ronne, 2010) | Open Energy...

    Open Energy Info (EERE)

    and Cross-Well Resistivity Activity Date Usefulness useful DOE-funding Unknown Notes Density and electrical resistivity data were important to calibrate structural models based...

  14. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to...

  15. Designing and Building Hurricane-Resistant Homes

    SciTech Connect (OSTI)

    2006-05-25

    A production builders efforts to identify better wall systems to use in homes led to the development of a disaster-resistant housing solution for the southeastern United States.

  16. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help...

  17. Ethanologenic bacteria with increased resistance to furfural

    DOE Patents [OSTI]

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  18. Creep resistant high temperature martensitic steel

    DOE Patents [OSTI]

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  19. Synthesis, crystal structure, resistivity, and electronic structure...

    Office of Scientific and Technical Information (OSTI)

    Synthesis, crystal structure, resistivity, and electronic structure of the U(V) quaternary ... and electronic structure of the U(V) quaternary polyselenide Ba8PdU2Se12(Se2)2 ...

  20. Property:WaterResistivity | Open Energy Information

    Open Energy Info (EERE)

    Page. Pages using the property "WaterResistivity" Showing 2 pages using this property. L Lightning Dock Geothermal Area + 1,700 + W Waunita Hot Springs Geothermal Area + 850 +...

  1. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    Larry Zirker; Craig Tyler

    2010-08-01

    Engineers from the Idaho National Laboratory (INL) have demonstrated an innovative method for seal or pinch welding stainless steel tubing. Sometimes a tube has fuel or contamination that must be contained, or the tube needs to be shortened or cut for handling, and the tube needs to have a guaranteed sealed weld that is both quick and easy. This technique was demonstrated in a laboratory using a resistance welding system with specially designed electrodes to ensure a tube end is seal welded or if a long tube is to be shortened, the severed ends are seal welded. The unique electrodes design is integral to achieving the sealed ends. This process could readily be adapted for robotic--remote handling or for contact handling in a glovebox or hood.

  2. Method of manufacturing a shapeable short-resistant capacitor

    DOE Patents [OSTI]

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  3. Resistance probe for energetic particle dosimetry

    DOE Patents [OSTI]

    Wampler, W.R.

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film having an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current throught the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  4. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  5. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  6. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  7. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  8. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  9. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  10. Resistance probe for energetic particle dosimetry

    DOE Patents [OSTI]

    Wampler, William R.

    1988-01-01

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film havinmg an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current through the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  11. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  12. Dependence of dynamic fracture resistance on crack velocity in tungsten: Pt. II. Bicrystals and polycrystals

    SciTech Connect (OSTI)

    Liv, J.M.; Shen, B.W.

    1986-06-01

    The experimental techniques for crack velocity measurements have been applied to bicrystals of tungsten with twist orientations about (100) and polycrystals. The hesitation of the propagating cleavage crack in the vicinity of the grain boundary is examined. The contributions to energy dissipation from deformation and fracture processes in the grain boundary region as well as the in direct effects of crack deceleration are discussed. These findings have been applied to explain th dynamic fracture resistance and crack arrest in polycrystals.

  13. Evaluating electric-resistance-welded tubing for refinery and chemical plant applications

    SciTech Connect (OSTI)

    Polk, C.J.; Hotaling, A.C. )

    1993-02-01

    A laboratory technique was developed to assess the potential for preferential attack along the longitudinal seam of electric-resistance-welded (ERW) carbon steel tubing exposed to refinery and chemical plant process streams. Used in conjunction with an evaluation of mill fabrication practices, the test procedure can identify high-quality ERW products that can be used in many applications in place of seamless components at significant cost savings.

  14. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  15. Antimicrobial resistance prediction in PATRIC and RAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, James J.; Boisvert, Sebastien; Brettin, Thomas; Kenyon, Ronald W.; Mao, Chunhong; Olson, Robert; Overbeek, Ross; Santerre, John; Shukla, Maulik; Wattam, Alice R.; et al

    2016-06-14

    The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned bymore » their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.« less

  16. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    SciTech Connect (OSTI)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  17. Argonne National Laboratory Scientists Invent Breakthrough Technique...

    Broader source: Energy.gov (indexed) [DOE]

    Bahns and Argonne scientist Liaohai Chen had been investigating carbon in soil using a laser-based technique called Raman spectroscopy. They added gold nanoparticles to their ...

  18. Accelerated Technique for Carbon Mesoporous Materials - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Accelerated Technique for Carbon Mesoporous Materials Oak Ridge National Laboratory Contact ORNL About This Technology...

  19. Airborne electromagnetic surveys as a reconnaissance technique...

    Open Energy Info (EERE)

    it was thought that a shallow exploration technique would not be effective. Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems...

  20. Active Load Control Techniques for Wind Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Load Control Techniques for Wind Turbines Scott J. Johnson and C. P. "Case" van Dam Department of Mechanical and Aeronautical Engineering University of California One ...

  1. Transportation Techniques LLC | Open Energy Information

    Open Energy Info (EERE)

    Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

  2. Category:Data Techniques | Open Energy Information

    Open Energy Info (EERE)

    1 pages G Geographic Information System 1 pages Geothermal Literature Review 1 pages Pages in category "Data Techniques" The following 4 pages are in...

  3. EERE's Usability and Analysis Techniques Guidebook | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    see EERE's Usability and Analysis Techniques Guidebook, which is a collection of best practices for creating and running different kinds of user-centered design projects. ...

  4. Tomographic inversion techniques incorporating physical constraints...

    Office of Scientific and Technical Information (OSTI)

    In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often ...

  5. Promising technique improves hydrogen production of affordable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Materialscientist, Wikipedia) (click image to enlarge) Promising technique improves hydrogen production of affordable alternative to platinum By Angela Hardin * October 26, 2015...

  6. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  7. Footprinting Technique Gives ALS Users New Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    left: Research Scientist Sayan Gupta, Beamline 5.3.1 Scientist Rich Celestre, and BCSB Head Corie Ralston. XFP, a powerful technique for the study of macromolecular structures...

  8. Category:Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    3 subcategories, out of 3 total. A Airborne Electromagnetic Survey 1 pages G + Ground Electromagnetic Techniques (2 categories) 3 pages S Self Potential...

  9. Lightweight and Statistical Techniques for Petascale Debugging...

    Office of Scientific and Technical Information (OSTI)

    ... years of CoPS research, significant work remains. While STAT provides scalable debugging assistance for incorrect application runs, we could apply its techniques to assertions ...

  10. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico ... geothermal exploration project in New Mexico since Fenton Hill at nearby Valles caldera. ...

  11. Eddy current technique for predicting burst pressure

    DOE Patents [OSTI]

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  12. Using resistivity to assess Niobrara fracture patterns for horizontal wells

    SciTech Connect (OSTI)

    Johnson, R.A.; Bartshe, R.T. )

    1991-09-02

    This paper reports on interest in U.S. horizontal drilling which has largely focused on vertically fractured plays such as the Bakken shale and Austin chalk. The Upper Cretaceous Niobrara formation, the chronological equivalent of the Austin chalk, has recently been targeted as a candidate for horizontal drilling in the Denver basin and other areas of the Rocky Mountains. A primary key to success in such plays is to predict the occurrence and distribution of oil bearing fracture systems. Much emphasis is placed on theoretical aspects of fracture origin and prediction. Remote sensing techniques (e.g., seismic, satellite image analysis) have gained wide use in the search for fractured reservoirs. While these methods are important elements of an integrated exploration effort, they lack the benefit of direct detection of open, oil saturated fracture systems. In the areas of the Denver basin in which the Niobrara is oil prone, certain resistivity responses are indicative of the proximity of oil bearing fractures to the well bore. This provides an extremely useful technique in areas of pre-existing well control penetrating the Niobrara section. As such, the Denver basin is an ideal area due to the large number of penetrations to the Lower Cretaceous D and J sandstones that underlie the Niobrara.

  13. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect (OSTI)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  14. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect (OSTI)

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  15. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    SciTech Connect (OSTI)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen; Riyanto, Erwin

    2015-04-16

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko in 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.

  16. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  17. Attrition resistant microporous particles by spray drying

    SciTech Connect (OSTI)

    Bergna, H.E. )

    1988-09-01

    Industrial powders made of grains in the micron size range are often used in processes that require high attrition resistance. Good examples of such powders are catalysts for fluid bed processes which are generally made of ca. 45 to ca. 150 or 200 {mu}m porous grains, hereby referred to as porous micrograins or, if they are spheroidal, porous microspheres (PMS). A conventional approach to impart attrition resistance to a catalyst grain is to embed small particles of the active catalyst in a continuous framework or skeleton made of a hard and relatively inert material. In this case, the percentage of hard materials required to impart sufficient attrition resistance to the catalyst composite particle is so high ({approximately} 50%) that it may affect the activity and/or the selectivity of the catalyst.

  18. Terrain effects in resistivity and magnetotelluric surveys

    SciTech Connect (OSTI)

    Holcombe, H.T.

    1982-12-01

    A three-dimensional finite element computer algorithm which can accommodate arbitrarily complex topography and subsurface structure, has been developed to model the resistivity response of the earth. The algorithm has undergone extensive evaluation and is believed to provide accurate results for realistic earth models. Testing included comparison to scale model measurements, analytically calculated solutions, and results calculated numerically by other independent means. Computer modeling experiments have demonstrated that it is possible to remove the effect of topography on resistivity data under conditions where such effects dominate the response. This can be done without resorting to lengthy and costly trial and error computer modeling. After correction, the data can be interpreted with confidence that the anomalies are due only to subsurface structure. The results of case studies on resistivity field data measured in high relief topography are discussed.

  19. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect (OSTI)

    Kwon, Jae-Sung [Purdue University; Ravindranath, Sandeep [Purdue University; Kumar, Aloke [ORNL; Irudayaraj, Joseph [Purdue University; Wereley, Steven T. [Purdue University

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  20. Waterflood surveillance techniques; A reservoir management approach

    SciTech Connect (OSTI)

    Thakur, G.C. )

    1991-10-01

    The reservoir management aspects of waterflooding span the time before the start of waterflood to the time when the secondary recovery either is uneconomic or is changed to an enhanced recovery. This paper reviews waterflood techniques and reports on surveillance techniques in the management of waterflooding of oil wells.

  1. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect (OSTI)

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  2. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect (OSTI)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  3. Postmortem analysis of sand grain crushing from pile interface using X-ray tomography

    SciTech Connect (OSTI)

    Silva, I. Matias; Combe, Gaeel; Foray, Pierre; Flin, Frederic; Lesaffre, Bernard [Universite de Grenoble, 3SR Lab, UMR 5521 Grenoble-INP, UJF-Grenoble 1, CNRS, Grenoble, France CEN, CNRM-GAME UMR 3589, Meteo France - CNRS, Grenoble (France)

    2013-06-18

    Pile foundations of offshore platforms, wind and water turbines are typically subjected to a variety of cyclic loading paths due to their complex environment. While many studies focus on global pile behaviour, the soil-pile interface is explored here by a micromechanical study of the soil layer in contact with the pile surface. This work is devoted to the analysis of frozen post-mortem silica sand samples recovered at the pile interface following installation and cyclic loading tests in a calibration chamber using x-ray tomography. An experimental procedure developed for three dimensional (3D) snow imaging was adapted for the recovery of the in-situ sand samples to preserve their structure during tomography scans. 3D images at a pixel size of 7 {mu}m were then obtained using a cryogenic cell. Results confirm the presence of a shear band at the pile surface as well as void ratios changes in the direction of the pile's radius.

  4. Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography

    SciTech Connect (OSTI)

    Zhang, Guanglei; Pu, Huangsheng; Liu, Fei; Bai, Jing; He, Wei; Luo, Jianwen

    2015-02-23

    Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but also make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.

  5. Characterization of Ag/Bi{sub 2}Sr{sub 2}Ca{sub n-1}O{sub 2n+4} interfacial resistivity.

    SciTech Connect (OSTI)

    Fang, Y.; Danyluk, S.; Lanagan, M. T.; Youngdahl, C. A.; Xu, X.; Numata, K.; Energy Technology; Georgia Inst. of Tech.; Mitsui Mining and Smelting Co. Ltd.

    1995-10-10

    Silver contacts to single-crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) and polycrystalline (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (B-2223) were prepared by sputtering or sinter-forging techniques. The interfacial resistivity of Ag/Bi-2212, defined as interfacial resistance times contact area, decreased from 10{sup -4} to 10{sup -10} {Omega} cm{sup 2} at 77 K when the thermal annealing time increased from 1 to 14 h at 600 C; it was also a function of the annealing temperature. The lowest interfacial resistivity of Ag/Bi-2223 that was sinter-forged at 840-845 C for 1 h was 10{sup -9} {Omega} cm{sup 2} at 77 K. Experimental data are compared with intrinsic interfacial resistivity and resistivity values found in the literature.

  6. Emerging pathogens: Dynamics, mutation and drug resistance

    SciTech Connect (OSTI)

    Perelson, A.S.; Goldstein, B.; Korber, B.T.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  7. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  8. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    SciTech Connect (OSTI)

    Soufi, M; Asl, A Kamali; Geramifar, P

    2015-06-15

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  9. Super-resolution reconstruction for 4D computed tomography of the lung via the projections onto convex sets approach

    SciTech Connect (OSTI)

    Zhang, Yu E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei; Feng, Qianjin E-mail: qianjinfeng08@gmail.com; Chen, Wufan

    2014-11-01

    Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images. The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.

  10. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-15

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  11. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  12. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  13. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  14. Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fisk, Mark D.; Pasyanos, Michael E.

    2016-05-03

    Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies ofmore » SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as Fmax) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new Fmax criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less

  15. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  16. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  17. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  18. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  19. Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Antifungal Drug Molecules in Action using Soft X-Ray Tomography Print Humankind has benefitted from a long and productive relationship with yeast. For example, fermentation by yeast is an essential step in the production of bread, beer, wine, and even biofuels. However, not all yeast are beneficial. One strain of yeast, Candida albicans, grows unnoticed on most peoples' skin and in the intestines. In response to certain environmental conditions, C. albicans can switch to a pathogenic

  20. Optimization and evaluation of metal injection molding by using X-ray tomography

    SciTech Connect (OSTI)

    Yang, Shidi; Zhang, Ruijie; Qu, Xuanhui

    2015-06-15

    6061 aluminum alloy and 316L stainless steel green bodies were obtained by using different injection parameters (injection pressure, speed and temperature). After injection process, the green bodies were scanned by X-ray tomography. The projection and reconstruction images show the different kinds of defects obtained by the improper injection parameters. Then, 3D rendering of the Al alloy green bodies was used to demonstrate the spatial morphology characteristics of the serious defects. Based on the scanned and calculated results, it is convenient to obtain the proper injection parameters for the Al alloy. Then, reasons of the defect formation were discussed. During mold filling, the serious defects mainly formed in the case of low injection temperature and high injection speed. According to the gray value distribution of projection image, a threshold gray value was obtained to evaluate whether the quality of green body can meet the desired standard. The proper injection parameters of 316L stainless steel can be obtained efficiently by using the method of analyzing the Al alloy injection. - Highlights: • Different types of defects in green bodies were scanned by using X-ray tomography. • Reasons of the defect formation were discussed. • Optimization of the injection parameters can be simplified greatly by the way of X-ray tomography. • Evaluation standard of the injection process can be obtained by using the gray value distribution of projection image.

  1. Determination of electrical resistivity of dry coke beds

    SciTech Connect (OSTI)

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  2. Engine control techniques to account for fuel effects (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Engine control techniques to account for fuel effects Citation Details In-Document Search Title: Engine control techniques to account for fuel effects A technique for ...

  3. PFT Air Infiltration Measurement Technique | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to...

  4. Attrition resistant gamma-alumina catalyst support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  5. Localized corrosion resistance of automotive exhaust alloys

    SciTech Connect (OSTI)

    Sabata, A.; Brossia, C.S.; Behling, M.

    1998-12-31

    Corrosion in automotive exhaust systems can be broadly classified as (a) cold end corrosion and (b) hot end corrosion. For the cold end, the requirements include inside-out perforation corrosion resistance and cosmetic corrosion resistance. Perforation corrosion causes noticeable degradation in noise quality and may even affect the back pressure. For the hot end, the key concern has been perforation corrosion resistance. With the use of oxygen sensors in catalytic converters, the failure criteria will become more stringent. Numerous accelerated corrosion tests have been used to rank materials for the Hot End and the Cold End. These include (a) Continuous Test, (b) Cyclic Tests -- Hot End, (c) Cyclic Tests -- Cold End, (d) Electrochemical Ranking. In this paper the authors evaluate some of the commonly used exhaust materials in these accelerated tests. These accelerated tests are easy to use, inexpensive to run as compared to proving ground testing or trailer testing and can provide information in a relatively short time. Here they report lab work to date on some of the accelerated corrosion testing for perforation corrosion resistance. Note that these tests are useful for ranking materials only. Life expectancy of the material can be given only after a correlation is established between the accelerated tests and field performance. The electrochemical tests were designed to gain insight into pit growth kinetics in the accelerated tests.

  6. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    SciTech Connect (OSTI)

    Maltz, Lauren

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  7. Magnetic field annealing for improved creep resistance

    DOE Patents [OSTI]

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  8. Engineered microorganisms having resistance to ionic liquids

    DOE Patents [OSTI]

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  9. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R.; Efird, Marty

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  10. Percutaneous Extraction of Cement Leakage After Vertebroplasty Under CT and Fluoroscopy Guidance: A New Technique

    SciTech Connect (OSTI)

    Amoretti, Nicolas Huwart, Laurent

    2012-12-15

    Purpose: We report a new minimally invasive technique of extraction of cement leakage following percutaneous vertebroplasty in adults. Methods: Seven adult patients (five women, two men; mean age: 81 years) treated for vertebral compression fractures by percutaneous vertebroplasty had cement leakage into perivertebral soft tissues along the needle route. Immediately after vertebroplasty, the procedure of extraction was performed under computed tomography (CT) and fluoroscopy guidance: a Chiba needle was first inserted using the same route as the vertebroplasty until contact was obtained with the cement fragment. This needle was then used as a guide for an 11-gauge Trocar t'am (Thiebaud, France). After needle withdrawal, a 13-gauge endoscopy clamp was inserted through the cannula to extract the cement fragments. The whole procedure was performed under local anesthesia. Results: In each patient, all cement fragments were withdrawn within 10 min, without complication. Conclusions: This report suggests that this CT- and fluoroscopy-guided percutaneous technique of extraction could reduce the rate of cement leakage-related complications.

  11. Borehole thermal resistance: Laboratory and field studies

    SciTech Connect (OSTI)

    Remund, C.P.

    1999-07-01

    Vertical ground heat exchangers are a common method of linking geothermal heat pump systems to the earth, and they consist of pipe installed into a borehole that is subsequently backfilled with a material that forms the heat transfer link between the pipe and earth. In many states that material must also be a grout to form a barrier against water migration in any direction along the entire borehole length. Until recently, little attention has been given to the thermal properties of commonly used backfill and grouting materials or to the effect of the thermal conductivity of those materials on the thermal performance of the vertical ground heat exchanger. Laboratory studies were performed to determine the effect of grout thermal conductivity, borehole diameter, pipe size, and pipe configuration on the total thermal resistance in the borehole. It was found that borehole thermal resistance decreased with increasing grout thermal resistance decreased with increasing grout thermal conductivity, but increasing grout thermal conductivity above 1.0 Btu/h{center{underscore}dot}ft{center{underscore}dot}{degree}F provided very small additional reduction. The studies resulted in a set of relationships for borehole thermal resistance, depending on the pipe configuration in the borehole, that can be utilized in the calculation of design length of a vertical ground heat exchanger for a prescribed heating and cooling load. A series of independent field tests verified that the assumption of equal spacing between the pipes and the borehole wall conservatively accounted for the thermal conductivity of the backfill or grout material. The effect of increasing grout thermal conductivity from 0.43 to 0.85 Btu/h{center{underscore}dot}ft{center{underscore}dot}{degree}F resulted in overall reductions in thermal resistance between the circulating fluid and the earth by 15.3% to 19.5%.

  12. Low-frequency resonance increase in the resistance of a microcontact between ferromagnetic and nonmagnetic metals

    SciTech Connect (OSTI)

    Tsoi, M. V.; Tsoi, V. S.

    2013-02-15

    The magnetic dynamics of a mesoscopic three-dimensional magnet has been studied by measuring the resistance of a nanodimensional (point) microcontact between paramagnetic and ferromagnetic metals. The resistance was measured by a modulation technique under conditions where a significant role was played by dipole-dipole interaction, magnetic field, and dissipation. It was found that the resistance of the microcontact exhibits resonance growth at low frequencies ({approx}10{sup 3} s{sup -1}). The properties of resonances are described by a model of microcontact gyromagnetic oscillations (MCGMOs) based on mutual transformation of spin and mechanical angular momentum. Experimental techniques, basic properties, and the MCGMO model are described. The passage of an electric current through the interface between paramagnetic and ferromagnetic metals leads to nonequilibrium magnetization localized at the interface. A high current density in the microcontact determines the strong excitation of magnetization (high density of magnons) at which the interaction between magnons becomes significant. In a uniaxial magnet, the attraction of magnons leads to the formation of a spatially localized configuration of gapless long-wavelength magnons (magnetic soliton). At a given excitation of magnetization, the vector structure of a magnetic soliton possesses a minimum free energy (configuration energy minimum). The configuration energy minimum of a magnetic soliton is responsible for the radical increase in the soliton spin relaxation time, which determines the fundamental possibility of exciting stationary low-frequency MCGMOs.

  13. Resistance heater for use in a glass melter

    DOE Patents [OSTI]

    Routt, K.R.; Porter, M.A.

    1984-01-01

    A resistance heating element that includes: a resistance heating medium of a mixture of electrically conductive and insulative particles in powdered form mixed together in predetermined proportions to achieve a given resistivity; a hollow outer electrode surrounding the resistance heating medium; and an inner electrode coaxially disposed within said outer electrode. In its preferred embodiments, the electrically conductive powder is selected from the group consisting essentially of graphite, Inconel alloy, molybdenum, nichrome alloy and stainless steel, while the insulator powder is silicon dioxide or alumina. The resistance heating element, being resistant to damage from mechanical shock and corrosion at elevated temperatures, is used in a glass melter.

  14. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect (OSTI)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  15. Category:Field Techniques | Open Energy Information

    Open Energy Info (EERE)

    Sampling Field Techniques H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http:en.openei.orgwindex.php?titleCategory:FieldTechniq...

  16. A Survey of Techniques for Approximate Computing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  17. Techniques for preventing accidental damage to pipelines

    SciTech Connect (OSTI)

    Lothon, A.; Akel, S.

    1996-12-31

    Following a survey of all of the techniques capable of preventing third-party damage to its gas transmission pipelines, Gaz de France has selected two of them, Electromagnetic Detection and Positioning by Satellite. The first technique is based on detection of the magnetic field existing around transmission pipes excited by a driving current. A receiver is mounted on the excavation equipment to detect the magnetic field, thereby preventing any risk of hitting the pipe. The second technique consists in locating excavators by satellite. Each excavator needs to be equipped with a GPS beacon to know its position. Using the map of the transmission network stored in data-base form, i.e., digitized, the system calculates the position of the excavator relative to the pipes buried in its vicinity so as to avoid any accidental contact. The main features, advantages and drawbacks of the two techniques are presented in this paper.

  18. Internal Benchmarking Outreach and Data Collection Techniques

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 11, 2013 and dealing with internal benchmarking outreach and data collection techniques.

  19. Data Capture Technique for High Speed Signaling

    DOE Patents [OSTI]

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  20. Microcrystallization techniques for serial femtosecond crystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using Photosystem II from Thermosynechococcus elongatus as a model system Microcrystallization techniques for serial femtosecond crystallography using Photosystem II from Thermosynechococcus elongatus as a model system Authors: Kupitz, C., Grotjohann, I., Conrad, C.E., Roy-Chowdhury, S., Fromme, R., and Fromme, P. Title: Microcrystallization techniques for serial femtosecond crystallography using Photosystem II from Thermosynechococcus elongatus as a model system Source: Phil. Trans. R. Soc.

  1. Techniques for Bs Mixing at CDF

    SciTech Connect (OSTI)

    Salamanna, Giuseppe; /Rome U. /INFN, Rome

    2005-12-01

    The techniques used to perform a measurement of the mixing frequency of the B{sub s} meson ({Delta}M{sub s}) with the CDF detector at the TeVatron collider are described. Particular stress is put on CDF techniques for flavor tagging, which is possibly the major issue for mixing measurements at a hadron collider. Also CDF performances on lifetime and final state reconstruction are described. The final result of the amplitude scanning presented at 2005 Winter Conferences is reported.

  2. New technique images nanoparticles in solution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique images nanoparticles in solution Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) A technique called SINGLE uses in situ transmission electron microscopy imaging of platinum nanocrystals freely rotating in a graphene liquid cell to determine the 3-D structures of individual colloidal nanoparticles. (Image: Berkeley Lab) More » Nanotubes that

  3. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  4. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  5. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    SciTech Connect (OSTI)

    Ashamalla, Hani . E-mail: hashamalla@aol.com; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-06-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 {+-} 0.28. The mean halo thickness was 2.02 {+-} 0.21 mm. Significant volume modification ({>=}25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a {<=}10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p < 0.001). Interobserver variability decreased from a mean GTV difference of 20.3 cm{sup 3} in CT-based planning to 7.2 cm{sup 3} in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells.

  6. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    SciTech Connect (OSTI)

    Ng, Sweet Ping; David, Steven; Alamgeer, Muhammad; Ganju, Vinod

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  7. Methods for resistive switching of memristors (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Methods for resistive switching of memristors The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as ...

  8. Overcoming Resistance, and Lighting Up the World | Department...

    Office of Environmental Management (EM)

    Overcoming Resistance, and Lighting Up the World Overcoming Resistance, and Lighting Up the World March 15, 2013 - 2:47pm Addthis Inside a clean room, Brookhaven physicists Ivan ...

  9. Breaking a Pocket of Resistance in the Fight Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaking a Pocket of Resistance in the Fight Against Cancer Breaking a Pocket of Resistance in the Fight Against Cancer Print Thursday, 12 December 2013 11:55 ras protein The new...

  10. Oxidation-resistant, solution-processed plasmonic Ni nanochain...

    Office of Scientific and Technical Information (OSTI)

    Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiOsub x (x < 2) selective solar thermal absorbers Citation Details In-Document Search Title: Oxidation-resistant, ...

  11. Extremely durable biofouling-resistant metallic surfaces based...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel Title: Extremely durable ...

  12. Electrical Resistivity At Coso Geothermal Area (1972) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location...

  13. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites presentation at the April 2013 peer review meeting held in Denver, Colorado.

  14. Clusters of antibiotic resistance genes enriched together stay together in

    Office of Scientific and Technical Information (OSTI)

    swine agriculture (Journal Article) | SciTech Connect Clusters of antibiotic resistance genes enriched together stay together in swine agriculture Citation Details In-Document Search Title: Clusters of antibiotic resistance genes enriched together stay together in swine agriculture Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR

  15. On the tear resistance of skin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Wen; Sherman, Vincent R.; Gludovatz, Bernd; Schaible, Eric; Stewart, Polite; Ritchie, Robert O.; Meyers, Marc A.

    2015-03-27

    Tear resistance is vitally important for the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. Here we explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. Finally, we express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensilemore » direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip.« less

  16. Release Resistant Electrical Interconnections For Mems Devices

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  17. Conformal chemically resistant coatings for microflow devices

    DOE Patents [OSTI]

    Folta, James A.; Zdeblick, Mark

    2003-05-13

    A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.

  18. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  19. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  20. Proliferation Resistance and the Nuclear Renaissance

    SciTech Connect (OSTI)

    Shea, Thomas E.; Zentner, Michael D.

    2008-05-01

    This article explores how emphasizing proliferation resistance will accomplish that goal. What does it mean for a nuclear fuel cycle to be resistant to proliferation? How can the risk of proliferation from a fuel cycle be evaluated? How has proliferation been considered in the past and how is it being considered in nuclear energy development programs today? How should proliferation concerns interact with facility safety and operations? How do proliferation concerns affect the prospects for nuclear energy in the 21st century? And finally, what is the thinking today in relation to deployment arrangements, technical measures, and R&D programs that are in place or proposed that could both decrease the risk of proliferation and ensure the successful renaissance of nuclear power.