National Library of Energy BETA

Sample records for techniques flow test

  1. A data flow-based structural testing technique for FBD programs Eunkyoung Jee a

    E-Print Network [OSTI]

    Jee, Eunkyoung

    A data flow-based structural testing technique for FBD programs Eunkyoung Jee a , Junbeom Yoo b history: Received 4 August 2008 Received in revised form 22 January 2009 Accepted 24 January 2009 Available online 10 March 2009 Keywords: Software testing Structural testing Test coverage criteria

  2. Directed Test Suite Augmentation: Techniques and Tradeoffs

    E-Print Network [OSTI]

    Directed Test Suite Augmentation: Techniques and Tradeoffs Zhihong Xu, Yunho Kim, Moonzoo Kim and Technology kimyunho@kaist.ac.kr, moonzoo@cs.kaist.ac.kr ABSTRACT Test suite augmentation techniques are used in regression testing to identify code elements affected by changes and to generate test cases to cover those

  3. Catalyst immobilization techniques for continuous flow synthesis

    E-Print Network [OSTI]

    Nagy, Kevin David

    2012-01-01

    Catalytic processes are ubiquitous in both research and industrial settings. As continuous flow processes continue to gain traction in research labs and fine and pharmaceutical chemical processes, new opportunities exist ...

  4. Evaluation of a New Ramping Technique for Duct Leakage Testing

    E-Print Network [OSTI]

    1 LBNL-61743 Evaluation of a New Ramping Technique for Duct Leakage Testing Iain S. Walker ramping Technique for Duct Leakage Testing Table of contents Introduction

  5. Continuous flow separation techniques for microchemical synthesis

    E-Print Network [OSTI]

    Kralj, Jason G

    2006-01-01

    Performing multistep microchemical synthesis requires many techniques from combining micromixers in series to the development of continuous microfluidic separation tools. Safety, high heat and mass transfer rates, and cost ...

  6. An approximation technique for jet impingement flow

    SciTech Connect (OSTI)

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  7. Underground Flow Measurement and Particle Release Test | Department...

    Office of Environmental Management (EM)

    Underground Flow Measurement and Particle Release Test Underground Flow Measurement and Particle Release Test This document was used to determine facts and conditions during the...

  8. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue...

  9. Design and testing of a microvalve capable of precisely controlling low fluidic flow rates

    E-Print Network [OSTI]

    Daniel, Cody R

    2011-01-01

    Development of the design, manufacture, and testing for a gas flow regulating microvalve is presented herein. The microvalve project served as a test bed for new micromachining techniques and for exploration of MEMS devices ...

  10. Flow Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy Jump to:Flora HomeKeys ElCoTest

  11. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,PevafersaMapFile JumpTesting Techniques Jump

  12. Development of a Test Technique to Determine the Thermal Conductivity...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens Citation Details In-Document Search Title:...

  13. Review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  14. Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities

    E-Print Network [OSTI]

    Nicoud, Franck

    Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities A. KAUFMANN* and F of combustion instabilities in gas turbine combustors require the knowledge of flame transfer functions. Those flame) and for one case where a CFD code is necessary (a laminar Bunsen-type flame). © 2002

  15. Well-test analysis of multi-phase flow from two layers communicating through the wellbore 

    E-Print Network [OSTI]

    Iakovlev, Serguei

    1999-01-01

    Conventional buildup analysis techniques are based on analytical solutions to the diffusivity equation that are subject to well-known assumptions. During actual well tests multi-phase flow in several layers with different ...

  16. Investigation of grid embedment techniques as applied to subcritical flow 

    E-Print Network [OSTI]

    Watts, Michael E.

    1980-01-01

    INVESTIGATION OF GRID EMBEDMENT TECHNIOUES AS APPI IED TO SUBCRITICAL FLOW A Thesis by MICHAEL E. WATTS Submitted to the Graduate College of Texas A@1 University in partial fulfi11ment of the requirements for the degree of MASTER OF SCIENCE... December, 1980 Major Subject: Aerospace Engineering INVESTIGATION OF GRID EMBEDMENT TECHNIQUES AS APPLIED TO SUBCRITICAL FLOW A Thesis by MICHAEL E, WATTS Approved as to style and content by: a)rm n o Committee 3 J4W Member p' c. ember Member...

  17. Combining Symbolic Execution and Model Checking for Data Flow Testing

    E-Print Network [OSTI]

    Su, Zhendong

    . Dynamic Symbolic Execution [14], [15] (DSE) is a widely accepted and effective approach for automatic testCombining Symbolic Execution and Model Checking for Data Flow Testing Ting Su Zhoulai Fu Geguang Pu@cs.ucdavis.edu Abstract--Data flow testing (DFT) focuses on the flow of data through a program. Despite its higher fault

  18. Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing Techniques

    E-Print Network [OSTI]

    Do, Hyunsook

    Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing@cse.unl.edu January 18, 2004 Abstract Where the development, understanding, and assessment of software testing infrastructure to support controlled experimentation with software testing and regression testing techniques

  19. Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing Techniques

    E-Print Network [OSTI]

    Do, Hyunsook

    Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing@cse.unl.edu April 13, 2005 Abstract Where the development, understanding, and assessment of software testing infrastructure to support controlled experimentation with software testing and regression testing techniques

  20. Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

    E-Print Network [OSTI]

    Marchese, Francis

    Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

  1. Determining critical flow valve characteristics using extrapolation techniques. [L9-3 ATWS experiment in LOFT

    SciTech Connect (OSTI)

    Jarrell, D.B.

    1985-01-01

    This report presents the methodology and documentation of the calibration of the Loss-of-Fluid Test (LOFT) power-operated relief and safety relief valve (PORV + SRV) for the L9-3 anticipated transient without scram (ATWS) experiment. A multiposition globe valve was calibrated to produce scaled high-pressure flow rates using a low-pressure calibration facility and a simple RELAP5 critical flow model to extrapolate the calibration data to expected operating pressures. It was demonstrated that an accurate high-pressure, multiphase flow calibration can be performed without the necessity of actual high-pressure testing. This technique, when applied to large pressurized water reactor (LPWR) safety and relief valves, represents a potentially large savings in the capacity qualification procedure of full-scale pressure reduction valves.

  2. 1 Verification Techniques software testing: search bugs

    E-Print Network [OSTI]

    Verschelde, Jan

    objectives and requirements of software verification Software is a product, subject to quality control. A product has (industrial) quality if it performs as specified, as expected by the user. Software testing. The profession of a software tester is just as essential as that of a software developer to achieve quality

  3. Nevada National Security Site Underground Test Area (UGTA) Flow...

    Office of Environmental Management (EM)

    and Transport Modeling - Approach and Example Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling - Approach and Example Bill Wilborn UGTA...

  4. A TECHNIQUE FOR TESTING HIGHLY RELIABLE REAL-TIME SOFTWARE

    E-Print Network [OSTI]

    Bieman, James M.

    Task Plan ® A TECHNIQUE FOR TESTING HIGHLY RELIABLE REAL-TIME SOFTWARE Slide Presentation Biography that uses executable specifications based on Annotated Ada (Anna) for software testing in hard real process and does not interfere with the software under test. 1.0 INTRODUCTION Automating the verification

  5. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    SciTech Connect (OSTI)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  6. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect (OSTI)

    Urgelli, D.; Ding, Yu

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  7. Refurbishment and Testing Techniques in a Transonic Ludwieg Tunnel

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Refurbishment and Testing Techniques in a Transonic Ludwieg Tunnel Thania S. Balcazar, Eric M recently been refurbished, an overview of the unique high Reynolds number facility at UT Arlington

  8. Self-imaging-based laser collimation testing technique

    SciTech Connect (OSTI)

    Mudassar, Asloob A.; Butt, Saira

    2010-11-01

    Laser collimation is required in many experiments based on lasers. Some laser experiments demand a high quality of collimation, e.g., the optical coherent processor, image transformer, and Fourier transform generator. A device is required to test the collimation of lasers in such experiments. We have suggested a modification in existing collimation testing techniques by which sensitivity can be improved. Theoretical analysis and experimental results demonstrate twice the improvement in sensitivity when used with previous techniques.

  9. Results of no-flow rotary drill bit comparison testing

    SciTech Connect (OSTI)

    WITWER, K.S.

    1998-11-30

    This document describes the results of testing of a newer rotary sampling bit and sampler insert called the No-Flow System. This No-Flow System was tested side by side against the currently used rotary bit and sampler insert, called the Standard System. The two systems were tested using several ''hard to sample'' granular non-hazardous simulants to determine which could provide greater sample recovery. The No-Flow System measurably outperformed the Standard System in each of the tested simulants.

  10. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  11. A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique

    E-Print Network [OSTI]

    Hu, Hui

    A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique Hui in the present study to conduct three-dimensional measurements of air jet flows exhausted from a lobed nozzle distributions were used to analyze the characteristics of the mixing process in the lobed jet flow compared

  12. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  13. Category:Flow Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,NorthCLEANElkins, WVFOAFFlow Test

  14. Applying video magnification techniques to the visualization of blood flow

    E-Print Network [OSTI]

    Zhao, Amy (Xiaoyu Amy)

    2015-01-01

    In this thesis, we investigate the use of video magnification for the visualization and assessment of blood flow. We address the challenge of low signal-to-noise ratios in video magnification by modeling the problem and ...

  15. System design description for GCFR-core flow test loop

    SciTech Connect (OSTI)

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  16. IEA W-GIFT-6 SMALL SPECIMEN TEST TECHNIQUE

    E-Print Network [OSTI]

    McDonald, Kirk

    IEA W-GIFT-6 SMALL SPECIMEN TEST TECHNIQUE UNDER IFMIF/EVEDA PROJECT OF BA FOR FATIGUE AND FRACTURE,t[%] Number of cycles to failure, Nf F82H-IEA HG-1.25 HG-1.25 (Hirose, Kim) RB-1 RB-7 RB-4, -7 RB-7, -10 of cycles to failure, Nf JLF-1 HG-1.25 HG-1.25 HG-6 (Hirose) RB-1 RB-8 (Nishimura&Li) F82H-IEA (Grain size

  17. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  18. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    SciTech Connect (OSTI)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.

  19. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  20. A review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-08-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

  1. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect (OSTI)

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  2. Modeling the reactive inorganic solute distributions in the groundwater flow systems of the Hanford Site using inverse analytical modeling techniques 

    E-Print Network [OSTI]

    Adamski, Mark Robert

    1993-01-01

    Inverse analytical techniques were used to model solute distributions and determine transport parameters for two flow systems in the Yakima Basalt subgroup at the Hanford Site in Washington state. Previous studies of these flow systems used...

  3. Computations of Laminar Flow Control on Swept Wings as a Companion to Flight Test Research 

    E-Print Network [OSTI]

    Rhodes, Richard G.

    2010-01-14

    The high cost of energy has resulted in a renewed interest in the study of reducing skin-friction drag in aeronautical applications. Laminar Flow Control (LFC) refers to any technique which alters the basic-state flow-field ...

  4. Evaluation of the Repeatability of the Delta Q Duct Leakage Testing TechniqueIncluding Investigation of Robust Analysis Techniques and Estimates of Weather Induced Uncertainty

    SciTech Connect (OSTI)

    Dickerhoff, Darryl; Walker, Iain

    2008-08-01

    The DeltaQ test is a method of estimating the air leakage from forced air duct systems. Developed primarily for residential and small commercial applications it uses the changes in blower door test results due to forced air system operation. Previous studies established the principles behind DeltaQ testing, but raised issues of precision of the test, particularly for leaky homes on windy days. Details of the measurement technique are available in an ASTM Standard (ASTM E1554-2007). In order to ease adoption of the test method, this study answers questions regarding the uncertainty due to changing weather during the test (particularly changes in wind speed) and the applicability to low leakage systems. The first question arises because the building envelope air flows and pressures used in the DeltaQ test are influenced by weather induced pressures. Variability in wind induced pressures rather than temperature difference induced pressures dominates this effect because the wind pressures change rapidly over the time period of a test. The second question needs to answered so that DeltaQ testing can be used in programs requiring or giving credit for tight ducts (e.g., California's Building Energy Code (CEC 2005)). DeltaQ modeling biases have been previously investigated in laboratory studies where there was no weather induced changes in envelope flows and pressures. Laboratory work by Andrews (2002) and Walker et al. (2004) found biases of about 0.5% of forced air system blower flow and individual test uncertainty of about 2% of forced air system blower flow. The laboratory tests were repeated by Walker and Dickerhoff (2006 and 2008) using a new ramping technique that continuously varied envelope pressures and air flows rather than taking data at pre-selected pressure stations (as used in ASTM E1554-2003 and other previous studies). The biases and individual test uncertainties for ramping were found to be very close (less than 0.5% of air handler flow) to those found in for the pressure station approach. Walker and Dickerhoff also included estimates of DeltaQ test repeatability based on the results of field tests where two houses were tested multiple times. The two houses were quite leaky (20-25 Air Changes per Hour at 50Pa (0.2 in. water) (ACH50)) and were located in the San Francisco Bay area. One house was tested on a calm day and the other on a very windy day. Results were also presented for two additional houses that were tested by other researchers in Minneapolis, MN and Madison, WI, that had very tight envelopes (1.8 and 2.5 ACH50). These tight houses had internal duct systems and were tested without operating the central blower--sometimes referred to as control tests. The standard deviations between the multiple tests for all four houses were found to be about 1% of the envelope air flow at 50 Pa (0.2 in. water) (Q50) that led to the suggestion of this as a rule of thumb for estimating DeltaQ uncertainty. Because DeltaQ is based on measuring envelope air flows it makes sense for uncertainty to scale with envelope leakage. However, these tests were on a limited data set and one of the objectives of the current study is to increase the number of tested houses. This study focuses on answering two questions: (1) What is the uncertainty associated with changes in weather (primarily wind) conditions during DeltaQ testing? (2) How can these uncertainties be reduced? The first question is addressing issues of repeatability. To study this five houses were tested as many times as possible over a day. Weather data was recorded on-site--including the local windspeed. The result from these five houses were combined with the two Bay Area homes from the previous studies. The variability of the tests (represented by the standard deviation) is the repeatability of the test method for that house under the prevailing weather conditions. Because the testing was performed over a day a wide range of wind speeds was achieved following typical diurnal variations of low wind in the early morning and greatest winds in the late afternoon/early

  5. Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique, originally presented on March 12, 2013.

  6. A digital CDS technique and the performance testing

    E-Print Network [OSTI]

    Liu, Xiao-Yan; Yang, Yan-Ji; Lu, Bo; Wang, Yu-Sa; Xu, Yu-Peng; Cui, Wei-Wei; Li, Wei; Li, Mao-Shun; Wang, Juan; Han, Da-Wei; Chen, Tian-Xiang; Huo, Jia; Hu, Wei; Zhang, Yi; Zhu, Yue; Zhang, Zi-Liang; Yin, Guo-He; Wang, Yu; Zhao, Zhong-Yi; Fu, Yan-Hong; Zhang, Ya; Ma, Ke-Yan; Chen, Yong

    2014-01-01

    Readout noise is a critical parameter for characterizing the performance of charge-coupled devices (CCDs), which can be greatly reduced by the correlated double sampling (CDS) circuit. However, conventional CDS circuit inevitably introduces new noises since it consists of several active analog components such as operational amplifiers. This paper proposes a digital CDS circuit technique, which transforms the pre-amplified CCD signal into a train of digital presentations by a high-speed data acquisition card directly without the noisy CDS circuit first, then implement the digital CDS algorithm through numerical method. The readout noise of 3.3 e$^{-}$ and the energy resolution of 121 eV@5.9keV can be achieved via the digital CDS technique.

  7. Evaluation of the Repeatability of the Delta Q Duct Leakage Testing Technique Including Investigation of Robust Analysis Techniques and Estimates of Weather Induced Uncertainty

    E-Print Network [OSTI]

    Dickerhoff, Darryl

    2008-01-01

    Techniques and Estimates of Weather Induced Uncertaintythe uncertainty due to changing weather during the test (the DeltaQ test are influenced by weather induced pressures.

  8. Technical Note Field Test of Digital Photography Biomass Estimation Technique in Tallgrass Prairie

    E-Print Network [OSTI]

    Morrison, Lloyd W.

    on a linear transformation (i.e., regressing dry clipped weights against percent digital obstruction). We usedTechnical Note Field Test of Digital Photography Biomass Estimation Technique in Tallgrass Prairie or proximity to a drying oven. We tested the digital photography biomass estimation technique for measuring

  9. Computer Techniques for Cogeneration Plant Design and Testing 

    E-Print Network [OSTI]

    Stewart, J. C.

    1989-01-01

    , the program is adjusted to create a computer model of the final plant design using actual manufacturer's performance curves, data and equipment details for the major items. In the third step, the computer model is modified to create a plant test program...

  10. Creep Compliance Analysis Technique for the Flattened Indirect Tension Test of Asphalt Concrete

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Creep Compliance Analysis Technique for the Flattened Indirect Tension Test of Asphalt Concrete: ­ Cored Sample (Cylindrical) Indirect tensile testing (IDT) (Strength/Creep) ­ AASHTO T-322 Damage under and Flattened IDT · 1000-sec creep tests on three replicates · 0, -10, and -20 deg. C · Displacement

  11. Experiments using non-intrusive particle tracing techniques for granular chute flows. Final report

    SciTech Connect (OSTI)

    Rosato, A.D.; Dave, R.N.; Fischer, I.S.

    1998-12-31

    The objective of this contract was to develop a system capable of non-intrusively tracking the motion of an individual particle for the study of granular flows down inclined chutes. The result of the project is a system capable of following the three-dimensional translational and rotational motion of an individual particle embedded with a flowing granular material. The basic system consists of a sphere embedded with three orthogonal transmitters emitting at different frequencies which induce voltages in an antenna array surrounding the flow regime. Analysis of the induced voltage signals within the framework of a derived model yields both the position and orientation of the sphere. Tests were performed in a small scale model chute as well as in a cylindrical vibrated granular bed, which clearly demonstrates the capability of the system. As a result of discussions at meetings held semi-annually for the Granular Flow Advanced Research Objectives (GFARO) contractors, it was deemed necessary to pursue an additional experimental program as part of this contract related to the measurement of sphere collision properties. The outcome of the work (reported in Appendix C) is the determination of certain properties which are needed for use in computer simulations and theory.

  12. Columbia University flow instability experimental program: Volume 3. Single tube parallel flow tests

    SciTech Connect (OSTI)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-06-01

    The coolant in the Savannah River Site (SRS) production nuclear reactor assemblies is circulated as a subcooled liquid under normal operating conditions. This coolant is evenly distributed throughout multiple annular flow channels with a uniform pressure profile across each coolant flow channel. During the postulated Loss of Coolant Accident (LOCA), which is initiated by a hypothetical guillotine pipe break, the coolant flow through the reactor assemblies is significantly reduced. The flow reduction and accompanying power reduction (after shutdown is initiated) occur in the first 1--2 seconds of the LOCA. This portion of the LOCA is referred to as the Flow Instability phase. A series of down flow experiments have been conducted on three different size single tubes. The objective of these experiments was to determine the effect of a parallel flow path on the occurrence of flow instability. In all cases, it has been shown that the point of flow instability (OFI) determined under controlled flow operation does not change when operating in a controlled pressure drop mode (parallel path operation).

  13. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    SciTech Connect (OSTI)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75

  14. Identification of cross-formation flow in multireservoir systems using isotopic techniques

    SciTech Connect (OSTI)

    Szpakiewicz, M.

    1991-10-01

    This study was designed to add quantitative solutions to the problem of undesirable hydraulic communication which results in active fluid flow between productive horizons. Transfer of novel geochemical methods, based on effective, economic, and environmentally acceptable isotopic techniques for identification of leaking hydrocarbon reservoirs, is a major objective of this study. The effectiveness of a continuous trap's seal depends on an equilibrium between the capillary forces holding formation water in pore spaces of the seal and the buoyancy forces of the oil and gas column in a system. Therefore, some seals may leak selectively at changing pressure and temperature conditions with respect to different fluid phases (oil, gas, and water). A break in continuity of confining layers will promote relatively fast interreservoir migration of fluids. It may intensify in reservoirs subjected to high pressures during implementation of secondary and tertiary processes of recovery. Such fluid flow should result in identifiable chemical, isotopic, and often thermal anomalies in the area of an open flow path. Quantitative hydrodynamic reservoir modeling based on geochemical/isotopic and other evidence of fluid migration in a system require, however, more systematic methodological study. Such a study is being recommended in addition to a field demonstration of the method in a selected oil/gas reservoir where geochemical and production anomalies have been documented. 62 refs., 7 figs., 2 tabs.

  15. Pre-test CFD Calculations for a Bypass Flow Standard Problem

    SciTech Connect (OSTI)

    Rich Johnson

    2011-11-01

    The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

  16. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect (OSTI)

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  17. Superconducting current transformer for testing Nb3Sn cable splicing technique

    SciTech Connect (OSTI)

    Nicolai Andreev et al.

    2002-09-10

    To provide a quick feedback on different approaches to superconducting cable splicing design and assembly techniques, a superconducting current transformer that can deliver more than 20 kA for testing splice samples has been designed and fabricated. The existing infrastructure of the Short Sample Test Facility at Fermilab, including its cryostat, power supply, and data acquisition system, was used for housing and operating the transformer. This report presents the design features of the transformer and the main results of cable splice tests.

  18. DEPLOYING CONTENDER: EARLY LESSONS IN DATA, MEASUREMENT, AND TESTING OF MULTIPLE CALL FLOW DECISIONS

    E-Print Network [OSTI]

    Suendermann, David

    DEPLOYING CONTENDER: EARLY LESSONS IN DATA, MEASUREMENT, AND TESTING OF MULTIPLE CALL FLOW on lessons we learned from live deployments in production systems. Altogether, seven Contenders were in the application's call flow and the performance difference of the competing alternatives, potentially large

  19. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  20. Test report, air flow control device for 241-SY waste tankventilation

    SciTech Connect (OSTI)

    Tuck, J.A.

    1997-06-03

    This documents the testing of a passively operated, constant air flow control device for in-duct applications on waste tank ventilation systems in the 50-1000 SCFM range.

  1. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect (OSTI)

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  2. Interpretation of In-Situ Tests (P.W. Mayne, October 2002, Georgia Tech: www.ce.gatech.edu/~geosys) FLOW PROPERTIES from PIEZOCONE DISSIPATION TESTS

    E-Print Network [OSTI]

    Mayne, Paul W.

    .ce.gatech.edu/~geosys) FLOW PROPERTIES from PIEZOCONE DISSIPATION TESTS Soils exhibit flow properties that control hydraulic, fat plastic clays may require 2 to 3 days for complete equalization. Representative dissipation curves

  3. Comparison of large-scale flows on the Sun measured by time-distance helioseismology and local correlation tracking technique

    E-Print Network [OSTI]

    Michal Svanda; Junwei Zhao; Alexander G. Kosovichev

    2007-01-25

    We present a direct comparison between two different techniques time-distance helioseismology and a local correlation tracking method for measuring mass flows in the solar photosphere and in a near-surface layer: We applied both methods to the same dataset (MDI high-cadence Dopplergrams covering almost the entire Carrington rotation 1974) and compared the results. We found that after necessary corrections, the vector flow fields obtained by these techniques are very similar. The median difference between directions of corresponding vectors is 24 degrees, and the correlation coefficients of the results for mean zonal and meridional flows are 0.98 and 0.88 respectively. The largest discrepancies are found in areas of small velocities where the inaccuracies of the computed vectors play a significant role. The good agreement of these two methods increases confidence in the reliability of large-scale synoptic maps obtained by them.

  4. Anisotropic flow

    E-Print Network [OSTI]

    S. A. Voloshin

    2002-11-20

    Recent experimental results on directed and elliptic flow, theoretical developments, and new techniques for anisotropic flow analysis are reviewed.

  5. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect (OSTI)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  6. Adaptation of Crack Growth Detection Techniques to US Material Test Reactors

    SciTech Connect (OSTI)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Joy L. Rempe; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter

    2014-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some materials testing reactors (MTRs) outside the U.S., such as the Halden Boiling Water Reactor (HBWR), have deployed a technique to measure crack growth propagation during irradiation. This technique incorporates a compact loading mechanism to stress the specimen during irradiation. A crack in the specimen is monitored using the Direct Current Potential Drop (DCPD) method. A project is underway to develop and demonstrate the performance of a similar type of test rig for use in U.S. MTRs. The first year of this three year project was devoted to designing, analyzing, fabricating, and bench top testing a mechanism capable of applying a controlled stress to specimens while they are irradiated in a pressurized water loop (simulating PWR reactor conditions). During the second year, the mechanism will be tested in autoclaves containing high pressure, high temperature water with representative water chemistries. In addition, necessary documentation and safety reviews for testing in a reactor environment will be completed. In the third year, the assembly will be tested in the Massachusetts Institute of Technology Reactor (MITR) and Post Irradiation Examinations (PIE) will be performed.

  7. Experimental Study on the Subcooled Boiling Flow via Optical Measurement Techniques 

    E-Print Network [OSTI]

    Yoo, Jun Soo

    2015-04-16

    ............................................................................................... 183 xiii Figure V-12. Effects of inlet subcooling (?Tsub,in) on probability density function (PDF) for bubble size and its development in the upward flow direction .. 187 Figure V-13. Effects of liquid mass flux (G) on probability density... function (PDF) for bubble size and its development in the upward flow direction ............. 188 Figure V-14. Effects of wall heat flux (qw) on probability density function (PDF) for bubble size and its development in the upward flow direction...

  8. Artificial lift with coiled tubing for flow testing the Monterey formation, offshore California

    SciTech Connect (OSTI)

    Peavy, M.A.; Fahel, R.A. )

    1991-05-01

    This paper provides a technical comparison of jet-pump and nitrogen lift during the drillstem tests (DST's) of a low-gravity, high-viscosity crude on a semisubmersible drilling vessel. Eight DST testing sequences are presented to demonstrate that jet-pump-lift operations are better suited than nitrogen-lift techniques for obtaining reservoir data during Monterey DST's.

  9. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  10. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests are met for all configurations: one, two, or three fans (normal).

  11. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    SciTech Connect (OSTI)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.

  12. Harpoon: A Flow-Level Traffic Generator for Router and Network Tests

    E-Print Network [OSTI]

    Barford, Paul

    Descriptors C.2.6 [Computer-Communicaton Networks]: Internet- working--Routers; C.4 [Performance of Systems, Performance Keywords Traffic Generation, Network Flows 1. INTRODUCTION The network research community has a persistent need to evaluate new algorithms, systems and protocols using tools that create a range of test

  13. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect (OSTI)

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  14. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect (OSTI)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  15. On the Motion of Free Material Test Particles in Arbitrary Spatial Flows

    E-Print Network [OSTI]

    Tom Martin

    1999-06-03

    We show how the motion of free material test particles in arbitrary spatial flows is easily determined within the context of ordinary vector calculus. This may be useful for everyone, including engineers and other non-specialists, when thinking about gravitational problems. It already has valid application to simple problems such as the problems of motion in rotating and accelerating frames and to the gravitational problem of the single spherically symmetric attractor. When applied to the two body gravitational problem, it may help us determine the actual direction of the flow.

  16. Design and Implementation of Prosthetic Arm using Gear Motor Control Technique with Appropriate Testing

    E-Print Network [OSTI]

    Neogi, Biswarup; Ghosal, Soumya; Das, Achintya; Tibarewala, D N

    2011-01-01

    Any part of the human body replication procedure commences the prosthetic control science. This paper highlights the hardware design technique of a prosthetic arm with implementation of gear motor control aspect. The prosthetic control arm movement has been demonstrated in this paper applying processor programming and with the successful testing of the designed prosthetic model. The architectural design of the prosthetic arm here has been replaced by lighter material instead of heavy metal, as well as the traditional EMG (electro myographic) signal has been replaced by the muscle strain.

  17. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  18. Multivortex micromixing: novel techniques using Dean flows for passive microfluidic mixing 

    E-Print Network [OSTI]

    Sudarsan, Arjun Penubolu

    2007-04-25

    herringbone mixer SAR Split-and-recombine P-SAR Planar split-and-recombine ASM Asymmetric serpentine mixer PCB Printed circuit board DI Deionized SEBS Polystyrene?(polyethylene/polybutylene)?polystyrene SIS Polystyrene................................... 87 Concept ......................................................................................... 90 Flow visualization in a two-split microchannel........................ 92 Planar split-and-recombine mixer...

  19. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  20. Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site

    SciTech Connect (OSTI)

    Dekin, W D

    2011-04-14

    Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

  1. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  2. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect (OSTI)

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0º, 2.4º, and 0.72º. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7º to 0.9º. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

  3. Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352

    SciTech Connect (OSTI)

    Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

  4. Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site

    SciTech Connect (OSTI)

    Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

    2012-11-01

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the “smoking gun” evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activity—the focus of this report—was a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ measurements with high-purity germanium (HPGe) and hand-held LaBr3 systems, soil sampling with a variety of tools, and laboratory gamma spectrometric analysis of those samples. A further benefit of the measurement campaign was to gain familiarity with the many logistical aspects of performing radiological field work at NNSS ahead of the PRex. Many practical lessons concerning the proper methodologies and logistics of using the surveying and sampling equipment were noted. These Lessons Learned are compiled together in Appendix A. The vehicle-based survey was successful in that it found a previously unknown hotspot (determined to be 232Th) while it demonstrated that a better method for keeping a serpentine track without staking was needed. Some of the soil sampling equipment was found to be impractical for the application, though core sampling would not be the correct way to take soil samples for a fresh vent deposit (as opposed to an old site like DILUTED WATERS). Due to the site’s age, 137Cs was the only fission radioisotope identified, though others were searched for. While not enough samples were taken and analyzed to definitively link the 137Cs to DILUTED WATERS as opposed to other NNSS activities, results were consistent with the historical DILUTED WATERS plume. MDAs were compared for soil sampling and in situ measurements.

  5. Novel scanning electron microscope bulge test technique integrated with loading function

    SciTech Connect (OSTI)

    Li, Chuanwei; Xie, Huimin E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.

  6. Boosting the accuracy of SPH techniques: Newtonian and special-relativistic tests

    E-Print Network [OSTI]

    Rosswog, S

    2014-01-01

    We explore measures to increase the accuracy of SPH methods with respect to commonly used standard techniques. Our main focus here is special-relativistic SPH, but all measures can straight forwardly be applied in the Newtonian case as well. The first improvement concerns the calculation of gradients. Here a scheme that requires the (analytical) inversion of a small matrix is explored. For regular particle distributions this scheme yields gradient estimates that are many orders of magnitude more accurate than the standard SPH gradient. We apply such gradients in fully conservative special-relativistic SPH formulations and find in a large number of benchmark tests that they substantially increase SPH's accuracy. As a second measure, we explore a large number of kernel functions. The most commonly used cubic spline SPH kernel performs rather poorly, the best overall results are obtained for a high-order Wendland kernel which allows for only very little sub-resolution particle motion (noise) and enforces a very ...

  7. Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans

    SciTech Connect (OSTI)

    Tyner, C.E.

    1989-03-01

    The Panel Research Experiment (PRE) is the first large-scale solar test of the molten nitrate salt direct absorption receiver (DAR) concept. The purpose of the PRE is to demonstrate the engineering feasibility and practicality of the DAR. We will conduct the test at the Central Receiver Test Facility in Albuquerque in two phases: salt flow testing and solar testing. This is a working document to define PRE test objectives and requirements, document the test hardware design, and define test plans. 13 refs., 12 figs., 1 tab.

  8. Summary of Recent Flow Testing of the Fenton Hill HDR Reservoir | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy Information Recent Flow Testing of the Fenton

  9. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect (OSTI)

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

  10. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  11. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  12. Test results of a corrosion logging technique using electromagnetic thickness and pipe analysis logging tools

    SciTech Connect (OSTI)

    Iliyan, I.S.; Brown, G.A.; Cotton, W.J. Jr.

    1983-04-01

    Recent innovations in subsurface corrosion practices of the Arabian American Oil Co. (ARAMCO) have reduced logging and workover costs substantially and have permitted the detection of corrosion in the outer string of two concentric casing strings. At the request of ARAMCO, Schlumberger conducted test under both simulated and field conditions. Results showed that the data required to evaluate casing corrosion in a 7-in.X9 5/8-in. completion can be obtained during a single logging run using a 21.6-in. coil spacing electromagnetic thickness tool (ETT-A /SUP TM/ ) sonde (as opposed to two runs with 17.6-in. and 21.6-in. sondes previously used). In addition, corrosion of the outer string of 9 5/8-in. or 13 3/8-in. casing can be detected by using the results of the ETT-A logs and pipe-analysis tool (PAT) logs or caliper logs. To date, the application of this technique has been very successful in ARAMCO's operations.

  13. Wind Tunnel and Flight Testing of Active Flow Control on a UAV 

    E-Print Network [OSTI]

    Babbar, Yogesh

    2011-08-08

    Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology...

  14. Input Validation Testing: A RequirementsDriven, System Level, Early Lifecycle Technique \\Lambda

    E-Print Network [OSTI]

    Offutt, Jeff

    as defined in interface and requirements specifications and then generating test cases for input validation driven application fulfills both of these requirements. Input validation testing, then, is defined of code. There are well defined testing criterion for unit testing [1, 7, 9, 11] but not so for system

  15. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect (OSTI)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  16. Adaptive Flutter Test Vane: Low Net Passive Stiffness (LNPS) Techniques for Deflection Amplification of Piezoelectric Actuators

    E-Print Network [OSTI]

    Barnhart, Ryan

    2012-12-31

    -static and dynamic wind tunnel testing shows excellent correlation with bench tests and theory. Maximum deflection levels were recorded in excess of 8 deg. peak-to-peak, with a corner frequency in excess of 50 Hz. Wind tunnel tests were performed up to 110 ft/s...

  17. Electrical test structures and measurement techniques for the characterisation of advanced photomasks 

    E-Print Network [OSTI]

    Tsiamis, Andreas

    2010-01-01

    Existing photomask metrology is struggling to keep pace with the rapid reduction of IC dimensions as traditional measurement techniques are being stretched to their limits. This thesis examines the use of on-mask probable ...

  18. Evaluation of the Repeatability of the Delta Q Duct Leakage Testing Technique

    E-Print Network [OSTI]

    by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of the Building Technologies Program and small commercial applications it uses the changes in blower door test results due to forced air system questions regarding the uncertainty due to changing weather during the test (particularly changes in wind

  19. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect (OSTI)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  20. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect (OSTI)

    B. K. Karekh; D. Tao; J. G. Groppo

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 ? March 31, 1998.

  1. Steam turbine field testing techniques using a computerized data acquisition system

    SciTech Connect (OSTI)

    Shafer, H.S.; Cotton, K.C.; Kellyhouse, W.W.; Smith, D.P.

    1982-01-01

    An automatic data acquisition system for conducting full-scale ASME (1) acceptance tests of large steam turbine-generators is described. This includes the instrumentation, the interfacing hardware for analog to digital conversion and transmission of the data to the trailer mounted computer, the software that controls the acquisition of the data, and the calculation of test results. In addition, the application of this automatic data acquisition system for conducting the ASME acceptance test at Consumers Power Company's J.H. Campbell Unit 3 is discussed.

  2. QUANTITATIVE STUDIES OF THERMAL SHOCK IN CERAMICS BASED ON A NOVEL TEST TECHNIQUE

    E-Print Network [OSTI]

    Faber, K.T.

    2013-01-01

    11 Biaxial Flexure Tests of Ceramic J. Mat. L [2] 188-194 (Crack Propagation in Brittle Ceramics, 11 Jnl. Amer. Ceram.1 Shock Resistance of Ceramics: Size and Geometry Effects in

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect (OSTI)

    NONE

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  4. Test of the notch technique for determining the radial sensitivity of the optical model potential

    E-Print Network [OSTI]

    Lei Yang; Cheng-Jian Lin; Hui-ming Jia; Xin-Xing Xu; Nan-Ru Ma; Li-Jie Sun; Feng Yang; Huan-Qiao Zhang; Zu-Hua Li; Dong-Xi Wang

    2015-08-10

    Detailed investigations on the notch technique are performed on the ideal data generated by the optical model potential parameters extracted from the 16O+208Pb system at the laboratory energy of 129.5 MeV, to study the sensitivities of this technique on the model parameters as well as the experimental data. It is found that, for the perturbation parameters, a sufficient large reduced fraction and an appropriate small perturbation width are necessary to determine the accurate radial sensitivity; while for the potential parameters, almost no dependence was observed. For the experimental measurements, the number of data points has little influence for the heavy target system, and the relative inner information of the nuclear potential can be derived when the measurement extended to a lower cross section.

  5. Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation

    DOE Patents [OSTI]

    Hall, Aaron C. (Albuquerque, NM); Hosking, F. Michael (Albuquerque, NM),; Reece, Mark (Albuquerque, NM)

    2003-06-24

    A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

  6. Null test fourier domain alignment technique for phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Naulleau, Patrick (5239 Miles Ave., Apt. A, Oakland, CA 94618); Goldberg, Kenneth Alan (1622 Oxford St., #5t, Berkeley, CA 94709)

    2000-01-01

    Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.

  7. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy Test

  8. A Novel Two-Step Laser Ranging Technique for a Precision Test of the Theory of Gravity

    E-Print Network [OSTI]

    Penanen, K; Penanen, Konstantin; Chui, Talso

    2004-01-01

    All powered spacecraft experience residual systematic acceleration due to anisotropy of the thermal radiation pressure and fuel leakage. The residual acceleration limits the accuracy of any test of gravity that relies on the precise determination of the spacecraft trajectory. We describe a novel two-step laser ranging technique, which largely eliminates the effects of non-gravity acceleration sources and enables celestial mechanics checks with unprecedented precision. A passive proof mass is released from the mother spacecraft on a solar system exploration mission. Retro-reflectors attached to the proof mass allow its relative position to the spacecraft to be determined using optical ranging techniques. Meanwhile, the position of the spacecraft relative to the Earth is determined by ranging with a laser transponder. The vector sum of the two is the position, relative to the Earth, of the proof mass, the measurement of which is not affected by the residual accelerations of the mother spacecraft. We also descri...

  9. Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data

    SciTech Connect (OSTI)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-05-01

    In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data.

  10. CFD Simulation and Experimental Testing of Multiphase Flow Inside the MVP Electrical Submersible Pump 

    E-Print Network [OSTI]

    Rasmy Marsis, Emanuel 1983-

    2012-08-16

    results for both the void fraction and pressure distribution agreed with the experimental results. Medvitz et al. (2002) used multiphase CFD analysis to study the cavitating flow inside a centrifugal pump. The authors used the two-phase homogenous RANS... equations. The simulation included both steady state and transient analysis for different flow coefficients and different cavitation numbers and could successfully predict cavitation inside the pump. Gonzalez et al. (2002) conducted many CFD analyses...

  11. Flow control techniques for real-time media applications in best-effort networks using fluid models 

    E-Print Network [OSTI]

    Konstantinou, Apostolos

    2004-11-15

    . : : : : : : : : : : : : : : : : : : : 84 35 Bu?er Level and Flow Rates for Reactive Controller 3 Simulation Using Cross-Tra?c 2. : : : : : : : : : : : : : : : : : : : : : : : : : : 85 36 End-to-End Delay, Source Bu?er Level and Losses for Reactive Controller 3 Simulation Using Cross.... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139 84 End-to-End Delay, Source Bu?er Level and Losses for Predictive Controller 2 Simulation Using Cross-Tra?c 1 for Application Send Rate of 180 ups and k2 = 0. : : : : : : : : : : : : : : : : : : : : : : : 140 85 Bu?er Level and Flow Rates...

  12. Effects of K-Reactor pre-operational cold flow testing on total suspended solids in Pen Branch

    SciTech Connect (OSTI)

    Wilde, E.W.

    1991-12-01

    Total suspended solids (TSS) levels were monitored by SRL Environmental Sciences personnel at two locations in the Pen Branch Creek system in conjunction with K Reactor cold flow (pump) testing required as part of the reactor restart effort. The TSS data were compared with flow and rainfall data collected simultaneously in an effort to obtain insight on the suspension and movement for particulate material in the Pen Branch system in response to natural and operational causes. Pump testing clearly caused higher TSS levels at the two sampling locations. The artificially elevated TSS levels were more pronounced at a sampling location near the reactor than at a sampling location farther downstream. Although the environmental data provided by this study were obtained and used exclusively for process control and research purposes, rather than for formal regulatory compliance (i.e. NPDES monitoring), the TSS levels determined by the comprehensive testing were compared with NPDES limits required at various SRS outfalls. TSS values in Pen Branch were seldom in excess of these limits. Because of the relatively few times that TSS values at the two sampling locations exceeded typical'' NPDES limits, and the fact that occasional relatively high TSS values could clearly be solely attributed to rainfall, it was concluded that no major adverse environmental impacts were caused to the Pen Branch system as a result of the K-Reactor pre-operational pump testing.

  13. Effects of K-Reactor pre-operational cold flow testing on total suspended solids in Pen Branch

    SciTech Connect (OSTI)

    Wilde, E.W.

    1991-12-01

    Total suspended solids (TSS) levels were monitored by SRL Environmental Sciences personnel at two locations in the Pen Branch Creek system in conjunction with K Reactor cold flow (pump) testing required as part of the reactor restart effort. The TSS data were compared with flow and rainfall data collected simultaneously in an effort to obtain insight on the suspension and movement for particulate material in the Pen Branch system in response to natural and operational causes. Pump testing clearly caused higher TSS levels at the two sampling locations. The artificially elevated TSS levels were more pronounced at a sampling location near the reactor than at a sampling location farther downstream. Although the environmental data provided by this study were obtained and used exclusively for process control and research purposes, rather than for formal regulatory compliance (i.e. NPDES monitoring), the TSS levels determined by the comprehensive testing were compared with NPDES limits required at various SRS outfalls. TSS values in Pen Branch were seldom in excess of these limits. Because of the relatively few times that TSS values at the two sampling locations exceeded ``typical`` NPDES limits, and the fact that occasional relatively high TSS values could clearly be solely attributed to rainfall, it was concluded that no major adverse environmental impacts were caused to the Pen Branch system as a result of the K-Reactor pre-operational pump testing.

  14. Curved plate damper test and simulations with snubbers, through- flow, and flexible plate effects 

    E-Print Network [OSTI]

    Gadangi, Ravindra Kumar

    1992-01-01

    through- flow, implying that tbe exit orifice is closed during the dynamic excitation of the damper plate. The energy is dissipated by the viscous shear of the fluid and orifice pressure drop. Damping coefficient is estimated by using a least...) . 3. 2 Comparison of results (concentrated load at the center) 3. 3 Comparison of results(fluid element model) 3. 4 Comparison oi' flows 4. 1 EfFects of variation of inlet orifice diameter 4. 2 EfFects of variation of damper clearance 4. 3 Ef...

  15. A Novel Two-Step Laser Ranging Technique for a Precision Test of the Theory of Gravity

    E-Print Network [OSTI]

    Konstantin Penanen; Talso Chui

    2004-06-04

    All powered spacecraft experience residual systematic acceleration due to anisotropy of the thermal radiation pressure and fuel leakage. The residual acceleration limits the accuracy of any test of gravity that relies on the precise determination of the spacecraft trajectory. We describe a novel two-step laser ranging technique, which largely eliminates the effects of non-gravity acceleration sources and enables celestial mechanics checks with unprecedented precision. A passive proof mass is released from the mother spacecraft on a solar system exploration mission. Retro-reflectors attached to the proof mass allow its relative position to the spacecraft to be determined using optical ranging techniques. Meanwhile, the position of the spacecraft relative to the Earth is determined by ranging with a laser transponder. The vector sum of the two is the position, relative to the Earth, of the proof mass, the measurement of which is not affected by the residual accelerations of the mother spacecraft. We also describe the mission concept of the Dark Matter Explorers (DMX), which will demonstrate this technology and will use it to test the hypothesis that dark matter congregates around the sun. This hypothesis implies a small apparent deviation from the inverse square law of gravity, which can be detected by a sensitive experiment. We expect to achieve an acceleration resolution of $\\sim 10^{-14} m/s^2$. DMX will also be sensitive to acceleration towards the galactic center, which has a value of $\\sim 10^{-10} m/s^2$. Since dark matter dominates the galactic acceleration, DMX can also test whether dark matter obeys the equivalence principle to a level of 100 ppm by ranging to several proof masses of different composition from the mother spacecraft.

  16. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect (OSTI)

    Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx [Departamento de Materiales, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Colonia Reynosa Tamaulipas, C.P. 02200, México Distrito Federal (Mexico)

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  17. A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE

    SciTech Connect (OSTI)

    Jorge Navarro

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.

  18. A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site

    SciTech Connect (OSTI)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

    2010-11-10

    A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

  19. DEVELOPMENT OF PIV TECHNIQUE UNDER MAGNETIC FIELDS AND MEASUREMENT OF TURBULENT PIPE FLOW OF FLIBE SIMULANT FLUID

    E-Print Network [OSTI]

    Abdou, Mohamed

    reports a development of unique experimental techniques using aqueous solution of potassium hydroxide commercial nuclear fusion reactor.1 The main functions of the blankets for D-T fusion reactors are to breed shielding. An essential idea of a liquid breeder concept is that if a liquid containing lithium can

  20. Soil Testing Following Flooding, Overland Flow of Wastewater and other Freshwater Disasters 

    E-Print Network [OSTI]

    Provin, Tony; Feagley, Sam E.; Pitt, John L.; McFarland, Mark L.

    2009-05-26

    Freshwater flooding can seriously affect soil fertility and the physical and chemical properties of soil. This publication explains how to reclaim flooded soil. Having the soil tested for microbes, pesticides, hydrocarbons and other contaminants...

  1. Hollow cylinder dynamic pressurization and radial flow through permeability tests for cementitous materials 

    E-Print Network [OSTI]

    Jones, Christopher Andrew

    2009-05-15

    Saturated permeability is likely a good method for characterizing the susceptibility of portland cement concrete to various forms of degradation; although no widely accepted test exists to measure this property. The hollow ...

  2. Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis

    E-Print Network [OSTI]

    Ketcham, Jerod W

    2010-01-01

    OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

  3. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  4. Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs 

    E-Print Network [OSTI]

    Alvarez Vera, Cesar

    2001-01-01

    Conventional well-testing techniques are commonly used to evaluate pressure transient tests of hydraulically fractured wells to estimate values such as formation permeability, fracture length, and fracture conductivity. When non-Darcy flow occurs...

  5. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect (OSTI)

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  6. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    SciTech Connect (OSTI)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized masses to avoid presenting classified information. As only linear processes are modeled, the results can be readily scaled by the true classified masses for use in the risk assessment. The modeling timeframe for the risk assessment was set at 1,000 years, though some calculations are extended to 2,000 years. This first section of the report endeavors to orient the reader with the environment of Amchitka and the specifics of the underground nuclear tests. Of prime importance are the geologic and hydrologic conditions of the subsurface. A conceptual model for groundwater flow beneath the island is then developed and paired with an appropriate numerical modeling approach in section 2. The parameters needed for the model, supporting data for them, and data uncertainties are discussed at length. The calibration of the three flow models (one for each test) is then presented. At this point the conceptual radionuclide transport model is introduced and its numerical approach described in section 3. Again, the transport parameters and their supporting data and uncertainties are the focus. With all of the processes and parameters in place, the first major modeling phase can be discussed in section 4. In this phase, a parametric uncertainty analysis is performed to determine the sensitivity of the transport modeling results to the uncertainties present in the parameters. This analysis is motivated by the recognition of substantial uncertainty in the subsurface conditions on the island and the need to incorporate that uncertainty into the modeling. The conclusion of the first phase determines the parameters to hold as uncertain through the main flow and transport modeling. This second, main phase of modeling is presented in section 5, with the contaminant breakthrough behavior of each test site addressed. This is followed by a sensitivity analysis in section 6, regarding the importance of additional processes that could not be supported in the main modeling effort due to lack of data. Finally, the results for the individual sites are compared, the sensitivities discussed,

  7. Evaluation of the Repeatability of the Delta Q Duct Leakage Testing Technique Including Investigation of Robust Analysis Techniques and Estimates of Weather Induced Uncertainty

    E-Print Network [OSTI]

    Dickerhoff, Darryl

    2008-01-01

    Deve lop m ent of a New Duct Leakage Test: Delta Q.    than a few cfm for tight duct systems as long as at leastHowever houses with leakier duct systems seem to have less

  8. Water and gas chemistry from HGP-A geothermal well: January 1980 flow test

    SciTech Connect (OSTI)

    Thomas, D.M.

    1980-09-01

    A two-week production test was conducted on the geothermal well HGP-A. Brine chemistry indicates that approximately six percent of the well fluids are presently derived from seawater and that this fraction will probably increase during continued production. Reservoir production is indicated to be from two chemically distinct aquifers: one having relatively high salinity and low production and the other having lower salinity and producing the bulk of the discharge.

  9. Comparison of NDA and DA measurement techniques for excess plutonium powders at the Hanford Site: Statistical design and heterogeneity testing

    SciTech Connect (OSTI)

    Welsh, T.L.; McRae, L.P.; Delegard, C.H. [Westinghouse Hanford Co., Richland, WA (United States); Liebetrau, A.M. [Pacific Northwest Lab., Richland, WA (United States); Johnson, W.C. [USDOE Richland Operations Office, WA (United States); Theis, W.; Lemaire, R.J. [International Atomic Energy Agency, Vienna (Austria); Xiao, J. [International Atomic Energy Agency, Toronto, Ontario (Canada)

    1995-06-01

    Quantitative physical measurements are a n component of the International Atomic Energy Agency (IAEA) nuclear material m&guards verification regime. In December 1994, LA.FA safeguards were initiated on an inventory of excess plutonium powder items at the Plutonium Finishing Plant, Vault 3, on the US Department of Energy`s Hanford Site. The material originl from the US nuclear weapons complex. The diversity of the chemical form and the heterogenous physical form of this inventory were anticipated to challenge the precision and accuracy of quantitative destructive analytical techniques. A sampling design was used to estimate the degree of heterogeneity of the plutonium content of a variety of inventory items. Plutonium concentration, the item net weight, and the {sup 240}Pu content were among the variables considered in the design. Samples were obtained from randomly selected location within each item. Each sample was divided into aliquots and analyzed chemically. Operator measurements by calorimetry and IAEA measurements by coincident neutron nondestructive analysis also were performed for the initial physical inventory verification materials and similar items not yet under IAEA safeguards. The heterogeneity testing has confirmed that part of the material is indeed significantly heterogeneous; this means that precautionary measures must be taken to obtain representative samples for destructive analysis. In addition, the sampling variability due to material heterogeneity was found to be comparable with, or greater than, the variability of the operator`s calorimetric measurements.

  10. Measurement of Truck Cab Flow in Support of Wind Turbine Testing

    SciTech Connect (OSTI)

    Larwood, S. M. (National Renewable Energy Laboratory); Acker, B.; Sencenbaugh, J. (Windlite Corporation)

    1998-12-17

    This report describes an experiment to measure the airflow over a truck cab that can be used to conduct steady-state tests on an 8-kW wind turbine. The cab airflow measurements were made to document the turbine inflow for analytical models. The airflow measurements were made with an array of anemometers positioned to represent the turbine rotor disk. The data showed that the influence of the truck cab was primarily in the lower sector of the rotor disk. The influence was negligible in the rest of the rotor disk.

  11. Transient eddy current flow metering

    E-Print Network [OSTI]

    Forbriger, Jan

    2015-01-01

    Measuring local velocities or entire flow rates in liquid metals or semiconductor melts is a notorious problem in many industrial applications, including metal casting and silicon crystal growth. We present a new variant of an old technique which relies on the continuous tracking of a flow-advected transient eddy current that is induced by a pulsed external magnetic field. This calibration-free method is validated by applying it to the velocity of a spinning disk made of aluminum. First tests at a rig with a flow of liquid GaInSn are also presented.

  12. Flow regimes

    SciTech Connect (OSTI)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced.

  13. Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed flow measurement technique aiming to improve the performance of conventional PTV/PIV. In this work, multi-pulse PTV

    E-Print Network [OSTI]

    Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed flow measurement technique aiming to improve the performance of conventional PTV/PIV. In this work, multi-pulse PTV and acceleration measurement are analytically calculated and compared among quadruple-pulse, triple-pulse and dual-pulse

  14. Kenneth J. Turner and Qian Bing. Protocol Techniques for Testing Radiotherapy Accelerators. In Moshe Vardi and Doron Peled, editors,

    E-Print Network [OSTI]

    Turner, Ken

    . In Moshe Vardi and Doron Peled, editors, Proc. Formal Techniques for Networked and Distributed Systems accelerators is briefly explained. It is ar- gued that these complex safety-critical systems need a systematic Of Temporal Ordering Specification) of the accelerator con- trol system. It is completely infeasible to use

  15. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component conceptual models (e.g., geology, boundary flux, and recharge).

  16. Monitoring the Performance of a Residential Central Air Conditioner under Reduced Evaporator Air Flow on a Test Bench 

    E-Print Network [OSTI]

    Palani, Manivannan

    1992-01-01

    This report presents results from degraded performance measurements of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short...

  17. Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

  18. Inhomogeneity of fluid flow in Stirling engine regenerators

    SciTech Connect (OSTI)

    Jones, J.D. )

    1989-10-01

    The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

  19. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  20. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  1. Measurement techniques

    SciTech Connect (OSTI)

    Willis, W.L.

    1980-10-01

    The discussion will be restricted to measurements of voltage and current. Also, although the measurements themselves should be as quantitative as possible, the discussion is rather nonquantitative. Emphasis is on types of instruments, how they may be used, and the inherent advantages and limitations of a given technique. A great deal of information can be obtained from good, clean voltage and current data. Power and impedance are obviously inherent if the proper time relationships are preserved. Often an associated, difficult-to-determine, physical event can be evaluated from the V-I data, such as a time-varying load characteristic, or the time of light emission, etc. The lack of active high voltage devices, such as 50-kV operational amplifiers, restricts measurement devices to passive elements, primarily R and C. There are a few more exotic techniques that are still passive in nature. There are several well-developed techniques for voltage measurements. These include: spark gaps; electrostatic meters; capacitive dividers; mixed RC dividers; and the electro-optic effect. Current is measured by either direct measurement of charge flow or by measuring the resulting magnetic field.

  2. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    SciTech Connect (OSTI)

    Abramowitz, Howard; Brandys, Marek; Cecil, Richard; D'Angelo, Nicholas; Matlack, Keith S.; Muller, Isabelle S.; Pegg, Ian L.; Callow, Richard A.; Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  3. Non--Atomic Components of Data Flow Diagrams: Stores, Persistent Flows,

    E-Print Network [OSTI]

    Symanzik, Jürgen

    Non--Atomic Components of Data Flow Diagrams: Stores, Persistent Flows, and Tests for Empty Flows J NON--ATOMIC COMPONENTS OF DATA FLOW DIAGRAMS: STORES, PERSISTENT FLOWS, AND TESTS FOR EMPTY FLOWS of these common features of traditional Data Flow Diagrams elevates the expressive power of FDFD's, or whether

  4. Probing the two temperature paradigm for advection dominated accretion flow: test for the component thermalization time-scale passed

    E-Print Network [OSTI]

    David Tsiklauri

    1999-01-15

    We report here on a calculation of thermalization time-scale of the two temperature advection dominated accretion flow (ADAF) model. It is established that time required to equalize the electron and ion temperatures via electron-ion collisions in the ADAF with plausible physical parameters greatly exceeds age of the Universe, which corroborates validity one of the crucial assumptions of the ADAF model, namely the existence of a hot two temperature plasma. This work is motivated by the recent success (Mahadevan 1998a,b) of ADAF model in explaining the emitted spectrum of Sgr A*.

  5. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  6. TRAC-PF1/MOD-1 analysis of Loss-Of-Flow Test L9-4

    SciTech Connect (OSTI)

    Meier, J.

    1985-01-01

    Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in pressurized water reactors (PWRs) and for many thermal-hydraulic experimental facilities. As part of our independent assessment of code version TRAC-PF1/MOD1, we analyzed Loss-of-Fluid Test (LOFT) L9-4 and compared the test data to the calculated results. This was an anticipated-transient-without-scram test in which the pumps were tripped, the steam generator main feedwater discontinued, and the main steam-outlet valve closed. This data comparison is the first extensive test of TRAC's reactor-kinetics models. The comparisons show that TRAC can calculate the power generation within a nuclear reactor if the program is supplied with adequate reactor-kinetics input specifications. The data comparisons also indicate that TRAC calculated the thermal-hydraulic parameters within LOFT well with only minor discrepancies. A number of models within TRAC-PF1/MOD1 were verified for the first time. They include the reactor-kinetics models, the trip-activated time-step controls, and the LOFT pump-coastdown calculations. In general, the final input description is adequate to analyze the experiment. The calculations indicate the importance and difficulty of obtaining accurate and applicable reactor-kinetics input data. They also indicate the need to include the effects of xenon-poisoning buildup in the analysis.

  7. Hybrid approach to tomographic reconstruction of bubbles in two-phase flows using Algebraic Reconstruction Technique (ART), Genetic Algorithm (GA), and Simplex Method 

    E-Print Network [OSTI]

    Athirathnam, Rajesh

    1999-01-01

    as in the case of tomographic reconstruction of bubbles. In the present work great strides have been made to alleviate both the problems by using a Hybrid model of Algebraic Reconstruction Technique (ART), Simplex Method and Genetic Algorithm (GA). The work done...

  8. Flow patterns in vertical two-phase flow

    SciTech Connect (OSTI)

    McQuillan, K.W.; Whalley, P.B.

    1985-03-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained.

  9. Appears in the Conf on Parallel Architectures and Compilation Techniques (PACT), Sep 2009 Abstract--Software testing is hard. The emergence of

    E-Print Network [OSTI]

    Wood, David A.

    multithreaded software makes testing even harder. To this end, researchers have proposed methods to con- tinue testing software after deployment, e.g., in vivo (IV) testing and Delta Execution (DE) patch testing. Implementing StealthTest on top of three software TM (STM) systems -- TL2 STM, Intel STM and a Pin-based STM

  10. System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits 

    E-Print Network [OSTI]

    Valdes Garcia, Alberto

    2007-09-17

    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications ...

  11. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

  12. Postprint of article in Information and Software Technology (2012) On the adoption of MC/DC and control-flow adequacy

    E-Print Network [OSTI]

    2012-01-01

    /DC and control-flow adequacy for a tight integration of program testing and statistical fault localization*,** Bo programs using three adequacy criteria, 16 test case prioritization techniques, and four statistical fault, Beijing, China A B S T R A C T Context: Testing and debugging consume a significant portion of software

  13. Single-Pass Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.

    2013-01-01

    Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.

  14. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and closure relation development for different flow conditions. Modeling studies were performed in two parts, Technology Assessment and Model Development and Enhancement. The results of the Technology assessment study indicated that the performance of the current state of the art two-phase flow models was poor especially for three-phase pipeline flow when compared with the existing data. As part of the model development and enhancement study, a new unified model for gas-oil-water three-phase pipe flow was developed. The new model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. An experimental program including three-phase gas-oil-water horizontal flow and two-phase horizontal and inclined oil-water flow testing was conducted utilizing a Tulsa University Fluid Flow Projects Three-phase Flow Facility. The experimental results were incorporated into the unified model as they became available, and model results were used to better focus and tailor the experimental study. Finally, during the Period 2, a new three-phase databank has been developed using the data generated during this project and additional data available in the literature. The unified model to predict the gas-oil-water three phase flow characteristics was tested by comparing the prediction results with the data. The results showed good agreements.

  15. Addendum for the Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, NevadaTest Site, Nye County, Nevada, Revision 0 (page changes)

    SciTech Connect (OSTI)

    John McCord

    2007-05-01

    This document, which makes changes to Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, S-N/99205--074, Revision 0 (May 2006) was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated June 20, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made: • Section 6.0 Conceptual Model Uncertainty Analyses. Please note that in this section figures showing the observed versus simulated well head (Figures 6-1, 6-5, 6-7, 6-16, 6-28, 6-30, 6-32, 6-34, 6-37, 6-42, 6-47, 6-52, 6-57, 6-62, 6-71, and 6-86) have a vertical break in scale on the y axis. • Section 7.0 Parameter Sensitivity Analysis. In Section 7.2, the parameter perturbation analysis defines two components of the objective function PHI. These two components include the WELL component that represents the head portion of the objective function as measured in wells and the FLUX component that represents the lateral boundary flux portion of the objective function. In the text and figures in Section 7.2, the phrases “well portion of the objective function” and “head portion of the objective function” are used interchangeably in discussions of the WELL component of the objective function.

  16. Fermionic renormalization group flows Technique and Theory

    E-Print Network [OSTI]

    Heermann, Dieter W.

    of the differential equations for Wilson's renormalization group for the one­particle­irreducible Green functions, such as the projection to the Fermi surface and the calculation of susceptibilities. #12;1 Introduction Renormalization integration corresponding to the grand canonical trace as an iterated integral over degrees of freedom

  17. REVIEW OF AIR FLOW MEASUREMENT TECHNIQUES

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding FINAL Progress Report ProjectRECOVERY9747

  18. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    SciTech Connect (OSTI)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  19. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, No. 4, July 1995--September 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1995-11-06

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 29, 1995.

  20. FASTGAS: Fast Gas Sampling for palladium exchange tests

    SciTech Connect (OSTI)

    Malinowski, M.E.; Stewart, K.D.; VerBerkmoes, A.A.

    1991-06-01

    A mass spectrometric technique for measuring the composition of gas flows in rapid H/D exchange reactions in palladium compacts has been developed. This method, called FASTGAS (Fast Gas Sampling)'' has been used at atmospheric pressures and above with a time response of better than 100 ms. The current implementation of the FASTGAS technique is described in detail and examples of its application to palladium hydride exchange tests are given. 12 refs., 10 figs.

  1. An optical investigation of air particle flows

    E-Print Network [OSTI]

    McCluskey, Denise R

    This thesis is a fundamental study of air-particle flow fields where the experimental parameters are characteristics of coal-fired electricity generating stations. The optical flow field measurement technique Particle Image Velocimetry (PIV...

  2. Two-phase flow studies

    SciTech Connect (OSTI)

    Hanold, R.J.

    1983-12-01

    The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

  3. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Distributed Lagrange Multiplier Technique Kanarska, Y 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; ACCURACY; CONVERGENCE; FLUID FLOW; IMPLEMENTATION; MODIFICATIONS;...

  4. AN AUTOMATED CONTROLLED-FLOW AIR INFILTRATION MEASUREMENT SYSTEM

    E-Print Network [OSTI]

    Condon, P.E.

    2010-01-01

    Infiltration," Princeton University, Center for Environmental Studies,infiltration controlled flow technique has been used by Honma in his studies

  5. Characterization of Flow Homogeneity Downstream of a Slotted Orifice Plate in a Two-Phase Flow Using Electrical Resistance Tomography 

    E-Print Network [OSTI]

    Annamalai, Gautham

    2015-03-03

    The accurate measurement of two-phase flow parameters has always been a key issue for many industries. Advancements in flow measurement techniques led to the development of multiphase flow meters which can measure it without separating...

  6. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction

    E-Print Network [OSTI]

    Ljubljana, University of

    inactivation and microalgae lipid extraction Karel Flisar a , Sasa Haberl Meglic a , Jernej Morelj b , Janvit online 26 March 2014 Keywords: PEF Escherichia coli inactivation Microalgae lipid extraction Continuous) treatment for Escherichia coli inactiva- tion and microalgae lipid extraction. In the continuous flow PEF

  7. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    SciTech Connect (OSTI)

    Dionne, B.; Tzanos, C. P.

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  8. A Narrowband Ultrasonic Spectroscopy Technique for the Inspection of

    E-Print Network [OSTI]

    This thesis introduces a narrowband ultrasonic spectroscopy (NBUS) technique for non-destructive testing. NBUS

  9. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  10. Teaching Techniques 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    with others such as a small group discussion or the question-answer technique to al- low the 4-H?ers to express their opinion. 2. Illustrated talk This method is an offshoot of the lecture technique, in which the teacher supports the talk with such things... as drawings, posters, copies of articles and other materials. The drawings or posters need not be professional art pieces, they need only be interesting and clear. For ex- ample, in entomology, rather than just talking about the various shapes...

  11. 3D-COSTAR: A Cost Model for 3D Stacked ICs Abstract--Selecting appropriate and efficient test flow for a

    E-Print Network [OSTI]

    , packaging and logistics (e.g. related to shipping wafers between a foundry and a test house); and provides-SIC by an Integrated Device Manufactures (IDM) and a fab-less company. For the fab-less company, we assume that each to their manufacturing process, 3D-SICs provide several test moments such as before stacking, during manufacturing

  12. Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground for flow models of Quaternary continental glaciers.

    E-Print Network [OSTI]

    Merguerian, Charles

    Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground This Abstract: Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground City came from the NNE (from the "Labrador center"). When ice blocked the N end of Hudson Bay and Lake

  13. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect (OSTI)

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  14. Full waveform inversion of solar interior flows

    SciTech Connect (OSTI)

    Hanasoge, Shravan M.

    2014-12-10

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).

  15. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  16. Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From

    E-Print Network [OSTI]

    LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

  17. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

  18. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2004-06-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow.

  19. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  20. SUBMITTED TO THE INTERNATIONAL JOURNAL OF FLOW CONTROL, REVISED VERSION 1 Fluid Flow Control: a Vision-Based Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBMITTED TO THE INTERNATIONAL JOURNAL OF FLOW CONTROL, REVISED VERSION 1 Fluid Flow Control, by visualizing a fluid flow, dense flow velocity maps can be computed via optical flow techniques by diminishing the fuel consumption of their aircrafts through drag reduction [1]. In contrast, in other

  1. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  2. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect (OSTI)

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  3. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-01-25

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal technology seems an attractive alternative to mitigate fouling problem in crossflow membrane filtration.

  4. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    SciTech Connect (OSTI)

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  5. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Hannum, David W. (Albuquerque, NM); Conrad, Frank James (Russellville, SC)

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  6. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  7. Posters Testing of Newtonian Nudging Technique

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines the majorL.Posters955 Posters

  8. Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh KiepeWebel Micro Power

  9. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA)

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  10. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  11. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  12. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R.; Efird, Marty

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: • wet?cleanable • anti?biofouling • waterproof • anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  13. Elliptic Flow at Large Viscosity

    E-Print Network [OSTI]

    Volker Koch

    2009-09-18

    In this contribution we present an alternative scenario for the large elliptic flow observed in relativistic heavy ion collisions. Motivated by recent results from Lattice QCD on flavor off-diagonal susceptibilities we argue that the matter right above $T_{c}$ can be described by single-particle dynamics in a repulsive single-particle potential, which in turn gives rise to elliptic flow. These ideas can be tested experimentally by measuring elliptic flow of heavy quarks, preferably via the measurement of $J/\\Psi$ elliptic flow.

  14. Multiphase cooling flows

    E-Print Network [OSTI]

    Peter A. Thomas

    1996-08-20

    I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide strong constraints on the mass distribution within the cooling radius.

  15. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  16. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  17. Steady-state axial pressure losses along the exterior of deformed fuel cladding: Multirod Burst Test (MRBT) bundles B-1 and B-2. [PWR; BWR

    SciTech Connect (OSTI)

    Mincey, J.F.

    1980-01-01

    The experimental and COBRA-IV computational data presented in this report confirm that increased pressure losses, induced by the steady-state axial flow of water exterior to deformed Multirod Burst Test (MRBT) bundles B-1 and B-2, may be closely predicted using a bundle-averaged approach for describing flow channel restrictions. One anomaly that was encountered using this technique occurred while modeling the B-2 flow test data near a severe channel restriction: the COBRA-IV results tended to underestimate experimental pressure losses.

  18. Development of AeroView: an interactive flow diagnostics laboratory 

    E-Print Network [OSTI]

    Galls, Samuel Fernando

    1996-01-01

    This research includes the development of a set of experimental flow-diagnostics techniques for low speed aerodynamics applications and an interactive software for flow field data acquisition and presentation called AeroView. The data collection...

  19. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    SciTech Connect (OSTI)

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  20. Multi-material incompressible flow simulation using the moment-of-fluid method

    SciTech Connect (OSTI)

    Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V

    2009-01-01

    The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.

  1. Performance mapping studies in Redox flow cells

    SciTech Connect (OSTI)

    Hoberecht, M.A.; Thaller, L.H.

    1981-09-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques are developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  2. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate...

  3. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations...

  4. Quantitative imaging of turbulent and reacting flows

    SciTech Connect (OSTI)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  5. Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    The purpose of this document is to describe the structured testing methodology for software testing, also uses the control flow structure of software to establish path cover- age criteria. The resultant testCabe, object oriented, software development, software diagnostic, software metrics, software testing

  6. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  7. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    SciTech Connect (OSTI)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  8. Flow meters tested on dairy lagoon water

    E-Print Network [OSTI]

    Schwankl, Larry; Eagle, Alison; Frate, Carol; Nydam, Ben

    2003-01-01

    the San Joaquin Valley (Tulare County north to San Joaquinwere evaluated at a Tulare County dairy to determine howFrate is Farm Advisor, Tulare County Cooperative Extension;

  9. Understanding order flow

    E-Print Network [OSTI]

    Evans, MDD; Lyons, Richard K.

    2006-01-01

    Understanding Order Flow October 2005 Martin D. D. Evans 1Rate Fundamentals and Order Flow, typescript, Georgetown2005), Customer Order Flow and Exchange Rate Movements: Is

  10. Instrumentation to Monitor Transient Developing Periodic Flow in Newtonian Slurries

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Enderlin, Carl W.

    2014-08-03

    This paper describes measurement techniques developed and applied to characterize solids mobilization and mixing of Newtonian slurries that are subjected to transient, periodic, developing flows. Metrics to characterize mobilization and mixing are the just suspended velocity (UJS) and the cloud height (HC). Two ultrasonic instruments to characterize pulse jet mixing of slurries were developed and deployed to measure related metrics: the thickness of the settled bed (used to determine mobilization) and the concentration within the cloud as a function of elevation [C(Z)]. A second method, continuous sample extraction, characterization, and reinsertion was successfully used to measure average density and characterize the concentration within the cloud. Testing focused on mixing vessels using intermitent jet mixers oriented vertically downward. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents, and to determine mixing times for process evaluation.

  11. Large scale steam valve test: Performance testing of large butterfly valves and full scale high flowrate steam testing

    SciTech Connect (OSTI)

    Meadows, J.B.; Robbins, G.E.; Roselius, D.G. [and others

    1995-05-01

    This report presents the results of the design testing of large (36-inch diameter) butterfly valves under high flow conditions. The two butterfly valves were pneumatically operated air-open, air-shut valves (termed valves 1 and 2). These butterfly valves were redesigned to improve their ability to function under high flow conditions. Concern was raised regarding the ability of the butterfly valves to function as required with high flow-induced torque imposed on the valve discs during high steam flow conditions. High flow testing was required to address the flow-induced torque concerns. The valve testing was done using a heavily instrumented piping system. This test program was called the Large Scale Steam Valve Test (LSSVT). The LSSVT program demonstrated that the redesigned valves operated satisfactorily under high flow conditions.

  12. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography

    SciTech Connect (OSTI)

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang

    2014-03-24

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope?=?1.00, R{sup 2}?=?1.00, and p?technique for 3-D imaging of deep tissue blood flow heterogeneities.

  13. The design and fabrication of two portal vein flow phantoms by different methods

    SciTech Connect (OSTI)

    Yunker, Bryan E. Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S.; Chen, S. James

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  14. Stargate: Energy Management Techniques

    E-Print Network [OSTI]

    Vijay Raghunathan; Mani Srivastava; Trevor Pering; Roy Want

    2004-01-01

    Stargate: Energy Management Techniques Vijay Raghunathan,Platform specific energy management is crucial for longSolution: System level energy management techniques and

  15. Flow visualization and leakage measurements of worn labyrinth seals 

    E-Print Network [OSTI]

    Allen, Brian Frank

    1997-01-01

    A large-scale flow visualization test facility is used to conduct an experimental investigation into the leakage resistance and flow characteristics of worn labyrinth seals. Wear in labyrinth seals is a consequence of ...

  16. Water and Solute Flow in a Highly-Structured Soil 

    E-Print Network [OSTI]

    Hallmark, C. Tom; Wilding, Larry P.; McInnes, Kevin J.; Heuvelman, Willem J.

    1993-01-01

    to groundwater may be related to the degree of flow path channelization (convergence or divergence of water flow paths). This project was designed to test the feasibility of measuring the degree of channelization as water percolates through structured soils. A...

  17. Dynamical systems techniques for enhancing microfluidic mixing

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    Dynamical systems techniques for enhancing microfluidic mixing Sanjeeva Balasuriya School@yahoo.com 17 March 2015 Abstract. Achieving rapid mixing is often desirable in microfluidic devices microfluidic situations (e.g., best cross-flow positioning in cross- channel micromixers, usage of channel

  18. Enzyme entrapped nanoporous scaffolds formed through flow induced gelation in microfluidic filter device for sensitive biosensing of organophosphorus compounds

    SciTech Connect (OSTI)

    Lu, Donglai; Shao, Guocheng; Du, Dan; Wang, Jun; Wang, Limin; Wang, Wanjun; Lin, Yuehe

    2011-02-01

    A novel and versatile processing method was developed for the formation of gel scaffolds with in-situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow induced immobilziation technique opens up new pathways for designing simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site testing of a variety of toxic organophosphorus compounds.

  19. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  20. AIR INFILTRATION MEASUREMENT TECHNIQUES

    E-Print Network [OSTI]

    Sherman, M.H.

    2013-01-01

    serious study of research problems in infiltration. THEORYInfiltration Measurement Techniques REFERENCES J .B. Dick, "Experimental Studies

  1. The bubbly-slug transition in a high velocity two phase flow

    E-Print Network [OSTI]

    Griffith, P.

    1964-01-01

    A possible mechanism for the transition between bubbly and slug flow is proposed and tested in a simulated slug flow system. No sudden collapse of slug flow with increasing velocity is found and it is concluded that: a. ...

  2. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect (OSTI)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with local sensors and the other for low- temperature helium tests with the PLIF technique. The results from the two instruments will provide a means to cross-calibrate the measurement techniques.

  3. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    SciTech Connect (OSTI)

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. Statistical analysis was performed to identify the parametric dependencies. The experimental data were empirically correlated.

  4. The scale invariant generator technique for quantifying anisotropic scale invariance

    E-Print Network [OSTI]

    Lovejoy, Shaun

    The scale invariant generator technique for quantifying anisotropic scale invariance G.M. Lewisa, 1 invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal characteristics. The scale invariant generator technique can pro®tably be applied to the scale invariant study

  5. Techniques for determining physical zones of influence

    DOE Patents [OSTI]

    Hamann, Hendrik F; Lopez-Marrero, Vanessa

    2013-11-26

    Techniques for analyzing flow of a quantity in a given domain are provided. In one aspect, a method for modeling regions in a domain affected by a flow of a quantity is provided which includes the following steps. A physical representation of the domain is provided. A grid that contains a plurality of grid-points in the domain is created. Sources are identified in the domain. Given a vector field that defines a direction of flow of the quantity within the domain, a boundary value problem is defined for each of one or more of the sources identified in the domain. Each of the boundary value problems is solved numerically to obtain a solution for the boundary value problems at each of the grid-points. The boundary problem solutions are post-processed to model the regions affected by the flow of the quantity on the physical representation of the domain.

  6. Experimental study of liquid-side interphase mass transfer coefficients in two-phase channel flows

    SciTech Connect (OSTI)

    Luo, D.; Ghiaasiaan, S.M. [Georgia Inst. of Tech., Atlanta, GA (United States). G.W. Woodruff School of Mechanical Engineering

    1995-12-31

    The volumetric liquid-side interphase mass transfer coefficients were experimentally measured in a vertical channel with 1.9 cm inner diameter supporting a cocurrent, upward two-phase flow. Deionized water constituted the liquid phase, pure nitrogen represented the gas phase, and oxygen was the transferred species. In each test oxygen concentrations in the liquid at two stations near the two ends of the test section were measured on-line. The channel entrance affects were eliminated by performing hydrodynamically-identical tests with two different test section lengths, and using the shorter test section results for quantification of the entrance effects in the longer test section. Experiments were performed over a range of gas and liquid superficial velocities, covering the slug and churn flow regimes. The obtained data were compared with predictions of several widely-used correlations, with significant disagreements among the correlations, and between the correlations and the data. The presence of test section entrance effects and errors associated with sampling techniques in the previously published data appear to be the primary causes for these disagreements.

  7. Polymer Testing 26 (2007) 614618 Short Communication: Test Method

    E-Print Network [OSTI]

    Natelson, Douglas

    2007-01-01

    rights reserved. Keywords: Non-destructive testing; Terahertz spectroscopy; Polymeric compounds; Additive range between 100 GHz and a few THz is a promising technique for non- destructive testing of polymeric to be a promising non-destructive technique for quality control in compounding processes. r 2007 Elsevier Ltd. All

  8. EOC 6850 Numerical Simulation Techniques Spring 2004 For Coastal and Ocean Engineers

    E-Print Network [OSTI]

    Slinn, Donald

    . 3. Spatial discretization: finite difference, compact scheme, finite element, spectral and pseudo and diffusion. 7. Elliptic, hyperbolic, and parabolic equations. 8. Pressure solution techniques, direct. 10. Techniques for different types of flows: steady, incompressible, 2-D, variable density, inviscid

  9. Approximation Techniques for Incompressible Flows with Heterogeneous Properties 

    E-Print Network [OSTI]

    Salgado Gonzalez, Abner Jonatan

    2011-10-21

    {velocity, P2{pressure. : 62 III 3D Iterative Algorithm. Exponential Porosity. Q1dc{velocity, Q1{ pressure. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 IV 3D Splitting Algorithm. (Q1dc;Q1;Q1) discretization. : : : : : : : : : 64 V...: Reprinted with permission from: Finite Element Discretization of Darcy?s Equations with Pressure Dependent Poros- ity by V. Girault, F. Murat and A. Salgado. M2AN Math. Model. Nu- mer. Anal. DOI: 10.1051/m2an/2010019. Copyright 2010 by EDP Sciences. http...

  10. Flow Solution-Liquid-Solid Technique: Novel Approach for Synthesis...

    Office of Scientific and Technical Information (OSTI)

    prepared. Authors: Palaniappan, Kumaranand 1 ; Hollingsworth, Jennifer A. 1 ; Smith, Nickolaus A. 1 ; Casson, Joanna L. 1 ; Baldwin, Jon K. 1 ; Dickerson, Robert M....

  11. Hopf bifurcations to quasi-periodic solutions for the two-dimensional plane Poiseuille flow

    E-Print Network [OSTI]

    Barcelona, Universitat de

    the branch of periodic flows which are born at the Hopf bifurcation of the laminar flow. It is known that topics in fluid mechanics. Poiseuille as well as Taylor­ Couette flow are test problems where of their geometry. The dynamics of plane Poiseuille flow departs from the laminar flow. The stability of the laminar

  12. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-05-15

    This report provides the resluts of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, verticla flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  13. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 1999

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-01-19

    This report provides the results of detailed hydrologic characterization tests conducted within newly constructed Hanford Site wells during FY 1999. Detailed characterization tests performed during FY 1999 included: groundwater flow characterization, barometric response evaluation, slug tests, single-well tracer tests, constant-rate pumping tests, and in-well vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include: transmissivity, hydraulic conductivity, specific yield, effective porosity, in-well lateral flow velocity, aquifer flow velocity, vertical distribution of hydraulic conductivity (within the well-screen section) and in-well vertical flow velocity. In addition, local groundwater flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  14. Assessor Training Assessment Techniques

    E-Print Network [OSTI]

    NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

  15. FTN4 OPTIMIZATION TECHNIQUES.

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    of the of their own program to 1st Edition (Nov. 19 LBL-10 •flow of control in the program. lst Edition (Nov. 1979) LBL-Edition LBL-1 • Systems Bulletin FTN4 IF statement GO TO , the assigned GO TO makes the flow of control in a program

  16. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

  17. Propeller Flow Meter 

    E-Print Network [OSTI]

    Enciso, Juan; Santistevan, Dean; Hla, Aung K.

    2007-10-01

    Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

  18. Bacteria in shear flow

    E-Print Network [OSTI]

    Marcos, Ph.D. Massachusetts Institute of Technology

    2011-01-01

    Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

  19. Dispersed flow film boiling

    E-Print Network [OSTI]

    Yoder, Graydon L.

    1980-01-01

    Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

  20. A NEW TEST METRIC AND A NEW SCAN ARCHITECTURE FOR EFFICIENT VLSI TESTING

    E-Print Network [OSTI]

    Stanford University

    A NEW TEST METRIC AND A NEW SCAN ARCHITECTURE FOR EFFICIENT VLSI TESTING A DISSERTATION SUBMITTED. To overcome the difficulty and cost of VLSI testing, we need to search for better testing techniques. Chip testing can be classified into two categories: production testing and characterization testing

  1. Spatial and temporal resolution of fluid flows: LDRD final report

    SciTech Connect (OSTI)

    Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.

    1998-02-01

    This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.

  2. Active Control of Instabilities in Laminar BoundaryLayer Flow--Part I: An Overview

    E-Print Network [OSTI]

    Erlebacher, Gordon

    Active Control of Instabilities in Laminar Boundary­Layer Flow-- Part I: An Overview Ronald D laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead have been restricted to maintaining laminar flow through use of a technique termed ``wave cancellation

  3. FLOW-THROUGH POROUS ELECTRODES

    E-Print Network [OSTI]

    Trainham, III, James Arthur

    2011-01-01

    configurations for flow redox battery applications: (i) theporous electrodes A flow-redox battery using flow-by poroustrue in battery applications, Flow..through porous

  4. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect (OSTI)

    Nilpueng, Kitti [Department of Mechanical Engineering, South East Asia University, Bangkok 10160 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  5. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  6. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  7. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  8. Characterization of a Dipole Flow System Using Point Velocity Probes

    E-Print Network [OSTI]

    Bowen, Ian Reed

    2010-11-23

    A direct groundwater velocity measurement tool, the Point Velocity Probe, was developed to measure velocities in the vertical and horizontal directions. The tool was designed and tested in a low-cost laboratory flow-through tank. Following testing...

  9. CFD analysis of laminar oscillating flows

    SciTech Connect (OSTI)

    Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.

    2001-01-01

    This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

  10. Flow Distances on Open Flow Networks

    E-Print Network [OSTI]

    Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

    2015-01-01

    Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

  11. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  12. CONTROL VALVE TESTING PROCEDURES AND EQUATIONS

    E-Print Network [OSTI]

    Rahmeyer, William J.

    APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS #12;APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS 2 Cv Q P Sg net gpm net = / Cv = Q P / Sg 75 is used to relate the pressure loss of a valve to the discharge of the valve at a given valve opening

  13. Impingement cooling and heat transfer measurement using transient liquid crystal technique 

    E-Print Network [OSTI]

    Huang, Yizhe

    1996-01-01

    A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow exit direction on various target surface heat transfer distributions. A two-channel test section...

  14. FTN4 OPTIMIZATION TECHNIQUES.

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    3 1st Edition FTN4 OPTIMIZATION TECHNIQUES November 1979O. INTRODUCTION 1. COt1PILER OPTIMIZATIONS 2. SOURCE CODEcode. Most of these optimizations decrease central processor

  15. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  16. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  17. The effect of E{sub r} on MSE measurements of q, a new technique for measuring E{sub r}, and a test of the neoclassical electric field

    SciTech Connect (OSTI)

    Zarnstorff, M.C.; Synakowski, E.J.; Levinton, F.M.; Batha, S.H.

    1996-10-01

    Previous analysis of motional-Stark Effect (MSE) data to measure the q-profile ignored contributions from the plasma electric field. The MSE measurements are shown to be sensitive to the electric field and require significant corrections for plasmas with large rotation velocities or pressure gradients. MSE measurements from rotating plasmas on the Tokamak Fusion Test Reactor (TFTR) confirm the significance of these corrections and verify their magnitude. Several attractive configurations are considered for future MSE-based diagnostics for measuring the plasma radial electric field. MSE data from TFTR is analyzed to determine the change in the radial electric field between two plasmas. The measured electric field quantitatively agrees with the predictions of neoclassical theory. These results confirm the utility of a MSE electric field measurement.

  18. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  19. Novel microsystem applications with new techniques in LTCC.

    SciTech Connect (OSTI)

    Nordquist, Christopher Daniel; Peterson, Kenneth Allen; Patel, Kamlesh D.; Okandan, Murat; Rohde, Steven Barney; Ho, Clifford Kuofei; Wroblewski, Brian D.; Walker, Charles A.

    2005-04-01

    Low-temperature co-fired ceramic (LTCC) enables development and testing of critical elements on microsystem boards as well as nonmicroelectronic meso-scale applications. We describe silicon-based microelectromechanical systems packaging and LTCC meso-scale applications. Microfluidic interposers permit rapid testing of varied silicon designs. The application of LTCC to micro-high-performance liquid chromatography (?-HPLC) demonstrates performance advantages at very high pressures. At intermediate pressures, a ceramic thermal cell lyser has lysed bacteria spores without damaging the proteins. The stability and sensitivity of LTCC/chemiresistor smart channels are comparable to the performance of silicon-based chemiresistors. A variant of the use of sacrificial volume materials has created channels, suspended thick films, cavities, and techniques for pressure and flow sensing. We report on inductors, diaphragms, cantilevers, antennae, switch structures, and thermal sensors suspended in air. The development of 'functional-as-released' moving parts has resulted in wheels, impellers, tethered plates, and related new LTCC mechanical roles for actuation and sensing. High-temperature metal-to-LTCC joining has been developed with metal thin films for the strong, hermetic interfaces necessary for pins, leads, and tubes.

  20. High Performance Computing linear algorithms for two-phase flow in porous media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High Performance Computing linear algorithms for two-phase flow in porous media Robert Eymard High Performance Computing techniques. This implies to handle the difficult problem of solving

  1. Symanzik flow on HISQ ensembles

    E-Print Network [OSTI]

    The MILC Collaboration; A. Bazavov; C. Bernard; N. Brown; C. DeTar; J. Foley; Steven Gottlieb; U. M. Heller; J. E. Hetrick; J. Laiho; L. Levkova; M. Oktay; R. L. Sugar; D. Toussaint; R. S. Van de Water; R. Zhou

    2013-11-06

    We report on a scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The lattice scale $w_0/a$, originally proposed by the BMW collaboration, is computed using Symanzik flow at four lattice spacings ranging from 0.15 to 0.06 fm. With a Taylor series ansatz, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We give a preliminary determination of the scale $w_0$ in physical units, along with associated systematic errors, and compare with results from other groups. We also present a first estimate of autocorrelation lengths as a function of flowtime for these ensembles.

  2. Temperature Effect in Multiphase Flow Meter Using Slotted Orifice Plate 

    E-Print Network [OSTI]

    Sihombing, Dohar Jono

    2015-04-30

    Multiphase flow metering is one of the major focuses to develop in oil and gas industries. A combination of slotted orifice plate and electrical impedance technique was investigated in order to provide further development ...

  3. A three phase load flow algorithm for Shipboard Power Systems 

    E-Print Network [OSTI]

    Medina-Calder?on, M?onica M

    2003-01-01

    -Seidel and/or Newton Raphson techniques, were primarily developed for transmission system analysis. Distribution load flow analysis must incorporate its unique characteristics such as unbalanced loads, distributed loads, radial network structure, and one...

  4. Numerical simulation of flow separation control by oscillatory fluid injection 

    E-Print Network [OSTI]

    Resendiz Rosas, Celerino

    2005-08-29

    In this work, numerical simulations of flow separation control are performed. The sep-aration control technique studied is called 'synthetic jet actuation'. The developed code employs a cell centered finite volume scheme which handles viscous...

  5. Reaming experiments for the lethality test system

    SciTech Connect (OSTI)

    Hooten, D.; Stanley, P.

    1988-01-01

    Various reaming techniques were tried for use on the barrel of the Lethality Test System railgun. This report covers the successes and failures of the reamers and the techniques that were tried. 5 figs.

  6. Fast Flow Microfluidics and Single-Molecule Fluorescence for the Rapid Characterization of ?-Synuclein Oligomers

    E-Print Network [OSTI]

    Horrocks, Mathew H.; Tosatto, Laura; Dear, Alexander J.; Garcia, Gonzalo A.; Iljina, Marija; Cremades, Nunilo; Serra, Mauro Dalla; Knowles, Tuomas P. J.; Dobson, Christopher M.; Klenerman, David

    2015-08-10

    traditional biochemical techniques. By combining fast-flow microfluidics with single-molecule fluorescence, we are able to rapidly follow the process by which oligomers of ?S are formed and to characterize the species themselves. We have used the technique...

  7. REAL TIME FEATURE EXTRACTION FOR THE ANALYSIS OF TURBULENT FLOWS

    E-Print Network [OSTI]

    Interrante, Victoria

    great unsolved problem in classical physics, and all efforts to develop models to predict turbulent techniques, terabyte scale data sets are being generated, and hence stor- age as well as analysis include flow over aircraft, spacecraft, and other transport vehicles, flow inside of engines and power

  8. THEORETICAL SIGNATURE OF SOLAR MERIDIONAL FLOW IN GLOBAL SEISMIC DATA

    E-Print Network [OSTI]

    THEORETICAL SIGNATURE OF SOLAR MERIDIONAL FLOW IN GLOBAL SEISMIC DATA MARTIN F. WOODARD Big Bear data is derived and the prospects for detecting meridional flow using global seismic techniques to 10 m s-1 at mid latitudes, in both the northern and southern hemispheres. Recent seismic observations

  9. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot; Richard Skifton; Hugh McIlroy

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.

  10. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  11. New techniques in 3D scalar and vector field visualization

    SciTech Connect (OSTI)

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  12. MyUni Tests Tests.............................................................................................................................................. 2

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    MyUni ­ Tests Tests.............................................................................................................................................. 2 Test question types.................................................................................................................... 2 Create a test

  13. Cosmic Flows: A Status Report

    E-Print Network [OSTI]

    Stephane Courteau; Avishai Dekel

    2001-06-03

    We give a brief review of recent developments in the study of the large-scale velocity field of galaxies since the international workshop on Cosmic Flows held in July 1999 in Victoria, B.C. Peculiar velocities (PVs) yield a tight and unique constraint on cosmological characteristics, independent of Lambda and biasing, such as the cosmological matter density parameter Omega_m and the convergence of bulk flows on large scales. Significant progress towards incorporating non-linear dynamics and improvements of velocity field reconstruction techniques have led to a rigorous control of errors and much refined cosmic flow analyses. Current investigations favor low-amplitude (< 250 km/s) bulk flows on the largest scales (< ~100 Mpc/h) probed reliably by existing redshift-distance surveys, consistent with favored LambdaCDM cosmogonies. Tidal field analyses also suggest that the Shapley Concentration, located behind the Great Attractor (GA), might play an important dynamical role, even at the Local Group. Low-amplitude density fluctuations on very large scales generate the overall large-scale streaming motions while massive attractors like the GA, and Perseus-Pisces account for smaller scale motions which are superposed on the large-scale flow. Likelihood analyses of galaxy PVs, in the framework of flat CDM cosmology, now provide tight constraints of Omega_m = 0.35 +/- 0.05. A four-fold size increase of our data base is expected in the next 4-5 years with the completion of next generation FP/TF surveys and automated supernovae searches within 20,000 km/s.

  14. Flow Field Flow Fractionation Method Development for Applied Bioanalysis

    E-Print Network [OSTI]

    Schachermeyer, Samantha Lynn

    2013-01-01

    E. ; Caldwell, K. , Field-Flow Fractionation Handbook. JohnJ. P. , Sedimentation field-flow-fractionation: emergence ofby sedimentation field-flow fractionation. Am. Lab. (

  15. Test Two: The ‘Controlled Fire’ 

    E-Print Network [OSTI]

    Cowlard, Adam; Steinhaus, Thomas; Abecassis Empis, Cecilia; Torero, Jose L

    2007-11-14

    The main objective of Test Two was to demonstrate the effectiveness of ventilation changes and smoke management on the growth of a compartment fire and to display the potential for these techniques to be incorporated ...

  16. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  17. Aqueous carrier waveguide in a flow cytometer

    DOE Patents [OSTI]

    Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.

    1995-12-12

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.

  18. Aqueous carrier waveguide in a flow cytometer

    DOE Patents [OSTI]

    Mariella, Jr., Raymond P. (Danville, CA); van den Engh, Gerrit (Seattle, WA); Northrup, M. Allen (Berkeley, CA)

    1995-01-01

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.

  19. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  20. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  1. FLOW-THROUGH POROUS ELECTRODES

    E-Print Network [OSTI]

    Trainham, III, James Arthur

    2011-01-01

    Wilhelm. HBoundary conditions of a flow reactor. 1i Chemicala Packed-Bed Electrochemical Flow Reactor." Journal ofRichard, and Brian Gracon. "Flow-Through Porous Electrodes."

  2. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    Ltd." . Http://Plurionsystems.Com/Tech_Flow_Advantages.Html.plurionsystems.com/tech_flow_advantages.html [71] P. Leung,High Energy Density Redox Flow Device," ed: WO Patent

  3. CUTE: A Concolic Unit Testing Engine for C Koushik Sen, Darko Marinov, Gul Agha

    E-Print Network [OSTI]

    Sen, Koushik

    . In order to improve the range of behaviors observed (or test coverage), several techniques have been

  4. Flow Visualization and Measurements of the Mixing Evolution of a Shock-Accelerated Gas Curtain

    SciTech Connect (OSTI)

    Prestridge, K.; Vorobieff, P.V.; Rightley, P.M.; Benjamin, R.F

    1999-07-19

    We describe a highly-detailed experimental characterization of the impulsively driven Rayleigh-Taylor instability, called the Richtmyer-Meshkov instability. This instability is produced by flowing a diffuse, vertical curtain of heavy gas (SF{sub 6}) into the test section of an air-filled horizontally oriented shock tube. The instability evolves after the passage of a Mach 1.2 shock past the curtain, and the development of the curtain is visualized by seeding the SF{sub 6} with small (d{approximately}0.5 and micro;m) glycol droplets using a modified theatrical fog generator. Because the event lasts only 1 ms and the initial conditions vary from test to test, rapid and complete data acquisition is required in order to characterize the initial and dynamic conditions for each experimental shot. Through the use of a custom-built pulsed Nd: YAG laser, we are able to image the flowfield at seven different times. We acquire a double-pulsed image of the flow with the use of a second pulsed Nd:YAG, which is used to determine the instantaneous velocity field using Particle Image Velocimetry (PIV). During a single experiment, high resolution images of the initial conditions and dynamic conditions are acquired using three CCD cameras. Issues of the fidelity of the flow seeding technique and the reliability of the PIV technique will be addressed. We have successfully provided interesting data through analysis of the images alone, and we are hoping that PIV information will be able to add further physical insight to the evolution of the RM instability and the transition to turbulence.

  5. Quantitative measurement by artificial vision of small bubbles in flowing mercury

    SciTech Connect (OSTI)

    Paquit, Vincent C [ORNL; Wendel, Mark W [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL

    2011-01-01

    At the Spallation Neutron Source (SNS), an accelerator-based neutron source located at the Oak Ridge National Laboratory (Tennessee, USA), the production of neutrons is obtained by accelerating protons against a mercury target. This self-cooling target, however, suffers rapid heat deposition by the beam pulse leading to large pressure changes and thus to cavitations that may be damaging to the container. In order to locally compensate for pressure increases, a small-bubble population is added to the mercury flow using gas bubblers. The geometry of the bubblers being unknown, we are testing several bubblers configurations and are using machine vision techniques to characterize their efficiency by quantitative measurement of the created bubble population. In this paper we thoroughly detail the experimental setup and the image processing techniques used to quantitatively assess the bubble population. To support this approach we are comparing our preliminary results for different bubblers and operating modes, and discuss potential improvements.

  6. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R. (Danville, CA); Benett, William J. (Livermore, CA); Coleman, Matthew A. (Oakland, CA); Pearson, Francesca S. (Livermore, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  7. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    SciTech Connect (OSTI)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  8. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  9. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review

    E-Print Network [OSTI]

    Wang, Junjian; Kang, Qinjun; Rahman, Sheik S

    2015-01-01

    The lattice Boltzmann method (LBM) has experienced tremendous advances and been well accepted as a popular method of simulation of various fluid flow mechanisms on pore scale in tight formations. With the introduction of an effective relaxation time and slip boundary conditions, the LBM has been successfully extended to solve micro-gaseous related transport and phenomena. As gas flow in shale matrix is mostly in the slip flow and transition flow regimes, given the difficulties of experimental techniques to determine extremely low permeability, it appears that the computational methods especially the LBM can be an attractive choice for simulation of these micro-gaseous flows. In this paper an extensive overview on a number of relaxation time and boundary conditions used in LBM-like models for micro-gaseous flow are carried out and their advantages and disadvantages are discussed. Furthermore, potential application of the LBM in flow simulation in shale gas reservoirs on pore scale and representative elementary...

  10. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  11. A scanning laser Doppler vibrometer for modal testing

    SciTech Connect (OSTI)

    Sriram, P.; Craig, J.I.; Hanagud, S. (Georgia Institute of Technology, Atlanta (USA))

    1990-07-01

    Accelerometers are widely used to sense structural response in modal testing. The mass loading and local effects due to accelerometers are not always negligible. The laser Doppler velocimeter/vibrometer (LDV) is a noncontact optical sensing tool for accurately measuring point velocities. The noncontact nature of the instrument makes it particularly attractive for use on lightweight structures where measurement interaction must be minimized. Real-time scanning LDV's have recently been introduced to measure fluid flow velocity profiles rapidly. In this paper, the development of a real-time scanning LDV for structural applications is described. The instrument can be used to simultaneously measure the velocity response at a series of locations on a vibrating structure. Standard modal analysis techniques can then be applied to extract the usual modal data, e.g., natural frequencies, damping and mode shapes. The special case of beam vibration is considered in this paper though the technique can be readily extended to generic planar measurements. The measurement technique has been validated through modal testing of a simple beam structure. Comparisons between theoretical and LDV measured mode shapes and natural frequencies are presented. 20 refs.

  12. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  13. STABILIZED FINITE ELEMENT METHODS FOR COMPUTATION OF FLOWS WITH MOVING BOUNDARIES AND INTERFACES

    E-Print Network [OSTI]

    Tezduyar, Tayfun E.

    1 STABILIZED FINITE ELEMENT METHODS FOR COMPUTATION OF FLOWS WITH MOVING BOUNDARIES AND INTERFACES of flow problems with moving boundaries and interfaces. The methods developed are categorized into two classes: interface-tracking and interface-capturing techniques. Both classes of techniques are based

  14. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

  15. From dynamic to static and back: Riding the roller coaster of information-flow control research

    E-Print Network [OSTI]

    Sabelfeld, Andrei

    From dynamic to static and back: Riding the roller coaster of information-flow control research a static alternative for information-flow analysis. Following this work, the 90's see the domination of static techniques for information flow. The common wisdom appears to be that dynamic approaches

  16. Optical Flow on a Flapping Wing Robot Fernando Garcia Bermudez and Ronald Fearing

    E-Print Network [OSTI]

    Fearing, Ron

    battery. An experiment was conducted capturing optical flow information during flapping and gliding flightOptical Flow on a Flapping Wing Robot Fernando Garcia Bermudez and Ronald Fearing Department}@eecs.berkeley.edu Abstract-- Optical flow sensing techniques are promising for obstacle avoidance, distance regulation

  17. Query Optimization Techniques Class Hierarchies

    E-Print Network [OSTI]

    Mannheim, Universität

    Query Optimization Techniques Exploiting Class Hierarchies Sophie Cluet 1 Guido Moerkotte 2 1 INRIA Since the introduction of object base management systems (OBMS), many query optimization techniques tailored for object query languages have been proposed. They adapt known optimization techniques

  18. Automated Testing with Targeted Event Sequence Generation

    E-Print Network [OSTI]

    Møller, Anders

    Engineering]: Testing and Debugging General Terms Languages, Verification Keywords Symbolic execution; test heavy but may have complex user interaction patterns. One popular technique is black-box random testingAutomated Testing with Targeted Event Sequence Generation Casper S. Jensen , Aarhus University

  19. Pipe Flow System Holly Guest

    E-Print Network [OSTI]

    Clement, Prabhakar

    Pipe Flow System Design Holly Guest #12;Problem · An engineer is asked to compute the flow rate · Flow type: Turbulent or Laminar flow · Flow rate · Frictional head loss · Optimal diameters if a pump · = - ( . + . ) · f = friction factor · = relative roughness = · = Reynolds Number = · Laminar flow: 2000

  20. Category:Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to: navigation, search GEOTHERMALFacebook iconFormation

  1. Category:Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to: navigation,Category ViewWell

  2. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  3. Exoplanet Detection Techniques

    E-Print Network [OSTI]

    Fischer, Debra A; Laughlin, Greg P; Macintosh, Bruce; Mahadevan, Suvrath; Sahlmann, Johannes; Yee, Jennifer C

    2015-01-01

    We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instrumentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit photometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions.

  4. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  5. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V. (Pittsburgh, PA); Baranwal, Rita (Glenshaw, PA)

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  6. Incremental Testing of ObjectOriented Class Structures

    E-Print Network [OSTI]

    McGregor, John D.

    Incremental Testing of Object­Oriented Class Structures Mary Jean Harrold and John D. Mc­designed, thoroughly­tested classes that can be confidently reused for many applications, few class testing techniques have been devel­ oped. In this paper, we present a class testing technique that exploits

  7. Incremental Testing of Object-Oriented Class Structures

    E-Print Network [OSTI]

    McGregor, John D.

    Incremental Testing of Object-Oriented Class Structures Mary Jean Harrold and John D. Mc-designed, thoroughly-tested classes that can be confidently reused for many applications, few class testing techniques have been devel- oped. In this paper, we present a class testing technique that exploits

  8. Forced Granular Orifice Flow

    E-Print Network [OSTI]

    Zheng Peng; Hepeng Zheng; Yimin Jiang

    2009-09-06

    The flow of granular material through an orifice is studied experimentally as a function of force $F$ pushing the flow. It is found that the flow rate increases linearly with $F$ -- a new, unexpected result that is in contrast to the usual view that $F$, completely screened by an arch formed around the orifice, has no way of altering the rate. Employing energy balance, we show that this behavior results mainly from dissipation in the granular material.

  9. Turbulent flow in graphene

    E-Print Network [OSTI]

    Kumar S. Gupta; Siddhartha Sen

    2010-06-05

    We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.

  10. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  11. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  12. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung (San Francisco, CA); Petrich, Loren I. (Livermore, CA)

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  13. Azeotropic Distillation as a Technique for Emulsion Size Reduction

    E-Print Network [OSTI]

    Petta, Jason

    : A solvent with HA Boiling point with water Heptane or Hexane Low vapor pressure viscosifying oil Technique for producing uniform picoliter droplets by manipulating two phase fluid flows at low Reynolds such as chloroform, ethanol, and polymers. Microfluidic Generation of Droplets #12;Materials for Emulsions Oil Phase

  14. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  15. Meatiness Testing 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The purpose of this research was to investigate the ignition phenomena of selected polymeric materials using the Hot Wire Ignition Test. This test is prescribed by Underwriters Laboratories as one of various requirements ...

  16. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  17. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  18. Heat transfer and pressure drop in tape generated swirl flow

    E-Print Network [OSTI]

    Lopina, Robert F.

    1967-01-01

    The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

  19. Affinity Flow Fractionation for label-free cell sorting

    E-Print Network [OSTI]

    Bose, Suman

    2014-01-01

    Capture and isolation of flowing cells from body fluids such as peripheral blood, bone marrow or pleural effusion has enormous implications in diagnosis, disease monitoring, and drug testing. However, in many situations ...

  20. ParFlow User's Manual Reed M. Maxwell1

    E-Print Network [OSTI]

    of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5.3 Common examples using ParFlow TCL commands (PFTCL) . . . . . . . . 21 3.6 Directory of Test

  1. Sediment Transport in Shallow Subcritical Flow Disturbed by Simulated Rainfall 

    E-Print Network [OSTI]

    Machemehl, J. L.

    1968-01-01

    Studies were conducted in a closed system recirculating research flume to evaluate the relative effects of high intensity rainfall on von Karman's universal constant and the sediment transport capacity of shallow flow The tests in this study were...

  2. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to...

  3. Test for Pumping System Efficiency; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    operate for long periods of time. For details, see Hydraulic Institute standards ANSIHI 1.6-2000, Centrifugal Pump Tests, and ANSIHI 2.6-2000, Vertical Pump Tests. Flow rates...

  4. Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    ; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data Laboratory (ORNL) has applied statistical techniques to populate and replace missing and corrupt data

  5. Quantitative Verification: Models, Techniques and Tools Marta Kwiatkowska

    E-Print Network [OSTI]

    Oxford, University of

    verification is an analogous technique for establishing quantitative properties of a system modelQuantitative Verification: Models, Techniques and Tools Marta Kwiatkowska Oxford University of the state-transition graph of the model and is therefore more powerful than test- ing. Quantitative

  6. Two-phase flow interfacial drag for once through steam generators 

    E-Print Network [OSTI]

    Rais, Omar Tahar

    1990-01-01

    which determined in subroutine PHAINT. The term FIJ is determined for each junction from different models depending on what flow regimes are calculated for the volumes adjoining the junction. IV. 3 Introduction to Two Phase Flow Patterns When a... transfer rates, and other parameters of 25 interest will behave differently as the flow pattern changes. Various techniques are available for the study of two-phase flow patterns in heated and unheated channels. In a transparent channels at low...

  7. Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

    E-Print Network [OSTI]

    Hennon, Christopher C.

    Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do surfaces) These are "idealized" flows, created by balances of horizontal forces. They provide a qualitative

  8. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  9. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someone byApplied Science/Techniques

  10. Modeling of Breaching Due to Overtopping Flow and Waves Based on Coupled Flow and Sediment Transport

    E-Print Network [OSTI]

    He, Zhiguo; Zhao, Liang; Wu, Ganfeng; Pähtz, Thomas

    2015-01-01

    Breaching of earthen or sandy dams/dunes by overtopping flow and waves is a complicated process with strong, unsteady flow, high sediment transport, and rapid bed changes in which the interactions between flow and morphology should not be ignored. This study presents a depth-averaged two-dimensional (2D) coupled flow and sediment transport model to investigate the flow and breaching processes with and without waves. Bed change and variable flow density are included in the flow continuity and momentum equations to consider the impacts of sediment transport. The model adopts the non-equilibrium approach for total-load sediment transport and specifies different repose angles to handle non-cohesive embankment slope avalanching. The equations are solved using an explicit finite volume method on a rectangular grid with the improved Godunov-type central upwind scheme and the nonnegative reconstruction of the water depth method to handle mixed-regime flows near the breach. The model has been tested against two sets o...

  11. Productivity & Energy Flow

    E-Print Network [OSTI]

    Mitchell, Randall J.

    1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

  12. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  13. Microelectromechanical flow control apparatus

    SciTech Connect (OSTI)

    Okandan, Murat (NE Albuquerque, NM)

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  14. A Brief Essay on Software Testing Antonia Bertolino, Eda Marchetti

    E-Print Network [OSTI]

    Kundu, Sukhamay

    1 A Brief Essay on Software Testing Antonia Bertolino, Eda Marchetti Abstract-- Testing of the delivered product strictly depend. Testing is not limited to the detection of "bugs" in the software overview of software testing, from its definition to its organization, from test levels to test techniques

  15. Evaluation of a Partial Flow Dilution System for Transient Particulate Matter Emissions

    Broader source: Energy.gov [DOE]

    A commercially available partial flow dilution system was evaluated against a constant volume sampling system over a suite of transient engine dynamometer tests.

  16. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  17. Pulse testing in the presence of wellbore storage and skin effects

    SciTech Connect (OSTI)

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  18. Effect of flow fluctuations and nonflow on elliptic flow methods

    E-Print Network [OSTI]

    Ollitrault, Jean-Yves

    2009-01-01

    24.10.Nz I. INTRODUCTION II. FLOW METHODS Elliptic ?ow hasin the participant plane. Flow methods involve variousow e?ects are negligible. Flow ?uctuations modify both the

  19. Flow of suspensions in pipelines

    SciTech Connect (OSTI)

    Nasr-El-Din, H.A. [Laboratory R& D Center, Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31

    Slurry pipelines are used in many industrial applications. Several parameters are often needed by the operator, including critical deposit velocity, solids concentration, and particle velocity profiles. This chapter first reviews important formulas used to predict critical deposit velocity both in Newtonian and non-Newtonian (power-law) carrier fluids. Various methods to measure local velocity and solids concentration profiles in slurry pipelines are discussed. Local solids concentration can be measured by sample withdrawal technique. However, the sample should be withdrawn at isokinetic conditions. Sampling downstream of tees and elbows can result in significant errors in measuring solids concentration. Gamma-ray absorption methods can be used; however, two scans are needed to obtain local solids concentration. Bulk velocity of conductive slurries can be obtained using magnetic flow meters mounted on a vertical section of the pipe. Local particle velocity can be obtained using conductivity probes. NMR methods can be used to measure concentration and particle velocity profiles but are limited to small-diameter pipes. Vertical solids concentration of coarse slurries flowing in a horizontal pipeline exhibits a positive gradient near the bottom of the pipe. Traditional models to predict these profiles are given, and new mathematical models and computer software to determine these profiles are introduced. 104 refs., 31 figs., 1 tab.

  20. TESTING OF THE FE WALKING ROBOT MAY 2006 1 Testing of the FE Walking Robot

    E-Print Network [OSTI]

    Ruina, Andy L.

    TESTING OF THE FE WALKING ROBOT MAY 2006 1 Testing of the FE Walking Robot Elianna R Weyer, May and result of testing the FE walking robot during spring 2006. Improve- ments in code and launch technique. The author predicts that with continued optimization and testing, the FE walking robot can surpass

  1. HYBRID LAMINAR FLOW TECHNOLOGY Partner: EADS Airbus (D) (Coordinator), Apparatebau Gauting (D), EADS Airbus (F), Aerospace Systems and

    E-Print Network [OSTI]

    Berlin,Technische Universität

    HYBRID LAMINAR FLOW TECHNOLOGY (HYLTEC) Partner: EADS Airbus (D) (Coordinator), Apparatebau Gauting Task1 Operational flight tests, lab tests, manufacturing issues Task2 Laminar flow retrofit studies high drag HLFC via suction causes laminar flow therefore lower drag HYLTEC topics: Consequences

  2. Testing multilayer printed wiring board prepreg by differential-scanning calorimetry. Final report

    SciTech Connect (OSTI)

    Scott, D.A.; Lula, J.W.

    1981-07-01

    A simplified receiving inspection test for epoxy/glass prepreg was developed. This test, which could replace the resin flow test, uses differential scanning calorimetry to measure the glass transition temperature. The glass transition temperature was found to correlate well with the resin flow test.

  3. Duct Leakage Repeatability Testing

    SciTech Connect (OSTI)

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  4. CC Pressure Test

    SciTech Connect (OSTI)

    Dixon, K.; /Fermilab

    1990-07-12

    The inner vessel heads including bypass and beam tubes had just been welded into place and dye penetrant checked. The vacuum heads were not on at this time but the vacuum shell was on covering the piping penetrating into the inner vessel. Signal boxes with all feed through boards, the instrumentation box, and high voltage boxes were all installed with their pump outs capped. All 1/4-inch instrumentation lines were terminated at their respective shutoff valves. All vacuum piping used for pumping down the inner vessel was isolated using o-ring sealed blind flanges. PV215A (VAT Series 12), the 4-inch VRC gate valve isolating the cyropump, and the rupture disk had to be removed and replaced with blind flanges before pressurizing due to their pressure limitations. Stresses in plates used as blind flanges were checked using Code calcualtions. Before the CC test, vacuum style blanks and clamps were hydrostatically pressure tested to 150% of the maximum test pressure, 60 psig. The Code inspector and Research Division Safety had all given their approval to the test pressure and procedure prior to filling the vessel with argon. The test was a major success. Based on the lack of any distinguishable pressure drop indicated on the pressure gages, the vessel appeared to be structurally sound throughout the duration of the test (approx. 3 hrs.). A major leak in the instrumentation tubing was discovered at half of the maximum test pressure and was quickly isolated by crimping and capping with a compression fitting. There were some slight deviations in the actual procedure used. The 44 psig relief valve located just outside the cleanroom had to be capped until the pressure in the vessel indicated 38 psi. This was to allow higher supply pressures and hence, higher flows through the pressurizing line. Also, in order to get pressure readings at the cryostat without exposing any personnel to the potentially dangerous stored energy near the maximum test pressure, a camera was installed at the top of the vessel to view the indicator mounted there. The monitor was viewed at the ante room adjacent to the cleanroom. The holding pressure of 32 psig (4/5 of the maximum test pressure) was only maintained for about 20 minutes instead of the half hour recommendation in the procedure. We felt that this was sufficient time to Snoop test and perform the pressure drop test. After the test was completed, the inspector for CBI Na-Con and the Research Divison Safety Officer signed all of required documentation.

  5. Bedrock Erosion by Granular Flow

    E-Print Network [OSTI]

    Hsu, Leslie

    2010-01-01

    of boulders later in the flow when the matrix has thickenedMaximum height of the flow is 3.3 m. Appendix A true storyThe physics of debris flows, Reviews of Geophysics 35(3),

  6. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  7. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  8. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    of a Vanadium Redox-Flow Battery to Maintain Power Quality,"Fuel System Using Redox Flow Battery," ed: WO Patentand D. B. Hickey, "Redox Flow Battery System for Distributed

  9. Synthetic aperture focusing techniques for ultrasonic imaging of solid objects.

    E-Print Network [OSTI]

    technique (SAFT) has been used in non-destructive testing mainly in its simplest form that mimics acoustic a review of SAFT algorithms applied for post-processing of ultrasonic data acquired in non-destructive obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). 1

  10. Life extension of structural components via an improved nondestructive testing methodology

    E-Print Network [OSTI]

    Hohmann, Brian P. (Brian Patrick)

    2010-01-01

    An experimental study was performed to determine the flaw detection sensitivity of advanced nondestructive testing (NDT) techniques with respect to structural applications. The techniques analyzed exemplify the incorporation ...

  11. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  12. A multidisciplinary learning experience: control valves noise testing and modeling Mariano J. Savelski. Rowan University. Glassboro, NJ 08028, US.

    E-Print Network [OSTI]

    Savelski, Mariano J.

    from the Rowan University Cogeneration Plant and the valve manufacturer. This multidisciplinary testing apparatus was designed and installed at the cogeneration plant. This flow-testing loop provided

  13. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.

  14. Enviro Hurdles: Instream Flow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hurdles: Instream Flow Enviro Hurdles: Instream Flow Enviro Hurdles: Instream Flow 76enviornlbevelhimer4.pptx More Documents & Publications Instream Flow Project Development and...

  15. Flow Map Manager 

    E-Print Network [OSTI]

    Moya, Maria J

    2011-11-24

    Long-distance bus companies, operate services along routes which have a flow of passengers. Along a route some passengers will leave the bus while others join. To monitor demand sufficiently well a tool is required which can help estimate...

  16. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  17. Optical flow switching

    E-Print Network [OSTI]

    Chan, Vincent W. S.

    Present-day networks are being challenged by dramatic increases in bandwidth demand of emerging applications. We will explore a new transport, ldquooptical flow switchingrdquo, that will enable significant growth and ...

  18. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  19. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  20. Idealized Test Cases for Dynamical Core Experiments

    E-Print Network [OSTI]

    Jablonowski, Christiane

    Idealized Test Cases for Dynamical Core Experiments Christiane Jablonowski (University of Michigan-13/2006 #12;Motivation · Test cases for 3D dynamical cores on the sphere ­ are hard to find in the literature groups ­ lack standardized & easy-to-use analysis techniques · Idea: Establish a collection of test cases

  1. Generating Test Data From Statebased Specifications 1

    E-Print Network [OSTI]

    Offutt, Jeff

    Generating Test Data From State­based Specifications 1 A. Jefferson Offutt 1 , Shaoying Liu 2 testing in industry is conducted at the system level, most formal research has focused on the unit level. As a result, most system level testing techniques are only described informally. This paper presents formal

  2. Blood flow measurement and slow flow detection in retinal vessels with Joint Spectral and Time domain method in ultrahigh speed OCT

    E-Print Network [OSTI]

    Gorczynska, Iwona

    We present an application of the Joint Spectral and Time domain OCT (STdOCT) method for detection of wide range of flows in the retinal vessels. We utilized spectral/Fourier domain OCT (SOCT) technique for development of ...

  3. FLOW AND REACTIVE TRANSPORT MODELING IN THE GTS-HPF EXPERIMENT

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    repositories for L/IL radioactive waste ·Hyperalkaline solutions #12;GTS-HPF Grimsel Test Site - HyperalkalineFLOW AND REACTIVE TRANSPORT MODELING IN THE GTS-HPF EXPERIMENT Grimsel Test Site ­ Hyperalkaline

  4. Bio-inspired MEMS Pressure and Flow Sensors for Underwater Navigation and Object Imaging "

    E-Print Network [OSTI]

    Bio-inspired MEMS Pressure and Flow Sensors for Underwater Navigation and Object Imaging " MIT. - A. G. P. Kottapalli et. al., "Liquid crystal polymer membrane MEMS sensor for flow rate and flow for waterproofing. Fabrication Kayak Testing Commercial Sensors (Reference) MEMS Sensor When mounted on the side

  5. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  6. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  7. TRAC-PF1 choked-flow model

    SciTech Connect (OSTI)

    Sahota, M.S.; Lime, J.F.

    1983-01-01

    The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures.

  8. Conjugate flow action functionals

    E-Print Network [OSTI]

    Daniele Venturi

    2013-10-15

    We present a new general method to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations of the theory relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow of the theory, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gateaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.

  9. Insights Gained from Testing Alternate Cell Designs

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi-electrode supported cell or BSC. The electrodes are made by freeze-casting, a modified tape casting technique which creates the many micro-channels in the YSZ electrode green tape. This report presents results of the INL’s testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  10. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01

    stream_size 3106 stream_content_type text/plain stream_name Test Comparability ChangeJuly (2).pdf.txt stream_source_info Test Comparability ChangeJuly (2).pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please share...

  11. Cell Phone Detection Techniques

    SciTech Connect (OSTI)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phone’s electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  12. Revealing the Impact of Climate Variability on the Wind Resource Using Data Mining Techniques (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J.

    2011-12-01

    A data mining technique called 'k-means clustering' can be used to group winds at the NWTC into 4 major clusters. The frequency of some winds in the clusters is correlated with regional pressure gradients and climate indices. The technique could also be applied to wind resource assessment and selecting scenarios for flow modeling.

  13. Piecewise uniform conduction-like flow channels and method therefor

    DOE Patents [OSTI]

    Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Livermore, CA)

    2006-02-28

    A low-dispersion methodology for designing microfabricated conduction channels for on-chip electrokinetic-based systems is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed on chips using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions with differing permeability. Regions bounded by interfaces form flow "prisms" that can be combined with other designed prisms to obtain a wide range of turning angles and expansion ratios while minimizing dispersion. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.

  14. Fluid Flow Estimation Through Integration of Physical Flow Configurations

    E-Print Network [OSTI]

    Garbe, Christoph S.

    Fluid Flow Estimation Through Integration of Physical Flow Configurations Christoph S. Garbe IWR, University of Heidelberg Christoph.Garbe@iwr.uni-heidelberg.de Abstract. The measurement of fluid flows is an emerging field for op- tical flow computation. In a number of such applications, a tracer is visualized

  15. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  16. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  17. Development of neutron tomography and phase contrast imaging technique

    SciTech Connect (OSTI)

    Kashyap, Y. S.; Agrawal, Ashish; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2013-02-05

    This paper presents design and development of a state of art neutron imaging technique at CIRUS reactor with special reference for techniques adopted for tomography and phase contrast imaging applications. Different components of the beamline such as collimator, shielding, sample manipulator, digital imaging system were designed keeping in mind the requirements of data acquisition time and resolution. The collimator was designed in such a way that conventional and phase contrast imaging can be done using same collimator housing. We have done characterization of fuel pins, study of hydride blisters in pressure tubes hydrogen based cells, two phase flow visualization, and online study of locomotive parts etc. using neutron tomography and radiography technique. We have also done some studies using neutron phase contrast imaging technique on this beamline.

  18. Flow reversal power limit for the HFBR

    SciTech Connect (OSTI)

    Cheng, L.Y.; Tichler, P.R.

    1997-01-01

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.

  19. Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry

    E-Print Network [OSTI]

    Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

  20. Test Programming by Program Composition and Symbolic Simulation

    E-Print Network [OSTI]

    Shirley, Mark H.

    Classical test generation techniques rely on search through gate-level circuit descriptions, which results in long runtimes. In some instances, classical techniques cannot be used because they would take longer than the ...

  1. Flow Batteries A Historical Perspective

    E-Print Network [OSTI]

    Flow Batteries A Historical Perspective Robert F. Savinell Case Western Reserve University Department of Chemical Engineering DOE Flow Battery Workshop March 2012 #12;2 OUTLINE ·The first flow cell? ·Review articles- documented progress ·Early NASA Work- some learning ·Fuel Cell and Flow Battery

  2. The design of water markets when instream flows have value James J. Murphy

    E-Print Network [OSTI]

    Murphy, James J.

    The design of water markets when instream flows have value James J. Murphy (corresponding author markets when instream flows have value Abstract The main objective of this paper is to design and test. This article uses laboratory experiments to test three different water market institutions designed

  3. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  4. Stability and angular-momentum transport of fluid flows between corotating cylinders

    E-Print Network [OSTI]

    Avila, Marc

    2012-01-01

    Turbulent transport of angular momentum is a necessary process to explain accretion in astrophysical disks. Although the hydrodynamic stability of disk-like flows has been tested in experiments, results are contradictory and suggest either laminar or turbulent flow. Direct numerical simulations reported here show that currently investigated laboratory flows are hydrodynamically unstable and become turbulent at low Reynolds numbers. The underlying instabilities stem from the axial boundary conditions, affect the flow globally and enhance angular-momentum transport.

  5. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  6. Ferrocement: a technique for passive solar earth sheltered structures

    SciTech Connect (OSTI)

    Impson, L.C.

    1982-01-01

    A system of construction is discussed which allows for the least cost with the most return yet noted in any of the current publications. This system utilizes commonly available and relatively inexpensive materials. The use of unskilled labor is possible, thereby expanding one's labor pool. This system also allows more design freedom than do any of the other construction techniques now widely practiced. This system of construction is ferrocement, a technique which has been in use intermittently since 1847. A method of insulating Earth Shelters is also discussed, as well as air flow characteristics of domes.

  7. Basic devices and techniques for supervisory control and telemetery systems

    SciTech Connect (OSTI)

    Knox, R.M.

    1984-04-01

    The microprocessor is creating extraordinary changes in the basic devices used for supervisory control and telemetry systems. Devices which incorporate microprocessors are providing new capabilities to monitor, to control, and to transmit data. These new capabilities provide the opportunity to utilize new techniques in achieving more efficient operation and control of gas transmission and distribution systems. This paper describes several devices being installed at Transcocontinental Gas Pipe Line Corporation and their impact on the planned techniques to be used to collect gas flow data and to implement supervisory control.

  8. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel

    SciTech Connect (OSTI)

    Wongwises, Somchai; Pipathattakul, Manop [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2006-03-01

    Two-phase flow pattern, pressure drop and void fraction in horizontal and inclined upward air-water two-phase flow in a mini-gap annular channel are experimentally studied. A concentric annular test section at the length of 880mm with an outer diameter of 12.5mm and inner diameter of 8mm is used in the experiments. The flow phenomena, which are plug flow, slug flow, annular flow, annular/slug flow, bubbly/plug flow, bubbly/slug-plug flow, churn flow, dispersed bubbly flow and slug/bubbly flow, are observed and recorded by high-speed camera. A slug flow pattern is found only in the horizontal channel while slug/bubbly flow patterns are observed only in inclined channels. When the inclination angle is increased, the onset of transition from the plug flow region to the slug flow region (for the horizontal channel) and from the plug flow region to slug/bubbly flow region (for inclined channels) shift to a lower value of superficial air velocity. Small shifts are found for the transition line between the dispersed bubbly flow and the bubbly/plug flow, the bubbly/plug flow and the bubbly/slug-plug flow, and the bubbly/plug flow and the plug flow. The rest of the transition lines shift to a higher value of superficial air velocity. Considering the effect of flow pattern on the pressure drop in the horizontal tube at low liquid velocity, the occurrence of slug flow stops the rise of pressure drop for a short while, before rising again after the air velocity has increased. However, the pressure does not rise abruptly in the tubes with {theta}=30{sup o} and 60{sup o} when the slug/bubbly flow occurs. At low gas and liquid velocity, the pressure drop increases, when the inclination angles changes from horizontal to 30{sup o} and 60{sup o}. Void fraction increases with increasing gas velocity and decreases with increasing liquid velocity. After increasing the inclination angle from horizontal to {theta}=30{sup o} and 60{sup o}, the void fraction appears to be similar, with a decreasing trend when the inclination angle increases. (author)

  9. Pressure loss in two-phase flow through a microchannel rod bundle

    SciTech Connect (OSTI)

    Smith, A.C.; Hamm, L.L.; Qureshi, Z.; Steeper, T.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site

    1998-09-01

    The purpose of the microchannel rod bundle two-phase flow test described here was to provide data for benchmarking safety analyses for the accelerator production of tritium (APT). The objective was to obtain pressure loss data for a typical accelerator target rod bundle over a wide range of two-phase flow conditions. The test rod bundle assembly was fabricated for single-phase pressure drop tests conducted at Los Alamos National Laboratory (LANL) and subsequently used for the two-phase flow testing described here. The results for a typical case are given. These results fall generally in the slug flow regime for the horizontal flow results of Fukano and Kariyasaki for a 1.0-mm circular channel. Fukano and Kariyasaki found that surface tension effects were dominant in the 1-mm channel and report no churn regime. The results were also compared with the flow regime maps given by Triplett et al. for flow in discrete microchannels. Triplett employed both circular and trapezoidal channels, the latter to approximate the rod bundle interstitial flow channel shape. It was found that the rod bundle flow fell across the slug-to-churn flow regime transition reported by Triplett. This is consistent with the expectation that cross flow among channels would result in turbulent mixing and would suppress the formation of large discrete bubbles.

  10. An Efficient Technique for making maps from Observations of the Cosmic Microwave Background Radiation

    E-Print Network [OSTI]

    L. Piccirillo; G. Romeo; R. K. Schaefer; M. Limon

    1996-08-12

    We describe a new technique for turning scans of the microwave sky into intensity maps. The technique is based on a Fourier series analysis and is inspired by the lock-in deconvolution used in experiments which typically sweep the sky continuously. We test the technique on computer generated microwave skies and compare it to the more standard map making technique based on linear algebra. We find that our technique is much faster than the usual technique and, in addition, does not suffer from the problem of memory limitations. Lastly we demonstrate that the technique works under real experimental conditions using observations of the moon.

  11. Control and Data Flow Testing on Function Block Diagrams

    E-Print Network [OSTI]

    Jee, Eunkyoung

    an indispensable step required to assure software quality. In the nuclear power plant control system, as existing­80, 2005. c Springer-Verlag Berlin Heidelberg 2005 #12;68 E. Jee, J. Yoo, and S. Cha has been done

  12. KJRR-FAI Hydraulic Flow Testing Input Package

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  13. Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles...

  14. Nevada National Security Site Underground Test Area (UGTA) Flow and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformation Resources»Jim1National EnvironmentalOrganizationalValley,toStreams

  15. Flow Test At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders,Information

  16. Flow Test At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin, California: EnergyAlum Area

  17. Flow Test At Coso Geothermal Area (1978) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin, California:

  18. Flow Test At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen EnergyMaui

  19. Flow Test At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilver PeakWister Area

  20. Dixie Valley Six Well Flow Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWindSiteProject Jump to:

  1. Energy, entropy and the Ricci flow

    E-Print Network [OSTI]

    Joseph Samuel; Sutirtha Roy Chowdhury

    2007-12-18

    The Ricci flow is a heat equation for metrics, which has recently been used to study the topology of closed three manifolds. In this paper we apply Ricci flow techniques to general relativity. We view a three dimensional asymptotically flat Riemannian metric as a time symmetric initial data set for Einstein's equations. We study the evolution of the area A and Hawking mass M of a two dimensional closed surface under the Ricci flow. The physical relevance of our study derives from the fact that, in general relativity the area of apparent horizons is related to black hole entropy and the Hawking mass of an asymptotic round 2-sphere is the ADM energy.We begin by considering the special case of spherical symmetry to develop a physical feel for the geometric quantities involved. We then consider a general asymptotically flat Riemannian metric and derive an inequality which relates the evolution of the area of a closed surface S to its Hawking mass. We suggest that there may be a maximum principle which governs the long term existence of the asymptotically flat Ricci flow.

  2. Diagnostic techniques used in AVLIS

    SciTech Connect (OSTI)

    Heestand, G.M.; Beeler, R.G.

    1992-12-01

    This is the second part of a general overview talk on the atomic vapor laser isotope separation (AVLIS) process. In this presentation the authors will discuss the diagnostic techniques used to measure key parameters in their atomic vapor including densities, temperature, velocities charge exchange rates and background ionization levels. Although these techniques have been extensively applied to their uranium program they do have applicability to other systems. Relevant data demonstrating these techniques will be shown.

  3. Variable Refrigerant Flow HVAC 

    E-Print Network [OSTI]

    Jones, S.

    2013-01-01

    Variable refrigerant flow technology HVAC CATEE 2013 San Antonio, TX ESL-KT-13-12-33 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 What is the acronym VRF? ? Variable Refrigerant Flow Operates like a... heat pump utilizing VFD Inverter Compressors and LEV’s Unlike conventional commercial and residential HVAC systems in the USA The predominate method of cooling and heating in the world ESL-KT-13-12-33 CATEE 2013: Clean Air Through Energy Efficiency...

  4. Some innovative surface texturing techniques for tribological purposes

    E-Print Network [OSTI]

    Costa, H.L.; Hutchings, I.M.

    2014-06-19

    of anodic dissolution are flushed away from the inter-electrode gap. Textured carbon steel samples could be produced using this technique with high current efficiencies as described elsewhere [71], and the process was characterized in terms... may flow back to the contact inlet in the process known as lubricant replenishment [20, 21]. In such situations, the texture features can be expected to act as lubricant micro-reservoirs that help to replenish the contact inlet, but it seems...

  5. Profiler Instrumentation Using Metaprogramming Techniques

    E-Print Network [OSTI]

    Gray, Jeffrey G.

    Profiler Instrumentation Using Metaprogramming Techniques Ritu Arora, Yu Sun, Zekai Demirezen, Jeff manipulation) before it enters into the available class pool of an executing application. Javassist [9] (see

  6. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  7. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  8. Nondestructive Testing of Rail Tunnel Linings 

    E-Print Network [OSTI]

    Williams, Nathan Douglas

    2014-11-14

    potential problems and then test those areas with slow, detailed methods. This would provide a more thorough investigation of the tunnel lining’s health. Infrared thermography (IRT), ground penetrating radar (GPR), and ultrasonic tomography (UST) techniques...

  9. Integrated Performance Testing for Nonproliferation Support Project

    SciTech Connect (OSTI)

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  10. Modeling fluid flow through single fracture using experimental, stochastic, and simulation approaches 

    E-Print Network [OSTI]

    Alfred, Dicman

    2004-09-30

    This research presents an approach to accurately simulate flow experiments through a fractured core using experimental, stochastic, and simulation techniques. Very often, a fracture is assumed as a set of smooth parallel plates separated by a...

  11. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  12. Verifying Test Hypotheses -HOL/TestGen Verifying Test Hypotheses -HOL/TestGen

    E-Print Network [OSTI]

    Verifying Test Hypotheses - HOL/TestGen Verifying Test Hypotheses - HOL/TestGen An Experiment in Test and Proof Thomas Malcher January 20, 2014 1 / 20 #12;Verifying Test Hypotheses - HOL/TestGen HOL/TestGen Outline Introduction Test Hypotheses HOL/TestGen - Demo Verifying Test Hypotheses Conclusion 2 / 20 #12

  13. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J. [Washington River Protection Systems, Richland, WA (United States); Parker, Danny L. [Washington River Protection Systems, Richland, WA (United States); Tabor, Cynthia L. [Washington River Protection Systems, Richland, WA (United States); Holm, Melissa J. [Washington River Protection Systems, Richland, WA (United States)

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  14. Thermal Unit Commitment Including Optimal AC Power Flow Constraints

    E-Print Network [OSTI]

    Thermal Unit Commitment Including Optimal AC Power Flow Constraints Carlos Murillo{Sanchez Robert J algorithm for unit commitment that employs a Lagrange relaxation technique with a new augmentation. This framework allows the possibility of committing units that are required for the VArs that they can produce

  15. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA)

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  16. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  17. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  18. ENERGY FLOWS CLIMATE CHANGE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    ENERGY FLOWS FORCINGS CLIMATE CHANGE A REALLY TOUGH PROBLEM Stephen E. Schwartz, BNL, 7-20-11 www average temperature 15°C or 59°F #12;ATMOSPHERIC RADIATION Power per area Energy per time per area Unit" temperature to radiative flux. #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per

  19. Field testing results for the strategic petroleum reserve pipeline corrosion control program

    SciTech Connect (OSTI)

    Buchheit, R.G.; Maestas, L.M.; Hinkebein, T.E.

    1998-02-01

    Results of two studies conducted as part of the Strategic Petroleum Reserve (SPR) Pipeline Corrosion Control Program are reported. These studies focused on evaluation of rotary-applied concrete materials for internal pipeline protection against the erosive and corrosive effects of flowing brine. The study also included evaluation of liners applied by hand on pipe pieces that cannot be lined by rotary methods. Such pipe pieces include tees, elbows and flanged pipe sections. Results are reported from a corrosion survey of 17 different liner formulations tested at the-Big-Rill SPR Site. Testing consisted of electrochemical corrosion rate measurements made on lined pipe sections exposed, in a test manifold, to flowing SPR generated fluids. Testing also involved cumulative immersion exposure where samples were exposed to static site-generated brine for increasing periods of time. Samples were returned to the laboratory for various diagnostic analyses. Results of this study showed that standard calcium silicate concrete (API RP10E) and a rotary calcium aluminate concrete formulation were excellent performers. Hand-lined pipe pieces did not provide as much corrosion protection. The focus of the second part of the study was on further evaluation of the calcium silicate, calcium aluminate and hand-applied liners in actual SPR equipment and service. It was a further objective to assess the practicality of electrochemical impedance spectroscopy (EIS) for field corrosion monitoring of concrete lined pipe compared to the more well-known linear polarization technique. This study showed that concrete linings reduced the corrosion rate for bare steel from 10 to 15 mils per year to 1 mil per year or less. Again, the hand-applied liners did not provide as much corrosion protection as the rotary-applied liners. The EIS technique was found to be robust for field corrosion measurements. Mechanistic and kinetic corrosion rate data were reliably obtained.

  20. Electromagnetic Interrogation Techniques Damage Detection

    E-Print Network [OSTI]

    Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks and M. L. Joyner Center.P. Winfree Nasa Langley Research Center Hampton, VA Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 18-19, 20001 #12;Electromagnetic Interrogation Techniques

  1. A Model for TSUnami FLow INversion from Deposits (TSUFLIND)

    E-Print Network [OSTI]

    Tang, Hui

    2015-01-01

    Modern tsunami deposits are employed to estimate the overland flow characteristics of tsunamis. With the help of the overland-flow characteristics, the characteristics of the causative tsunami wave can be estimated. The understanding of tsunami deposits has tremendously improved over the last decades. There are three prominent inversion models: Moore advection model, Soulsby's model and TsuSedMod model. TSUFLIND incorporates all three models and adds new modules to better simulate tsunami deposit formation and calculate flow condition. TSUFLIND takes grain-size distribution, thickness, water depth and topography information as inputs. TSUFLIND computes sediment concentration, grain-size distribution of sediment source and initial flow condition to match the sediment thickness and grain size distribution from field observation. Furthermore, TSUFLIND estimates the flow speed, Froude number and representative wave amplitude. The model is tested by using field data collected at Ranganathapuram, India after the 20...

  2. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect (OSTI)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  3. Extensional viscosity measurements of polyethylene using a melt flow indexer 

    E-Print Network [OSTI]

    Moffatt, Scott Gordon

    1999-01-01

    . . . . . . . . 142 APPENDIX C: CONSTANT STRESS RHEOMETER TESTING PROCEDURE. . . . . . APPENDIX D: MELT FLOW INDEXER DATA . . . . . 147 APPENDIX E: CAPILLARY RHEOMETER DATA. . . . . . 184 APPENDIX F: OSCILLATORY RHEOMETER DATA . . . . . . . . 213 APPENDIX G...) [Padmanabhan and Macosko (1997)] . . . . . 14 5 Bagley Correction Factor for the Capillary Rheometer. 23 6 Flow Index Determination. . . . . . . 28 7 Definitions of Lengths Used in the Darby Method. 8 Carreau-Yasuda Fit of Complex Viscosity Data for Resin E...

  4. Blower-door techniques for measuring interzonal leakage

    SciTech Connect (OSTI)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  5. Design of DIFFUSE v0.4 DIstributed Firewall and Flow-shaper Using Statistical Evidence

    E-Print Network [OSTI]

    Zander, Sebastian

    Digital Subscriber Line or Cable modem gateways) so that centralised traffic classification can classification using statistical properties ­ classification techniques that do not require packet payload classification based on statistical properties and de-couple flow classification from flow treatment. This report

  6. Robustness Testing and Hardening of CORBA ORB Implementations

    E-Print Network [OSTI]

    Koopman, Philip

    the Ballista software testing technique to test the exception-handling robustness of C++ ORB client. The Ballista project is supported in part by DARPA (contract DABT63-96-C-0064). 3 Jiantao Pan Department

  7. SHINE Vacuum Pump Test Verification

    SciTech Connect (OSTI)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ''booster pump'' is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of 3/4 inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.

  8. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    SciTech Connect (OSTI)

    Wang, J; Templeton, D C; Harris, D B

    2011-01-21

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.

  9. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect (OSTI)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  10. Experimental and theoretical studies of isothermal upward gas-liquid flows in vertical tubes

    SciTech Connect (OSTI)

    Fernandes, R.C.

    1981-01-01

    In two-phase flow technolgy, two important problems exist which must be solved as a function of the various physical and system parameters associated with the phenomenon, and which stand as prerequisites for proper modelling of two-phase processes: Prediction of the flow pattern under existing operating conditions and prediction of the holdup for each given flow pattern. Modelling studies of steady isothermal upward gas-liquid flows in vertical pipes, at low pressures, were undertaken. Experimental data on liquid holdup over a wide range of flow rates were taken for all observed flow patterns-bubbly, slug, churn, and annular - by means of a specially designed Quick-Closing Valves System. This technique also allowed the detection of a unique phenomenon occurring in the form of fast-flowing slugs of gas-liquid mixture, in both the churn and annular flow patterns, which was called the lump phenomenon. The lump holdup was measured and a qualitative theory regarding the nature, formation and propagation of these structures was proposed. A photographic method was applied to the slug flow pattern in order to determine both the rise velocity and length of Taylor bubbles and liquid slugs characteristic of this flow regime. Assisted by the measured data, flow pattern-based physical models were developed for predicting holdup of bubbly flows and the detailed structure of slug flows. The latter was accomplished by means of a fairly complete analysis which enabled the prediction of several variables of interest such as void fractions, velocities, film thicknesses and the length ratio between Taylor bubbles and liquid slugs. The average holdup for churn flow was predicted by directly applying the slug flow model to that flow pattern. A simplified framework for calculating the holdup in annular flows was also proposed. The comparison between theory and experiment showed that for bubbly, slug and churn flows the predicted results are in good agreement with the data.

  11. Single phase flow visualization using Digital Pulsed Laser Velocimetry 

    E-Print Network [OSTI]

    Hild, Robert David

    1989-01-01

    for Single Phase Flow: Experiment z511m-z511r. . . . X. 4 Velocity Vectors for Two Phase Flow: Experiment z726a-z726f (Sigma Cutoff=10. 0) . X. 5 Velocity Vecttus for Two Phase Flow: Experiment z726a-z726f (Sigma Cutoff=0. 020) . 83 . . . 84 96 97... captured. This code was originally intended for six frames of video to be analyzed, however, it was written to accept a variable number of frames greater than four. It has been tested on six, nine, and ten frames of video and performs correctly; 9...

  12. An Integrated Automatic Test Data Generation System A. Jefferson Offutt \\Lambda

    E-Print Network [OSTI]

    Offutt, Jeff

    , mutation testing, software testing, test data generation, unit testing. To Appear in: Journal of Systems during unit testing, the majority of testing of practical software is done at the integration techniques for unit testing is that large software systems typically have hundreds or thousands of program

  13. Hydrogen recombiner catalyst test supporting data

    SciTech Connect (OSTI)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  14. Supercritical flow in rectangular expansions 

    E-Print Network [OSTI]

    Walsh, Peter.

    1968-01-01

    In recent years the occasions for design of channels to contain supercritical flow has increased considerably. Consequently there has developed a need for a method of predicting the physical characteristics of such flow based on theory...

  15. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  16. HYDROLYZED WOOD SLURRY FLOW MODELING

    E-Print Network [OSTI]

    Wrathall, Jim

    2012-01-01

    LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on

  17. Laboratory Evaluation of EGS Shear Stimulation-Test 001

    SciTech Connect (OSTI)

    Bauer, Steve

    2014-07-29

    this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

  18. Laboratory Evaluation of EGS Shear Stimulation-Test 001

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bauer, Steve

    this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

  19. A Measure of Flow Vorticity with Helical Beams of Light

    E-Print Network [OSTI]

    Rosales-Guzmán, Aniceto Belmonte Carmelo

    2015-01-01

    Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize the dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase vari...

  20. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect (OSTI)

    Yuh, C.Y. (Energy Research Corp., Danbury, CT (United States)); Selman, J.R. (Illinois Inst. of Tech., Chicago (United States))

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  1. Fiber-optic interferometric sensor for gas flow measurements

    SciTech Connect (OSTI)

    Kaminski, W.R. ); Griffin, J.W.; Bates, J.M. )

    1991-12-01

    This paper presents the results of an investigation to determine the feasibility of a novel approach to measuring gas flow in a pipe. An optical fiber is stretched across a pipe and serves as a sensor which is based upon the well-established principle of vortex shedding of a cylinder in cross-flow. The resulting time varying optical signal produces a frequency component proportional to the average velocity in the pipe which is in turn proportional to volumetric flow. A Mach-Zehnder interferometer is used to enhance the accuracy of the vortex shedding frequency signal. The analytical and experimental effort discussed herein shows that the concept is feasible and holds promise for a sensitive and accurate flow measuring technique.

  2. THE CONNECTION BETWEEN INTERNETWORK MAGNETIC ELEMENTS AND SUPERGRANULAR FLOWS

    SciTech Connect (OSTI)

    Orozco Suarez, D.; Katsukawa, Y.; Bellot Rubio, L. R.

    2012-10-20

    The advection of internetwork magnetic elements by supergranular convective flows is investigated using high spatial resolution, high cadence, and high signal-to-noise ratio Na I D1 magnetograms obtained with the Hinode satellite. The observations show that magnetic elements appear everywhere across the quiet Sun surface. We calculate the proper motion of these magnetic elements with the aid of a feature tracking algorithm. The results indicate that magnetic elements appearing in the interior of supergranules tend to drift toward the supergranular boundaries with a non-constant velocity. The azimuthally averaged radial velocities of the magnetic elements and of the supergranular flow, calculated from a local correlation tracking technique applied to Dopplergrams, are very similar. This suggests that, in the long term, surface magnetic elements are advected by supergranular flows, although on short timescales their very chaotic motions are driven mostly by granular flows and other processes.

  3. Plasma flow at a high Mach-number

    SciTech Connect (OSTI)

    Yu, Bing; Hameiri, Eliezer

    2013-09-15

    Unlike the case of static magnetohydrodynamic (MHD) equilibria, where an expansion in large aspect ratio of toroidal devices is common, cases of MHD equilibria with flow are rarely treated this way, and when this is done the expansion tends to be only partial. The main reason for the difference seems to be the difficulty of expanding the larger system of equilibrium equations with flow. Here, we use a recent expansion technique which employs a variational principle to simplify the process [E. Hameiri, Phys. Plasmas 20, 024504 (2013)]. We treat four cases of MHD equilibria with flow, developing their asymptotic expansions in full, and for an application consider the effect of the flow on the Shafranov shift.

  4. Ricci flow and quantum theory

    E-Print Network [OSTI]

    Robert Carroll

    2007-11-05

    We show some relations between Ricci flow and quantum theory via Fisher information and the quantum potential.

  5. Flow dynamics of the Moon

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2010-04-03

    Flow analysis of big basins is given. Internal structure of flows is considered. Correlations between flows are calculated. For example, Mare Orientale is a moving basin. Orientale and Imbrium continental basins are introduced and are considered. Olbers ray crater is a result of precise interaction of the two basins. Flows of the Tycho type are studied. Two Antarctidae, an Indian Ocean, and an America are demonstrated.

  6. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  7. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  8. Microgravity Flow Regime Transition Modeling 

    E-Print Network [OSTI]

    Shephard, Adam M.

    2010-07-14

    Flow regime transitions and the modeling thereof underlie the design of microgravity two-phase systems. Through the use of the zero-g laboratory, microgravity two-phase flows can be studied. Because microgravity two-phase flows exhibit essentially...

  9. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  10. A Tool for Estimating Software Testing Requirements James M. Bieman

    E-Print Network [OSTI]

    Bieman, James M.

    A Tool for Estimating Software Testing Requirements James M. Bieman Department of Computer Science 10, 1990 Abstract We describe a prototype software tool that estimates the number of test cases to evaluate proposed testing techniques, estimate the resources required to test a software system

  11. Microfluidic velocimetry reveals spatial cooperativity in soft glassy flows

    E-Print Network [OSTI]

    J. Goyon; A. Colin; G. Ovarlez; A. Ajdari; L. Bocquet

    2008-03-10

    Amorphous glassy materials of diverse nature -- concentrated emulsions, granular materials, pastes, molecular glasses -- display complex flow properties, intermediate between solid and liquid, which are at the root of their use in many applications. A classical feature, well documented yet not really understood, is the very non-linear nature of the flow rule relating stresses and strain rates. Using a microfluidic velocimetry technique, we characterize the flow of thin layers of concentrated emulsions, confined in gaps of different thicknesses by surfaces of different roughness. Beyond the classical non-linearities of the rheological behaviour, we evidence finite size effects in the flow behaviour and the absence of an intrinsic local flow rule. In contrast, a rather simple non-local flow rule is shown to account for all the velocity profiles. This non-locality of the dynamics is quantified by a length, characteristic of the cooperativity of the flow at these scales, that is unobservable in the liquid state (lower concentrations) and that increases with concentration in the jammed state. Beyond its practical importance for applications involving thin layers, e.g. coatings, our assessment of non-locality and cooperativity echoes observations on other glassy, jammed and granular systems, suggesting a possible fundamental universality.

  12. Relation between photospheric flow fields and the magnetic field distribution on the solar surface

    SciTech Connect (OSTI)

    Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.

    1988-04-01

    Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.

  13. Identification of two-phase flow patterns by a single void fraction sensor

    SciTech Connect (OSTI)

    Wang, Y.W.; King, C.H.; Pei, B.S.

    1988-10-01

    A wide range of combinations of gas and liquid flow rates that form various flow patterns are investigated. By analyzing the signal spectra detected by a single sensor using light techniques, the criteria for identifying two-phase flow patterns are proposed. By applying these criteria with only one parameter, the high-frequency contribution fraction (HFCF), the reasonable identifying performance is 76% when churn flow is counted and 88% when churn flow is not counted. When ..cap alpha..-bar is added as an auxiliary to HFCF, the identifying performance can be increased to 83 and 96%, depending on whether churn flow is counted. Both parameters can be acquired by signals from a single void fraction sensor. The criteria are expected to apply to other void fraction measurable systems for identifying two-phase flow patterns.

  14. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  15. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect (OSTI)

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-01-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  16. Two-phase flow and pressure drop in flow passages of compact heat exchangers

    SciTech Connect (OSTI)

    Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.

    1992-02-01

    Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.

  17. Prototype to Test WHY prototype to test

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

  18. Testing with JUnit Testing with JUnit

    E-Print Network [OSTI]

    Peters, Dennis

    Testing with JUnit Testing with JUnit Running a test case: 1 Get the component to a known state (set up). 2 Cause some event (the test case). 3 Check the behaviour. · Record pass/fail · Track statistics · Typically we want to do a lot of test cases so it makes sense to automate. · Test cases

  19. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    SciTech Connect (OSTI)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    The supercritical CO{sub 2} Brayton cycle is gaining importance for power conversion in the Generation IV fast reactor system because of its high conversion efficiencies. When used in conjunction with a sodium fast reactor, the supercritical CO{sub 2} cycle offers additional safety advantages by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV fast reactors, supercritical CO{sub 2} temperatures could be in the range of 30°C to 650°C, depending on the specific component in the system. Materials corrosion primarily at high temperatures will be an important issue. Therefore, the corrosion performance limits for materials at various temperatures must be established. The proposed research will have four objectives centered on addressing corrosion issues in a high-temperature supercritical CO{sub 2} environment: Task 1: Evaluation of corrosion performance of candidate alloys in high-purity supercritical CO{sub 2}: The following alloys will be tested: Ferritic-martensitic Steels NF616 and HCM12A, austenitic alloys Incoloy 800H and 347 stainless steel, and two advanced concept alloys, AFA (alumina forming austenitic) steel and MA754. Supercritical CO{sub 2} testing will be performed at 450°C, 550°C, and 650°C at a pressure of 20 MPa, in a test facility that is already in place at the proposing university. High purity CO{sub 2} (99.9998%) will be used for these tests. Task 2: Investigation of the effects of CO, H{sub 2}O, and O{sub 2} impurities in supercritical CO{sub 2} on corrosion: Impurities that will inevitably present in the CO{sub 2} will play a critical role in dictating the extent of corrosion and corrosion mechanisms. These effects must be understood to identify the level of CO{sub 2} chemistry control needed to maintain sufficient levels of purity to manage corrosion. The individual effects of important impurities CO, H{sub 2}O, and O{sub 2} will be investigated by adding them separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).

  20. Flow-controlled magnetic particle manipulation

    DOE Patents [OSTI]

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  1. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  2. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    and Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andLarge Block Test at Yucca Mountain, Nevada, Water Resourcesthe Drift Scale Test at Yucca Mountain, Nevada, Journal of

  3. Constant pressure high throughput membrane permeation testing system

    DOE Patents [OSTI]

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  4. PWR FLECHT SEASET 21-rod bundle flow blockage task. Task plan report. FLECHT SEASET Program report No. 5

    SciTech Connect (OSTI)

    Hochreiter, L.E.; Basel, R.A.; Dennis, R.J.; Lee, N.; Massie, H.W. Jr.; Loftus, M.J.; Rosal, E.R.; Valkovic, M.M.

    1980-10-01

    This report presents a descriptive plan of tests for the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). This task will consist of forced and gravity reflooding tests utilizing electrical heater rods to simulate PWR nuclear core fuel rod arrays. All tests will be performed with a cosine axial power profile. These tests are planned to be used to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 161-rod flow blockage bundle tests.

  5. Flow Measurement and Instrumentation 9 (1998) 159169 Measurement of angular velocities using electrical impedance

    E-Print Network [OSTI]

    1998-01-01

    Flow Measurement and Instrumentation 9 (1998) 159­169 Measurement of angular velocities using, the predominant component of velocity is angular in nature. In this paper a novel technique based on electrical impedance tomography (EIT) is introduced for measuring and mapping these angular velocities. The technique

  6. STABILIZED FINITE ELEMENT METHODS FOR FLOWS WITH MOVING BOUNDARIES AND INTERFACES

    E-Print Network [OSTI]

    Tezduyar, Tayfun E.

    1 STABILIZED FINITE ELEMENT METHODS FOR FLOWS WITH MOVING BOUNDARIES AND INTERFACES Tayfun E boundaries and interfaces. The methods developed can be classified into two main categories: interface-tracking and interface-capturing techniques. Both classes of techniques are based on sta- bilized formulations

  7. Optical monitor for observing turbulent flow

    DOE Patents [OSTI]

    Albrecht, Georg F. (Livermore, CA); Moore, Thomas R. (Rochester, NY)

    1992-01-01

    The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.

  8. A Coverage Analysis Tool for the Effectiveness of Software Testing Michael R. Lyu

    E-Print Network [OSTI]

    Lyu, Michael R.

    A Coverage Analysis Tool for the Effectiveness of Software Testing Michael R. Lyu J. R. Horgan Saul)829­3999 Keywords - N­Version Programming, Data Flow Testing, Test Effectiveness, Testing Cover­ age Tool, Software Metrics. Reader Aids - General purpose: Description of a testing coverage analysis tool and its

  9. The Magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  10. Pressure Change Measurement Leak Testing Errors

    SciTech Connect (OSTI)

    Pryor, Jeff M; Walker, William C

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  11. Flow visualization study of inverted annular flow of post dryout heat transfer region. [PWR; BWR

    SciTech Connect (OSTI)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 ..mu..sec) are used.

  12. Specification-driven Directed Test Generation for Validation of Pipelined Processors

    E-Print Network [OSTI]

    Mishra, Prabhat

    techniques accept the graph model of the architecture as input and generate test programs to detect allSpecification-driven Directed Test Generation for Validation of Pipelined Processors PRABHAT MISHRA techniques for directed test genera- tion. Directed test vectors can reduce overall validation effort since

  13. A COUPLED HYDRAULIC AND ELECTRICAL STRESS DETERMINATION TECHNIQUE

    E-Print Network [OSTI]

    A COUPLED HYDRAULIC AND ELECTRICAL STRESS DETERMINATION TECHNIQUE Mai Linh DOAN Département de Alps. The Hydraulic Tests on Preexisting Fractures (HTPF) method was chosen for it provides means to determine the complete stress tensor. The campaign was performed with a specific probe, coupling hydraulic

  14. A pattern matching technique for measuring sediment displacement levels

    E-Print Network [OSTI]

    Dalziel, Stuart

    of a vortex ring with a glass ballotini particle layer as the resuspension mechanism are described to test-intrusive measurements of changes in the depth of a layer of sedi- ment due to a resuspension event. The key focus here is on the measurement technique itself, rather than the dynamics of the resuspension event that motivated

  15. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  16. Techniques and Technology Article Optimizing Radio Retention and Minimizing Radio

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Techniques and Technology Article Optimizing Radio Retention and Minimizing Radio Impacts the duration of transmitter attachment and minimizing the impacts of radios on the behavior and demography of the study animal. We tested 4 methods of radio attachment for a breeding population of upland sandpipers

  17. UNL/OSU Researchers Try Promising Technique to Remove Groundwater

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL/OSU Researchers Try Promising Technique to Remove Groundwater Contamination Under Former Oklahoma State University have joined to test promising new methods of removing longstanding groundwater into specially drilled injection wells, where it mixes with contaminants in the groundwater under the former

  18. Flow Battery Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast(ER1)Flow Battery

  19. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  20. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D., E-mail: d.buchenau@hzdr.de; Galindo, V.; Eckert, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  1. Technical notes Experiments in Fluids 22 (1997) 351--353 Springer-Verlag 1997 Vortex stretching in a laminar boundary layer flow

    E-Print Network [OSTI]

    Wesfreid, José Eduardo

    1997-01-01

    in a laminar boundary layer flow P. Petitjeans, J. E. Wesfreid, J. C. Attiach Abstract A new technique the effects of stretching on a controlled vorticity sheet coming from a laminar boundary layer flow on a flat. A diffuser keeps the flow laminar with a minimum of perturbation. The key elements of the channel

  2. Hot film/wire calibration for low to moderate flow velocities This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Van Hirtum, Annemie

    Hot film/wire calibration for low to moderate flow velocities This article has been downloaded from fluid flow dynamic properties by deducing instantaneous velocities from local heat transfer information) or the characteristics of a laminar pipe flow (Yue and Malmstrom 1998). Despite the complexity of some techniques

  3. 16th Int Symp on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 912 July, 2012

    E-Print Network [OSTI]

    Garbe, Christoph S.

    16th Int Symp on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 9­12 July on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 9­12 July, 2012 In this equation, (gx, gy, 2012 Plenoptic Particle Streak Velocimetry (pPSV): 3D3C fluid flow measurement from light fields

  4. Large-scale cosmic flows and moving dark energy

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2009-02-24

    Large-scale matter bulk flows with respect to the cosmic microwave background have very recently been detected on scales 100 Mpc/h and 300 Mpc/h by using two different techniques showing an excellent agreement in the motion direction. However, the unexpectedly large measured amplitudes are difficult to understand within the context of standard LCDM cosmology. In this work we show that the existence of such a flow could be signaling the presence of moving dark energy at the time when photons decoupled from matter. We also comment on the relation between the direction of the CMB dipole and the preferred axis observed in the quadrupole in this scenario.

  5. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    E-Print Network [OSTI]

    Visser, Matt

    2010-01-01

    "Acoustic spacetimes", in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow, and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this article we provide a pedagogical and simple derivation of the general relativistic "acoustic spacetime" in an arbitrary (d+1) dimensional curved-space background.

  6. Inhibition of slug front corrosion in multiphase flow conditions

    SciTech Connect (OSTI)

    Chen, H.J.; Jepson, W.P.

    1998-12-31

    Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

  7. Spiral Laminar Flow: A revolution in understanding?

    E-Print Network [OSTI]

    Greenaway, Alan

    Blood Flow Spiral laminar flow #12;Spiral flow in the Aorta (MRI) Computational Fluid Dynamics 0 10 20Spiral Laminar Flow: A revolution in understanding? Reintroduction of natural blood flow Laminar Flow through Runoff (3months) Proximal Anastomosis SLF TM Graft Distal Anastomosis Post-op Angios

  8. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier (Hanover, NH)

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  9. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  10. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  11. High-resolution quantification of groundwater flux using a heat tracer: laboratory sandbox tests

    E-Print Network [OSTI]

    Konetchy, Brant Evan

    2014-12-31

    and groundwater flux. In this work, we constructed a sandbox to simulate a sand aquifer and performed a series of heat tracer tests under different flow rates. By analyzing the temperature responses among different tests, we developed a quantitative temperature...

  12. A SOLAR TEST COLLECTOR FOR EVALUATION OF BOTH SELECTIVE AND NON-SELECTIVE ABSORBERS

    E-Print Network [OSTI]

    Lampert, C.M.

    2011-01-01

    Standards for ~sting Solar Collectors and Thermal StorageLBL-6974 Rev. e. ' A SOLAR TEST COLLECTOR FOR EVALUATION OF+ 0.66 Fig. L r2 r2 Solar test collector flow chart. Type

  13. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  14. Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1986-12-09

    Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.

  15. Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

    1986-01-01

    Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front therethrough. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique.

  16. New experimental techniques with the split Hopkinson pressure bar

    SciTech Connect (OSTI)

    Frantz, C.E.; Follansbee, P.S.; Wright, W.J.

    1984-01-01

    The split Hopkinson pressure bar or Kolsky bar has provided for many years a technique for performing compression tests at strain rates approaching 10/sup 4/ s/sup -1/. At these strain rates, the small dimensions possible in a compression test specimen give an advantage over a dynamic tensile test by allowing the stress within the specimen to equilibrate within the shortest possible time. The maximum strain rates possible with this technique are limited by stress wave propagation in the elastic pressure bars as well as in the deforming specimen. This subject is reviewed in this paper, and it is emphasized that a slowly rising excitation is preferred to one that rises steeply. Experimental techniques for pulse shaping and a numerical procedure for correcting the raw data for wave dispersion in the pressure bars are presented. For tests at elevated temperature a bar mover apparatus has been developed which effectively brings the cold pressure bars into contact with the specimen, which is heated with a specially designed furnace, shortly before the pressure wave arrives. This procedure has been used successfully in tests at temperatures as high as 1000/sup 0/C.

  17. Orion Flight Test Exploration Flight Test-1

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC National Aeronautics and Space Administration #12;#12;Orion Flight Test December 2014 Contents Section Page ........................................................................................... 28 i #12;Orion Flight Test ii December 2014 #12;Orion Flight Test December 2014 Flight Overview

  18. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  19. Test Preparation Options Free Test Prep Websites

    E-Print Network [OSTI]

    Stowell, Michael

    Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

  20. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect (OSTI)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha