Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

2

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

3

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Water-Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water-Gas Sampling edit Details Activities (21) Areas (18) Regions (1)...

4

September 2004 Water Sampling  

Office of Legacy Management (LM)

3 3 Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map .............................5 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9

5

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map ..............................................................7 Data Assessment Summary ..............................................................................................................9 Water Sampling Field Activities Verification Checklist ...........................................................11

6

September 2004 Water Sampling  

Office of Legacy Management (LM)

Sampling at the Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

7

September 2004 Water Sampling  

Office of Legacy Management (LM)

Riverton, Wyoming, Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9 Laboratory Performance Assessment ........................................................................................11

8

September 2004 Water Sampling  

Office of Legacy Management (LM)

Old and New Rifle, Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle, Colorado, Processing Site ..........................................................6 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9

9

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

and October 2013 and October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site ................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

10

September 2004 Water Sampling  

Office of Legacy Management (LM)

was not identified at many groundwater locations. 18. Was the presence or absence of ice in the cooler documented at every sample location? Yes 19. Were water levels measured...

11

September 2004 Water Sampling  

Office of Legacy Management (LM)

Green River, Utah, Disposal Site Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities Verification Checklist .............................................................9 Laboratory Performance Assessment ........................................................................................11 Sampling Quality Control Assessment ......................................................................................18

12

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

13

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

14

September 2004 Water Sampling  

Office of Legacy Management (LM)

information documented on the field data sheets? Yes 18. Was the presence or absence of ice in the cooler documented at every sample location? NA Sample chilling was not required....

15

September 2004 Water Sampling  

Office of Legacy Management (LM)

field procedures? Yes List any Program Directives or other documents, SOPs, instructions. Work Order Letter dated May 1, 2013. Program Directive SHL 2013 01. 2. Were the sampling...

16

Definition: Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Jump to: navigation, search Dictionary.png Surface Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a...

17

Techniques for multivariate sample design  

SciTech Connect

In this report we consider sampling methods applicable to the multi-product Annual Fuel Oil and Kerosene Sales Report (Form EIA-821) Survey. For years prior to 1989, the purpose of the survey was to produce state-level estimates of total sales volumes for each of five target variables: residential No. 2 distillate, other retail No. 2 distillate, wholesale No. 2 distillate, retail residual, and wholesale residual. For the year 1989, the other retail No. 2 distillate and wholesale No. 2 distillate variables were replaced by a new variable defined to be the maximum of the two. The strata for this variable were crossed with the strata for the residential No. 2 distillate variable, resulting in a single stratified No. 2 distillate variable. Estimation for 1989 focused on the single No. 2 distillate variable and the two residual variables. Sampling accuracy requirements for each product were specified in terms of the coefficients of variation (CVs) for the various estimates based on data taken from recent surveys. The target population for the Form EIA-821 survey includes companies that deliver or sell fuel oil or kerosene to end-users. The Petroleum Product Sales Identification Survey (Form EIA-863) data base and numerous state and commercial lists provide the basis of the sampling frame, which is updated as new data become available. In addition, company/state-level volumes for distillates fuel oil, residual fuel oil, and motor gasoline are added to aid the design and selection process. 30 refs., 50 figs., 10 tabs.

Williamson, M.A.

1990-04-01T23:59:59.000Z

18

Definition: Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Jump to: navigation, search Dictionary.png Water Sampling Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or...

19

Water Sampling (Healy, 1970) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Healy, 1970) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Healy, 1970) Exploration Activity Details Location...

20

Water-Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation,...

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Water Sampling At Reese River Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Water Sampling At Reese River Area (Henkle, Et Al., 2005) Exploration Activity Details Location Reese River Area Exploration Technique Water Sampling Activity Date Usefulness...

22

Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Water Sampling At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Water Sampling Activity Date Usefulness...

23

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

24

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

25

Boiling Water Reactor Sampling Summary: 2012 Update  

Science Conference Proceedings (OSTI)

This report documents boiling water reactor (BWR) sampling practices for key reactor water and feedwater parameters. It includes information on analysis methods, sampling frequencies, and compliance with the recommended sampling frequencies in BWRVIP-190: BWR Vessels and Internals Project, BWR Water Chemistry Guidelines – 2008 Revision (EPRI report 1016579).

2013-03-28T23:59:59.000Z

26

Category:Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Category Edit History Facebook icon Twitter icon Category:Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

27

Techniques for geothermal liquid sampling and analysis  

DOE Green Energy (OSTI)

A methodology has been developed that is particularly suited to liquid-dominated resources and adaptable to a variety of situations. It is intended to be a base methodology upon which variations can be made to meet specific needs or situations. The approach consists of recording flow conditions at the time of sampling, a specific insertable probe sampling system, a sample stabilization procedure, commercially available laboratory instruments, and data quality check procedures.

Kindle, C.H.; Woodruff, E.M.

1981-07-01T23:59:59.000Z

28

Water Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling (Lewicki & Oldenburg, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling (Lewicki & Oldenburg, 2004) Exploration...

29

Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Mokapu Penninsula Area (Thomas, Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Chemical analysis of groundwater from Mokapu was severely restricted by the absence of drilled wells; the only groundwater sources present were five shallow, brackish ponds, Chemical data indicated that all of the ponds consisted of seawater diluted by varying amounts of fresh surface water; no thermal alteration was revealed by the water chemistry (Table 2). Available temperature and water chemistry data on the Koolau caldera area were also assessed as part of the Mokapu study. The results of this analysis (Table

30

Water Sampling At International Geothermal Area, Philippines (Wood, 2002) |  

Open Energy Info (EERE)

Water Sampling At International Geothermal Area Water Sampling At International Geothermal Area Philippines (Wood, 2002) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

31

Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |  

Open Energy Info (EERE)

International Geothermal Area, New Zealand (Wood, 2002) International Geothermal Area, New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area New Zealand (Wood, 2002) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

32

Water Sampling At Heber Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Heber Area (Wood, 2002) Heber Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

33

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

34

Posterior Sampling using Particle Swarm Optimizers and Model Reduction Techniques  

Science Conference Proceedings (OSTI)

Inverse problems are ill-posed and posterior sampling is a way of providing an estimate of the uncertainty based on a finite set of the family of models that fit the observed data within the same tolerance. Monte Carlo methods are used for this purpose ... Keywords: High Dimensional Spaces, Inverse Problems, Model Reduction Techniques, Particle Swarm, Posterior Sampling

J. L. Fernández Martínez; E. García Gonzalo; Z. Fernández Muñiz; G. Mariethoz; T. Mukerji

2010-07-01T23:59:59.000Z

35

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Kauai Area (Thomas, 1986) Kauai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater geochemical data compiled for Kauai during the preliminary assessment identified a few very weak water chemistry anomalies, and although these anomalies could be interpreted to be the result of residual heat associated with Kauai's late-stage volcanism, the great age of this activity as well as the absence of any other detectable thermal effects suggests that this is very unlikely. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

36

Mutation Sampling Technique for the Generation of Structural Test Data  

E-Print Network (OSTI)

Our goal is to produce validation data that can be used as an efficient (pre) test set for structural stuck-at faults. In this paper, we detail an original test-oriented mutation sampling technique used for generating such data and we present a first evaluation on these validation data with regard to a structural test.

Scholive, M; Robach, C; Flottes, M L; Rouzeyre, B

2011-01-01T23:59:59.000Z

37

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

38

Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

39

Water-Gas Samples (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples (Klein, 2007) Exploration Activity Details Location Unspecified...

40

Comparison of techniques for preserving dissolved nutrients in open-ocean seawater samples  

Science Conference Proceedings (OSTI)

A survey of recent literature on methods for preserving nutrients indicates that the major factors which have been considered are: filtration and type of filter, material and history of storage containers, the influence of light, storage temperature and how it is achieved, the effectiveness of various acids, poisons, and preservatives, and the source of the sample. No comprehensive studies of open ocean seawater were found. A comprehensive study of nutrient preservation techniques was conducted on surface and deep seawater samples collected in the Gulf Stream east of Miami, Florida. No preservation techniques were found to be satisfactory for near-surface open ocean seawater. Results for deep water samples are found to be substantially better. The degree of preservation was not substantially improved by complex techniques involving freezing and chemical additives. Storage of filtered samples in aged polyethylene bottles at 2/sup 0/C in the dark is recommended for samples that must be stored. (LEW)

Morse, J. W.; Hunt, M.; Zullig, J.; Mucci, A.; Mendez, T.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

News Release: DOE Announces Riverton Water Sampling Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Riverton Water Sampling Results Announces Riverton Water Sampling Results News Release: DOE Announces Riverton Water Sampling Results May 11, 2012 - 3:25pm Addthis News Contact: Contractor, Judy Miller, S.M. Stoller Corporation Public Affairs (970) 248-6363 jmiller@lm.doe.gov Laboratory results indicate water from the alternative water supply system is safe for residents to drink The U.S. Department of Energy announced today that residential drinking water testing from an alternative water supply system in Riverton, Wyoming, confirmed the water is safe. Results from ater samples collected on May 3, 2012, show that uranium levels at 0.0001 milligrams per liter, well below the drinking water standard set by the U.S. Environmental Protection Agency. "We take the issue of potential water contamination very seriously and

42

Collection of Water Samples from an Autonomous Underwater Vehicle for Tracer Analysis  

Science Conference Proceedings (OSTI)

A compact water sampler rated to full ocean depth has been deployed from an autonomous underwater vehicle (AUV) to enable oceanographic tracer measurements. Techniques developed to allow the instrument to collect up to 49 samples of sufficient ...

Paul A. Dodd; Martin R. Price; Karen J. Heywood; Miles Pebody

2006-12-01T23:59:59.000Z

43

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

44

Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

45

Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al....  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity...

46

Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

47

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration...

48

ENHANCEMENT OF ENVIRONMENTAL SAMPLING THROUGH AN IMPROVED AIR MONITORING TECHNIQUE  

SciTech Connect

Environmental sampling (ES) is a key component of International Atomic Energy Agency (IAEA) safeguarding approaches throughout the world. Performance of ES (e.g. air, water, vegetation, sediments, soil and biota) supports the IAEAs mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a State and has been available since the introduction of safeguards strengthening measures approved by the IAEA Board of Governors (1992-1997). A recent step-change improvement in the gathering and analysis of air samples at uranium/plutonium bulk handling facilities is an important addition to the international nuclear safeguards inspector's toolkit. Utilizing commonly used equipment throughout the IAEA network of analytical laboratories for particle analysis, researchers are developing the next generation of ES equipment for air grab and constant samples. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) silicon substrate has been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. The new collection equipment will allow IAEA nuclear safeguards inspectors to develop enhanced safeguarding approaches for complicated facilities. This paper will explore the use of air monitoring to establish a baseline environmental signature of a particular facility that could be used for comparison of consistencies in declared operations. The implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Technical aspects of the air monitoring device and the analysis of its environmental samples will demonstrate the essential parameters required for successful application of the system.

Hanks, D.

2010-06-07T23:59:59.000Z

49

Water Sampling At Coso Geothermal Area (1977-1978) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Coso Geothermal Area (1977-1978) Water Sampling At Coso Geothermal Area (1977-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Water Sampling Activity Date 1977 - 1978 Usefulness not indicated DOE-funding Unknown Notes Hydrogeologic investigation of Coso hot springs was conducted by field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; determination of the possible impact of large-scale

50

Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) Water Sampling At Twenty-Nine Palms Area (Page, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Twenty-Nine Palms Geothermal Area (Page, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes A full comparison of these analyses with those of other groundwater from the Twenty-Nine Palms/Joshua/Johnson Valley/Yucca Valley areas may indicate an enhanced mixing component, or it may show that these waters are simply consistent with most other groundwater in the region. Given the apparent gross immaturity of the waters sampled here, it is difficult to even estimate an order of magnitude of a geothermal component to these fluids,

51

UMTRA project water sampling and analysis plan, Naturita, Colorado  

SciTech Connect

Surface remedial action is scheduled to begin at the Naturita UMTRA Project processing site in the spring of 1994. No water sampling was performed during 1993 at either the Naturita processing site (NAT-01) or the Dry Flats disposal site (NAT-12). Results of previous water sampling at the Naturita processing site indicate that ground water in the alluvium is contaminated as a result of uranium processing activities. Baseline ground water conditions have been established in the uppermost aquifer at the Dry Flats disposal site. Water sampling activities scheduled for April 1994 include preconstruction sampling of selected monitor wells at the processing site, surface water sampling of the San Miguel River, sampling of several springs/seeps in the vicinity of the disposal site, and sampling of two monitor wells in Coke Oven Valley. The monitor well locations provide sampling points to characterize ground water quality and flow conditions in the vicinity of the sites. The list of analytes has been updated to reflect constituents related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted annually at minimum during the period of construction activities.

Not Available

1994-04-01T23:59:59.000Z

52

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

53

Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Salt Wells Area (Coolbaugh, Et Al., Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order to evaluate the relationship between these features and structures that control geothermal fluid flow. Notes Water from six hot springs/seeps (out of some 20 seasonal discharges identified, with hot spring temperatures ranging from 39.1-81.6°C and cold seep temperatures between 5-7°C) and playa groundwaters were sampled and

54

UMTRA Project water sampling and analysis plan, Falls City, Texas  

SciTech Connect

Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

1994-02-01T23:59:59.000Z

55

Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Northern Basin & Range Region Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

56

Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Buffalo Valley Hot Springs Area Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

57

Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Nw Basin & Range Region (Laney, Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

58

Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Alvord Hot Springs Area (Wood, Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location Alvord Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

59

Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Beowawe Hot Springs Area (Wood, Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details Location Beowawe Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

60

UMTRA water sampling and analysis plan, Lakeview, Oregon  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide background, guidance, and justification for water sampling activities for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) processing and disposal sites. This water sampling and analysis plan will form the basis for groundwater sampling and analysis work orders (WSAWO) to be implemented during 1993. Monitoring at the former Lakeview processing site is for characterization purposes and in preparation for the risk assessment, scheduled for the fall of 1993. Compliance monitoring was conducted at the disposal site. Details of the sampling plan are discussed in Section 5.0.

Not Available

1993-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy  

Open Energy Info (EERE)

Surface Water Sampling At Raft River Geothermal Area (1973) Surface Water Sampling At Raft River Geothermal Area (1973) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Water Sampling At Raft River Geothermal Area (1973) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Surface Water Sampling Activity Date 1973 Usefulness not indicated DOE-funding Unknown Exploration Basis At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. Notes One hundred twenty-four of 380 hot springs and wells in the central and southern parts of Idaho were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of

62

Effect of sample conditioning on the water absorption of ...  

Science Conference Proceedings (OSTI)

... the bottom surface of the sample to liquid water and ... of curvature, R is the universal gas constant, and T ... The sand used was natural river sand with a ...

2013-08-09T23:59:59.000Z

63

The Value of Information from Water Sampling in Massachusetts  

Science Conference Proceedings (OSTI)

A Bayesian decision framework is used to determine the value of information from water sampling with respect to alternative pollution abatement strategies. The critical low stream flow months of August 1966-77 for a New England river basin are ...

Kevin M. Moore; Bernard J. Morzuch

1982-04-01T23:59:59.000Z

64

Geochemical Sampling of Thermal Waters in Nevada | Open Energy Information  

Open Energy Info (EERE)

Geochemical Sampling of Thermal Waters in Nevada Geochemical Sampling of Thermal Waters in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemical Sampling of Thermal Waters in Nevada Abstract There are 1000 thermal springs in Nevada for which a location is known, but for which there are no available temperature (or chemical) measurements. Although many of these sites are within known geothermal areas and are located near springs for which temperature and/or geochemical data are available for one of the springs, many of these sites are not so located and require evaluation before the geothermal potential of the area can be assessed. In order to begin filling in data gaps, water sampling commenced in 2002 when over 70 analyses were obtained from springs with previously

65

Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Walker-Lane Transitional Zone Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

66

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

67

RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES  

SciTech Connect

A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of {sup 210}Po.

Maxwell, S.

2013-05-22T23:59:59.000Z

68

A biologically inspired technique for sampling of color images  

Science Conference Proceedings (OSTI)

Color space dimensionality possesses main problem in fast processing of color images so appropriate sampling of color images is very important. Unlike the existing statistical sampling algorithm, in this paper, a biologically inspired non-linear color ... Keywords: Buchsbaum non-linearity, human retinal receptors, just noticeable difference (JND), model of color vision, non-linear sampling

Rajesh B Raut; K. M. Bhurchandi

2008-11-01T23:59:59.000Z

69

Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling At Mt Rainier Area (Frank, 1995) Water Sampling At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

70

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

71

Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 162°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Rhodes_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=387552"

72

Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy  

Open Energy Info (EERE)

Helens Area (Shevenell & Goff, 1995) Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Mt_St_Helens_Area_(Shevenell_%26_Goff,_1995)&oldid=389549" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

73

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

74

Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al.,  

Open Energy Info (EERE)

Of Ten Thousand Smokes Region Area (Keith, Et Al., Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Keith,_Et_Al.,_1992)&oldid=386869" Categories: Exploration Activities DOE Funded Activities

75

Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Teels Marsh Area (Coolbaugh, Et Al., 2006) Teels Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Teels Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 192°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Teels_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=388168

76

Field Sampling Report -Water 2005 SFEI PRISM-Methods Development  

E-Print Network (OSTI)

phase extraction). 2. Collect water samples from five sites for analysis of total chlorpyrifos and total remained in possession of Mr. Salop stored on wet ice / blue ice overnight. April 14, 2005 0730-0845 Mr. Salop stored on wet ice / blue ice overnight. April 15, 2005 0800-1130 Mr. Salop delivered appropriate

77

Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity Details Location Zim's Hot Springs Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

78

Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

79

Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Area (Wood, 2002) Hot Lake Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

80

Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Hot Springs Area (Wood, 2002) Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location Crane Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mccredie Hot Springs Area (Wood, 2002) Mccredie Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mccredie Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

82

Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity Details Location Belknap-Foley-Bigelow Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

83

Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) | Open Energy  

Open Energy Info (EERE)

Shevenell & Garside, 2003) Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive evaluation of Nevada's geothermal resource potential.

84

Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) | Open Energy  

Open Energy Info (EERE)

Hurwitz, Et Al., 2007) Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to monthly sampling enables the examination of spatial and temporal patterns

85

RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES  

SciTech Connect

The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.

Maxwell, S.; Culligan, B.

2008-08-27T23:59:59.000Z

86

Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor  

Science Conference Proceedings (OSTI)

Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

Schlaepfer, D.; Itten, K.I. [Univ. of Zuerich (Switzerland). Dept. of Geography] [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Inst., Villigen (Switzerland)] [Paul Scherrer Inst., Villigen (Switzerland)

1998-09-01T23:59:59.000Z

87

Water Sampling At Central Nevada Seismic Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

88

Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.

Peterson, Stacia

2003-08-01T23:59:59.000Z

89

Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Henkle, Et Al., 2005) Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Water Sampling Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

90

UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

NONE

1995-06-01T23:59:59.000Z

91

Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mickey Hot Springs Area (Wood, Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mickey Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

92

Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Salton Sea Area (Wood, 2002) Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton Sea Area Exploration Technique Water Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two. Our results indicate that

93

Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Umpqua Hot Springs Area (Wood, Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location Umpqua Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

94

Radiochemical Analyses of Water Samples from Selected Streams  

Office of Legacy Management (LM)

> > : , - ' and Precipitation Collected in - Connection with Calibration-Test Flaring of Gas From Test Well, - I August 15-October 13, 197,0,, Project Rulison-8, 197 1 HGS 9 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal center, Denver, Colorado 80225 RADIOCHEMICAL ANALYSES OF WATER SAMPLES FROM SELECTED STREAMS AND PRECIPITATION COLLECTED IN CONNECTION WITH CALIBRATION-TEST FLARING OF GAS FROM TEST WELL, AUGUST.15-OCTDBER 13, 1970 PROJECT RULISON Hans C. Claassen and Paul T. Voegeli, Sr. CONTENTS Page Introduction..................... ................................... 1 Results.

95

Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Lightning Dock Area (Norman, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Water-Gas Samples Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lightning Dock, Animas Valley, New Mexico geothermal area was discovered when a rancher found boiling water while drilling a shallow stock tank welt (Elston, Deal, et. al, 1983). There are no surface manifestations of present or past geothermal activity in the Animas Valley. Norman and Bernhart (1982) analyzed the gases in the discovery well and 15 stock tank wells nearby (Figure 1). References David Norman, Nigel Blarney, Lynne Kurilovitch (2002) New

96

UMTRA project water sampling and analysis plan, Riverton, Wyoming  

Science Conference Proceedings (OSTI)

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

Not Available

1994-03-01T23:59:59.000Z

97

RAPID METHOD FOR DETERMINATION OF {sup 228}Ra IN WATER SAMPLES  

Science Conference Proceedings (OSTI)

A new rapid method for the determination of {sup 228}Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/ Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine {sup 228}Ra in solid samples (via {sup 228}Ac) , radiochemical methods that employ gas flow proportional counting techniques typically provide lower MDA (Minimal Detectable Activity) levels for the determination of {sup 228}Ra in water samples. Most radiochemical methods for {sup 228}Ra collect and purify {sup 228}Ra and allow for {sup 228}Ac daughter ingrowth for ~36 hours. In this new SRNL/EBL approach, {sup 228}Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 hours so that {sup 228}Ra assay results on water samples can be achieved in 90%), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. {sup 228}Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify {sup 228}Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and {sup 90}Y. La is used to determine {sup 228}Ac chemical yield via ICP-MS, but {sup 133}Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.

Maxwell, S.

2012-09-05T23:59:59.000Z

98

RAPID METHOD FOR DETERMINATION OF {sup 228}Ra IN WATER SAMPLES  

SciTech Connect

A new rapid method for the determination of {sup 228}Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/ Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine {sup 228}Ra in solid samples (via {sup 228}Ac) , radiochemical methods that employ gas flow proportional counting techniques typically provide lower MDA (Minimal Detectable Activity) levels for the determination of {sup 228}Ra in water samples. Most radiochemical methods for {sup 228}Ra collect and purify {sup 228}Ra and allow for {sup 228}Ac daughter ingrowth for ~36 hours. In this new SRNL/EBL approach, {sup 228}Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 hours so that {sup 228}Ra assay results on water samples can be achieved in < 6 hours. The method uses a rapid calcium carbonate precipitation enhanced with a small amount of phosphate added to enhance chemical yields (typically >90%), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. {sup 228}Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify {sup 228}Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and {sup 90}Y. La is used to determine {sup 228}Ac chemical yield via ICP-MS, but {sup 133}Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.

Maxwell, S.

2012-09-05T23:59:59.000Z

99

Chemical analysis and sampling techniques for geothermal fluids and gases at the Fenton Hill Laboratory  

DOE Green Energy (OSTI)

A general description of methods, techniques, and apparatus used for the sampling, chemical analysis, and data reporting of geothermal gases and fluids is given. Step-by-step descriptions of the procedures are included in the appendixes.

Trujillo, P.E.; Counce, D.; Grigsby, C.O.; Goff, F.; Shevenell, L.

1987-06-01T23:59:59.000Z

100

Plenary lecture 5: data aggregations techniques in over-sampling converters  

Science Conference Proceedings (OSTI)

Data flow reduction in digital instrumentation usually comes with the benefit of statistical processing for noise cancellation and preservation of signals correlation parameters among an overall compression of information. Over-sampling techniques offer ...

Sorin Dan Grigorescu

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

102

Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Hawthorne Area (Lazaro, Et Al., Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne

103

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

104

Development and evaluation of on-line detection techniques for polar organics in ultrapure water  

SciTech Connect

An on-line monitor that can perform rapid, trace detection of polar organics such as acetone and isopropanol in ultrapure water (UPW) is necessary to efficiently recycle water in semiconductor manufacturing facilities. The detection of these analytes is problematic due to their high solubility in water, resulting in low partitioning into sensor coatings for direct water analysis or into the vapor phase for detection by vapor phase analyzers. After considering various options, we have evaluated two conventional laboratory techniques: gas chromatography and ion mobility spectroscopy. In addition, optimizations of sensor coating materials and sample preconditioning systems were performed with the goal of a low cost, chemical sensor system for this application. Results from these evaluations, including recommendations for meeting the needs of this application, are reported.

Frye, G.C.; Blair, D.S.; Schneider, T.W.; Mowry, C.D.; Colburn, C.W.; Donovan, R.P.

1996-03-01T23:59:59.000Z

105

Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site  

SciTech Connect

Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the “smoking gun” evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activity—the focus of this report—was a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ measurements with high-purity germanium (HPGe) and hand-held LaBr3 systems, soil sampling with a variety of tools, and laboratory gamma spectrometric analysis of those samples. A further benefit of the measurement campaign was to gain familiarity with the many logistical aspects of performing radiological field work at NNSS ahead of the PRex. Many practical lessons concerning the proper methodologies and logistics of using the surveying and sampling equipment were noted. These Lessons Learned are compiled together in Appendix A. The vehicle-based survey was successful in that it found a previously unknown hotspot (determined to be 232Th) while it demonstrated that a better method for keeping a serpentine track without staking was needed. Some of the soil sampling equipment was found to be impractical for the application, though core sampling would not be the correct way to take soil samples for a fresh vent deposit (as opposed to an old site like DILUTED WATERS). Due to the site’s age, 137Cs was the only fission radioisotope identified, though others were searched for. While not enough samples were taken and analyzed to definitively link the 137Cs to DILUTED WATERS as opposed to other NNSS activities, results were consistent with the historical DILUTED WATERS plume. MDAs were compared for soil sampling and in situ measurements.

Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

2012-11-01T23:59:59.000Z

106

384 Power plant waste water sampling and analysis plan  

Science Conference Proceedings (OSTI)

This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

Hagerty, K.J.; Knotek, H.M.

1995-01-01T23:59:59.000Z

107

Water-Gas Samples At International Geothermal Area, Mexico (Norman...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

108

Guidelines for Flue Gas Desulfurization (FGD) Water Sampling and Analysis  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are being installed on coal-fired power plants in response to federal and state air pollution regulations limiting sulfur dioxide emissions. FGD scrubbers produce an aqueous waste stream that contains metals adsorbed from flue gas. At the same time, the U.S. Environmental Protection Agency (EPA) is reviewing, and may tighten, water discharge limits on trace metals. Collection of accurate data on the trace metal composition of FGD water discharges is therefore esse...

2009-03-27T23:59:59.000Z

109

UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

NONE

1995-09-01T23:59:59.000Z

110

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

111

Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991...  

Open Energy Info (EERE)

91) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details...

112

Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity...

113

Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004) Exploration Activity Details...

114

Water-Gas Samples At Black Warrior Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Black Warrior Area (DOE GTP) Exploration Activity Details Location...

115

Water-Gas Samples At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

116

Water-Gas Samples At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Water-Gas Samples At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL...

117

Water-Gas Samples At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs...

118

Water-Gas Samples At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

119

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

120

UMTRA Project water sampling and analysis plan, Belfield and Bowman, North Dakota  

SciTech Connect

Surface remedial action is scheduled to begin at the Belfield and Bowman Uranium Mill Tailings Remedial Action (UMTRA) Project sites in the spring of 1996. Water sampling was conducted in 1993 at both the Belfield processing site and the Bowman processing/disposal site. Results of the sampling at both sites indicate that ground water conditions have remained relatively stable over time. Water sampling activities are not scheduled for 1994 because ground water conditions at the two sites are relatively stable, the 1993 sampling was comprehensive, and surface remediation activities are not scheduled to start until 1996. The next water sampling event is scheduled before the start of remedial activities and will include sampling selected monitor wells at both sites and several domestic wells in the vicinity.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling  

SciTech Connect

Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

2004-08-30T23:59:59.000Z

122

Repeated Nucleation of a Supercooled Water Sample that Contains Silver Iodide Particles  

Science Conference Proceedings (OSTI)

Experiments have been carried out on the kinetics of ice nucleation at constant temperature in a sample of supercooled water containing particles of silver iodide. An automatic apparatus was used to record the various times that elapse before ...

Bernard Vonnegut; Mark Baldwin

1984-03-01T23:59:59.000Z

123

UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1  

SciTech Connect

Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

NONE

1995-09-01T23:59:59.000Z

124

An Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling  

Science Conference Proceedings (OSTI)

A new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the ...

Derek J. Straub; Jeffrey L. Collett Jr.

2004-12-01T23:59:59.000Z

125

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

126

Development of novel separation techniques for biological samples in capillary electrophoresis  

Science Conference Proceedings (OSTI)

This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

Chang, H.T.

1994-07-27T23:59:59.000Z

127

Using Absolute Humidity and Radiochemical Analyses of Water Vapor Samples to Correct Underestimated Atmospheric Tritium Concentrations  

SciTech Connect

Los Alamos National Laboratory (LANL) emits a wide variety of radioactive air contaminants. An extensive ambient air monitoring network, known as AIRNET, is operated on-site and in surrounding communities to estimate radioactive doses to the public. As part of this monitoring network, water vapor is sampled continuously at more than 50 sites. These water vapor samples are collected every two weeks by absorbing the water vapor in the sampled air with silica gel and then radiochemically analyzing the water for tritium. The data have consistently indicated that LANL emissions cause a small, but measurable impact on local concentrations of tritium. In early 1998, while trying to independently verify the presumed 100% water vapor collection efficiency, the author found that this efficiency was normally lower and reached a minimum of 10 to 20% in the middle of summer. This inefficient collection was discovered by comparing absolute humidity (g/m{sup 3}) calculated from relative humidity and temperature to the amount of water vapor collected by the silica gel per cubic meter of air sampled. Subsequent experiments confirmed that the elevated temperature inside the louvered housing was high enough to reduce the capacity of the silica gel by more than half. In addition, their experiments also demonstrated that, even under optimal conditions, there is not enough silica gel present in the sampling canister to absorb all of the moisture during the higher humidity periods. However, there is a solution to this problem. Ambient tritium concentrations have been recalculated by using the absolute humidity values and the tritium analyses. These recalculated tritium concentrations were two to three times higher than previously reported. Future tritium concentrations will also be determined in the same manner. Finally, the water vapor collection process will be changed by relocating the sampling canister outside the housing to increase collection efficiency and, therefore, comparability to the true ambient concentrations of tritium.

Eberhart, C.F.

1999-06-01T23:59:59.000Z

128

Using Computational Fluid Dynamics Techniques to Define the Hydraulic Zone of Influence of Cooling Water Intake Structures  

Science Conference Proceedings (OSTI)

In the past, the hydraulic zone of influence (HZI) of a cooling water intake structure (CWIS) has been inferred from the results of field sampling programs. Today, however, advanced hydraulic modeling techniques can be used to define the HZI of a CWIS using personal computers. This report provides information that can be used to quantitatively or qualitatively describe the "area of influence" or HZI of a power plant CWIS, as required under new U.S. Environmental Protection Agency (EPA) Clean Water Act (C...

2004-07-26T23:59:59.000Z

129

Sampling Considerations for Monitoring Corrosion Products in the Reactor Coolant System in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Chemistry sampling of the reactor coolant system (RCS) of pressurized water reactors (PWRs) can provide significant information regarding the health of the primary system. Timely detection of increased corrosion product concentrations will aid in evaluating any risks associated with the onset of an axial offset anomaly, increased shutdown releases, increased out-of-core dose rates, or increased personnel doses. This report provides recommendations for improved RCS sampling.

2006-06-19T23:59:59.000Z

130

Quality control of chemical and isotopic analyses of geothermal water samples  

DOE Green Energy (OSTI)

Chemical and isotopic analyses of geothermal water samples must meet certain levels of accuracy and reliability to be useful for identifying geochemical processes in hydrothermal systems. Quality control is largely a concern for the analytical laboratory, but the geochemist or reservoir engineer using the chemical data must also be concerned with analytical quality. To test accuracy and reliability of analyses available from laboratories, splits of seven water samples were sent to four stable-isotope laboratories, and splits of five water samples were sent to four chemical laboratories. The analyses of each sample were compared among laboratories, and the differences in analyses were evaluated using criteria developed for this comparison. Isotopic compositions were considered reliable if they deviated from mean values by less than 2{per_thousand}, for hydrogen and by less than 0.15{per_thousand}, for oxygen. Concentrations of each chemical component were considered reliable if they differed from mean values by less than 10%. Chemical analyses were examined for internal consistency by calculating the error in ionic charge balance and the error between ionic charge and electrical conductivity. To be considered internally consistent, chemical analyses must have less than 5% error in charge balance and less than 10% error in conductivity balance. Three isotope laboratories gave consistent compositions of all samples. No chemical laboratory gave consistent analyses of all samples. Recommendations are made that provide the user of isotopic and chemical data with the ability to better evaluate the quality of analyses.

Reed, Marshall J.; Mariner, Robert H.

1991-01-01T23:59:59.000Z

131

Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs  

Science Conference Proceedings (OSTI)

This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman ...

Tetsu Sakai; David N. Whiteman; Felicita Russo; David D. Turner; Igor Veselovskii; S. Harvey Melfi; Tomohiro Nagai; Yuzo Mano

2013-07-01T23:59:59.000Z

132

Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington  

Science Conference Proceedings (OSTI)

As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

Peterson, Robert E.; Patton, Gregory W.

2009-12-14T23:59:59.000Z

133

Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique  

Science Conference Proceedings (OSTI)

Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and heterogeneous doses. On an AMD 1090T processor, computing times of 38 and 21 sec were required to achieve an average statistical uncertainty of 2% within the prostate (1 x 1 x 1 mm{sup 3}) and breast (0.67 x 0.67 x 0.8 mm{sup 3}) CTVs, respectively. Conclusions: CMC supports an additional average 38-60 fold improvement in average efficiency relative to conventional uncorrelated MC techniques, although some voxels experience no gain or even efficiency losses. However, for the two investigated case studies, the maximum variance within clinically significant structures was always reduced (on average by a factor of 6) in the therapeutic dose range generally. CMC takes only seconds to produce an accurate, high-resolution, low-uncertainly dose distribution for the low-energy PSB implants investigated in this study.

Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

2012-02-15T23:59:59.000Z

134

Summary report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs  

Science Conference Proceedings (OSTI)

Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir (which is considered part of the Clinch River and Watts Bar Reservoir System), and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Results of this study indicated that the levels of contamination in the samples from the Watts Bar and Melton Hill Reservoir sites did not pose a threat to human health. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in Melton Hill and Watts Bar Reservoirs. Eleven of the sampling sites were selected based on existence of pollutant discharge permits, known locations of hazardous waste sites, and knowledge of past practices. The twelfth sample site was selected as a relatively less contaminated reference site for comparison purposes.

Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

1995-08-01T23:59:59.000Z

135

Measurements of the Ice Water Content in Cirrus Using an Evaporative Technique  

Science Conference Proceedings (OSTI)

A technique for the measurement of the ice water content (IWC) of cirrus clouds is described. The IWC is obtained by the measurement of the total water content (TWC) and the subtraction of the saturation specific humidity with respect to ice at ...

Philip R. A. Brown

1993-08-01T23:59:59.000Z

136

Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing - 14194  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok?'s accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

Kelly, Steven E.

2013-11-11T23:59:59.000Z

137

TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

Atkinson, R.

2012-07-31T23:59:59.000Z

138

A CMOS direct sampling mixer using switched capacitor filter technique for software-defined radio  

Science Conference Proceedings (OSTI)

This paper proposes a novel direct sampling mixer (DSM) using Switched Capacitor Filter (SCF) for multi-band receivers. The proposed DSM has a higher gain, more flexibility and lower flicker noise than that of conventional circuits. The mixer for Digital ...

Hong Phuc Ninh; Takashi Moue; Takashi Kurashina; Kenichi Okada; Akira Matsuzawa

2008-01-01T23:59:59.000Z

139

Water adsorption at high temperature on core samples from The Geysers geothermal field  

DOE Green Energy (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

140

Water adsorption at high temperature on core samples from The Geysers geothermal field  

DOE Green Energy (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal field, California, was measured at 150, 200, and 250 C as a function of steam pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption and desorption runs were made in order to investigate the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were made on the same rock samples. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there was no direct correlation between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The hysteresis decreased significantly at 250 C. The results indicate that multilayer adsorption, rather than capillary condensation, is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

142

UMTRA project water sampling and analysis plan, Ambrosia Lake, New Mexico  

SciTech Connect

This water sampling and analysis plan (WSAP) provides the basis for ground water sampling at the Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site during fiscal year 1994. It identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations and will be updated annually. The Ambrosia Lake site is in McKinley County, New Mexico, about 40 kilometers (km) (25 miles [mi]) north of Grants, New Mexico, and 1.6 km (1 mi) east of New Mexico Highway 509 (Figure 1.1). The town closest to the tailings pile is San Mateo, about 16 km ( 10 mi) southeast (Figure 1.2). The former mill and tailings pile are in Section 28, and two holding ponds are in Section 33, Township 14 North, Range 9 West. The site is shown on the US Geological Survey (USGS) map (USGS, 1980). The site is approximately 2100 meters (m) (7000 feet [ft]) above sea level.

Not Available

1994-02-01T23:59:59.000Z

143

Measurement of /sup 85/Kr concentrations in air using a cryogenic sampling technique  

Science Conference Proceedings (OSTI)

A new method to detect moderate concentrations (down to approximately 370 Bq/m/sup 3/ under actual field conditions) of /sup 85/Kr in air has been developed. This method employs a cryogenic sampler for collection of the air sample of interest and a Ge(Li) spectroscopy system to determine the concentration of /sup 85/Kr by detection of the 514-keV gamma photon. Data from experiments are presented.

Owens, M.E.; Berven, B.A.; Perdue, P.T.

1981-01-01T23:59:59.000Z

144

Rapid Method for Ra-226 and Ra-228 in Water Samples  

Science Conference Proceedings (OSTI)

The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Ra-226 (1620 year half-life) is one of the most toxic of the long-lived alpha emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of radium-226 and radium-228 in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare Ra-226 and Ra-228 for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both Ra-226 and Ra-228 (via Ac-228) for assay. This method uses MnO{sub 2} Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate Ra-226 and Ra-228 rapidly from water samples, along with Ba-133 tracer. DGA Resin{reg_sign} (Eichrom) and Ln-Resin{reg_sign} (Eichrom) are employed in tandem to prepare Ra-226 for assay by alpha spectrometry and to determine Ra-228 via the measurement of Ac-228 by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain Ac-228 on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The Ac-228 is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

Maxwell, Sherrod, L. III

2006-02-10T23:59:59.000Z

145

Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations  

SciTech Connect

Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

Borel, C.C.; Schlaepfer, D.

1996-03-01T23:59:59.000Z

146

Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report  

SciTech Connect

ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.

Childs, M.; Conrad, R.

1997-09-01T23:59:59.000Z

147

On-sample water content measurement for a complete local monitoring in triaxial testing of unsaturated soils  

E-Print Network (OSTI)

To provide a complete local monitoring of the state of an unsaturated soil sample during triaxial testing, a local water content measurement device was adapted to a triaxial device comprising the measurement of local displacements (Hall effect transducers) and suction (High capacity transducer). Water content was locally monitored by means of a resistivity probe. The water content/resistivity calibration curves of an intact natural unsaturated loess from Northern France extracted by block sampling at two depths (1 and 3.3 m) were carefully determined, showing good accuracy and repeatability. The validity of two models giving the resistivity of unsaturated soils with respect to their water content was examined.

Munoz-Castelblanco, José; Pereira, Jean-Michel; Cui, Yu-Jun

2013-01-01T23:59:59.000Z

148

Use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal  

SciTech Connect

The overall objectives of this study are to develop an NMR method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water may enhance coal reactivity toward liquefaction. Different methods of drying will be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying an attractive and economical method for coal pretreatment. Coal drying methods will include thermal drying under different atmospheres and temperatures, drying with microwave radiation, and low-temperature chemical dehydration. The objective for this quarterly report were (1) to determine the limit of detection of water by NMR, (2) to determine the reproducibility of the NMR integration method using the Lab Cal {sup {trademark}} PC software, (3) to determine the amount of water in standard solutions, and (4) to determine the amount of water in a coal sample. The studies performed this last quarter have shown that the {sup 1}H NMR method for determining water in a coal sample via the reaction with 2,2-dimethoxypropane will be suitable for determining the water content in coals. The method should be most suitable for coals having low moisture content; that is, those coals which have been subjected to other drying techniques. 9 refs., 1 tab.

Netzel, D.A.

1991-01-01T23:59:59.000Z

149

Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure  

SciTech Connect

The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

Bill Wilborn, NNSA /NFO; Kathryn Knapp, NNSA /NFO; Irene Farnham, N-I; Sam Marutzky, N-I

2013-02-24T23:59:59.000Z

150

DYNAMIC SIMULATION OF MULTI-PASS PRESSURIZED WATER NUCLEAR POWER PLANTS BY ANALOG COMPUTER TECHNIQUES  

SciTech Connect

A kinetic model of the primary loop of a multi-pass pressurized water reactor power plant is developed to evaluate, by analog computer techniques, the transient response characteristics under conditions of steam generator load and reactor control rod perturbations. Using the 2-pass 28 Mw(t) SM-2 reactor as a typical plant, transient behavior patterns are illustrated and examined for a variety of load inputs, variations in plant constants, and analog model simplifications. (auth)

Brondel, J.O.

1961-06-01T23:59:59.000Z

151

Determining an optimal sampling frequency for measuring bulk temporal changes in ground-water quality  

Science Conference Proceedings (OSTI)

In the Data Quality Objectives (DQO) process, statistical methods are used to determine an optimal sampling and analysis plan. When the DQO decision rule for instituting remedial actions is based on a critical change in water quality, the monitoring program design must ensure that this change can be detected and measured with a specified confidence. Usually the focus is on the change at a single monitoring location and the process is limited to addressing the uncertainty inherent in the analytical methods and the variability at that location. However, new strategies that permit ranking the waste sites and prioritizing remedial activities require the means for assessing overall changes for small regions over time, where both spatial and temporal variability exist and where the uncertainty associated with these variations far exceeds measurement error. Two new methods for assessing these overall changes have been developed and are demonstrated by application to a waste disposal site in Oak Ridge, Tennessee. These methods incorporate historical data where available and allow the user to either test the statistical significance of a linear trend or of an annual change compared to a baseline year for a group of water quality wells.

Moline, G.R.; Beauchamp, J.J.; Wright, T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

152

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

153

SURVEY OF LOS ALAMOS AND PUEBLO CANYON FOR RADIOACTIVE CONTAMINATION AND RADIOASSAY TESTS RUN ON SEWER-WATER SAMPLES AND WATER AND SOIL SAMPLES TAKEN FROM LOS ALAMOS AND PUEBLO CANYONS  

SciTech Connect

Chemical sewers and sanitary lines draining the Tech Area, D. P. Site, CMR-12 Laundry, and surrounding residential areas flow into Pueblo and Los Alamos Canyon streams. In order to determine the extent and sources of radioactive contamination in these localities, fluid samples from each of the sewers, soil samples from each of the sewers, soil samples from the ground surrounding the sewer exits, and water and soil samples from selected spots in or near each of the two canyon streams were collected and analyzed for polonium and . plutonium. (W.D.M.)

Kingsley, W.H.; Fox, A.; Tribby, J.F.

1947-02-20T23:59:59.000Z

154

Measuring water velocity using DIDSON and image cross-correlation techniques  

Science Conference Proceedings (OSTI)

To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof-of-principle project demonstrated the feasibility of extracting water flow velocity information from underwater DIDSON images using image cross-correlation techniques.

Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

2009-08-01T23:59:59.000Z

155

Analytical Data Report of Water Samples Collected For I-129 Analysis  

SciTech Connect

This is an analytical data report for samples received from the central plateau contractor. The samples were analyzed for iodine-129.

Lindberg, Michael J.

2009-10-26T23:59:59.000Z

156

Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples  

SciTech Connect

An immunochromatographic assay (ICA) using gold nanoparticles coated with monoclonal antibody (McAb) for the detection of chromium ions (Cr) in water and serum samples was developed, optimized, and validated. Gold nanoparticles coated with affinity- purified monoclonal antibodies against isothiocyanobenzyl-EDTA (iEDTA)-chelated Cr3+ were used as the detecting reagent in this completive immunoassay-based one- step test strip. The ICA was investigated to measure chromium speciation in water samples. Chromium standard samples of 0-80 ng/mL in water were determined by the test strips. The results showed that the visual lowest detection limit (LDL) of the test strip was 50.0 ng/mL. A portable colorimetric lateral flow reader was used for the quantification of Cr. The results indicated that the linear range of the ICA with colorimetric detection was 5-80 ng/mL. The ICA was also validated for the detection of chromium ions in serum samples. The test trips showed high stability in that they could be stored at at 37 C for at least 12 weeks without significant loss of activity. The test strip also showed good selectivity for Cr detection with negligible interference from other heavy metals. Because of its low cost and short testing time (within 5 min), the test strip is especially suitable for on-site large- scale screening of Cr-polluted water samples, biomonitoring of Cr exposure, and many other field applications.

Liu, Xi; Xiang, Jun-Jian; Tang, Yong; Zhang, Xiao-Li; Fu, Qiang-Qiang; Zou, Jun-Hui; Lin, Yuehe

2012-09-01T23:59:59.000Z

157

Sampling and Analytical Plan Guidance for Water Characterization of Coal-Fired Steam Electric Utility Facilities  

Science Conference Proceedings (OSTI)

The US EPA recently announced its intentions to conduct a two-year study to determine whether the Steam Electric Categorical Effluent Guidelines should be revised. This report provides sampling plan guidance designed to assist the EPA in developing a sampling program and site-specific sampling plans to characterize a coal-fired facility's wastewater, to include some sampling processes used by EPRI in past coal-fired wastewater characterization studies, and to assist EPA in ensuring data quality during it...

2007-06-21T23:59:59.000Z

158

Development of a Method for the Detection of Aleutian Mink Disease Virus in Water Samples.  

E-Print Network (OSTI)

??Aleutian mink disease virus (AMDV) causes significant loss to the mink industry in Nova Scotia (NS). Contaminated water is a speculated virus source therefore my… (more)

Larsen, Sophie

2013-01-01T23:59:59.000Z

159

Design and testing of a deep sea formation water and temeperature sampling probe for the Ocean Drilling Program  

E-Print Network (OSTI)

The Ocean Drilling Program is an international research consortium dedicated to exploring the structure and history of earth beneath the oceans. The program receives funds from the National Science Foundation and 18 member countries. Texas A&M University serves as the science operator, drill ship operator, and Gulf Coast Core Repository. The objective of the program is to learn about the geological makeup of the ocean floor and develop a better understanding of how it was formed. Fluid and temperature samples are one means of determining the chemistry of the formation. In order to obtain quality samples a tool must probe into the formation approximately 18 inches and capture a small volume of fluid and record temperatures. The Ocean Drilling Program has developed two such probes, the IPOD in situ Pore Water Sampling Probe (PWS) and the Water Sample and Temperature Probe (WSTP). These probes return samples at near in situ conditions; however, fluid samples typically encounter a pressure drop as they enter the tool. Samples collected using these probes are suspected of giving questionable results due to possible gas/fluid separation as the sample experiences a pressure drop upon entering the probe. Fluid returned at formation pressure is hoped to give scientist a more accurate picture of the formation conditions and allow comparison between samples returned at formation pressure and those returned under partial pressure. The objective of this project was to design, test, and manufacture a probe that would consistently-return fluid and temperature samples at in situ conditions, The project was broken down into two stages, namely the design stage and the testing and manufacturing stage. The design stage was governed by a regimented design methodology. Steps included in the methodology were 1) Need Analysis, 2) Conceptual Design, 3) Conceptual Design Evaluation, and 4) Embodiment Design. The manufacturing and testing stage of the project consisted of full sample system testing and supervision of the manufacturing process. the result of the design process was a sampling system that combined a back pressure piston and metering valve. Full testing of this sampling system showed the sampling system allowed sampling of formation fluid with minimal pressure drop between the formation and the probe. Favorable results of the sampling system allowed for the development of a new probe tip configuration, as well as, a new modularized electronics section. Machine drawings were generated for all components of the tool. Components were then fabricated by a local machine shop. All components under went quality inspection and were then assembled. Full scale testing at the Ocean Drilling Programs Annex is the next step. If successful, the probe is to undergo sea trials in October of 1995.

Fisseler, Patrick James

1995-01-01T23:59:59.000Z

160

Estimation of land surface water and energy balance flux components and closure relation using conditional sampling  

E-Print Network (OSTI)

Models of terrestrial water and energy balance include numerical treatment of heat and moisture diffusion in the soil-vegetation-atmosphere continuum. These two diffusion and exchange processes are linked only at a few ...

Farhadi, Leila

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of Liquid Water Measuring Instruments in Cold Clouds Sampled during FIRE  

Science Conference Proceedings (OSTI)

Liquid water measurements from the Rosemount icing detector (RICE), Particle Measuring Systems (PMS) forward scattering spectrometer probe (FSSP), and Johnson–williams and King hot-wire probes used on the NCAR King Air aircraft are evaluated for ...

Andrew J. Heymsfield; Larry M. Miloshevich

1989-06-01T23:59:59.000Z

162

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

163

Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff &...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

164

Water-Gas Samples At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

165

Water-Gas Samples At Lassen Volcanic National Park Area (Janik...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

166

Water-Gas Samples At Valles Caldera - Sulphur Springs Area (Goff...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages Recent Changes All Special Pages...

167

Supplement to the UMTRA Project water sampling and analysis plan, Ambrosia Lake, New Mexico  

SciTech Connect

The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is in McKinley County, New Mexico. As part of UMTRA surface remediation, residual radioactive materials were consolidated on the site in a disposal cell that was completed July 1995. The need for ground water monitoring was evaluated and found not to be necessary beyond the completion of the remedial action because the ground water in the uppermost aquifer is classified as limited use.

NONE

1995-08-01T23:59:59.000Z

168

COMPARISON OF RESULTS FOR QUARTER 1 SURFACE WATER SPLIT SAMPLES COLLECTED AT THE NUCLEAR FUEL SERVICES SITE ERWIN, TENNESSEE  

Science Conference Proceedings (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. The comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ? 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background) concentrations.

David A. King, CHP, PMP

2012-10-10T23:59:59.000Z

169

Category:Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Sampling page? For detailed information on Field Sampling as exploration techniques, click here. Category:Field Sampling Add.png Add a new Field Sampling Technique Subcategories This category has the following 2 subcategories, out of 2 total. G [×] Gas Sampling‎ 3 pages W [×] Water Sampling‎ 2 pages Pages in category "Field Sampling" The following 4 pages are in this category, out of 4 total. G Gas Sampling R Rock Sampling S Soil Sampling W Water Sampling Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Sampling&oldid=689818" Category: Field Techniques

170

Economic Potential for Agriculture Water-Saving Using Alternative Irrigation Techniques  

E-Print Network (OSTI)

four percent of aggregate water intake in the approximation,or reused) to total intake water. The DWR data give a quiteIntake of \\~ater by CalHorn:a (million acre ~lantlfacttlring feet) Firms Water

Vaux, Henry James Jr.; Marsh, Albert W

1980-01-01T23:59:59.000Z

171

Robust decentralized fast-output sampling technique based power system stabilizer for a multi-machine power system  

Science Conference Proceedings (OSTI)

Power-system stabilizers (PSSs) are added to excitation systems to enhance the damping during low-frequency oscillations, In this paper, the design of robust decentralized PSS for four machines with a 10-bus system using fast-output sampling feedback ... Keywords: decentralized control, fast-output sampling feedback, multi-machine system, nonlinear simulation, power system stablizer, roboust control

Rajeev Gupta; B. Bandyopadhyay; A. M. Kulkarni

2005-04-01T23:59:59.000Z

172

Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data  

Science Conference Proceedings (OSTI)

Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

1996-03-01T23:59:59.000Z

173

Efficient Hydraulic State Estimation Technique Using Reduced Models of Urban Water Networks  

E-Print Network (OSTI)

This paper describes and demonstrates an efficient method for online hydraulic state estimation in urban water networks. The proposed method employs an online predictor-corrector (PC) procedure for forecasting future water ...

Preis, Ami

174

The Development and Optimization of Techniques for Monitoring Water Quality on-Board Spacecraft Using Colorimetric Solid-Phase Extraction (C-SPE)  

Science Conference Proceedings (OSTI)

The main focus of this dissertation is the design, development, and ground and microgravity validation of methods for monitoring drinking water quality on-board NASA spacecraft using clorimetric-solid phase extraction (C-SPE). The Introduction will overview the need for in-flight water quality analysis and will detail some of the challenges associated with operations in the absence of gravity. The ability of C-SPE methods to meet these challenges will then be discussed, followed by a literature review on existing applications of C-SPE and similar techniques. Finally, a brief discussion of diffuse reflectance spectroscopy theory, which provides a means for analyte identification and quantification in C-SPE analyses, is presented. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 reports the results from microgravity testing of existing C-SPE methods and procedures aboard NASA's C-9 microgravity simulator. Chapter 2 discusses the development of a C-SPE method for determining the total concentration of biocidal silver (i.e., in both dissolved and colloidal forms) in water samples. Chapter 3 presents the first application of the C-SPE technique to the determination of an organic analyte (i.e., formaldehyde). Chapter 4, which is a departure from the main focus of the thesis, details the results of an investigation into the effect of substrate rotation on the kinetics involved in the antigen and labeling steps in sandwich immunoassays. These research chapters are followed by general conclusions and a prospectus section.

April Hill

2007-12-01T23:59:59.000Z

175

Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water logs  

SciTech Connect

Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content. (auth)

Marjaniemi, D.K.; Robins, J.W.

1975-08-01T23:59:59.000Z

176

Sampling and analysis of water from Upper Three Runs and its wetlands near Tank 16 and the Mixed Waste Management Facility  

SciTech Connect

In April and September 1993, sampling was conducted to characterize the Upper Three Runs (UTR) wetland waters near the Mixed Waste Management Facility to determine if contaminants migrating from MWMF are outcropping into the floodplain wetlands. For the spring sampling event, 37 wetlands and five stream water samples were collected. Thirty-six wetland and six stream water samples were collected for the fall sampling event. Background seepline and stream water samples were also collected for both sampling events. All samples were analyzed for RCRA Appendix IX volatiles, inorganics appearing on the Target Analyte List, tritium, gamma-emitting radionuclides, and gross radiological activity. Most of the analytical data for both the spring and fall sampling events were reported as below method detection limits. The primary exceptions were the routine water quality indicators (e.g., turbidity, alkalinity, total suspended solids, etc.), iron, manganese, and tritium. During the spring, cadmium, gross alpha, nonvolatile beta, potassium-40, ruthenium-106, and trichloroethylene were also detected above the MCLs from at least one location. A secondary objective of this project was to identify any UTR wetland water quality impacts resulting from leaks from Tank 16 located at the H-Area Tank Farm.

Dixon, K.L.; Cummins, C.L.

1994-06-01T23:59:59.000Z

177

A Technique for Deriving Column-integrated Water Content Using VAS Split-Window Data  

Science Conference Proceedings (OSTI)

An algorithm is examined that uses Visible?Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) 11- and 12-µm (split-window) data to derive column-integrated water content (IWC) at mesoscale resolution. The algorithm is physically ...

Anthony R. Guillory; Gary J. Jedlovec; Henry E. Fuelberg

1993-07-01T23:59:59.000Z

178

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

179

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental, LLC

2011-09-01T23:59:59.000Z

180

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010  

Science Conference Proceedings (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A comparison of diagnostic techniques for detecting salmonella spp in equine fecal samples using culture methods, gel-based pcr, and real-time pcr assays  

E-Print Network (OSTI)

Salmonellae are enteric bacteria infecting animals and humans. Large animal clinics and Veterinary Teaching Hospitals are greatly affected by Salmonella outbreaks and nosocomial infection. The risk of environmental contamination and spread of infection is increased when animals are confined in close contact with each other and subjected to increased stress factors. This study was designed to compare double-enrichment culture techniques with Gel-based and Real-time PCR assays in the quest for improved diagnostic methods for detecting Salmonella in equine fecal samples. 120 fecal samples submitted to the Clinical Microbiology Laboratory of the Veterinary Medical Teaching Hospital at Texas A&M University (CML, VMTH, TAMU) were tested for Salmonella using all three techniques. Double-enrichment bacterial culture detected 29 positive results (24%), Real-time PCR detected 33 positive results (27.5%), and Gel-based PCR detected 73 positives results (60.8%). While culture and real-time PCR methods had similar results, the gel-based PCR method detected many more positive results, indicating probable amplicon contamination. Real-time PCR can be completed as soon as the day after submission while culture techniques may take 2 to 5 days to complete. However, viable bacterial cells are needed for antimicrobial susceptibility testing and serotyping: both important for epidemiological studies. Therefore, double-enrichment bacterial culture performed concurrently with real-time PCR methods could be efficient in clinical settings where both accurate and expedient results are required.

Smith, Shelle Ann

2003-05-01T23:59:59.000Z

182

Sampling Rate and Ozone Interference for Passive Deployment of Waters Sep-Pak XPoSure Samplers  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of Formaldehyde and Acetaldehyde Investigation of Formaldehyde and Acetaldehyde Sampling Rate and Ozone Interference for Passive Deployment of Waters Sep-Pak XPoSure Samplers Nasim A. Mullen, Marion L. Russell, Melissa M. Lunden, Brett C. Singer Environmental Energy Technologies Division Indoor Environment Group Lawrence Berkeley National Laboratory Berkeley, California, USA August 2013 Funding was provided by the California Energy Commission through Contract 500-09-042, by the U.S. Dept. of Energy Building America Program under Contract DE-AC02-05CH11231; by the U.S. Dept. of Housing and Urban Development, Office of Healthy Homes and Lead Hazard Control through Agreement I-PHI-01070; and by the U.S. Environmental Protection Agency Indoor Environments Division through

183

High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

The existing hydrous titanium oxide (HTiO) technique for the measurement of 224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and 3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g U/g in heavy water.

B. Aharmim; B. T. Cleveland; X. Dai; G. Doucas; J. Farine; H. Fergani; R. Ford; R. L. Hahn; E. D. Hallman; N. A. Jelley; R. Lange; S. Majerus; C. Mifflin; A. J. Noble; H. M. O'Keeffe; R. Rodriguez-Jimenez; D. Sinclair; M. Yeh

2008-03-28T23:59:59.000Z

184

September 2004 Water Sampling  

Office of Legacy Management (LM)

1. Is the SAP the primary document directing field procedures? Yes List any Program Directives or other documents, SOPs, instructions. Work Order letter dated June 28, 2013. 2....

185

September 2004 Water Sampling  

Office of Legacy Management (LM)

1. Is the SAP the primary document directing field procedures? Yes List any Program Directives or other documents, SOPs, instructions. Work Order letter dated August 22, 2013, and...

186

September 2004 Water Sampling  

Office of Legacy Management (LM)

Natural Gas Analysis LMG-01 NA Gas Chromatography Carbon-14 and Tritium LMG-03 Combustion Liquid Scintillation Counting Data Qualifier Summary None of the analytical results...

187

September 2004 Water Sampling  

Office of Legacy Management (LM)

is to be expected as selenium levels are typically elevated in sediments of the Mancos Shale in the area. * Uranium concentrations remain below the MCL of 0.044 mgL in wells 0731...

188

Evaluation of Stratified Chilled-Water Storage Techniques, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

After conducting experiments in both full-scale and scale model tanks, researchers found three thermally stratified chilled-water storage systems for achieving off-peak air conditioning to be efficient, repeatable, and reliable. This two-volume report provides design and operation guidelines for these systems.

1985-12-10T23:59:59.000Z

189

Techniques for Using MODIS Data to Remotely Sense Lake Water Surface Temperatures  

Science Conference Proceedings (OSTI)

This study describes a step-wise methodology used to provide daily, high spatial-resolution water surface temperatures from MODIS satellite data for use in a near-real-time system for the Great Salt Lake (GSL). Land surface temperature (LST) is ...

Joseph A. Grim; Jason C. Knievel; Erik T. Crosman

190

A study of ignition and combustion characteristics of isolated coal water slurry droplet using digital image processing technique  

E-Print Network (OSTI)

A digital image processing technique is used to investigate the ignition and combustion characteristics of an isolated coal water slurry droplet in low Re flow. Coal water slurry droplet study is useful for dilute coal suspensions based on the premise that ignitability of a spray of coal water slurry must depend on the ignition characteristic of an isolated coal water slurry droplet. A flat flame burner is used for optical accessibility and also for simulating vitiated gases as existing in boiler burners. A quartz wire of 0.175 mm diameter is chosen for low thermal conductivity and to hold the droplet above theflat flame burner. The following sequence of events is observed: (i) Water first evaporates leaving agglomerated coal particle, (ii) glowing first occurs at the leading edge of the droplet, (iii) for a droplet with diameter of the order less than I mm it was observed that the volatile combustion usually occurs away from the droplet in the wake of the combustible gases made upstream, while for droplet more than I mm, the flame is attached to the particle, (iv) combustion of coal water slurry droplet is intermittent. The ignition time and volatile combustion times are obtained. Parametric studies include the effect of drop diameter and ambient oxygen concentrations. Simplified phenomen ological type models are presented in order to determine the number of particles. interparticle spacing and density of coal water slurry droplet. Finally qualitative relations between ignition and combustion times and particle diameter are obtained and the results are then compared with experimental data.

Bhadra, Tanmoy

1998-01-01T23:59:59.000Z

191

HYDRGN - a computerized technique for the analysis of thermochemical water-splitting cycles  

DOE Green Energy (OSTI)

The HYDRGN computer program was designed to analyze closed thermochemical cycles for the production of hydrogen from water. This report includes the basic theory, assumptions, and methods of calculation used in this analysis along with a description of the program and its use. The source program and necessary data bank are available from the University of Kentucky. These may be obtained by sending a magnetic tape (minimum length 1200 ft) and a written request specifying the type of computer and recording characteristics of the tape. A small fee is charged for the recording and handling of the tape.

Carty, R. H.; Conger, W. L.; Funk, J. E.; Barker, R.

1977-06-01T23:59:59.000Z

192

Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect

This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

Not Available

1994-06-01T23:59:59.000Z

193

A Calorimetric Jet Engine Technique for Estimating the Condensed Water Mixing Ratio in Cumulus Clouds for Cloud Physical and Weather Modification Research  

Science Conference Proceedings (OSTI)

A technique has been developed for deriving estimates of condensed water mixing ratio in cumulus clouds from measurements of potential temperature in the air in the compressor of a jet engine. Condensate that enters the engine at low temperatures ...

Griffith Morgan; Mark Schormann; Erika Botha; Graeme K. Mather

2000-11-01T23:59:59.000Z

194

New Techniques to Characterize and Remove Water-Based Drilling Fluids Filter Cake  

E-Print Network (OSTI)

Filter cake characterization is very important in drilling and completion operations. Heterogeneity of the filter cake plays a key role in the design of chemical treatments needed to remove the filter cake. The objectives of this study are to characterize the filter cake under static and dynamic conditions, evaluate the using of polylactic acid and chelating agents to remove calcium carbonate-based filter cake, assess glycolic acid to remove Mn3O4-based filter cake, and evaluate ilmenite as a weighting material for water-based drilling fluid. In order to characterize the filter cake, computer tomography (CT) was used in combination with the scanning electronic microscopy (SEM) to analyze the filter cake. A modified HPHT filter cell was developed to perform the filtration tests. A see-through-cell was used to check the compatibility of different chemicals that were used to remove the filter cake. The results obtained from the CT scan showed that the filter cake was heterogeneous and contained two layers with different properties under static and dynamic conditions. Under static conditions, the formation of filter cake changed from compression to buildup; while under dynamic conditions, the filter cake was formed under continuous buildup. Polylactic acid was used as a component of the drilling fluid components and the results obtained showed that the drill-in fluid had stable rheological properties up to 250?F over 24 hrs. The removal efficiency of the filter cake was nearly 100% and the return permeability was about 100% for Indiana limestone and Berea sandstone cores, when using a weight ratio of polylactic acid to calcium carbonate 3 to 1. GLDA (pH 3.3) and HEDTA (pH 4) can be used to remove the filter cake in one step without using ?-amylase enzyme solutions. GLDA (20 wt% in a 200 g solution and pH of 3.3) and HEDTA (20 wt% in a 200 g solution and pH 4) had 100% removal efficiency of the filter cake using Indiana limestone and Berea sandstone cores. Chelate solutions, GLDA (pH of 3.3 - 13) and HEDTA (pH of 4 and 7) were incompatible with ?-amylase enzyme solutions over a wide range of temperatures. CT results showed that no formation damage was observed when using chelating agents as a breaker to remove the calcium carbonate filter cake. Manganese tetraoxide-based filter cake had a removal efficiency of 85% after 20 hrs soaking with glycolic acid (5 wt%) after soaking with ?-amylase for 24 hrs, and 89% after reaction with acid mixture (1 wt% HCl and 7 wt% glycolic acid) for 16 hrs. for both methods, the retained permeability was 100% for Indiana limestone cores and 120% for Berea sandstone cores, which indication maximum productivity of these formations. Ilmenite-based filter cake was ideal for HPHT applications, 0.2 in. thickness and 12 cm3 filtrate under dynamic conditions. The filtrate volume was reduced by adding a minor amount of CaCO3 solids that improved the particles packing. No sag problem was observed when using the micronized ilmenite in water-based drilling fluids. Ilmenite has a negative zeta potential in alkaline media and had a stable dispersion in water at pH > 7.

Elkatatny, Salaheldin Mahmoud

2013-05-01T23:59:59.000Z

195

Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Laws Envirosearch Institutional Controls NEPA Activities RCRA RQ*Calculator Water HSS Logo Water Laws Overview of water-related legislation affecting DOE sites Clean...

196

Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling  

DOE Patents (OSTI)

A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

Smith, Brian (1126 Delaware St., Berkeley, CA 94702); Menchaca, Leticia (1126 Delaware St., Berkeley, CA 94702)

1999-01-01T23:59:59.000Z

197

Central U.S. Atmospheric Water and Energy Budgets Adjusted for Diurnal Sampling Biases Using Top-of-Atmosphere Radiation  

Science Conference Proceedings (OSTI)

The water and energy budgets of the atmospheric column over the Mississippi River basin are estimated using 18 yr (1976–93) of twice-daily radiosonde observations, top-of-atmosphere net radiation estimates from the Earth Radiation Budget ...

Hideki Kanamaru; Guido D. Salvucci; Dara Entekhabi

2004-06-01T23:59:59.000Z

198

A Technique for Characterizing Surfactants on the Air–Sea Interface  

Science Conference Proceedings (OSTI)

An optical-electronic technique has been developed for simultaneous, remote measurements of the surface tension and wave attenuation over the water surface. The technique has been fully tested in a laboratory tank, and tried in the field. Sample ...

Jin Wu; Yi Wei

1990-02-01T23:59:59.000Z

199

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014  

SciTech Connect

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

none,

2013-09-01T23:59:59.000Z

200

200-DV-1OU Sediment and Pore Water Analysis and Report for Samples at Borehole C8096  

Science Conference Proceedings (OSTI)

This is an analytical data report for sediment samples received at 200-DV-1 OU. On August 30, 2011 sediment samples were received from 200-DV-1 OU Borehole C8096 for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

Lindberg, Michael J.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

M. S. Shell 2009 1/22 last modified 6/1/2012 Biased sampling and related free energy techniques ChE210D  

E-Print Network (OSTI)

the weighted histogram analysis method (WHAM)[26] . The umbrella sampling simulations were performed simulation excluded from the WHAM PMF calculation. For tyrosin and valine, the adhesion energy

Shell, M. Scott

202

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents (OSTI)

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

203

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents (OSTI)

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

204

Bechtel Jacobs Company LLC Sampling and Analysis Plan for the Water Resources Restoration Program for Fiscal Year 2009, Oak Ridge Reservation, Oak Ridge, Tennessee  

SciTech Connect

The Oak Ridge Reservation (ORR) Water Resources Restoration Program (WRRP) was established by the U. S. Department of Energy (DOE) in 1996 to implement a consistent approach to long-term environmental monitoring across the ORR. The WRRP has four principal objectives: (1) to provide the data and technical analysis necessary to assess the performance of completed Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) actions on the ORR; (2) to perform monitoring to establish a baseline against which the performance of future actions will be gauged and to support watershed management decisions; (3) to perform interim-status and post-closure permit monitoring and reporting to comply with Resource Conservation and Recovery Act of 1976 (RCRA) requirements; and (4) to support ongoing waste management activities associated with WRRP activities. Water quality projects were established for each of the major facilities on the ORR: East Tennessee Technology Park (ETTP); Oak Ridge National Laboratory (ORNL), including Bethel Valley and Melton Valley; and the Y-12 National Security Complex (Y-12 Complex or Y-12), including Bear Creek Valley (BCV), Upper East Fork Poplar Creek (UEFPC), and Chestnut Ridge. Off-site (i.e., located beyond the ORR boundary) sampling requirements are also managed as part of the Y-12 Water Quality Project (YWQP). Offsite locations include those at Lower East Fork Poplar Creek (LEFPC), the Clinch River/Poplar Creek (CR/PC), and Lower Watts Bar Reservoir (LWBR). The Oak Ridge Associated Universities (ORAU) South Campus Facility (SCF) is also included as an 'off-site' location, although it is actually situated on property owned by DOE. The administrative watersheds are shown in Fig. A.l (Appendix A). The WRRP provides a central administrative and reporting function that integrates and coordinates the activities of the water quality projects, including preparation and administration of the WRRP Sampling and Analysis Plan (SAP). A brief summary is given of the organization of the SAP appendices, which provide the monitoring specifics and details of sampling and analytical requirements for each of the water quality programs on the ORR. Section 2 of this SAP provides a brief overview and monitoring strategy for the ETTP. Section 3 discusses monitoring strategy for Bethel Valley, and Melton Valley background information and monitoring strategy is provided in Section 4. BCV and UEFPC monitoring strategies are presented in Sect. 5 and 6, respectively. Section 7 provides background information and monitoring strategy for all off-site locations.

Ketelle R.H.

2008-09-25T23:59:59.000Z

205

Statistical Parameters of the Air Turbulent Boundary Layer over Steep Water Waves Measured by the PIV Technique  

Science Conference Proceedings (OSTI)

A turbulent airflow with a centerline velocity of 4 m s?1 above 2.5-Hz mechanically generated gravity waves of different amplitudes has been studied in experiments using the particle image velocimetry (PIV) technique. Direct measurements of the ...

Yu. Troitskaya; D. Sergeev; O. Ermakova; G. Balandina

2011-08-01T23:59:59.000Z

206

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

207

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal  

SciTech Connect

The results of measuring the change in moisture content of the Eagle Butte and Usebelli coals as a function of time are shown in Figure 1. As expected, the measured moisture content increases with time and reaches a maximum after about 8 hours. Two different types of sorbed water are removed sequentially. Free or surface sorbed water is rapidly removed followed by the water in the micropores of the coal as the reagents migrate into the pore structure. There appears to be an induction period of about 4 hours for the Eagle Butte coal before the moisture content increases more rapidly with time due to the reactions of the more tightly bound or pore'' water with the reagents. The chemical drying experiment was repeated twice for the Usebelli coal. In the first experiment, aliquots of the reaction mixture were removed sequentially, and in the second experiment separate coal samples were prepared and allowed to stand until the appropriate time for the NMR spectrum to be acquired. Excellent reproducibility was obtained. Both cools were thermally dried by heating to 110[degrees]C for 1 hour. The moisture content was determined by weight loss. Using the thermal drying method, the Eagle Butte coal had a moisture content of 16.6 wt % and the Usebelli coal a moisture content of 14.1 wt %. These values are near the moisture content of coal as determined by chemical drying.

Netzel, D.A.

1992-01-01T23:59:59.000Z

208

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, June 1, 1992--August 31, 1992  

SciTech Connect

The results of measuring the change in moisture content of the Eagle Butte and Usebelli coals as a function of time are shown in Figure 1. As expected, the measured moisture content increases with time and reaches a maximum after about 8 hours. Two different types of sorbed water are removed sequentially. Free or surface sorbed water is rapidly removed followed by the water in the micropores of the coal as the reagents migrate into the pore structure. There appears to be an induction period of about 4 hours for the Eagle Butte coal before the moisture content increases more rapidly with time due to the reactions of the more ``tightly bound or ``pore`` water with the reagents. The chemical drying experiment was repeated twice for the Usebelli coal. In the first experiment, aliquots of the reaction mixture were removed sequentially, and in the second experiment separate coal samples were prepared and allowed to stand until the appropriate time for the NMR spectrum to be acquired. Excellent reproducibility was obtained. Both cools were thermally dried by heating to 110{degrees}C for 1 hour. The moisture content was determined by weight loss. Using the thermal drying method, the Eagle Butte coal had a moisture content of 16.6 wt % and the Usebelli coal a moisture content of 14.1 wt %. These values are near the moisture content of coal as determined by chemical drying.

Netzel, D.A.

1992-12-01T23:59:59.000Z

209

Treaty verification sample analysis program analytical results: UNSCOM 65 samples. Final report, December 1993-January 1994  

Science Conference Proceedings (OSTI)

Nineteen samples from the United Nations Special Commission 65 on Iraq (UNSCOM 65) were analyzed for chemical warfare (CW) related compounds using a variety of highly sophisticated spectroscopic and chromatographic techniques. The samples consisted of six water, six soil, two vegetation, one cloth, one wood, and two mortar shell crosscut sections. No sulfur or nitrogen mustards, Lewsite, or any of their degradation products were detected. No nerve agents were observed, and no tin was detected precluding the presence of stannic chloride, a component of NC, a World War I choking agent. Diethyl phosphoric acid was unambiguously identified in three water samples, and ethyl phosphoric acid was tentatively identified, at very low levels, in one water sample. These phosphoric acids are degradation products of Amiton, many commercially available pesticides, as well as Tabun, and impurities in munitions-grade Tabun. No definitive conclusions concerning the source of these two chemicals could be drawn from the analytical results.

Szafraniec, L.L.; Beaudry, W.T.; Bossle, P.C.; Durst, H.D.; Ellzy, M.W.

1994-07-01T23:59:59.000Z

210

Use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal  

SciTech Connect

The overall objectives of this study are to develop an NMR method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reaction, and to determine the mechanism by which water any enhance coal reactivity toward liquefaction. Different methods of drying will be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying an attractive and economical method for coal pretreatment. Coal drying methods will include thermal drying under different atmosphere and temperatures, drying with microwave radiation, and low-temperature chemical dehydration. The objectives for this quarterly report period were (1) to hire a student to help on the program, (2) to define the coals to be investigated and acquire the samples, (3) to order the necessary reagents and supplies, and (4) to conduct preliminary experiments for determining quantitatively using 2,2{prime}-dimethoxypropane and {sup 1}H NMR.

Netzel, D.A.

1991-01-01T23:59:59.000Z

211

Use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, September 1--November 30, 1991  

SciTech Connect

The overall objectives of this study are to develop an NMR method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reaction, and to determine the mechanism by which water any enhance coal reactivity toward liquefaction. Different methods of drying will be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying an attractive and economical method for coal pretreatment. Coal drying methods will include thermal drying under different atmosphere and temperatures, drying with microwave radiation, and low-temperature chemical dehydration. The objectives for this quarterly report period were (1) to hire a student to help on the program, (2) to define the coals to be investigated and acquire the samples, (3) to order the necessary reagents and supplies, and (4) to conduct preliminary experiments for determining quantitatively using 2,2{prime}-dimethoxypropane and {sup 1}H NMR.

Netzel, D.A.

1991-12-31T23:59:59.000Z

212

Study of hydrogen in coals, polymers, oxides, and muscle water by nuclear magnetic resonance; extension of solid-state high-resolution techniques. [Hydrogen molybdenum bronze  

DOE Green Energy (OSTI)

Nuclear magnetic resonance (NMR) spectroscopy has been an important analytical and physical research tool for several decades. One area of NMR which has undergone considerable development in recent years is high resolution NMR of solids. In particular, high resolution solid state /sup 13/C NMR spectra exhibiting features similar to those observed in liquids are currently achievable using sophisticated pulse techniques. The work described in this thesis develops analogous methods for high resolution /sup 1/H NMR of rigid solids. Applications include characterization of hydrogen aromaticities in fossil fuels, and studies of hydrogen in oxides and bound water in muscle.

Ryan, L.M.

1981-10-01T23:59:59.000Z

213

Sampling community structure  

Science Conference Proceedings (OSTI)

We propose a novel method, based on concepts from expander graphs, to sample communities in networks. We show that our sampling method, unlike previous techniques, produces subgraphs representative of community structure in the original network. These ... Keywords: clustering, community detection, complex networks, graphs, sampling, social networks

Arun S. Maiya; Tanya Y. Berger-Wolf

2010-04-01T23:59:59.000Z

214

Production-management techniques for water-drive gas reservoirs. Annual report, August 1, 1990-July 31, 1991  

SciTech Connect

The research work, during the period of the report, can be divided into three main categories, the first category being the NE Hitchcock reservoir characterization review task. NE Hitchcock field production and log data were acquired. Well by well review of production was performed and cross-correlated with geologic interpretations. The second category is the reservoir selection task. In the process of selecting two water-drive gas reservoir candidates, over 150 fields located in the Rockies, New Mexico, West Texas, Mid Continent, Michigan and offshore Louisiana were searched. The reservoir selection criteria is: water-drive gas reservoir, location near a geologic outcrop (if possible), field size of 5-40 wells, and availability of core and modern well logs. Accordingly, the Vermejo/Moore-Hooper Fusselman and the Grand Isle PD sand fields were selected to be studied. The third category is the laboratory investigations. The task includes rock mechanical properties, phase behavior and sand control portions. In the rock mechanical properties segment, laboratory measurements were made on several Berea Core plugs. The equation of state and an empirical approach are being used to predict initial reservoir gas composition from current production data for the phase behavior part. The sand control part was completed with conclusions regarding the ability to predict the existence of plastic failure region of an unconsolidated sand near a wellbore. The project is continuing to accomplish its goals to evaluate different production management strategies on the two chosen water-drive gas reservoirs through reservoir engineering, geologic interpretation, experimental work and reservoir simulation studies.

Crafton, J.W.; Davis, D.; Graves, R.; Poettmann, F.; Thompson, R.

1991-08-01T23:59:59.000Z

215

Estimating abundance of killer whales in the nearshore waters of the Gulf of Alaska and Aleutian Islands using line transect sampling  

E-Print Network (OSTI)

only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line transect ship surveys were conducted in July and August of 2001-2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional (CDS) and Multiple Covariate Distance Sampling (MCDS) methods were used to estimate abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two datasets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups. ‘Resident’-type (fish-eating) killer whales were more abundant than the ‘transient’-type (mammal-eating). Abundance estimates of resident killer whales (991 [95 % CI = 379-2585] [IGS] and 1587 [95 % CI = 608-4140] [PEGS]), were at least four times greater than those of transient killer whales (200 [95 % CI = 81-488] [IGS] and 251 [95 % CI = 97-644] whales [PEGS]). The IGS estimate of abundance is preferred for resident killer whales because the estimate based on PEGS data may show an upward bias. The PEGS estimate of abundance

Alexandre N. Zerbini; Janice M. Waite; John W. Durban; Rick Leduc; Marilyn E. Dahlheim; Paul R. Wade

2007-01-01T23:59:59.000Z

216

Soil Sampling At Molokai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling At Molokai Area (Thomas, 1986) Soil Sampling At Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

217

Sampling Techniques for Electric Power Measurement  

Science Conference Proceedings (OSTI)

Page 1. Page 2. Page 3. Page 4. Page 5. Page 6. Page 7. Page 8. Page 9. Page 10. Page 11. Page 12. Page 13. Page 14. Page 15. Page 16. Page ...

2013-10-20T23:59:59.000Z

218

An Investigation of the Conditional Sampling Method Used to Estimate Fluxes of Active, Reactive, and Passive Scalars  

Science Conference Proceedings (OSTI)

The conditional sampling flux measurement technique was evaluated for four scalars (temperature, water vapor, ozone, and carbon dioxide) by comparison with direct eddy correlation measurements at two sites. The empirical constant ? relating the ...

Gabriel G. Katul; Peter L. Finkelstein; John F. Clarke; Thomas G. Ellestad

1996-10-01T23:59:59.000Z

219

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

220

Sampling Distribution of the Time between Effectively Independent Samples  

Science Conference Proceedings (OSTI)

The sampling distribution of the estimate of the “time between effectively independent samples,” T0, is investigated using Monte-Carlo techniques. It is found to be asymptotically unbiased and normally distributed. Agreement between empirical ...

Daniel Wilks

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Soil Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling Soil Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Sampling Details Activities (10) Areas (9) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Can reveal relatively high permeability zones Hydrological: Thermal: Used to locate active hydrothermal systems Dictionary.png Soil Sampling: Soil sampling is a method that can be used for exploration of geothermal resources that lack obvious surface manifestations. Soils that are above or adjacent to a "hidden" hydrothermal system will have a unique chemistry that can be indicative of a hydrothermal system at depth and a zone of

222

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

223

Sampling – Soil  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as absorbents.

224

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

225

Sample Dissolution  

Science Conference Proceedings (OSTI)

Table 1   Commonly used techniques for subdividing solids for wet chemical analysis...high-speed steel, ferroalloys,

226

Databases and Archives of Air, Soil, Water, Food, Tissue, and Bone Samples for Radioactive Fallout Measurements from the National Urban Security Technology Laboratory (NUSTL)  

DOE Data Explorer (OSTI)

Please note that all of the programs discussed here and on pages linked from here have been terminated and the information presented is out of date. The laboratory's name was changed in 2009 to NUSTL from EML. Also, EML is no longer the custodian of the physical sample archives listed in these databases. The samples and databases are maintained at DOE's New Brunswick Laboratory.

227

Field Sampling | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Field Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Techniques Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

228

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

229

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

230

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

231

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

232

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

233

Water Conservation Tips  

E-Print Network (OSTI)

Gardener Water Conservation Tips fo r t h e UCSC Farm &share some of the water-conservation techniques used at theWinter Squash Water Conservation Mulches will save water,

Brown, Martha

2008-01-01T23:59:59.000Z

234

Water Conservation Tips  

E-Print Network (OSTI)

Gardener Water Conservation Tips fo r t h e UCSC Farm &we share some of the water-conservation techniques used atWinter Squash Water Conservation Mulches will save water,

Brown, Martha

2008-01-01T23:59:59.000Z

235

Anthrax Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthrax Anthrax Sampling and Decontamination: Technology Trade-Offs Phillip N. Price, Kristina Hamachi, Jennifer McWilliams, and Michael D. Sohn Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley CA 94720 September 12, 2008 This work was supported by the Office of Science, Office of High Energy Physics, Homeland Security under the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. Contents 1 Executive Summary 3 1.1 How much sampling is needed to decide if a building is safe? . . . . . . . 3 1.1.1 Sampling Nomogram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 How many characterization samples should be taken? . . . . . . . . . . . 7 1.3 What decontamination method should be used? . . . . . . . . . . . . . . . 7 1.4 Post-decontamination sampling . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 What are rules of thumb for cost and effort? . . . . . . . . . . . .

236

Sampling box  

DOE Patents (OSTI)

An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

2000-01-01T23:59:59.000Z

237

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, December 1, 1993--February 28, 1994  

SciTech Connect

The overall objectives of this study are to develop a nuclear magnetic resonance (NMR) method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reactions, to determine the mechanism by which water may impact coal reactivity toward liquefaction, and to conduct D{sub 2}O exchange studies to ascertain the role of water in coal liquefaction. The objectives for this quarterly report period were (1) to train students in the operation of the coal liquefaction reactor, gas analysis, extraction of the coal residue and coal liquids, and to calculate the percent conversion from the coal liquefaction data; and (2) to implement the changes in the coal liquefaction experimental procedure.

Netzel, D.A.

1994-06-01T23:59:59.000Z

238

Measuring Total Dissolved Methylmercury: Comparison of a Novel Method With a Standard Method for Extracting and Quantitating Methylmercury in Stream Water Samples  

Science Conference Proceedings (OSTI)

In most environmental systems, mercury (Hg) occurs in one or more of the following distinct chemical forms: elemental (Hg0), divalent (Hg2+), monomethyl (MMHg), methyl (MeHg), and dimethyl (DMHg). The United States Environmental Protection Agency (USEPA) standard method of measuring dissolved MMHg uses distillation to extract MeHg from freshwater samples in preparation for Hg speciation analysis by aqueous ethylation and gas chromatography. Recently, a novel method of Hg ...

2013-12-03T23:59:59.000Z

239

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, June 1--August 31, 1993  

SciTech Connect

One area for improvement in the economics of coal liquefaction is coal drying, particularly for the lower rank coals. However, there is considerable evidence to show that drying has a detrimental effect on the liquefaction behavior of coals. Regarding the liquefaction of coal, there does not appear to have been any systematic study of the methods of coal drying on coal structure and the role water plays in enhancing or lessening coal reactivity toward liquefaction. To conduct this study two coals, the North Dakota Beulah Zap lignite and the Utah Blind Canyon coals were chosen. These coals represent a low and high rank coal, respectively. In addition, the Beulah Zap lignite has a high moisture content whereas the Blind Canyon coal (hvA) bituminous has a very low moisture content. The overall objectives of this study are to develop a nuclear magnetic resonance (NMR) method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water may impact coal reactivity toward liquefaction. Different methods of drying are being investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction. The objectives for this quarterly report period were (1) to measure the volumetric swelling ratio for initial and chemically-dried coals and (2) to conduct preliminary experiments concerning the exchange of water in coal with deuterium oxide (D{sub 2}O).

Netzel, D.A.

1993-11-01T23:59:59.000Z

240

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, March 1--May 31, 1993  

SciTech Connect

The overall objectives of this study are to develop an NMR method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water may impact coal reactivity toward liquefaction. Different methods of drying are being investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction. The objectives for this quarterly report period were to (1) determine the kinetics of chemical dehydration of coals, (2) measure the volumetric, swelling ratio for initial and dried coals, and (3) determine the coal liquefaction yield for dried coals.

Netzel, D.A.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal; Quarterly report, September 1--November 30, 1993  

SciTech Connect

For the research program reported here, different methods of drying are being investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction. In an effort to understand the mechanism of water for enhancing coal liquefaction yield, the reactions of D{sub 2}O with the molecular constituents of coal during coal liquefaction are being investigated. This study involves the use of solution-state deuterium NMR, as well as, conventional solution-state {sup 1}H and {sup 13}C NMR analyses of the coal, and the coal liquids and residue from a coal liquefaction process. These D{sub 2}O transfer reactions will be conducted on coals which have been dried by various methods and rehydrated using D{sub 2}O and by successive exchange of H{sub 2}O associated with the coals with D{sub 2}O. The drying methods include thermal, microwave, and chemical dehydration of the coal. The overall objectives of this study are to develop a nuclear magnetic resonance (NMR) method for measuring the water in coal, to measure the changes in coal structure that occur during coal drying, to determine what effect water has on retrograde/condensation reactions, to determine the mechanism by which water may impact coal reactivity toward liquefaction, and to conduct D{sub 2}O exchange studies to ascertain the role of water in coal liquefaction. The objectives for this quarterly report period were (1) to measure the volumetric swelling ratio for thermally- and microwave-dried coals and (2) to conduct preliminary experiments concerning the exchange of water in coal with deuterium oxide (D{sub 2}O).

Netzel, D.A.

1993-12-31T23:59:59.000Z

242

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

Science Conference Proceedings (OSTI)

Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.

Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

2011-04-01T23:59:59.000Z

243

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, March 1, 1994--May 31, 1994  

SciTech Connect

One area for improvement in the economics of coal liquefaction is coal drying, particularly for the lower rank coals. However, there is considerable evidence to show that drying has a detrimental effect on the liquefaction behavior of coals. Regarding the liquefaction of coal, there does not appear to have been any systematic study of the methods of coal drying on coal structure and the role water plays in enhancing or lessening coal reactivity toward liquefaction. For the research program reported here, different methods of drying are being investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction. In an effort to understand the mechanism of water for enhancing coal liquefaction yield, the reactions of D{sub 2}O with the molecular constituents of coal during coal liquefaction are being investigated. This study involves the use of solution-state deuterium NMR, as well as, conventional solution-state {sup 1}H and {sup 13}C NMR analyses of the coal, and the coal liquids and residue from a coal liquefaction process. These D{sub 2}O transfer reactions will be conducted on coals which have been dried by various methods and rehydrated using D{sub 2}O and by successive exchange of H{sub 2}O associated with the coals with D{sub 2}O. The drying methods include thermal, microwave, and chemical dehydration of the coal.

Netzel, D.A.

1994-08-01T23:59:59.000Z

244

BWR Fuel Deposit Sample Evaluation: River Bend Cycle 11 Crud Flakes (Part 1)  

Science Conference Proceedings (OSTI)

The River Bend boiling water reactor (BWR) experienced fuel defects due to heavy crud deposition during Cycle 11. This report describes the use of a new analytical methodology to examine crud samples from failed rods from this plant. The methodology uses a special scraping tool to obtain clearly defined flake samples that can then be examined by traditional analytical techniques. This new analytical methodology can provide preliminary data for root cause assessment in a matter of months rather than the y...

2004-09-24T23:59:59.000Z

245

Comparison of MELCOR modeling techniques and effects of vessel water injection on a low-pressure, short-term, station blackout at the Grand Gulf Nuclear Station  

SciTech Connect

A fully qualified, best-estimate MELCOR deck has been prepared for the Grand Gulf Nuclear Station and has been run using MELCOR 1.8.3 (1.8 PN) for a low-pressure, short-term, station blackout severe accident. The same severe accident sequence has been run with the same MELCOR version for the same plant using the deck prepared during the NUREG-1150 study. A third run was also completed with the best-estimate deck but without the Lower Plenum Debris Bed (BH) Package to model the lower plenum. The results from the three runs have been compared, and substantial differences have been found. The timing of important events is shorter, and the calculated source terms are in most cases larger for the NUREG-1150 deck results. However, some of the source terms calculated by the NUREG-1150 deck are not conservative when compared to the best-estimate deck results. These results identified some deficiencies in the NUREG-1150 model of the Grand Gulf Nuclear Station. Injection recovery sequences have also been simulated by injecting water into the vessel after core relocation started. This marks the first use of the new BH Package of MELCOR to investigate the effects of water addition to a lower plenum debris bed. The calculated results indicate that vessel failure can be prevented by injecting water at a sufficiently early stage. No pressure spikes in the vessel were predicted during the water injection. The MELCOR code has proven to be a useful tool for severe accident management strategies.

Carbajo, J.J.

1995-06-01T23:59:59.000Z

246

Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling  

DOE Green Energy (OSTI)

This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

Kerr, Kent

2004-12-17T23:59:59.000Z

247

Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information. Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

248

Investigation of formaldehyde and acetaldehyde sampling rate...  

NLE Websites -- All DOE Office Websites (Extended Search)

formaldehyde and acetaldehyde sampling rate and ozone interference for passive deployment of Waters Sep-Pak XPoSure samplers Title Investigation of formaldehyde and acetaldehyde...

249

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents (OSTI)

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2006-07-25T23:59:59.000Z

250

Amphiphilic mediated sample preparation for micro-flow cytometry  

DOE Patents (OSTI)

A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

2009-03-17T23:59:59.000Z

251

Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

252

Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Instruments › SNS › Sample Environment Home › Instruments › SNS › Sample Environment Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to SNS to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR and SNS instruments. It will be available in the near future for SNS sample

253

SPC/E Water Reference Calculations  

Science Conference Proceedings (OSTI)

SPC/E Water Reference Calculations - Ewald Summation. In ... 5. Sample Configurations of SPC/E Water Molecules. Four ...

2013-09-16T23:59:59.000Z

254

Beryllium Wipe Sampling (differing methods - differing exposure potentials)  

DOE Green Energy (OSTI)

This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

Kerr, Kent

2005-03-09T23:59:59.000Z

255

Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (1974-1982) Groundwater Sampling At Raft River Geothermal Area (1974-1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (1974-1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1974 - 1982 Usefulness useful DOE-funding Unknown Exploration Basis Collect baseline chemical data Notes Ground-water monitoring near the Raft River site was initiated in 1974 by the IDWR. This effort consisted of semiannual chemical sampling of 22 irrigation wells near the Raft River geothermal development area. This program yielded useful baseline chemical data; however, several problems were inherent. For example, access to water pumped from the wells is

256

Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open  

Open Energy Info (EERE)

Groundwater Sampling At Raft River Geothermal Area (2004-2011) Groundwater Sampling At Raft River Geothermal Area (2004-2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Raft River Geothermal Area (2004-2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Groundwater Sampling Activity Date 2004 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Collect new water chemistry data on geothermal field Notes From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the area. An additional sampling program was completed in July 2010 to measure a wider range of trace elements and key water isotopes (δ18O, δD, and 3H (Tritium)) in the field. The data indicate that the

257

HAP sampling at Tidd PFBC  

SciTech Connect

The objective of this project was to sample process streams of the Tidd PFBC plant and to characterize the HAPs associated with those various process streams. The data are comparable to HAP data collected by DOE and EPRI studies at conventional coal-fired utility plants. Twelve sampling locations throughout Tidd PFBC plant were selected to characterize the HAPs in the plant cycle. Sampling was conducted at the input and output of the combustor, before and after the hot gas clean-up (HGCU) and before and after the electrostatic precipitator (ESP). Seven solid process streams were sampled including coal and sorbent to the PFBC unit and ash from the PFBC bed and ash collection devices. Service water which is mixed with the coal to make coal paste was the only liquid process stream sampled. The four gas stream samples collected were the inlets and outlets of the HGCU and ESP. Lists are presented for field sampling requirements for gas streams; coal sorbent, and service water; and ash samples. Lists of elements and compounds (inorganic, organic, and radioactive) are also included. The samples have been collected and are being analyzed.

Mudd, M.J.; Dal Porto, P.A.

1994-10-01T23:59:59.000Z

258

Measurement of the Nickel/Nickel Oxide Phase Transition in High Temperature Hydrogenated Water Using the Contact Electric Resistance (CER) Technique  

DOE Green Energy (OSTI)

Prior studies of Alloy 600 and Alloy X-750 have shown the existence of a maximum in stress corrosion cracking (SCC) susceptibility in high temperature water (e.g., at 360 C), when testing is conducted over a range of dissolved (i.e., aqueous) hydrogen (H{sub 2}) concentrations. It has also been shown that this maximum in SCC susceptibility tends to occur in proximity to the nickel/nickel oxide (Ni/NiO) phase transition, suggesting that oxide phase stability may affect primary water SCC (PWSCC) resistance. Previous studies have estimated the Ni/NiO transition using thermodynamic calculations based on free energies of formation for NiO and H{sub 2}O. The present study reports experimental measurements of the Ni/NiO transition performed using a contact electric resistance (CER) instrument. The CER is capable of measuring the surface resistance of a metal to determine whether it is oxide-covered or oxide-free at a given condition. The transition aqueous hydrogen (H{sub 2}) concentration corresponding to the Ni/NiO equilibrium was measured at 288, 316, 338 and 360 C using high purity Ni specimens. The results showed an appreciable deviation (i.e., 7 to 58 scc H{sub 2}/kg H{sub 2}O) between the measured Ni/NiO transition and the theoretical Ni/NiO transition previously calculated using free energy data from the Journal of Solution Chemistry. The CER-measured position of the Ni/NiO transition is in good agreement with the maxima in PWSCC susceptibility at 338 and 360 C. The measured Ni/NiO transition provides a reasonable basis for estimating the aqueous H{sub 2} level at which the maximum in SCC susceptibility is likely to be observed at temperatures lower than 338 to 360 C, at which SCC tests are time-consuming to perform. Limited SCC data are presented which are consistent with the observation that SCC susceptibility is maximized near the Ni/NiO transition at 288 C.

S.A. Attanasio; D.S. Morton; M.A. Ando; N.F. Panayotou; C.D. Thompson

2001-05-08T23:59:59.000Z

259

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

260

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

262

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

263

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

264

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

265

BWR Fuel Deposit Sample Evaluation  

Science Conference Proceedings (OSTI)

River Bend Nuclear Power Station, a boiling water reactor (BWR) plant, experienced fuel defects during Cycle 11. The failed fuel pins were identified during the subsequent refueling outage. To assist analysis of the fuel failure root cause, crud flake deposit samples were collected for analyses. Results on the morphology and distribution of chemical elements in four tenacious crud flakes that are associated with the fuel failures are reported in EPRI report 1009733, BWR Fuel Deposit Sample Evaluation–Riv...

2005-11-29T23:59:59.000Z

266

Lawn Water Management  

E-Print Network (OSTI)

Water is a limited resource in Texas. This booklet explains how homeowners can establish a water management program for a home lawn that both maintains a healthy sod and also conserves water. The publication discusses soil types, grass varieties, management practices and watering techniques.

McAfee, James

2006-06-26T23:59:59.000Z

267

Nondestructive analysis of oil shales with PGNAA technique  

DOE Green Energy (OSTI)

The feasibility of nondestructive analysis of oil shales using the prompt gamma neutron activation analysis (PGNAA) technique was studied. The PGNAA technique, developed originally for continuous analysis of coal on the belt, was applied to the analysis of eight oil-shale samples, containing between 9 and 60 gallons of oil per ton and 0.8% to 3.4% hydrogen. The PGNAA technique was modified using four neutron moderation conditions: non-moderated neutrons; non-moderated and partially moderated neutrons reflected from a water box behind the source; neutrons moderated in a water box behind and in front of the source; and neutrons strongly moderated in a polyethylene block placed in front of the source and with reflected neutrons from a water box behind the source. The studied oil shales were measured in their aluminum or wooden (masonite) boxes. The obtained Ge-Li spectra were processed by LSI-11/23 computer, using the modified programs previously developed by SAI for continuous coal analysis. The results of such processing (the peak areas for several gamma lines) were corrected and plotted against the weight percent of each analyzed element (from the chemical analysis). Response curves developed for H, C, N, S, Na, Mg, Al, Si, Ti, Ca, Fe and K show generally good linear proportions of peak area to the weight percent of the element. For hydrogen determination, NMD conditions had to be used where the response curve was not linear, but followed a curve whose slope rose with hydrogen concentration. This effect is caused by improving neutron self-moderation in sample boxes of rich oil shales, as compared to poor self-moderation of neutrons in very lean oil shales. The moisture in oil shales was measured by microwave absorption technique in small masonite boxes. This method was calibrated four times using oil-shale samples mixed gradually with larger and larger amounts of water.

Maly, J.; Bozorgmanesh, H.

1984-02-01T23:59:59.000Z

268

Isotope dilution study of exchangeable oxygen in premium coal samples  

Science Conference Proceedings (OSTI)

A difficulty with improving the ability to quantitate water in coal is that truly independent methods do not always exist. The true value of any analytical parameter is always easier to determine if totally independent methods exist to determine that parameter. This paper describes the possibility of using a simple isotope dilution technique to determine the water content of coal and presents a comparison of these isotope dilution measurements with classical results for the set of Argonne coals from the premium coal sample program. Isotope dilution is a widely used analytical method and has been applied to the analysis of water in matrices as diverse as chicken fat, living humans, and coal. Virtually all of these applications involved the use of deuterium as the diluted isotope. This poses some problems if the sample contains a significant amount of exchangeable organic hydrogen and one is interested in discriminating exchangeable organic hydrogen from water. This is a potential problem in the coal system. To avoid this potential problem /sup 18/O was used as the diluted isotope in this work.

Finseth, D.

1987-01-01T23:59:59.000Z

269

Flip-chip and backside techniques.  

SciTech Connect

State-of-the-art techniques for failure localization and design modification through bulk silicon are essential for multi-level metallization and new, flip chip packaging methods. The tutorial reviews the transmission of light through silicon, sample preparation, and backside defect localization techniques that are both currently available and under development. The techniques covered include emission microscopy, scanning laser microscope based techniques (electrooptic techniques, LIVA and its derivatives), and other non-IR based tools (FIB, e-beam techniques, etc.).

Bernhard-Hofer, Karoline (Infineon, Regensburg, Germany); Barton, Daniel Lee; Cole, Edward Isaac, Jr.

2010-08-01T23:59:59.000Z

270

Acceptance sampling methods for sample results verification  

SciTech Connect

This report proposes a statistical sampling method for use during the sample results verification portion of the validation of data packages. In particular, this method was derived specifically for the validation of data packages for metals target analyte analysis performed under United States Environmental Protection Agency Contract Laboratory Program protocols, where sample results verification can be quite time consuming. The purpose of such a statistical method is to provide options in addition to the ``all or nothing`` options that currently exist for sample results verification. The proposed method allows the amount of data validated during the sample results verification process to be based on a balance between risks and the cost of inspection.

Jesse, C.A.

1993-06-01T23:59:59.000Z

271

Review of air flow measurement techniques  

E-Print Network (OSTI)

chamber, passive sampling, passive solar house, measurementhouse, we planed the distribution of fresh air, passivepassive perfluorocarbon tracer technique for determining air infiltration rates into houses

McWilliams, Jennifer

2002-01-01T23:59:59.000Z

272

Microfluidic Sample Preparation for Immunoassays  

SciTech Connect

Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

2001-08-09T23:59:59.000Z

273

Archive Building and Interrogation of Archived Samples: New Techniques...  

NLE Websites -- All DOE Office Websites (Extended Search)

A large collection of paraffin tissues was accumulated from an extensive series of irradiation experiments conducted on 7,000 dogs and 49,000 mice between 1950-1990s at...

274

Physical Mechanisms Underlying Selected Adaptive Sampling Techniques For Tropical Cyclones  

Science Conference Proceedings (OSTI)

In order to efficiently and effectively prioritize resources, adaptive observations can be targeted - using some objective criteria to estimate the potential impact an initial condition perturbation (or analysis increment) in a specific region ...

Brett T. Hoover; Chris S. Velden; Sharanya J. Majumdar

275

New event-driven sampling techniques for network reliability estimation  

Science Conference Proceedings (OSTI)

Exactly computing network reliability measures is an NP-hard problem. Therefore, Monte Carlo simulation has been frequently used by network designers to obtain accurate estimates. This paper focuses on simulation estimation of network reliability. Using ...

Abdullah Konak; Alice E. Smith; Sadan Kulturel-Konak

2004-12-01T23:59:59.000Z

276

Sample Preparation Laboratory Training - Course 204 | Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Preparation Laboratory Training - Course 204 Who Should Attend This course is mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS...

277

Completion techniques for geothermal-geopressured wells. Final report  

DOE Green Energy (OSTI)

The following are covered: oil well completions, water well completions, sand control techniques, geopressured oil and gas wells, and geopressured water well completion. The conclusions for a geothermal-geopressured water well completion and needed research are included. (MHR)

Boyd, W.E.

1974-01-01T23:59:59.000Z

278

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1983 Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Groundwater_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689261"

279

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689258

280

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gas Sampling At Rye Patch Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Sampling At Rye Patch Area (DOE GTP) (Redirected from Water-Gas Samples At Rye Patch Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Rye Patch Area (DOE GTP) Exploration Activity Details Location Rye Patch Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Rye_Patch_Area_(DOE_GTP)&oldid=689417" Categories: Exploration Activities

282

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells.

283

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

284

Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Jemez Springs Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

285

Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Yellowstone Region (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

286

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Valles Caldera - Redondo Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

287

Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media  

SciTech Connect

This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

2010-06-01T23:59:59.000Z

288

Efficiently detecting webpage updates using samples  

Science Conference Proceedings (OSTI)

Due to resource constraints, Web archiving systems and search engines usually have difficulties keeping the local repository completely synchronized with the Web. To address this problem, sampling-based techniques periodically poll a subset of webpages ...

Qingzhao Tan; Ziming Zhuang; Prasenjit Mitra; C. Lee Giles

2007-07-01T23:59:59.000Z

289

An Iterative Rejection Sampling Method  

E-Print Network (OSTI)

In the note we consider an iterative generalisation of the rejection sampling method. In high energy physics, this sampling is frequently used for event generation, i.e. preparation of phase space points distributed according to a matrix element squared $|M|^2$ for a scattering process. In many realistic cases $|M|^2$ is a complicated multi-dimensional function, so, the standard von Neumann procedure has quite low efficiency, even if an error reducing technique, like VEGAS, is applied. As a result of that, many of the $|M|^2$ calculations go to ``waste''. The considered iterative modification of the procedure can extract more ``unweighted'' events, i.e. distributed according to $|M|^2$. In several simple examples we show practical benefits of the technique and obtain more events than the standard von Neumann method, without any extra calculations of $|M|^2$.

A. Sherstnev

2008-07-17T23:59:59.000Z

290

ALARA ASSESSMENT OF SETTLER SLUDGE SAMPLING METHODS  

SciTech Connect

The purpose of this assessment is to compare underwater and above water settler sludge sampling methods to determine if the added cost for underwater sampling for the sole purpose of worker dose reductions is justified. Initial planning for sludge sampling included container, settler and knock-out-pot (KOP) sampling. Due to the significantly higher dose consequence of KOP sludge, a decision was made to sample KOP underwater to achieve worker dose reductions. Additionally, initial plans were to utilize the underwater sampling apparatus for settler sludge. Since there are no longer plans to sample KOP sludge, the decision for underwater sampling for settler sludge needs to be revisited. The present sampling plan calls for spending an estimated $2,500,000 to design and construct a new underwater sampling system (per A21 C-PL-001 RevOE). This evaluation will compare and contrast the present method of above water sampling to the underwater method that is planned by the Sludge Treatment Project (STP) and determine if settler samples can be taken using the existing sampling cart (with potentially minor modifications) while maintaining doses to workers As Low As Reasonably Achievable (ALARA) and eliminate the need for costly redesigns, testing and personnel retraining.

NELSEN LA

2009-01-30T23:59:59.000Z

291

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

Science Conference Proceedings (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

292

Re: Assessment of Groundwater Sampling Results Completed by the U.S. Geological Survey Summary  

E-Print Network (OSTI)

The organic chemistry at MW01 has not changed substantially since the EPA sampled the well; some constituents have increased and some have decreased, as would be expected with organic contaminants discharging from a series of event, the hydraulic fracturing of natural gas wells. Because the water chemistry data at MW01 has essentially been replicated, the evidence supporting the hypothesis that natural gas drilling activities, including fracking, have contaminated the Wind River aquifer near Pavillion WY has been strengthened. The conclusions based on that analysis should be more widely accepted now that the water quality has been replicated. The concentrations of gas, including methane and ethane, have increased and that of propane has remained relatively constant. The ratio of ethane and propane to methane and the isotopic signature of methane all indicate that the gas source is thermogenic, meaning a deep formation. An increasing concentration indicates the formation is likely the source because the concentration will increase as more of the formation contributes to gas at the monitoring well. EPA monitoring well 2 was not sampled because it did not yield sufficient water. The EPA had been able to purge over a borehole’s volume of water, therefore they were clearly sampling formation water. There is no reason to consider that the current condition of MW02 negates the results of the EPA in 2011. The problems with MW02 however indicate other problems with the sampling of these wells. The USGS used standard purge techniques, not techniques designed to minimize losses of volatile organics to the atmosphere. Purging too fast or drawing the water level too low could cause the measurement to be biased too low.

Tom Myers Ph. D

2012-01-01T23:59:59.000Z

293

Water quality and business aspects of sachet-vended water in Tamale, Ghana  

E-Print Network (OSTI)

Microbial water quality analyses were conducted on 15 samples of factory-produced sachet water and 15 samples of hand-tied sachet water, sold in Tamale, Ghana. The tests included the membrane filtration (MF) test using ...

Okioga, Teshamulwa (Teshamulwa Irene)

2007-01-01T23:59:59.000Z

294

Water quality and business aspects of sachet-vended water in Tamale, Ghana.  

E-Print Network (OSTI)

??Microbial water quality analyses were conducted on 15 samples of factory-produced sachet water and 15 samples of hand-tied sachet water, sold in Tamale, Ghana. The… (more)

Okioga, Teshamulwa (Teshamulwa Irene)

2007-01-01T23:59:59.000Z

295

Definition: Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Sampling Jump to: navigation, search Dictionary.png Rock Sampling Systematic rock sampling can be used to characterize a geothermal reservoir. The physical and chemical properties of rock samples provide important information for determining whether a power generation or heat utilization facility can be developed. Some general rock properties can be measured by visual inspection, but detailed properties require laboratory techniques. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core hole". A variety of core samplers exist to sample

296

Definition: Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Field Sampling Field Sampling Jump to: navigation, search Dictionary.png Field Sampling Systematic field sampling is critical for reliable characterize a geothermal resource. Some of the physical and chemical properties of rock samples can be estimated by visual inspection, but accurate determination of these properties requires detailed laboratory analysis. Surface or subsurface fluid sampling is also routinely performed to characterize the chemical, thermal, or hydrological properties of a hydrothermal system. Combinations of these sampling techniques have traditionally been used to obtain important information used to determine whether or not a viable power generation or heat utilization facility can be developed at a prospect. Soil sampling is a less commonly used method for exploration of

297

Rain sampling device  

DOE Patents (OSTI)

The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

1991-05-14T23:59:59.000Z

298

What's In My Water?  

E-Print Network (OSTI)

You can learn about the quality of your water by sending a sample to a laboratory for analysis. This publication will help you understand the lab report by explaining the properties, components and contaminants often found in water. It describes the sources of water contaminants, problems that can be caused by those contaminants, suggestions for correcting problems, and the safe levels of each contaminant in water for household use, for irrigation and for livestock.

Provin, Tony; Pitt, John L.

2003-04-21T23:59:59.000Z

299

Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques  

Science Conference Proceedings (OSTI)

A new technique has been developed for the measurement of steam mass flowrate, water mass flowrate and total enthalpy of two-phase fluids produced from geothermal wells. The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of tracer. This technique has now been used extensively at the Coso geothermal project, owned and operated by California Energy Company. Initial validation of the method was performed at the Roosevelt Hot Springs geothermal project on wells producing to individual production separators equipped with orificeplate flowmeters for each phase.

Hirtz, Paul; Lovekin, Jim; Copp, John; Buck, Cliff; Adams, Mike

1993-01-28T23:59:59.000Z

300

Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) | Open  

Open Energy Info (EERE)

Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lightning Dock Area (Norman, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lightning Dock, Animas Valley, New Mexico geothermal area was discovered when a rancher found boiling water while drilling a shallow stock tank welt (Elston, Deal, et. al, 1983). There are no surface manifestations of present or past geothermal activity in the Animas Valley. Norman and Bernhart (1982) analyzed the gases in the discovery well and 15 stock tank wells nearby (Figure 1).

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J.

302

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) (Redirected from Water-Gas Samples At Lassen Volcanic National Park Area (Janik & Mclaren, 2010)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid

303

Quality Reference Samples  

Science Conference Proceedings (OSTI)

Peer-reviewed fats and oils related performance-based control samples for lab quality assurance and quality control. Quality Reference Samples Certified Reference Materials (CRM) aocs certified Certified Reference Materials chemists CRM fat fats lab labo

304

Soil Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Soil Sampling Activity Date Usefulness not indicated DOE-funding...

305

Category:Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Techniques page? For detailed information on Field Techniques as exploration techniques, click here. Category:Field Techniques Add.png Add a new Field Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Collection and Mapping‎ 5 pages F [+] Field Sampling‎ (2 categories) 4 pages Pages in category "Field Techniques" The following 4 pages are in this category, out of 4 total. D Data Collection and Mapping F Field Sampling H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Techniques&oldid=689815"

306

Chemical Resources | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

307

Adaptive Sampling Algorithms for Probabilistic Risk Assessment of Nuclear Simulations  

SciTech Connect

Nuclear simulations are often computationally expensive, time-consuming, and high-dimensional with respect to the number of input parameters. Thus exploring the space of all possible simulation outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk analysis, it is important to discover the relationship between a potentially large number of input parameters and the output of a simulation using as few simulation trials as possible. This is a typical context for performing adaptive sampling where a few observations are obtained from the simulation, a surrogate model is built to represent the simulation space, and new samples are selected based on the model constructed. The surrogate model is then updated based on the simulation results of the sampled points. In this way, we attempt to gain the most information possible with a small number of carefully selected sampled points, limiting the number of expensive trials needed to understand features of the simulation space. We analyze the specific use case of identifying the limit surface, i.e., the boundaries in the simulation space between system failure and system success. In this study, we explore several techniques for adaptively sampling the parameter space in order to reconstruct the limit surface. We focus on several adaptive sampling schemes. First, we seek to learn a global model of the entire simulation space using prediction models or neighborhood graphs and extract the limit surface as an iso-surface of the global model. Second, we estimate the limit surface by sampling in the neighborhood of the current estimate based on topological segmentations obtained locally. Our techniques draw inspirations from topological structure known as the Morse-Smale complex. We highlight the advantages and disadvantages of using a global prediction model versus local topological view of the simulation space, comparing several different strategies for adaptive sampling in both contexts. One of the most interesting models we propose attempt to marry the two by obtaining a coarse global representation using prediction models, and a detailed local representation based on topology. Our methods are validated on several analytical test functions as well as a small nuclear simulation dataset modeled after a simplified Pressurized Water Reactor.

Diego Mandelli; Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer

2013-09-01T23:59:59.000Z

308

Sampling diffusive transition paths  

SciTech Connect

We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

F. Miller III, Thomas; Predescu, Cristian

2006-10-12T23:59:59.000Z

309

A Unified Analysis-Initialization Technique  

Science Conference Proceedings (OSTI)

A unified analysis-initialization technique is introduced and tested in the framework of the shallow water equations. It consists of iterating multivariate optimal interpolation and nonlinear normal mode initialization. For extratropical regions, ...

David L. Williamson; Roger Daley

1983-08-01T23:59:59.000Z

310

The Use of Electrochemical Techniques to Characterize Wet Steam Environments  

SciTech Connect

The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

2003-04-30T23:59:59.000Z

311

Beacon Project - Unpredictable Sampling  

Science Conference Proceedings (OSTI)

... or undetected tampering), with the random number generator used for sampling can lead to erroneous estimates of the percentage of faulty parts. ...

2013-07-25T23:59:59.000Z

312

FANS - Sample Change  

Science Conference Proceedings (OSTI)

... result of neutrons with incident energies higher than ... between the sample position and the detector bank. ... 60 to 300 seconds per energy point and ...

313

FANS - Sample Change  

Science Conference Proceedings (OSTI)

... This is achieved by placing a cadmium shield between the sample position and the detector bank. In order to place the ...

314

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

315

Water Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to see the operation than have us explain it. Basically, most treatment plants remove the solid material and use living organisms and chlorine to clean up the water. Steve Sample...

316

Sampling system and method  

DOE Patents (OSTI)

The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

2013-04-16T23:59:59.000Z

317

2003 CBECS Sample Design  

U.S. Energy Information Administration (EIA) Indexed Site

Technical Information > Sample Design Technical Information > Sample Design How the Survey Was Conducted 2003 Commercial Buildings Energy Consumption Survey: Sample Design Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted quadrennially by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings. The survey is based upon a sample of commercial buildings selected according to the sample design requirements described below. A “building,” as opposed to an “establishment,” is the basic unit of analysis for the CBECS because the building is the energy-consuming unit. The 2003 CBECS was the eighth survey conducted since 1979

318

Biological sample collector  

DOE Patents (OSTI)

A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

Murphy, Gloria A. (French Camp, CA)

2010-09-07T23:59:59.000Z

319

Sample push out fixture  

DOE Patents (OSTI)

This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

Biernat, John L.

2000-02-22T23:59:59.000Z

320

Sample Changes and Issues  

U.S. Energy Information Administration (EIA) Indexed Site

Sample and Model Issues Sample and Model Issues Summary Our comprehensive review of the EIA 914 has confirmed that discrepancies can arise between estimates for December of one year and January of the next. These are most evident for Texas estimates between December 2008 and January 2009. Reports now available from HPDI show that production for all the companies we sampled in both 2008 and 2009 rose by about 60 million cubic feet per day (MMcf/d) in January and that total production in Texas rose by a similar amount. Our estimate was a decrease of 360 MMcf/d. Why the difference? Computationally, EIA-914 estimates depend on two factors: * Reports from the companies in the survey sample * An expansion factor to estimate total production from the sample's reported

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HFIR Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Sample Environment HFIR Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to HFIR to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The online Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR instruments. Contact HFIR Team Leader Chris Redmon Resources Sample Environment Equipment Database

322

Purge water management system  

DOE Patents (OSTI)

A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

1996-01-01T23:59:59.000Z

323

Purge water management system  

DOE Patents (OSTI)

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

324

Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lab Analysis Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Lab Analysis Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Water rock interaction; Rapid and unambiguous identification of unknown minerals; Bulk and trace element analysis of rocks, minerals, and sediments; Obtain detailed information about rock composition and morphology; Determine detailed information about rock composition and morphology; Cuttings are used to define lithology; Core analysis is done to define lithology

325

Colorimetric detection of uranium in water  

DOE Patents (OSTI)

Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

2012-03-13T23:59:59.000Z

326

Definition: Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lab Analysis Techniques Jump to: navigation, search Dictionary.png Lab Analysis Techniques Lab Analysis Techniques encompass a broad array of analytical methods that can be used to characterize the chemical and physical properties of rock and fluid samples. The reliability of laboratory analyses depends strongly on both adherence to standard sampling procedures in the field when collecting materials for examination and on the application of appropriate sample preparation techniques in the lab. Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Lab_Analysis_Techniques&oldid=688298" Category:

327

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

328

A Particle-based model for water simulation  

SciTech Connect

The Smooth-Particle Applied Mechanics (SPAM) model is a relatively recent physical modeling technique It can model both fluids and solids using free-moving particles An implemented SPAM model is described that solved the compressible Navier-Stokes equations to produce animations of splashing and pooling water Because the particle positions are known explicitly each timestep, the SPAM technique produces data amenable to visualization A ray-tracing renderer is also described It samples the underwater light-field distribution and stores tbe information into a Light Accumulation Lattice which is used for scattered light calculations and caustics.

Max, N., LLNL

1998-01-01T23:59:59.000Z

329

Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2010  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on July 6 and 7, 2010. Additionally, a water sample was obtained at one well known as the 29-6 Water Hole, several miles west of the Gasbuggy site. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. The one water well sample was analyzed for gamma-emitting radionuclides and tritium. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2010-12-01T23:59:59.000Z

330

Accurate LPG analysis begins with sampling procedures, equipment  

SciTech Connect

Proper equipment and procedures are essential for obtaining representative samples from an LPG stream. This paper discusses how sampling of light liquid hydrocarbons generally involves one of two methods: flow- proportional composite sampling by a mechanical device or physical transfer of hydrocarbon fluids from a flowing pipeline or other source into a suitable portable sample container. If sampling by proper techniques and equipment supports careful chromatographic analysis, full advantage of accurate mass measurement of LPG can be realized.

Wilkins, C.M. (Koch Pipelines, Inc., Medford, OK (US))

1990-11-05T23:59:59.000Z

331

Computer Science Sample Occupations  

E-Print Network (OSTI)

Computer Science Sample Occupations COMPUTER OPERATIONS Computer Hardware/ Software Engineer Computer Operator Database Manager/ Administrator Data Entry Operator Operations Manager DESIGN & MANUFACTURING, ENGINEERING Coder CAD Computer Applications Engineers Computer Research Scientist Computer

Ronquist, Fredrik

332

SAMPLING AND ANALYSIS PROTOCOLS  

SciTech Connect

Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

Jannik, T; P Fledderman, P

2007-02-09T23:59:59.000Z

333

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

334

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

335

Buildings characterization sampling plan, Weldon Spring Site  

SciTech Connect

The purpose of the Buildings Sampling Plan is to provide a systematic approach to characterizing radiological, asbestos and chemical contamination in and around the buildings and structures at the Weldon Spring Chemical Plant Site (WSCPS). This sampling plan reviews historical information; identifies data needs; and outlines sampling procedures, quality assurance, data documentation and reporting requirements for the buildings and equipment characterization at the Weldon Spring Site (WSS). The scope of this plan is limited to the buildings, structures, and equipment from the previous operation of the WSCPS. The Buildings Sampling Plan is divided into nine sections: introduction, background, data needs and sampling plan objectives, sampling rationale and procedure, sample analysis, quality assurance, data documentation, reporting requirements, and references. The data needs, sampling rationale and procedures and sample analysis sections of this work plan are subdivided into radiological, asbestos and chemical sections. Because different sampling techniques and analyses will be required for radiological, asbestos and chemical contamination, separate subsections are used. The investigations for each contaminant will be conducted independently. Similar historical and descriptive information is repeated in the subsections, but the perspective and information vary slightly. 24 refs., 5 figs., 14 tabs.

Not Available

1988-08-01T23:59:59.000Z

336

Air sampling in the workplace. Final report  

Science Conference Proceedings (OSTI)

This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC`s Regulatory Guide 8.25, Revision 1, ``Air sampling in the Workplace.`` That guide addresses air sampling to meet the requirements in NRC`s regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed.

Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R. [Pacific Northwest Lab., Richland, WA (United States); Wiblin, C.M. [Advanced Systems Technology, Inc., Atlanta, GA (United States); McGuire, S.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1993-09-01T23:59:59.000Z

337

Spectroscopic diagnostics for bacteria in biologic sample  

DOE Patents (OSTI)

A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

El-Sayed, Mostafa A. (Atlanta, GA); El-Sayed, Ivan H. (Somerville, MA)

2002-01-01T23:59:59.000Z

338

Water Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

339

WATER FOR LIFE Module on Life in the Water and the Water Sanitation Process Created for SPICE GK  

E-Print Network (OSTI)

Water for Life ” module which includes topic areas on bacterial life in the water, water borne pathogens, and water sanitation. Students will be exposed to and learn about the importance of water to life on earth, the concerns with water borne pathogens worldwide, and processes of water sanitation. Lesson 1 “We Need Clean Water”. Students are introduced to terminology and basic facts on water sanitation and water borne pathogens in order to provide a purpose as to why we should study water quality. Lesson 2 “ What is in that water? Bacterial load and Water Quality Experiment. ” In this lesson students conduct an experiment in which they measure the bacterial load (amount of bacteria) in 4 different types of water and examine the effect of UV disinfection on the water samples bacterial populations. Lesson 3 “Water Sanitation Article and Research Essay. ” Students gain background knowledge from reading an article on water sanitation. They will

Program Elisa Livengood; Carmella O’steen

2008-01-01T23:59:59.000Z

340

Inspection/Sampling Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection/Sampling Schedule Inspection/Sampling Schedule Inspection/Sampling Schedule Site Inspection and Water Sampling Schedules Note: The following schedules are subject to change without prior notice and will be updated periodically. Site Name Inspection Date Sampling Week Ambrosia Lake, NM, Disposal Site August 18, 2014 November 20, 2013 Bluewater, NM, Disposal Site August 18, 2014 November 20, 2013 January 28, 2014 May 12, 2014 Boiling Nuclear Superheater (BONUS), PR, Decommissioned Reactor Site Next event 2017 Burrell, PA, Disposal Site December 9, 2013 November 20, 2013 Canonsburg, PA, Disposal Site December 9, 2013 November 19, 2013 Durango, CO, Disposal Site May 19, 2014 June 2, 2014 Durango, CO, Processing Site N/A June 2, 2014 September 1, 2014 Edgemont, SD, Disposal Site June 23, 2014 N/A

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

None

2009-11-01T23:59:59.000Z

342

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

343

Fluid sampling system  

DOE Patents (OSTI)

This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, E.D.

1993-12-31T23:59:59.000Z

344

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

345

Viscous sludge sample collector  

DOE Patents (OSTI)

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A. (Richland, WA)

1983-01-01T23:59:59.000Z

346

Generic sequential sampling for metamodel approximations  

SciTech Connect

Metamodels approximate complex multivariate data sets from simulations and experiments. These data sets often are not based on an explicitly defined function. The resulting metamodel represents a complex system's behavior for subsequent analysis or optimization. Often an exhaustive data search to obtain the data for the metalnodel is impossible, so an intelligent sampling strategy is necessary. While inultiple approaches have been advocated, the majority of these approaches were developed in support of a particular class of metamodel, known as a Kriging. A more generic, cotninonsense approach to this problem allows sequential sampling techniques to be applied to other types of metamodeis. This research compares recent search techniques for Kriging inetamodels with a generic, inulti-criteria approach combined with a new type of B-spline metamodel. This B-spline metamodel is competitive with prior results obtained with a Kriging metamodel. Furthermore, the results of this research highlight several important features necessary for these techniques to be extended to more complex domains.

Turner, C. J. (Cameron J.); Campbell, M. I. (Matthew I.)

2003-01-01T23:59:59.000Z

347

A Proposed Technique for Diagnosis by Radar of Hurricane Structure  

Science Conference Proceedings (OSTI)

A Doppler radar technique is proposed for remote estimation of hurricane structure by sampling the kinematic properties of the hurricane wind field in a relatively small circular area outside the radius of maximum winds. This technique uses ...

Ralph J. Donaldson Jr.

1991-12-01T23:59:59.000Z

348

ANNULAR IMPACTOR SAMPLING DEVICE  

DOE Patents (OSTI)

A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

Tait, G.W.C.

1959-03-31T23:59:59.000Z

349

New Quantum Dot Technique Combines Best of Optical and ...  

Science Conference Proceedings (OSTI)

New Quantum Dot Technique Combines Best of Optical and Electron ... over a sample that has been coated with specially engineered quantum dots. ...

2013-06-25T23:59:59.000Z

350

The Use of Microprocessor Technology for the Conditional Sampling of Intermittent Ocean Processes  

Science Conference Proceedings (OSTI)

Geophysical signals are often intermittent, having statistics which vary with time. Optimal sampling of these signals requires a so-called “conditional sampling” scheme, a technique which changes the sampling program to match the time scales of ...

James D. Irish; Wendell S. Brown; Thomas L. Howell

1984-03-01T23:59:59.000Z

351

ITOUGH2 sample problems  

DOE Green Energy (OSTI)

This report contains a collection of ITOUGH2 sample problems. It complements the ITOUGH2 User`s Guide [Finsterle, 1997a], and the ITOUGH2 Command Reference [Finsterle, 1997b]. ITOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media [Preuss, 1987, 1991a]. The report ITOUGH2 User`s Guide [Finsterle, 1997a] describes the inverse modeling framework and provides the theoretical background. The report ITOUGH2 Command Reference [Finsterle, 1997b] contains the syntax of all ITOUGH2 commands. This report describes a variety of sample problems solved by ITOUGH2. Table 1.1 contains a short description of the seven sample problems discussed in this report. The TOUGH2 equation-of-state (EOS) module that needs to be linked to ITOUGH2 is also indicated. Each sample problem focuses on a few selected issues shown in Table 1.2. ITOUGH2 input features and the usage of program options are described. Furthermore, interpretations of selected inverse modeling results are given. Problem 1 is a multipart tutorial, describing basic ITOUGH2 input files for the main ITOUGH2 application modes; no interpretation of results is given. Problem 2 focuses on non-uniqueness, residual analysis, and correlation structure. Problem 3 illustrates a variety of parameter and observation types, and describes parameter selection strategies. Problem 4 compares the performance of minimization algorithms and discusses model identification. Problem 5 explains how to set up a combined inversion of steady-state and transient data. Problem 6 provides a detailed residual and error analysis. Finally, Problem 7 illustrates how the estimation of model-related parameters may help compensate for errors in that model.

Finsterle, S.

1997-11-01T23:59:59.000Z

352

LANSCE | Lujan Center | Chemical & Sample Prep  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical & Sample Preparation Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Monika Hartl | hartl@lanl.gov | 505.665.2375 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Glove box - He atmosphere High-purity water Diamond anvils Rotating anode generators (reflectometry, residual stress, powder diffraction) Zeiss microscope (with fluorescence abilities) Tube and box furnaces Ultrasonic bath ZAP-cell (for in situ diffraction at high P) Infrared spectrometer Brewster angle microscope

353

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

354

CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES  

Science Conference Proceedings (OSTI)

The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate, sodium nitrite, gibbsite, hydrated sodium bicarbonate, and muscovite. Based on the weight of solids remaining at the end of the test, the water leaching test results indicate approximately 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and {approx}1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The preliminary data on the oxalic acid leaching test indicate the three acid contacts at 45 C dissolved from {approx}34-47% of the solids. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

Hay, M.; Reboul, S.

2012-04-16T23:59:59.000Z

355

Tropospheric sampling with aircraft  

SciTech Connect

Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

Daum, P.H.; Springston, S.R.

1991-03-01T23:59:59.000Z

356

Surface Water Temperatures At Shore Stations, United States West Coast 1977  

E-Print Network (OSTI)

that monitors the cooling intake water for the generators.Thermograph record of intake water at Pacific Gas andtemperatures and water samples at the intake pipe to their

Scripps Institution of Oceanography

1978-01-01T23:59:59.000Z

357

Environmental sampling and analysis as a safeguards tool  

SciTech Connect

Environmental sampling and radionuclide analysis of the resulting material can be utilized as a supplemental approach in safeguarding practices and particularly for detection of undeclared nuclear activities. The production of nuclear weapons could be pursued by uranium enrichment processes to produce highly enriched U-235 or by nuclear reactor operations followed by chemical separations to produce Pu-239. The application of either of these processes results in the production of signature materials, some of which will be released to the environs. Results from the operations of the Hanford production facilities are discussed and indicate the type of signatures that may be expected from plutonium production facilities. These include noble gas emissions from the reactors and chemical separations processes, the production of radionuclides in reactor cooling water followed by their subsequent release to the Columbia River, and the release of mildly contaminated process water from the chemical processing facilities. These signature materials are carried by both gaseous and liqid effluents and enter various compartments of the environment. The types of signature materials which are most likely to be accumulated are discussed, together with examples of the quantities which have been released during past separations. There are numerous processes by which natural uranium may be enriched to produce highly enriched U-235. The most definitive signature of such processes is always a modification in uranium isotope ratios, and materials showing either enriched or depleted uranium in gaseous and liquid effluents provide the best indication that uramium enrichment processes are taking place. Therefore, techniques for sampling and analysis of airborne, waterborne, or deposited uranium in environmental matrices provide a means of detecting uranium enrichment which may lead to proliferation products.

Perkins, R.W.; Wogman, N.A.; Holdren, G.R.

1994-03-01T23:59:59.000Z

358

Turbid water Clear water  

E-Print Network (OSTI)

: The submersible laser bathymetric (LBath) optical system is capable of simultaneously providing visual images- dynamical wing. This underwater package is pulled through the water by a single towed cable with fiber optic special high energy density optical fibers. A remote Pentium based PC also at the surface is used

Jaffe, Jules

359

NID Copper Sample Analysis  

SciTech Connect

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-09-12T23:59:59.000Z

360

Determination of Precipitable Water from Solar Transmission  

Science Conference Proceedings (OSTI)

A method of determining precipitable water to within 10% from solar radiometer data has been developed. The method uses a modified Langley technique to obtain the water vapor optical depth, and a model developed at the University of Arizona is ...

K. J. Thome; B. M. Herman; J. A. Reagan

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electron Based Techniques  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Characterization of Materials through High Resolution Coherent Imaging: Electron Based Techniques Sponsored by: TMS Structural Materials ...

362

Milling Techniques - TMS  

Science Conference Proceedings (OSTI)

February 4-8 · 1996 TMS ANNUAL MEETING · Anaheim, California. SYNTHESIS AND PROCESSING OF NANOCRYSTALLINE POWDER III: Milling Techniques ...

363

Bivariate Conditional Sampling of Moisture Flux over a Tropical Ocean  

Science Conference Proceedings (OSTI)

New applications of conditional sampling using the bivariate joint frequency distribution (JFD) and conditional mean distribution (CMD) are introduced to analyze time series of water vapor flux obtained from aircraft gust-probe vertical velocity ...

Robert L. Grossman

1984-11-01T23:59:59.000Z

364

Method and apparatus for sampling low-yield wells  

DOE Patents (OSTI)

An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

Last, George V. (Richland, WA); Lanigan, David C. (Kennewick, WA)

2003-04-15T23:59:59.000Z

365

NID Copper Sample Analysis  

Science Conference Proceedings (OSTI)

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-02-01T23:59:59.000Z

366

Detection of uranium enrichment activities using environmental monitoring techniques  

SciTech Connect

Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF{sub 6} gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques.

Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

1993-03-30T23:59:59.000Z

367

Water Intoxication  

E-Print Network (OSTI)

2008, May 14). Too much water raises seizure risk in babies.id=4844 9. Schoenly, Lorry. “Water Intoxication and Inmates:article/246650- overview>. 13. Water intoxication alert. (

Lingampalli, Nithya

2013-01-01T23:59:59.000Z

368

Radiochemical Analyses of Water Samples from Selected Streams  

Office of Legacy Management (LM)

and Precipitation Collected October Conjunction With the First Production Test, Project Rulison-9, HGSlO DISCLAIMER Portions of this document may be illegible in electronic image...

369

Conditional Sampling of Turbulence in the Atmospheric Surface Layer  

Science Conference Proceedings (OSTI)

Conditional sampling and averaging techniques are used to obtain statistics of convectively-driven quasi-ordered structures at a height of 4 m within the atmospheric surface layer. The fraction of time 'y occupiedby these structures, and their ...

R. A. Antonia; S. Rajagopalan; A. J. Chambers

1983-01-01T23:59:59.000Z

370

Pharmaceutical Waters  

Science Conference Proceedings (OSTI)

Table 3   Water treatment process for water for injection (WFI)...deionization WFI production Evaporation still or vapor compression...

371

Water Snakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation WATER SNAKES Contrary to popular belief, the Water Moccasin commonly known as the...

372

Demosaicing: image reconstruction from color ccd samples  

E-Print Network (OSTI)

A simplified color image formation model is used to construct an algorithm for image reconstruction from CCD sensors samples. The proposed method involves two successive steps. The first is motivated by Cok’s template matching technique, while the second step uses steerable inverse diffusion in color. Classical linear signal processing techniques tend to oversmooth the image and result in noticeable color artifacts along edges and sharp features. The question is how should the different color channels support each other to form the best possible reconstruction. Our answer is to let the edges support the color information, and the color channels support the edges, and thereby achieve better perceptual results than those that are bounded by the sampling theoretical limit.

Ron Kimmel

1999-01-01T23:59:59.000Z

373

Fluid sampling apparatus and method  

DOE Patents (OSTI)

Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

Yeamans, David R. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

374

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

375

Sample holder with optical features  

DOE Patents (OSTI)

A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

2013-07-30T23:59:59.000Z

376

Investigating Water  

E-Print Network (OSTI)

This 3-ring binder contains teaching plans for 12 lessons on topics such as "Water in Our Daily Lives," "The Water Cycle," "Amazing Aquifers," "Water and Soil," "Aquatic Ecosystems," and "Water Wise Use." Accompanying each lesson plan are activity and record sheets for hands-on learning experiences. This curriculum is intended for students in about 4th to 8th grades.

Howard Jr., Ronald A.

2002-01-02T23:59:59.000Z

377

Applied Science/Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science/Techniques Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

378

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

hot water draw and energy usage for household samples,Support Document [10]. Energy usage for tankless watersuch a large population, energy usage would be reduced and

Lu, Alison

2011-01-01T23:59:59.000Z

379

Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator  

DOE Green Energy (OSTI)

Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

2012-01-26T23:59:59.000Z

380

Effect of immiscible liquid contaminants on P-wave transmission through natural aquifer samples  

SciTech Connect

We performed core-scale laboratory experiments to examine the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation in heterogeneous media. This work is part of a larger project to develop crosswell seismic methods for minimally invasive NAPL detection. The test site is the former DOE Pinellas Plant in Florida, which has known NAPL contamination in the surficial aquifer. Field measurements revealed a zone of anomalously high seismic attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained from the field site, and P-wave transmission was measured by the pulse-transmission technique with a 500 kHz transducer. Two types of samples were tested: a clean fine sand from the upper portion of the surficial aquifer, and clayey-silty sand with shell fragments and phosphate nodules from the lower portion. Either NAPL trichloroethene or toluene was injected into the initially water-saturated sample. Maximum NAPL saturations ranged from 30 to 50% of the pore space. P-wave velocity varied by approximately 4% among the water-saturated samples, while velocities decreased by 5 to 9% in samples at maximum NAPL saturation compared to water-saturated conditions. The clay and silt fraction as well as the larger scatterers in the clayey-silty sands apparently caused greater P-wave attenuation compared to the clean sand. The presence of NAPLs caused a 34 to 54% decrease in amplitudes of the first arrival. The central frequency of the transmitted energy ranged from 85 to 200 kHz, and was sensitive to both grain texture and presence of NAPL. The results are consistent with previous trends observed in homogeneous sand packs. More data will be acquired to interpret P-wave tomograms from crosswell field measurements, determine the cause of high attenuation observed in the field data and evaluate the sensitivity of seismic methods for NAPL detection.

Geller, Jil T.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

2003-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Definition: Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Soil Gas Sampling Jump to: navigation, search Dictionary.png Soil Gas Sampling Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases in the near-surface environment. Identification of high concentrations of hydrothermal gas species may indicates the presence of enhanced permeability (faults) and high temperature hydrothermal activity at depth. Soil gas data may also be used to study other important aspects of the geothermal system, such as distinguishing between magmatic and amagmatic sources of heat. The technique may also be used for ongoing monitoring of the geothermal system during resource development and production.

382

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

383

An Improved, Free Surface, Topographic Technique  

Science Conference Proceedings (OSTI)

Current techniques of water wave visualization such as shadowgraphy and stereo photography are widely used but are deficient in many aspects. Refraction based visualization observes the bending of light as it traverses across a liquid-air interface. ... Keywords: Free Surface, PIV, Topography, Visualization

A. Fouras; K. Hourigan; M. Kawahashi; H. Hirahara

2006-01-01T23:59:59.000Z

384

Sampling streaming data with replacement  

Science Conference Proceedings (OSTI)

Simple random sampling is a widely accepted basis for estimation from a population. When data come as a stream, the total population size continuously grows and only one pass through the data is possible. Reservoir sampling is a method of maintaining ... Keywords: Data stream mining, Random sampling with replacement, Reservoir sampling

Byung-Hoon Park; George Ostrouchov; Nagiza F. Samatova

2007-10-01T23:59:59.000Z

385

A New Technique for Microautoradiography and Tritium Profiling  

SciTech Connect

A new technique has been developed for high magnification examination of autoradiographic emulsions. The technique enables a relatively quick examination of autoradiographic emulsions from large areas of metallographically prepared samples at magnifications of up to 50,000X. The technique also allows for profiling of the tritium distribution with the promise of quantitative profiling, all on a microscale.

Downs, G. L.

1967-12-01T23:59:59.000Z

386

Multicolor Underwater Imaging Techniques.  

E-Print Network (OSTI)

??Studies were conducted on multispectral polarimetric subtraction imaging techniques for underwater imaging that use a broadband light source. The main objective of this study was… (more)

Waggoner, Douglas Scott

2007-01-01T23:59:59.000Z

387

A Radiographic Technique With Heavy Ion Microbeams  

SciTech Connect

In this work, we introduce a new technique to perform densitometric and multielemental analysis of samples at the same time using a simple detector with heavy ion micro-beams. It consists in the simultaneous analysis of X-rays induced in the sample and in a secondary target arranged behind the specimen. The X-rays originated in the secondary target are attenuated when crossing the specimen producing a radiographic image with a monochromatic source.

Muscio, J. [ECyT, UNSAM, 1650 San Martin, Buenos Aires (Argentina); Somacal, H.; Burlon, A. A.; Debray, M. E.; Valda, A. A. [ECyT, UNSAM, 1650 San Martin, Buenos Aires (Argentina); U.A. Fisica, Laboratorio TANDAR, CNEA, 1650 San Martin, Buenos Aires (Argentina); Kreiner, A. J. [U.A. Fisica, Laboratorio TANDAR, CNEA, 1650 San Martin, Buenos Aires (Argentina); ECyT, UNSAM, 1650 San Martin, Buenos Aires (Argentina); CONICET (Argentina); Kesque, J. M.; Minsky, D. M. [U.A. Fisica, Laboratorio TANDAR, CNEA, 1650 San Martin, Buenos Aires (Argentina)

2007-02-12T23:59:59.000Z

388

Resources on Water Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency » Resources on Water Efficiency Water Efficiency » Resources on Water Efficiency Resources on Water Efficiency October 8, 2013 - 10:03am Addthis Many helpful resources about water efficiency are available. Also see Contacts. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation assesses techniques for optimizing reverse osmosis systems to increase system performance and water efficiency. Side Stream Filtration for Cooling Towers (Full Report): Comprehensive document assessing side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. Technical Evaluation of Side Stream Filtration for Cooling Towers (Fact

389

A Novel Sampling Approach to Combinatorial Optimization Under Uncertainty  

Science Conference Proceedings (OSTI)

The generalized approach to stochastic optimization involves two computationally intensive recursive loops: (1) the outer optimization loop, (2) the inner sampling loop. Furthermore, inclusion of discrete decision variables adds to the complexity. The ... Keywords: HSS technique, combinatorial optimization, efficient sampling, nuclear waste, stochastic annealing, stochastic optimization

Urmila M. Diwekar

2003-02-01T23:59:59.000Z

390

A Sampling Plan for Use with Dynamic Calibration  

SciTech Connect

Dynamic calibration is a measurement control technique designed to facilitate the use of nondestructive assay for the control and accounting of special nuclear material. The implementation of dynamic calibration requires selection of an appropriate control measurement and sampling plan to provide traceability for the measurement system. A general sampling plan for use when the control measurement is an independent assay is presented with examples.

Lemming, John F.; Rudy, Clifford R.

1979-09-14T23:59:59.000Z

391

Gas Flux Sampling (Lewicki & Oldenburg) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Lewicki & Oldenburg) Gas Flux Sampling (Lewicki & Oldenburg) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Lewicki & Oldenburg) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_(Lewicki_%26_Oldenburg)&oldid=508144" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

392

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Data Techniques: The collection, processing, and interpretation of data from various methods so accurate interpretations can be made about the subject matter. Other definitions:Wikipedia Reegle Introduction Data techniques are any technique where data is collected and organized in a manner so that the information is useful for geothermal purposes. The

393

Contamination Control Techniques  

SciTech Connect

Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

EBY, J.L.

2000-05-16T23:59:59.000Z

394

Impervious Areas: Examining the Undermining Effects on Surface Water Quality  

E-Print Network (OSTI)

This study explored the relationship between increased proportions of imperviousness in a watershed on surface water quality and examined the effectiveness of using remote sensing to systematically and accurately determine impervious surfaces. A supervised maximum likelihood algorithm was used to classify the 2008 high resolution National Agriculture Imagery Program (NAIP) imagery into six classifications. A stratified random sampling scheme was conducted to complete an accuracy assessment of the classification. The overall accuracy was 85%, and the kappa coefficient was 0.80. Additionally, field sampling and chemical analysis techniques were used to examine the relationship between impervious surfaces and water quality in a rainfall simulation parking lot study. Results indicated that day since last rain event had the most significant effect on surface water quality. Furthermore, concrete produced higher dissolved organic carbon (DOC), dissolved organic nitrogen (DON), potassium and calcium in runoff concentrations than did asphalt. Finally, a pollutant loading application model was used to estimate pollutant loadings for three watersheds using two scenarios. Results indicated that national data may overestimate annual pollutant loads by approximately 700%. This study employed original techniques and methodology to combine the extraction of impervious surfaces, utilization of local rainfall runoff data and hydrological modeling to increase planners' and scientists' awareness of using local data and remote sensing data to employ predictive hydrological modeling.

Young, De'Etra Jenra

2010-12-01T23:59:59.000Z

395

Applied Science/Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science/Techniques Print Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

396

Scheduling Techniques for Synchronous and Multidimensional Synchro-nous Dataflow  

E-Print Network (OSTI)

by Praveen Kumar Murthy Doctor of Philosophy in Electrical Engineering and Computer Science University memory usage of the schedule; in this thesis, we develop techniques that jointly minimize for code size, a signal sampled on a non-rectangular lattice can have a lower sampling density than one sampled

California at Berkeley, University of

397

Scheduling Techniques for Synchronous and Multidimensional Synchro nous Dataflow  

E-Print Network (OSTI)

by Praveen Kumar Murthy Doctor of Philosophy in Electrical Engineering and Computer Science University memory usage of the schedule; in this thesis, we develop techniques that jointly minimize for code size, a signal sampled on a non­rectangular lattice can have a lower sampling density than one sampled

California at Berkeley, University of

398

Elemental analysis of slurry samples with laser induced breakdown spectroscopy  

Science Conference Proceedings (OSTI)

Direct analysis of wet slurry samples with laser induced breakdown spectroscopy (LIBS) is challenging due to problems of sedimentation, splashing, and surface turbulence. Also, water can quench the laser plasma and suppress the LIBS signal, resulting in poor sensitivity. The effect of water on LIBS spectra from slurries was investigated. As the water content decreased, the LIBS signal was enhanced and the standard deviation was reduced. To improve LIBS slurry analysis, dried slurry samples prepared by applying slurry on PVC coated slides were evaluated. Univariate and multivariate calibration was performed on the LIBS spectra of the dried slurry samples for elemental analysis of Mg, Si, and Fe. Calibration results show that the dried slurry samples give a good correlation between spectral intensity and elemental concentration.

Eseller, Kemal E.; Tripathi, Markandey M.; Yueh, Fang-Yu; Singh, Jagdish P.

2010-05-01T23:59:59.000Z

399

Dehydration of acetic acid-water mixtures with near critical and supercritical fluid solvents  

SciTech Connect

Equilibrium tie lines and phase densities are presented for acetic acid-water mixtures with near critical propane at 361K and 52 bar. Experimental measurements were obtained with a static technique; the equilibrium phases were directly sampled with high-pressure liquid sample injection valves at the temperature and pressure of interest. The data obtained in this work indicate that near critical propane can be used to facilitate the production of glacial acetic acid from dilute acetic acid-water solutions. Both these experimental data and the authors earlier results for acetic acid-water mixtures with supercritical carbon dioxide have been used to test an equation of state which has recently been developed by Grenzheuser and Gmehling for systems which contain associating fluids. Results indicate that the equation's pure component parameters need to be refitted to represent the critical region more accurately.

McCully, M.A.; Mullins, J.C.; Thies, M.C.; Hartley, I.J.

1988-10-01T23:59:59.000Z

400

Techniques to Develop Data for Hydrogeochemical Models  

Science Conference Proceedings (OSTI)

Predicting the environmental fate of chemicals leached from solid-waste disposal sites requires the use of hydrologic and geochemical models. These models need accurate input data, which require field sampling and analysis of soils, water, and waste. This manual provides guidance on developing input data so that utilities can increase their use of hydrogeochemical models.

1989-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

402

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Tankless Demand Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil & Indirect Water Heaters Water Heating A variety of...

403

Best practice techniques for environmental radiological monitoring  

E-Print Network (OSTI)

/Medium Volume Air Sampling (HVAS/MVAS). #12;Science Report Best Practice Techniques for Environmental Community FSA: Food Standards Agency H2O2: Hydrogen peroxide HPA: Health Protection Agency HVAS/MVAS: High/monitoring type code Terrestrial dose rate monitoring T1 Air passive shades and HVAS/MVAS T2 Wet, dry, total

404

Ground Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Nature Bulletin No. 408-A February 27, 1971 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation GROUND WATER We take...

405

Water Dogs  

NLE Websites -- All DOE Office Websites (Extended Search)

NA Question: I'd like to know about the water dogs and their life cycle? Replies: Water dog, or mud puppy, is a common name for a type of salamander that never develops lungs, but...

406

Using Structured Interviewing Techniques  

E-Print Network (OSTI)

GAO assists congressional decisionmakers in their deliberative process by furnishing analytical information on issues and options under consideration. Many diverse methodologies are needed to develop sound and timely answers to the questions that are posed by the Congress. To provide GAO evaluators with basic information about the more commonly used methodologies, GAO’s policy guidance includes documents such as methodology transfer papers and technical guidelines, This methodology transfer paper on using structured interviewing techniques discusses how GAO evaluators should incorporate structured interview techniques when appropriate to performing our work. It explains when these techniques should be

Gao/pemd-. Preface; Werner Grosshans

1991-01-01T23:59:59.000Z

407

Sampling Characteristics of Satellite Orbits  

Science Conference Proceedings (OSTI)

The irregular space-time sampling of any finite region by an orbiting satellite raises difficult questions as to which frequencies and wavenumbers can be determined and which will alias into others. Conventional sampling theorems must be extended ...

Carl Wunsch

1989-12-01T23:59:59.000Z

408

Flux Measurement with Conditional Sampling  

Science Conference Proceedings (OSTI)

A method is proposed to measure scalar fluxes using conditional sampling. Only the mean concentrations of updraft and downdraft samples, the standard deviation of the vertical velocity, and a coefficient of proportionality, b, need to be known. ...

Joost A. Businger; Steven P. Oncley

1990-04-01T23:59:59.000Z

409

Sampling Errors in Seasonal Forecasting  

Science Conference Proceedings (OSTI)

The limited numbers of start dates and ensemble sizes in seasonal forecasts lead to sampling errors in predictions. Defining the magnitude of these sampling errors would be useful for end users as well as informing decisions on resource ...

Stephen Cusack; Alberto Arribas

2009-03-01T23:59:59.000Z

410

Sampling – Soil - Energy Innovation Portal  

INL has developed a method for sampling soil to determine the presence of extremely fine particles such as asbestos.

411

Chemical composition of water and gas from five nearshore subaqueous springs in Clear Lake, northern California  

SciTech Connect

In 1971 The Geysers-Clear Lake area was selected by the US Geological Survey geothermal research program as a region for extensive investigation. Under this program thermal water samples were first collected in December, 1974 during a winter of normal rainfall; the last samples were collected in February, 1977 during a period of drought. The drought exposed many springs which normally are submerged by Clear Lake. It was demonstrated that gas and water samples can be collected from shallow submerged springs relatively simply using a peristaltic, battery powered pump. Qualitatively sulfate, ammonia, chloride and lithium concentrations may be used to estimate the amount of lake water contamination. The gas sampling technique, using an inverted funnel and long tube to the surface only where visibility was greater than 2 to 3 m. Analyses of near surface compared to deeper submerged gas indicates air contamination in the near surface sample. Thus gas samples should be collected deep underwater or as near the spring vent or gas orifice as possible.

Thompson, J.M.; Sims, J.D.; Yadav, S.; Rymer, M.J.

1979-01-01T23:59:59.000Z

412

Discussion on Cycle Water Injection Effect and Its Influencing Factors  

Science Conference Proceedings (OSTI)

Cyclic waterflooding is a kind of waterflood technique, which can improve the waterflood efficiency in low-permeability and fracture-porosity reservoir by changing periodically injected water volume. This article gives the principle and the applied conditions ... Keywords: water flooding, principle, the opportunity of water injection, water injection efficiency, water injection period

Shan Wuyi, Zhang Xue

2013-06-01T23:59:59.000Z

413

Device and technique for in-process sampling and analysis of molten metals and other liquids presenting harsh sampling conditions  

DOE Patents (OSTI)

An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid are mixed in a converging-diverging nozzle where the liquid is sheared into small particles which are of a size and uniformly to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas.

Alvarez, Joseph L. (Idaho Falls, ID); Watson, Lloyd D. (Rigby, ID)

1989-01-01T23:59:59.000Z

414

Device and technique for in-process sampling and analysis of molten metals and other liquids presenting harsh sampling conditions  

DOE Patents (OSTI)

An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid is sheared into small particles which are of a size and uniformity to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas. 5 figs.

Alvarez, J.L.; Watson, L.D.

1988-01-21T23:59:59.000Z

415

Current techniques in acid-chloride corrosion control and monitoring at The Geysers  

DOE Green Energy (OSTI)

Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

Hirtz, Paul; Buck, Cliff; Kunzman, Russell

1991-01-01T23:59:59.000Z

416

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

417

Synchrotron Mossbauer Spectroscopy of powder samples  

SciTech Connect

Synchrotron Mossbauer Spectroscopy, SMS, is an emerging technique that allows fast and accurate determination of hyperfine field parameters similar to conventional Mossbauer spectroscopy with radioactive sources. This new technique, however, is qualitatively different from Mossbauer spectroscopy in terms of equipment, methodology, and analysis to warrant a new name. In this paper, the authors report on isomer shift and quadrupole splitting measurements of Mohr`s salt, Fe(NH{sub 4}){sub 2}(SO{sub 4}){sub 2}{center_dot}6H{sub 2}O for demonstration purposes. Theoretical calculations were performed and compared to experiments both in energy and time domain to demonstrate the influence of thickness distribution and preferential alignment of powder samples. Such measurements may prove to be useful when the data collection times are reduced to few seconds in the third generation, undulator based synchrotron radiation sources.

Alp, E.E.; Sturhahn, W.; Toellner, T.

1994-08-01T23:59:59.000Z

418

Water Bugs  

NLE Websites -- All DOE Office Websites (Extended Search)

Bugs Bugs Nature Bulletin No. 221-A March 12, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation WATER BUGS It is fascinating to lie in a boat or on a log at the edge of the water and watch the drama that unfolds among the small water animals. Among the star performers in small streams and ponds are the Water Bugs. These are aquatic members of that large group of insects called the "true bugs", most of which live on land. Moreover, unlike many other types of water insects, they do not have gills but get their oxygen directly from the air. Those that do go beneath the surface usually carry an oxygen supply with them in the form of a shiny glistening sheath of air imprisoned among a covering of fine waterproof hairs. The common water insect known to small boys at the "Whirligig Bug" is not a water bug but a beetle.

419

EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION  

E-Print Network (OSTI)

EXTENSION WATER SUMMIT PRIORITY: WATER CONSERVATION Leadership Team Subcommittee: Joan Bradshaw Michael Dukes Pierce Jones Kati Migliaccio #12;Water Conservation - Situation · Florida water supplies;Water Conservation Initiative 2: Enhancing and protecting water quality, quantity, and supply Priority 1

Slatton, Clint

420

Gas Flux Sampling (Evans, Et Al., 2001) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Evans, Et Al., 2001) Gas Flux Sampling (Evans, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling (Evans, Et Al., 2001) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Laboratory experiments aimed at evaluating gas flux sampling methods The value of using the noble gas suite in transport studies is made obvious by the eight-fold enrichment in 4Her132Xe observed in the 80% CO sample (Table 2 1), relative to abundancies in air. Our results at least show that gas samples collected by either sudden pre-evacuated container or gradual gas pump. Removal of tens of cm3 of gas through an access pipe appear to reflect steady-state values. On-site measurements other than CO2 flux could

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores | U.S. DOE  

Office of Science (SC) Website

Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » October 2012 Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Precision analytical techniques developed for fundamental experiments in nuclear physics now enable routine measurements of ultra-low concentrations of Krypton radioisotopes in samples of water, ice, and gas. Print Text Size: A A A Subscribe FeedbackShare Page

422

Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters  

Science Conference Proceedings (OSTI)

This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

Continental Shelf Associates, Inc.

1999-08-16T23:59:59.000Z

423

Sampling artifacts from conductive silicone tubing  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling artifacts from conductive silicone tubing Sampling artifacts from conductive silicone tubing Title Sampling artifacts from conductive silicone tubing Publication Type Journal Article Year of Publication 2009 Authors Timko, Michael T., Zhenhong Yu, Jesse Kroll, John T. Jayne, Douglas R. Worsnop, Richard C. Miake-Lye, Timothy B. Onasch, David Liscinsky, Thomas W. Kirchstetter, Hugo Destaillats, Amara L. Holder, Jared D. Smith, and Kevin R. Wilson Journal Aerosol Science and Technology Volume 43 Issue 9 Pagination 855-865 Date Published 06/03/2009 Abstract We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: (1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and (2) silicone tubing emits organic contaminants containing siloxane that are adsorbed onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and the tubing should, therefore, be used with caution. Contamination associated with the use of silicone tubing was observed at ambient temperature and, in some cases, was enhanced by mild heating (<70°C) or pre-exposure to a solvent (methanol). Further evaluation is warranted to quantify systematically how the contamination responds to variations in system temperature, physicochemical particle properties, exposure to solvent, sample contact time, tubing age, and sample flow rates.

424

Surface Gas Sampling (Klein, 2007) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling (Klein, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling (Klein, 2007) Exploration Activity Details Location Unspecified Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Christopher W. Klein (1 January 2007) Advances In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_(Klein,_2007)&oldid=689399"

425

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron X-ray Techniques for Industrial Research Synchrotron X-ray Techniques for Industrial Research Techniques http://www.sc.doe.gov/bes/synchrotron_techniques/ Spectroscopy Spectroscopy is used to study the energies of particles emitted or absorbed by samples that are exposed to beam to determine the characteristics of chemical bonding and electron energy band structure. Extended X-Ray Absorption Fine Structure Spectroscopy (EXAFS) X-Ray Absorption Near Edge Spectroscopy (XANES) Hard X-ray Photoelectron Spectroscopy (HAXPES) Scanning X-Ray Microscopy: Micro-XRF, -XAFS, -XRD Soft X-Ray Absorption and Scattering Infrared Vibrational Microspectroscopy Photoemission Electron Microscopy / Low-Energy Electron Microscopy (PEEM/LEEM) Scattering/Diffraction Scattering/diffraction makes use of the patterns of scattered x-rays when

426

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

427

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

428

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but the authors have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. The authors proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water (Table 1). They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100 \\261 10% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80% of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-01-01T23:59:59.000Z

429

Speciation and structural characterization of plutonium and actinide-organic complexes in surface and ground waters. Annual progress report, September 1996--September 1997  

SciTech Connect

'The authors proposed research is designed to study the association of actinides with dissolved organic complexes in subsurface waters. Actinide-humic matter associations in natural waters have been investigated previously, but they have postulated that much of the actinide binding activity may be supported by colloidal biopolymers. To investigate this, they are developing techniques to sample and identify organic constituents in groundwater, and to measure the Pu associated with different fractions of organic matter. Year 1 activities have focused on: (1) sampling techniques to minimize contamination and artifact formation, and to establish mass balances, (2) separation of Pu isotopes by oxidation state, and (3) analytical development of techniques for separation and identification of organic constituents from natural waters. Their proposed research calls for field work at the Savannah River and Hanford Sites (SRS and HS, respectively). Towards this, they have been working on establishing protocols for ultra-clean (fg level) cross-flow filtration (CFF) techniques suitable for thermal ionization mass spectrometric (TIMS) analysis. A series of tests have been completed and the results have shown no Pu contamination from the CFF system was observable as long as the system is rigorously cleaned with acid, base and nano-pure water. They have also collected a water sample from a pond near the laboratory in Woods Hole, MA to test blank conditions in the field, and to determine system mass balances. Blank levels were found to be satisfactory, and the mass balance is 100--210% for both {sup 239}Pu and {sup 240}Pu, the only two isotopes measurable in the sample. This is one of the major assurances for the success of the project because CFF will be the major sampling tool the authors will use to study natural Pu-organic complexes. Another important result from the field test is that > 80 % of the dissolved Pu (based on the TIMS measurements) is in colloidal form.'

Buessler, K.O.; Repeta, D.J.

1997-12-31T23:59:59.000Z

430

Sample page | Open Energy Information  

Open Energy Info (EERE)

Sample page Sample page Jump to: navigation, search This page has been rated 13[1][2] on the scale of awesomness. This page is awesome! The above text is generated by the SampleTemplate. Try editing it and changing the level of awesomeness to see the template react. Hint: It says something different depending on whether or not the page is at least 5 awesome. This page is related to the following topics[3][4]: References Sample pages Help pages Additional Info Name Sample page Awesomeness 13 Topics (raw) References; Sample pages; Help pages; References ↑ Francis C. Monastero. 2002. An overview of industry-military cooperation in the development of power operations at the Coso geothermal field in southern California. GRC Bulletin. . ↑ EPRI. 12/12/2012. Assessment and Mapping of the Riverine

431

Acceptance sampling using judgmental and randomly selected samples  

SciTech Connect

We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

2010-09-01T23:59:59.000Z

432

Sample  

Science Conference Proceedings (OSTI)

... deficits by gouging California energy consumers, must ... to state of the art information technology. ... Industry and organization specific knowledge is ...

2010-03-22T23:59:59.000Z

433

Reusing Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Reusing Water Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment cleaner than when it was pumped. How many times does LANL reuse water? Wastewater is generated from some of the facilities responsible for the Lab's biggest missions, such as the cooling towers of the Los Alamos Neutron Science Center, one of the Lab's premier science research

434

Sample State and Local Ballots  

Science Conference Proceedings (OSTI)

Sample State and Local Ballots. ... We thank the election officials who have contributed to this effort. State, County/Municipality, Ballot, Election, Date, ...

2010-10-05T23:59:59.000Z

435

IWTU Process Sample Analysis Report  

SciTech Connect

CH2M-WG Idaho (CWI) requested that Battelle Energy Alliance (BEA) analyze various samples collected during June – August 2012 at the Integrated Waste Treatment Facility (IWTU). Samples of IWTU process materials were collected from various locations in the process. None of these samples were radioactive. These samples were collected and analyzed to provide more understanding of the compositions of various materials in the process during the time of the process shutdown that occurred on June 16, 2012, while the IWTU was in the process of nonradioactive startup.

Nick Soelberg

2013-04-01T23:59:59.000Z

436

Homeowner Soil Sample Information Form  

E-Print Network (OSTI)

Homeowners should submit this form with their soil samples when requesting a soil test from the Texas A&M Soil Testing Laboratory.

Provin, Tony

2007-04-11T23:59:59.000Z

437

Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa  

SciTech Connect

Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchman Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling provided valuable information about chemical processes occurring during inundation as the water disappeared. Important observations from water-chemistry analyses included: 1) total dissolved solids (TDS) and chloride ion (Cl-) concentrations were very low (TDS: < 200 mg/L and Cl-: < 3.0 mg/L, respectively) for all water samples regardless of time or areal extent; 2) all dissolved constituents were at concentrations well below what might be expected for evaporating shallow surface waters on a playa, even when 98 to 99 percent of the water had disappeared; 3) the amount of evaporation for the last water samples collected at the end of inundation, estimated with the stable isotopic ratios ?2H or ?18O, was approximately 60 percent; and 4) water samples analyzed by gamma spectroscopy did not show any man-made radioactivity; however, the short scanning time (24 hours) and relative chemical diluteness of the water samples (TDS ranged between 39 and 190 mg/L) may have contributed to none being detected. Additionally, any low-energy beta emitting radionuclides would not have been detected by gamma spectroscopy. From these observations, it was apparent that a significant portion of water on the playa did not evaporate, but rather infiltrated into the subsurface (approximately 40 percent). Consistent with this water chemistry-based conclusion is particle-size analysis of two archived Frenchman Flat playa soils samples, which showed low clay content in the near surface soil that also suggested infiltration. Infiltration of water from the playa during inundation into the subsurface does not necessarily imply that groundwater recharge is occurring, but it does provide a mechanism for moving residual radionuclides downward into the subsurface of Frenchman Flat playa. Water-mineral geochemical reactions were modeled so that changes in the water chemistry could be identified and the extent of reactions quantified. Geochemical modeling showed that evaporation; equilibrium with atmospheric carbon dioxide and calcite; dissolution of sodium chloride, gypsum, and composite volcanic g

Hershey, Ronald; Cablk, Mary; LeFebre, Karen; Fenstermaker, Lynn; Decker, David

2013-08-01T23:59:59.000Z

438

Water Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

- National Energy Technology Laboratory Office of Systems Analyses and Planning EUEC Energy & Environment Conference 2008, EPS,1292008 2 * Water Scarcity Seen Dampening Case...

439

Neptunium-239 in disassembly basin water  

SciTech Connect

Since the presence of neptunium-239 in disassembly basin water had been suggested, analysis of the water was undertaken. The occurrence of Np-239 was thought to be due to its diffusion through the slugs. Samples of water from the D and E Canals in K and R-Areas were analyzed to determine the presence of Np-239. Samples from and K and R Areas both showed Np-239 to be present in quantities greater than 50% of the initial total activity.

Carlton, W.H.; Boni, A.L.

1956-08-13T23:59:59.000Z

440

An Improved Filter Technique for Ice Nucleus Measurements  

Science Conference Proceedings (OSTI)

No satisfactory standard field method has been established for the measurement of ice nucleus concentrations, although the filter technique is a promising candidate if the tendency for ice nucleus concentrations to decrease as the sample volume ...

Chi-Fan Shih; Takeshi Ohtake

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technique water sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Water and Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Water in swimming pool Water and Energy The water and energy technology research focuses on improving the efficiency of energy and water use in water delivery, supply and...

442

Energy Basics: Water Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters...

443

Microsoft Word - Appendix C SW Samples.doc  

Office of Legacy Management (LM)

Analytical Results for Surface Water Samples, Analytical Results for Surface Water Samples, January 2000 through April 2011 This page intentionally left blank Upstream -- SW00-01 a _______________________________________________________________________________________________________________________________________________ Analyte Unit 04/18/00 07/17/00 10/20/00 04/17/01 07/11/01 10/09/01 04/07/05 10/05/05 04/28/06 10/02/06 04/11/07 10/08/07 04/09/08 g _______________________________________________________________________________________________________________________________________________ Field Measurements Alkalinity c mg/L -- -- -- -- -- -- -- -- -- -- -- -- -- Alkalinity b mg/L 196 130 263 218 196 98 145 202 228 183 227 186 213

444

Balanced pressure techniques applied to geothermal drilling  

DOE Green Energy (OSTI)

The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

Dareing, D.W.

1981-08-01T23:59:59.000Z

445

Massively parallel Wang Landau sampling on multiple GPUs  

Science Conference Proceedings (OSTI)

Wang Landau sampling is implemented on the Graphics Processing Unit (GPU) with the Compute Unified Device Architecture (CUDA). Performances on three different GPU cards, including the new generation Fermi architecture card, are compared with that on a Central Processing Unit (CPU). The parameters for massively parallel Wang Landau sampling are tuned in order to achieve fast convergence. For simulations of the water cluster systems, we obtain an average of over 50 times speedup for a given workload.

Yin, Junqi [ORNL; Landau, D. P. [UGA

2012-01-01T23:59:59.000Z

446

Resin infiltration transfer technique  

DOE Patents (OSTI)

A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

Miller, David V. (Pittsburgh, PA); Baranwal, Rita (Glenshaw, PA)

2009-12-08T23:59:59.000Z

447

New Developments in LC-MS and Other Hyphenated Techniques  

SciTech Connect

Extensive challenges faced by analytical chemists in studying real world complex samples such as biological body fluids, tissue samples, environmental and geological samples have lead to the development of advanced analytical approaches. The vast array of contemporary technologies can be categorized into two major areas: sample separation and mass spectrometry analysis. Current state-of-the-art sample separation methods include gas chromatography, high performance liquid chromatography, ultra high pressure liquid chromatography, solid phase extraction, capillary electrophoresis, and gas phase separation techniques such as ion mobility spectrometry. The recent trend in sample separation is to combine (or hyphenate) multiple