Sample records for technique rock lab

  1. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis Jump

  2. PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133 Rocks and Minerals I. OBJECTIVES One of the many ways to study Earth is by examining the rocks that make up its types of rocks and minerals; · determine the formation and the history of each rock and mineral; · infer

  3. Category:Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.source HistoryLab

  4. Lab Analysis Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEEPuente,Salle,LaMoure County,Lab

  5. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

  6. Category:Lab Analysis Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelpFluidLab Analysis

  7. Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics Lab, UH;

    E-Print Network [OSTI]

    Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics of heavy oils is discussed based on the measured data in our lab. Havriliak and Negami (HN) model is suggested to describe the frequency dispersion of heavy oils. Introduction The velocity behavior in heavy

  8. Scientists to Meet in Carlsbad, NM for Hard Rock Lab Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysics Lab

  9. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  10. Stimulation Techniques Used In Enhanced Geothermal Systems: Perspectives From Geomechanics and Rock Physics

    SciTech Connect (OSTI)

    Stephen L. Karner; Joel Renner

    2005-01-01T23:59:59.000Z

    Understanding the processes that enhance fluid flow in crustal rocks is a key step towards extracting sustainable thermal energy from the Earth. To achieve this, geoscientists need to identify the fundamental parameters that govern how rocks respond to stimulation techniques, as well as the factors that control the evolution of permeability networks. These parameters must be assessed over variety of spatial scales: from microscopic rock properties (such as petrologic, mechanical, and diagenetic characteristics) to macroscopic crustal behavior (such as tectonic and hydro-dynamic properties). Furthermore, these factors must be suitably monitored and/or characterized over a range of temporal scales before the evolutionary behavior of geothermal fields can be properly assessed. I am reviewing the procedures currently employed for reservoir stimulation of geothermal fields. The techniques are analyzed in the context of the petrophysical characteristics of reservoir lithologies, studies of wellbore data, and research on regional crustal properties. I determine common features of geothermal fields that can be correlated to spatiotemporal evolution of reservoirs, with particular attention to geomechanics and petrophysical properties. The study of these correlations can then help guide procedures employed when targeting new prospective geothermal resources.

  11. Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation

    E-Print Network [OSTI]

    Kamat, Vineet R.

    NERS Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation detection and characterization for nuclear nonproliferation); Development of TlBr wide band-gap semiconductor detectors (Radiation Monitoring Devices and DNDO of DHS

  12. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    SciTech Connect (OSTI)

    Palmer, S.P. (Lawrence Berkeley Lab., CA (USA))

    1982-11-01T23:59:59.000Z

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 {times} 0.9 {times} 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs.

  13. Dissertation Lab Dissertation Lab (D-Lab)

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Dissertation Lab TLB 5/1/2012 Dissertation Lab (D-Lab) May 29-May 31, 2012 Carlisle Suite, 2nd Floor University Center What is Dissertation Lab (D-Lab)? The Office of Graduate Studies Student Services offers D-Lab to help students progress through the difficult process of writing their dissertation

  14. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    SciTech Connect (OSTI)

    Dorsch, J.

    1997-02-01T23:59:59.000Z

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR.

  15. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team · Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  16. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  17. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechLab Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element TechLab...

  18. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLab

  19. The Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe Future isThe IronThe Lab The

  20. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  1. Blasting Rocks and Blasting Cars Applied Engineering

    ScienceCinema (OSTI)

    LBNL

    2009-09-01T23:59:59.000Z

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  2. Instrument Development Lab | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication Circuit boards Component integration Custom enclosures Microfabrication 3D Printing Facilities and equipment Fully equipped electronics development lab Equipment...

  3. V00306010057 rock check dam

    E-Print Network [OSTI]

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  4. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards upgrade

  5. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...

  6. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  7. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  8. Lab Leadership | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab News

  9. LAB #8 Numerical Methods

    E-Print Network [OSTI]

    2005-10-20T23:59:59.000Z

    Page 1. LAB #8. Numerical Methods. Goal: The purpose of this lab is to explain how computers numerically ... Also you will examine what .... (7) Now consider the differential equation ... 3-exp(2*y)+sqrt(t)/y; (Don't forget the “;” at the end.).

  10. Lab Breakthrough: Microelectronic Photovoltaics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Breakthrough: Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV)...

  11. National Labs | Department of Energy

    Office of Environmental Management (EM)

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  12. Element Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling TechniquesLabs Jump

  13. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  14. Jefferson Lab Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  15. Jefferson Lab Visitor's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  16. Berkeley Lab - ARRA - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility August 18, 2011 Tools and Toys for Builders: New Test Center for Low-Energy Buildings July 19, 2011 Moving Data at the Speed of Science: Berkeley Lab Lays Foundation...

  17. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  18. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  19. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  20. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  1. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  2. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  3. Science Education Lab | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find Science DMZ CaseScienceLab

  4. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. “Incident at the Rock Pile” http://escholarship.org/Doug. “Incident at the Rock Pile” http://escholarship.org/

  5. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The accelerator

  6. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The acceleratorWeb

  7. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The

  8. Jefferson Lab Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab TheElectronic

  9. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLab

  10. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  11. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  12. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  13. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  14. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  15. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  16. Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website The VTLab WebSpace is a new and improved mechanism for VT lab team members to share files. We are replacing the former Member Login section of our website with MyWeb Space (developed by Do

  17. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer ­ RockAuto www.RockAuto.com Position Description Software is the foundation · Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  18. Tri-Lab Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site MapTrends, Discovery, &Tri-Lab

  19. Lab announces security changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUWVoluntaryLab

  20. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman Resources

  1. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman

  2. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisal

  3. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisalHR

  4. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets

  5. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council Emeritus

  6. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow we're

  8. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow

  9. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHowJLab

  10. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity

  11. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions about

  12. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions

  13. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestionsEmployee

  14. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group

  15. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  16. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  17. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  18. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human print

  19. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  20. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources HumanAppraisal

  1. Jefferson Lab Information Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources

  2. Jefferson Lab Leadership Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare

  3. About the Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's RSS,UsAboutLab

  4. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive in

  5. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »DeptArchaeology on Lab

  6. Open House | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65 (9/12)Jefferson Lab

  7. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPits |Regulations Policy andConstruction

  8. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL LABS by

  9. Friends of Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)Frequently AskedofFriends of Berekeley Lab

  10. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL |TechLab

  11. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  12. Name: ____________________ Stream Profile Lab 1

    E-Print Network [OSTI]

    Name: ____________________ Stream Profile Lab 1 LAB 4. Stream Profiles and Mass Balance: Supply vs hillslope diffusion experiments. We will now examine a slightly more complicated profile-evolution model on longitudinal channel profile shapes. The Questions: I. Why do streams generally have concave profiles

  13. E ngineering& S ystems Lab

    E-Print Network [OSTI]

    Corporation,Motorola,andincooperationwith Siemens Automotive and Detroit Diesel Corporation. S oftware E ngineering& N etwork S ystems Lab-time systems ­ fault tolerance and security ­ formal methods, code generation ­ compilation Transformations ·Test Case generation 6 S oftware E ngineering& N etwork S ystems Lab OutlineOutline Introduction

  14. Lab Validation Workload Performance Analysis

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................15 All trademark names are property of their respective companies. Information contained

  15. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  16. ai techniques pra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Last Page Topic Index 1 AI Programming Techniques Lab 3: Second order programming Computer Technologies and Information Sciences Websites Summary: G52APT AI Programming...

  17. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  18. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  19. Jefferson Lab Weekly Briefs - July 15, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab ToTravel|Jefferson

  20. Jefferson Lab Work Officially Begins (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab

  1. Jefferson Lab awards several contracts (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin whilePhysics

  2. Jefferson Lab awards upgrade contracts (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin

  3. Jefferson Lab begins $310 million upgrade (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards

  4. LabVIEW Core 2 Course | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab'sLabVIEW

  5. CHEM333: Lab Experiment 3: Distillation and Gas Chromatography

    E-Print Network [OSTI]

    Taber, Douglass

    CHEM­333: Lab Experiment 3: Distillation and Gas Chromatography: Prelab-Assignment: read Chapters 5 and 6. Distillation is one of the most powerful techniques for purifying volatile organic compounds. Distillation is used to isolate many of life's essentials such as gasoline from oil or brandy from wine

  6. Jefferson Lab Weekly Briefs March 25, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was planned for the months of March and April. Physics Jefferson Lab Published Journal Articles March 16-20 S. Pisano et al. (CLAS Collaboration). "Single and double spin...

  7. Neutron Transversity at Jefferson Lab

    SciTech Connect (OSTI)

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07T23:59:59.000Z

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  8. Jefferson Lab Users Group News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  9. Rock Point, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis

  10. Rock River LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysisin

  11. Rock Sampling At Chena Geothermal Area (Kolker, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  12. Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Activity Date

  13. Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Activity

  14. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  15. NYC MEDIA LAB 2 Metrotech Center, 10

    E-Print Network [OSTI]

    Aronov, Boris

    Justin Hendrix Named Executive Director of NYC Media Lab NEW YORK, New York ­ NYC Media Lab is pleased, testing, and commercializing new digital media business concepts. Prior to this role, Hendrix directed ! About NYC Media Lab NYC Media Lab connects companies seeking to advance new media technologies

  16. Recap: Energy Efficiency at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's National Labs are helping consumers and businesses save energy and money.

  17. A Phased Array Approach to Rock Blasting

    SciTech Connect (OSTI)

    Leslie Gertsch; Jason Baird

    2006-07-01T23:59:59.000Z

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  18. SURA Rewards Inventors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Johns Hopkins University, helped develop three inventions during his summer internship at Jefferson Lab. A ceremony was held at 1 p.m. October 30, 1997, in the CEBAF...

  19. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2009-05-15T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  20. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2008-10-10T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  1. State of the Lab 2012

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  2. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  3. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  4. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  5. Lab 9 LabVIEW and GPIB LabVIEW (National Instruments)

    E-Print Network [OSTI]

    Glashausser, Charles

    Automatic data acquisition DAC 01010 Actuator, Heater... control Power amplifiers LabVIEW GPIB GPIB #12 Toolbar Retain Wire Values Button Step Function Buttons #12;Block Diagram Window Front Panel Window

  6. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  7. The QuarkNet/Grid collaborative learning e-lab

    SciTech Connect (OSTI)

    Bardeen, Marjorie; Gilbert, Eric; Jordan, Thomas; Nepywoda, Paul; Quigg, Elizabeth; /Fermilab; Wilde, Mike; /Argonne; Zhao, Yong; /Chicago U.

    2004-12-01T23:59:59.000Z

    We describe a case study that uses grid computing techniques to support the collaborative learning of high school students investigating cosmic rays. Students gather and upload science data to our e-Lab portal. They explore those data using techniques from the GriPhyN collaboration. These techniques include virtual data transformations, workflows, metadata cataloging and indexing, data product provenance and persistence, as well as job planners. Students use web browsers and a custom interface that extends the GriPhyN Chiron portal to perform all of these tasks. They share results in the form of online posters and ask each other questions in this asynchronous environment. Students can discover and extend the research of other students, modeling the processes of modern large-scale scientific collaborations. Also, the e-Lab portal provides tools for teachers to guide student work throughout an investigation.

  8. Evaluation of Reorientation Techniques for Walking in Large Virtual Environments

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Interfaces and Presentation]: Multimedia Information Systems--Artificial, augmented, and vir- tual realities lab space. Techniques proposed to lift this size constraint, enabling real walking in VEs of the tracked lab space. Techniques have been proposed to lift this size constraint, enabling real walking

  9. #LabChat Recap: Solutions through Supercomputing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Related Articles LabChat Recap: The Future of Biofuels LabChat Recap: What is Dark Energy LabChat Recap: Innovations Driving More Efficient Vehicles...

  10. 5.301 Chemistry Laboratory Techniques, January IAP 2004

    E-Print Network [OSTI]

    Tabacco, Sarah

    2004-01-01T23:59:59.000Z

    This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students ...

  11. Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown

    E-Print Network [OSTI]

    1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los of the world's store of geothermal energy. The real potential for growth in the use of geothermal energy lies-engineered geothermal reservoir in hot, crystalline rock by the application of hydraulic fracturing techniques

  12. Expressing Realtime Properties in VSE-II Werner Stephan Andreas Nonnengart Georg Rock

    E-Print Network [OSTI]

    Nonnengart, Andreas

    Expressing Realtime Properties in VSE-II Werner Stephan Andreas Nonnengart Georg Rock German stephan,nonnengart,rock¡ @dfki.de 1 INTRODUCTION It is well known that in many cases severe errors occur system properties. However, specialized description techniques are needed to treat certain aspects

  13. Lab Breakthroughs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab

  14. Lab transitions employee giving campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makes uniqueLab

  15. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  16. Onboard Autonomous Rock Shape Analysis For Mars Rovers

    E-Print Network [OSTI]

    in this process, we present an automated technique to allow a rover to classify the shape and other geologic were conducted by characterizing the two-dimensional rock shape while the three-dimensional shape developed and implemented. The per- formance of each measure was characterized by analyzing images from

  17. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  18. State of the Lab Address

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  19. Program of Study Lab Facilities

    E-Print Network [OSTI]

    Thomas, Andrew

    Program of Study Lab Facilities Financial Aid Applying Individuals in all areas of private of commercial, on- profit and government settings. While the market-place demand for students with graduate courses taught within Business, Computer Science, Education, Electrical and Computer Engineering

  20. ABBGroup-1-High voltage lab

    E-Print Network [OSTI]

    Basse, Nils Plesner

    oscillations are due to travelling waves in the heating volume. #12;©ABBGroup-9- 3-Sep-07 2. High voltage phase interrupts the injected current, it is stressed by the transient recovery voltage (TRV) oscillating©ABBGroup-1- 3-Sep-07 High voltage lab Research on high voltage gas circuit breakers Nils P. Basse

  1. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research University of California at Santa Barbara Spectroscopy Department Chemical Hygiene Plan NMR and EPR

  2. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Sideris, Thomas C.

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research Hygiene Plan NMR and EPR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  3. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs______________________19 #12;3 Introduction 10/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Department Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information

  4. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  5. EES 1001 Lab 9 Groundwater

    E-Print Network [OSTI]

    Li, X. Rong

    EES 1001 ­ Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want to pump out the groundwater. *About those voids... Porosity is the volume of void space in a sediment

  6. W. FIFTH AVE. RADIATION LAB

    E-Print Network [OSTI]

    Ohta, Shigemi

    W. FIFTH AVE. NASA SPACE RADIATION LAB 958 ENERGY EFFICIENCY & CONSERVATION DIVISION THOMSON RD. E WASTE MANAGEMENT FACILITY INSTRUMENTATION 901906 750 801 701 703 815 933 912 923 925 911 938 939 902 197 Matter Physics & Materials Science Dept. 480 J5 Medical Research Center 490 H7 National Synchrotron Light

  7. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Mammadova, Elnara

    2012-10-19T23:59:59.000Z

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  8. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs

    E-Print Network [OSTI]

    Mammadova, Elnara

    2012-10-19T23:59:59.000Z

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  9. evolution genetics lab GENE 4230L: MECHANISMSAND INFERENCES

    E-Print Network [OSTI]

    Arnold, Jonathan

    evolution genetics lab GENE 4230L: MECHANISMSAND INFERENCES OFEVOLUTIONARYPROCESSES Fall2006, 12 Selection 1. Aug. 28 Lab 4. Measuring Natural Selection 2. Aug. 30 LABOR DAY Sep. 4 Lab 5. Evolution. 30 Lab 20. Phylogenetics part 2 Nov. 1 Lab 21. Evolution of Development Nov. 6 Lab 22. Catch

  10. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  11. Lab suppliers receive Department of Energy awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLabLabLabLab

  12. December 15, 2014 LAB COMMISSION MEETING MINUTES

    Broader source: Energy.gov [DOE]

    The Commission to Review the Effectiveness of the National Energy Laboratories (Commission) was convened for its fifth meeting at 10:00 AM on December 15, 2014. Commission Co-Chair Jared Cohon led the meeting. The meeting included two panels: (1) authors of recent reports about the DOE National Labs and (2) a national lab contractor panel. The report authors summarized their respective reports, highlighting concerns related to the relationship between DOE and the labs, research funding and strategy stove-piping, weak links between the labs and market, an inconsistent economic development mission, the difficulty small firms have in accessing labs, the labs’ lack of regional engagement, and DOE and congressional micromanagement of the labs. The lab contractor representatives responded to questions posed by the commissioners related to lab management and the relationship with DOE. Additionally, Patricia Falcone spoke of the important role of the labs in the science and technology enterprise and Alan Leshner talked about the labs and their relationship with the scientific community. Christopher Paine presented his views on transforming the weapons complex. The next meeting will be held February 24 at the Hilton at Mark Center in VA.

  13. PAPER www.rsc.org/loc | Lab on a Chip Laser-induced cavitation based micropump

    E-Print Network [OSTI]

    Ohl, Claus-Dieter

    PAPER www.rsc.org/loc | Lab on a Chip Laser-induced cavitation based micropump Rory Dijkinka as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able cavitation event is created by focusing a laser pulse in a conventional PDMS microfluidic chip close

  14. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: TheCompetition » Radiator Labs

  15. Scientific Labs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientificScientific Labs SHARE

  16. Potential for tunneling based on rock and soil melting. Abstracts

    SciTech Connect (OSTI)

    Rowley, J.C.

    1985-01-01T23:59:59.000Z

    The rock-melting drill was invented at Los Alamos Scientific Laboratory in 1960. Electrically heated, laboratory-scale drills were subsequently shown to penetrate igneous rocks at usefully high rates, with moderate power consumptions. The development of compact nuclear reactors and of heat pipes now makes possible the extension of this technology to much larger melting penetrators, potentially capable of producing holes up to several meters in diameter and several tens of kilometers long or deep. Development of a rapid, versatile, economical method of boring large, long shafts and tunnels offers solutions to many of man's most urgent ecological, scientific, raw-materials, and energy-supply problems. A melting method appears to be the most promising and flexible means of producing such holes. It is relatively insensitive to the composition, hardness, structure, and temperature of the rock, and offers the possibilities of producing self-supporting, glass-lined holes in almost any formation and (using a technique called lithofracturing) of eliminating the debris-removal problem by forcing molten rock into cracks created in the bore wall. Large rock-melting penetrators, called Electric Subterrenes or Nuclear Subterrenes according to the energy source used, are discussed in this report, together with problems anticipated in their development. It is concluded that this development is within the grasp of present technology.

  17. Mechanical interaction between rock, buffer and canister in repositories

    SciTech Connect (OSTI)

    Borgesson, L. [Clay Technology AB, Lund (Sweden)

    1993-12-31T23:59:59.000Z

    The bentonite clay buffer, which is used in the repository concept of Sweden as well as many other countries, has an important role for mechanical protection of the canister. Of special interest is the effect of a rock shear, i.e. displacement of the rock along a fracture intersecting the deposition hole, on the canister. The article shows the results of some FEM calculations of a rock shear when the new composite copper/steel canister, is used. The effect of the swelling pressure from the bentonite before shear and the effect of a symmetric as well as an asymmetric rock shear will be shown. The calculations have been preceded by extensive laboratory tests and verification calculations by which material models for the buffer and proper calculation techniques have been developed. The material model for the clay is an elastic plastic model in which porous elasticity, based on the effective stress theory, is combined with Drucker-Prager plasticity. The results indicate that the bentonite clay acts as a very good mechanical buffer against such rock displacements. Although plastic yielding may occur, mainly in the copper, the plastic strain is not more than a few percent just after the shear.

  18. Applying Speculative Technique to Improve TCP Throughput over Lossy Links

    E-Print Network [OSTI]

    Minnesota, University of

    , Mohammed Atiquzzaman Honeywell Labs 3660 Technology Drive Minneapolis, MN 55418, USA E-mail: haowei.bai@honeywell #12;Applying Speculative Technique to Improve TCP Throughput over Lossy Links Haowei Bai Honeywell Labs 3660 Technology Drive Minneapolis, MN 55418 haowei.bai@honeywell.com David Lilja Electrical

  19. Lab hosts multi-lab cyber security games

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFive R&D awards formuonLab hosts

  20. Jefferson Lab Hosts Science Poster Session | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson45July

  1. Jefferson Lab Hosts Science Poster Session | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10

  2. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare Color

  3. Jefferson Lab Names Chief Technology Officer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChiefChief

  4. Jefferson Lab Names New Safety Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT NEWS, Va.,

  5. Jefferson Lab News - Jefferson Lab Achieves Critical Milestone Toward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT NEWS,

  6. Jefferson Lab Plans Open House for May 19 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety

  7. Jefferson Lab, ODU team up for center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges upJeffersonFridayMarch 6|Lab, ODU team

  8. Grad. Students Sought for Lab Tour Program | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad. Students Sought for Lab

  9. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  10. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  11. Jefferson Lab Vehicle Fleet Do's and Don'ts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Vehicle Fleet Do's and Don'ts In addition to safe driving, Jefferson Lab Fleet vehicle drivers are responsible for the proper use, maintenance and protection of their...

  12. Back to School at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how one Energy Department internship program is providing students with hands-on experience performing cutting edge research at the National Labs.

  13. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant...

  14. Page 1 of 2 THERMO Lab Information

    E-Print Network [OSTI]

    Liebling, Michael

    Plan update. (http://optoelectronics.ece.ucsb.edu/thermoelectrics-and-high-efficiency-photovoltaics://optoelectronics.ece.ucsb.edu/thermoelectrics-and-high-efficiency-photovoltaics-lab By signing below, you

  15. Lab supercomputer finds new home at UNM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLabLabLab

  16. Lichen: the challenge for rock art conservation

    E-Print Network [OSTI]

    Dandridge, Debra Elaine

    2007-04-25T23:59:59.000Z

    This study investigates the effects that lichens have on rock surfaces in which ancient rock art (petroglyphs and pictographs) may be found. The study area includes four sites in the United States: one quartzite site in southwest Minnesota, two...

  17. National Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScienceScientistsNational Labs

  18. Lab Write-Up: Rubric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade |VesselLPOD Name: Lab

  19. Lab Subcontractor Consortium provides grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractor Consortium

  20. National Labs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNational Labs Commission

  1. Solar Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlas (PACADecker MackSolar Labs

  2. At A Glance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshley BoyleAn overhead view of Jefferson Lab.

  3. Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

  4. TEAM MEMBERS INSPECTED LAB Oct 2014 Suhare Adam Greg Silverberg Cruft Lab

    E-Print Network [OSTI]

    INSPECTION TEAM TEAM CHAIR MEMBER TEAM MEMBERS INSPECTED LAB LOCATIONS LAB SAFETY OFFICERS TEAM 1 Oct 2014 Suhare Adam Greg Silverberg Cruft Lab Hau (Eric Brandin) Electronics Shop (Al Takeda) TEAM 2/Tamas Szalay) Capasso (Alan She) Stubbs (Peter Doherty) TEAM 3 Nov 2014 Mike Gerhardt Zach Gault Paul Loschak

  5. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 16,3/14

  6. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 :y .iiJA/i-3ri ^' WUUUi. ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 by Paul D. Zimmer, Clifton and observations 10 Summary 13 #12;#12;ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON

  7. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    42) ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1961 Marine Biological. McKeman, Director ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1961--Fisheries No. 421 Washington, D. C. April 1962 #12;Rock Island Dam, Columbia River, Washington ii #12;CONTENTS

  8. Annual Fish Passage Report -Rock Island Dam

    E-Print Network [OSTI]

    Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By Paul D. Zimmer L. McKeman, Director Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965;#12;Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By PAUL D. ZIMMER, Fishery

  9. Introduction 1.1 Why study rocks?

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    2 Chapter 1 Introduction 1.1 Why study rocks? I am a petrologist and I study rocks. Petrology and modification of certain types of rocks. On one level, petrology involves the art of identifying and classifying. This is of course the reverse of the historical development of petrology. I have chosen this approach because all

  10. Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL

    E-Print Network [OSTI]

    Swanson-Hysell, Nicholas

    Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

  11. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  12. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the source rock slope (Figure 1), the falling mass strikes the talus slope and breaks up and/or bounces1 Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps J. Deparis, D reviews seismograms from 10 rock-fall events recorded between 1992 and 2001 by the permanent seismological

  13. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  14. 37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during

    E-Print Network [OSTI]

    37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during applied to the different rock samples. Location Mission Rock Type Age (Myr) Mare Tranquillitatis Apollo-11 Basalt 3,500 Oceanus Procellarum Apollo-12 Basalt 3,200 Fra Mauro Formation Apollo-14 Basalt 4,150 Apollo

  15. 2008 Rock Deformation GRC - Conference August 3-8, 2008

    SciTech Connect (OSTI)

    James G. Hirth

    2009-09-21T23:59:59.000Z

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.

  16. advanced lab frame: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  17. astd field lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  18. advances lab astrophysics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  19. acid bacteria lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  20. animal diagnostic lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  1. DATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING

    E-Print Network [OSTI]

    Short Title ADMIXTURES _____ 02/A35 ASTM C233 Testing Air-Entraining Admixtures for Concrete _____ 02/A MATERIALS TESTING APPLICATION (REV. 2014-08-25) PAGE 2 OF 10 #12;DATE : NVLAP LAB CODE: CONCRETE _____ 02/ADATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING TEST METHOD SELECTION LIST Instructions

  2. Multimedia Statistical Labs & Toolkit (TILE) Deborah Nolan

    E-Print Network [OSTI]

    Nolan, Deborah

    Multimedia Statistical Labs & Toolkit (TILE) Deborah Nolan University of California, Department@research.bell-labs.com 1. Introduction The potential for multimedia to enhance the statistics curriculum is clear, but how to develop instructional materials that take advantage of the riches that multimedia has to offer

  3. Electronics I 4 cr with Lab

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    ECE 332 Electronics I 4 cr with Lab ECE 370 Signals & Systems 3 cr co ECE 225 Electric Circuits 3 106 - 4 cr General Physics with Calculus CS 116 - 1 cr Intro to Comp. Program. Lab co MATH 227 4 cr cr Department of Electrical and Computer Engineering -- Department of Physics and Astromony

  4. The DVCS program at Jefferson Lab

    SciTech Connect (OSTI)

    Niccolai, Silvia [Institut de Physique Nucleaire, Orsay, France

    2014-06-01T23:59:59.000Z

    Recent promising results, obtained at Jefferson Lab, on cross sections and asymmetries for DVCS and their link to the Generalized Parton Distributions are the focus of this paper. The extensive experimental program to measure DVCS with the 12-GeV-upgraded CEBAF in three experimental Halls (A, B, C) of Jefferson Lab, will also be presented.

  5. Wireshark Lab: SSL Version: 2.0

    E-Print Network [OSTI]

    Lu, Enyue "Annie"

    Wireshark Lab: SSL Version: 2.0 © 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Top- down Approach, 4 th edition. In this lab, we'll investigate the Secure Sockets Layer (SSL) protocol, focusing on the SSL records sent over a TCP connection. We'll do so by analyzing a trace

  6. CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  7. Office of Educational Programs Solar Energy Lab

    E-Print Network [OSTI]

    Homes, Christopher C.

    Office of Educational Programs Solar Energy Lab Overview Kaitlin Thomassen Target student audience: High School Regents Physics High School AP Physics #12;Solar Energy Lab: Goals Highlight research Solar Farm & Northeast Solar Energy Research Center (NSERC) Scientists and engineers will research

  8. 2014 PMEL Lab Review 1 Background

    E-Print Network [OSTI]

    integrated into ESGF software stack to provide discovery, exploration and download of subsets #12;2014 PMEL submission in development for version 4 #12;2014 PMEL Lab Review 17 Isn't this the PMEL lab lifecycle ·minimizes effort required by researchers ·Greatly improves access for users Do it in a wa

  9. n CAPABILITY STATEMENT Intelligent Transport Systems Lab

    E-Print Network [OSTI]

    Liley, David

    collaborative research programs with the following institutions and organisations: VicRoads ARRB ITSL is open Lab (ITSL) isVictoria's first dedicated traffic analysis research Lab established in April 2012 and Australia facilitate and foster excellent, industry relevant and cross-disciplinary research in Australia

  10. Lab Validation Microsoft Windows Server 2012

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................22 All trademark names are property of their respective companies. Information contained

  11. Lab Validation Microsoft Windows Server 2012 with

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................16 All trademark names are property of their respective companies. Information contained

  12. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  13. Berkeley Lab's Bill Collins talks about Modeling the Changing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks...

  14. Jefferson Lab's Science Education Website Helps Students Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab's Science Education Website Helps Students Prepare for Upcoming Standards of Learning Tests April 12, 2004 Usage of Jefferson Lab's Science Education website is...

  15. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  16. Jefferson Lab Contract to be Awarded to Jefferson Science Associates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be...

  17. ASC at the Labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Programs Defense Programs Future Science & Technology Programs Advanced Simulation and Computing and Institutional R&D Programs ASC at the Labs ASC at the Labs The...

  18. President Obama Visits the Argonne National Research Lab to Talk...

    Energy Savers [EERE]

    President Obama Visits the Argonne National Research Lab to Talk About American Energy Security President Obama Visits the Argonne National Research Lab to Talk About American...

  19. National Lab Day Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  20. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesmou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA....

  1. Energy Department Announces New Lab Program to Accelerate Commercializ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Program to Accelerate Commercialization of Clean Energy Technologies Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies...

  2. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Environmental Management (EM)

    Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind...

  3. Particle Measurement Methodology: Comparison of On-road and Lab...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size...

  4. Ion beam analyses of radionuclide migration in heterogeneous rocks

    SciTech Connect (OSTI)

    Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel [CIEMAT, Avda. Complutense 40, Madrid 28040 (Spain); Patelli, Alessandro [CIVEN, Via delle Industrie 5, Venezia-Marghera 30175 (Italy); Rigato, Valentino; Ceccato, Daniele [LNL-INFN, Viale dell' Universita 2, Legnaro-Padova 35020 (Italy)

    2013-07-18T23:59:59.000Z

    The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremely short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.

  5. SLAC All Access: Laser Labs

    SciTech Connect (OSTI)

    Minitti, Mike; Woods Mike

    2013-03-01T23:59:59.000Z

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  6. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03T23:59:59.000Z

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  7. Jefferson Lab's Trim Card II

    SciTech Connect (OSTI)

    Trent Allison; Sarin Philip; C. Higgins; Edward Martin; William Merz

    2005-05-01T23:59:59.000Z

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

  8. Jefferson Lab - QCD Evolution 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. We will...

  9. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  10. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysisin2012)

  11. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab ActivityEnergy

  12. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  13. Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward, Et Al., 1978)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab| Open Energy

  14. Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab| Open

  15. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab|

  16. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab|Energy

  17. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    SciTech Connect (OSTI)

    Ikwuakor, K.C.

    1994-03-01T23:59:59.000Z

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  18. Jefferson Lab Visitor's Center - Driving in Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUserDriving

  19. Jefferson Lab Visitor's Center - Schedule a Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To

  20. Jefferson Lab Visitor's Center - Travel Accommodations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab ToTravel

  1. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  2. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  3. Labs21 Environmental Performance Criteria: Toward 'LEED (trademark) for Labs'

    SciTech Connect (OSTI)

    Mathew, Paul; Sartor, Dale; Lintner, William; Wirdzek, Phil

    2002-10-14T23:59:59.000Z

    Laboratory facilities present a unique challenge for energy efficient and sustainable design, with their inherent complexity of systems, health and safety requirements, long-term flexibility and adaptability needs, energy use intensity, and environmental impacts. The typical laboratory is about three to five times as energy intensive as a typical office building and costs about three times as much per unit area. In order to help laboratory stakeholders assess the environmental performance of their laboratories, the Labs21 program, sponsored by the US Environmental Protection Agency and the US Department of Energy, is developing the Environmental Performance Criteria (EPC), a point-based rating system that builds on the LEED(TM) rating system. Currently, LEED(TM) is the primary tool used to rate the sustainability of commercial buildings. However, it lacks some attributes essential to encouraging the application of sustainable design principles to laboratory buildings. Accordingly, the EPC has additions and modifications to the prerequisites and credits in each of the six sections of LEED(TM). It is being developed in a consensus-based approach by a diverse group of architects, engineers, consulting experts, health & safety personnel and facilities personnel. This report describes the EPC version 2.0, highlighting the underlying technical issues, and describes implications for the development of a LEED version for Laboratories.

  4. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01T23:59:59.000Z

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  5. September 1997 Coord `97 Lucent Technologies Bell Labs Innovations

    E-Print Network [OSTI]

    Perry, Dewayne E.

    1 September 1997 Coord `97 Lucent Technologies Bell Labs Innovations Software Architecture and its Hill NJ 07974 dep@research.bell-labs.com www.bell-labs.com/~dep/ September 1997 Coord `97 Lucent Engineering · Issues of Emerging Significance September 1997 Coord `97 Lucent Technologies Bell Labs

  6. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  7. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    I incorporate results from the XRF and projectile pointRay Fluorescence (hereafter, XRF) to help affiliate rock artstudies or reports in which XRF analysis have been done.

  8. Berkeley Lab Creates Superfast Search Engine

    Broader source: Energy.gov [DOE]

    Scientists at the Energy Department's Berkeley Lab developed a new approach to searching massive databases that can increase speeds by 10 to 100 times that of large commercial database software.

  9. John E. Hasse, Geospatial Research Lab,

    E-Print Network [OSTI]

    ap Executive Summary July 2010 John E. Hasse, Geospatial Research Lab Geospatial Research Laboratory Department of Geography Rowan University 201 Mullica Hill Road Glassboro by John Reiser, GIS specialist for the Rowan Geospatial Research Laboratory. http

  10. Lab experiences for teaching undergraduate dynamics

    E-Print Network [OSTI]

    Lilienkamp, Katherine A. (Katherine Ann), 1969-

    2003-01-01T23:59:59.000Z

    This thesis describes several projects developed to teach undergraduate dynamics and controls. The materials were developed primarily for the class 2.003 Modeling Dynamics and Control I. These include (1) a set of ActivLab ...

  11. Curnputr:r Labs. C:unficlential

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    #12;Curnputr:r Labs. Concurrent C:unficlential . 33-34 ...... 18-19 ., C) ...... JL. ........ 35 ................................................................... 98 Engineering............................................................. 100 Journalism .............................................................. 7, 12, 14 High School Concurrent Registration ............................. 36 Immunization

  12. Security Lab Series Introduction to Cryptography

    E-Print Network [OSTI]

    Tao, Lixin

    ......................................................................................7 4.2 Symmetric Key Encryption/Decryption with GPG/Decryption .....................................................11 4.3.1 Basic Concepts of PGP (GPG) Digital Certificates and Public Key Ciphers...............11 4.3.2 A Detailed Lab Guide for GPG

  13. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29T23:59:59.000Z

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  14. Security Lab Series Introduction to Web Technologies

    E-Print Network [OSTI]

    Tao, Lixin

    Security Lab Series Introduction to Web Technologies Prof. Lixin Tao Pace University http...........................................................................................................................................1 1.1 Web ArchitectureScript..................................................................................16 4.6 Creating Your First JavaServer Page Web Application

  15. Getting Started Computing at the AI Lab

    E-Print Network [OSTI]

    Stacy, Christopher C.

    1982-09-07T23:59:59.000Z

    This document describes the computing facilities at M.I.T. Artificial Intelligence Laboratory, and explains how to get started using them. It is intended as an orientation document for newcomers to the lab, and will be ...

  16. BEAMS Lab at MIT: Status report

    E-Print Network [OSTI]

    Liberman, Rosa G.

    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively ...

  17. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    as in its modes of fandom, production and dissemination. Inaspects of rock music fandom: America had everything a youngthe beginnings of rock music fandom in India, even while, as

  18. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Rock creek multiple coal streams project. Final report, July 1984-November 1994

    SciTech Connect (OSTI)

    Saulsberry, J.L.; Lambert, S.W.; Wallace, J.A.; Spafford, S.D.; Steidl, P.F.

    1995-12-01T23:59:59.000Z

    The report summarizes the research conducted at the Rock Creek Project from 1984 to 1994. The Rock Creek Project was a field laboratory with the purpose of determining the best methods to produce methane from multiple coal seams. The site is located in the Oak Grove field of the Black Warrior Basin approximately 15 miles west of Birmingham, Alabama. The research performed under the Rock Creek Project involved: resource evaluation, reservoir testing, completion techniques, stimulation design and evaluation, operational methods, production forecasting, and remedial stimulations. Offsite cooperative research with other operators was also performed as part of the project. In addition to developing new technology, the work at Rock Creek demonstrated how existing technology from mining, groundwater hydrology, and the petroleum industry could be applied to coalbed methane production. The work also highlighted the pitfalls associated with some of the technology that was being used by certain operators.

  20. Blasting Rocks and Blasting Cars: Applied Engineering (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Hopkins, Deb

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2004: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  1. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24T23:59:59.000Z

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  2. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  3. Natelson Lab abbreviated safety procedures For full, detailed discussion of lab safety, see Natelson Lab Safety Manual and Chemical Hygiene Plan.

    E-Print Network [OSTI]

    Natelson, Douglas

    Natelson Lab Safety Manual and Chemical Hygiene Plan. An additional resource is "Prudent Practices-348-2485 (Based in part on 2012 Tour Lab chemical hygiene plan) Updated, September, 2013 #12;Major Medical

  4. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  5. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect (OSTI)

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01T23:59:59.000Z

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  6. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  7. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1960 . SPECIAL SCIENTIFIC ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1960 by Paul D. Zimmer and Clifton C. Davidson United States Fish This annual report of fishway operations at Rock Island Dam in 1960 is dedicated to the memory of co

  8. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  9. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  10. Dissertation Lab (D-Lab) May 21, 22, and 23, 2013

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Dissertation Lab (D-Lab) May 21, 22, and 23, 2013 Rady Room, 6th Floor Nedderman Hall What through the difficult process of writing their dissertation. Over the course of three days, D participants with the structure and motivation to overcome typical roadblocks in the dissertation process. Our

  11. Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab

    E-Print Network [OSTI]

    Stuart, Steven J.

    Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Annual Report for 2012 The Plant Problem Clinic serves the people of South Carolina through the Clinic. Plant pathogens, insect pests and weeds can significantly reduce plant growth

  12. Cite this: Lab Chip, 2013, 13, 3929 Lab-on-CMOS integration of microfluidics and

    E-Print Network [OSTI]

    Mason, Andrew

    Cite this: Lab Chip, 2013, 13, 3929 Lab-on-CMOS integration of microfluidics and electrochemical* and Andrew J. Mason This paper introduces a CMOS­microfluidics integration scheme for electrochemical of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device

  13. FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES

    E-Print Network [OSTI]

    Waters, K.H.

    2011-01-01T23:59:59.000Z

    the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

  14. altered granitic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 Everglades National Park Groundwater wells Surface water monitoring locations Rock mining locations 12 Demers, Nora Egan 211 Nova Scotia Rock Garden Club Membership...

  15. Regional Geology: GIS Database for Alternative Host Rocks and...

    Energy Savers [EERE]

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines...

  16. aspo hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  17. antarctic rocks colonized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  18. algonquin class rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  19. acidic crystalline rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  20. aphanitic melt rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  1. aespoe hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  2. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  3. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 EIS-0471: Final Environmental...

  4. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  5. Recent results in DIS from Jefferson Lab

    SciTech Connect (OSTI)

    David Gaskell

    2010-04-01T23:59:59.000Z

    Recent results in Deep Inelastic processes measured at Jefferson Lab are presented. In addition to the inclusive reactions typically discussed in the context of Deep Inelastic (electron) Scattering, particular emphasis is given to Deep Exclusive and semi#19;inclusive reactions. Jefferson Lab has made significant contributions to the understanding of the partonic structure of the nucleon at large x, and with its first dedicated measurements is already providing important contributions to understanding the three-dimensional structure of the nucleon via constraints on Generalized Parton Distributions (GPDs) and Transverse Momentum Distributions (TMDs).

  6. Jefferson Lab Public Affairs: Electronic Media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab TheElectronic Media

  7. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLabRecovery

  8. Lab scientists recognized for their achievements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLab scientists

  9. Lab's 70th Anniversary lecture series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab's 70th

  10. Jefferson Lab Upgrade OK'd (photonics.com) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To Receive

  11. Jefferson Lab creates better way to discover breast cancer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawardsJefferson

  12. Biomass Company Sets Up Shop in High School Lab | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy...

  13. Jere Chase Ocean Engineering Lab, Durham, NH Directions & Parking

    E-Print Network [OSTI]

    Jere Chase Ocean Engineering Lab, Durham, NH Directions & Parking Jere Chase Ocean Engineering Lab of the University of New Hampshire. Parking is available at the Jere A. Chase Ocean Engineering Building. Directions

  14. Ventilation Effectiveness Research at UT-Typer Lab Houses

    Broader source: Energy.gov (indexed) [DOE]

    Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic,...

  15. Biomarkers Core Lab Price List Does NOT Include

    E-Print Network [OSTI]

    Grishok, Alla

    v3102014 Biomarkers Core Lab Price List Does NOT Include Kit Cost PURCHASED by INVESTIGATOR/1/2013 Page 1 of 5 #12;Biomarkers Core Lab Price List Does NOT Include Kit Cost PURCHASED by INVESTIGATOR

  16. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  17. Six NN High School Students Win Jefferson Lab Externships | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NN High School Students Win Jefferson Lab Externships March 23, 2001 Six Newport News 11th graders have won paid, six-week externships at Jefferson Lab. The six youth were...

  18. Jefferson Lab hosts 22 teams for Virginia High School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Jefferson Lab Science Bowl logo. Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb. 12 February 1, 2005 Some of the brightest young minds in the...

  19. Maximum containment : the most controversial labs in the world

    E-Print Network [OSTI]

    Bruzek, Alison K. (Allison Kim)

    2013-01-01T23:59:59.000Z

    In 2002, following the September 11th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to ...

  20. Los Alamos National Lab staff benchmark Y-12 sustainability programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Lab ... Los Alamos National Lab staff benchmark Y-12 sustainability programs Posted: June 27, 2013 - 3:53pm OAK RIDGE, Tenn. - Staff from Los Alamos National...

  1. Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab's Black History Month Event February 3, 2004 Three members of the legendary, World War II era Tuskegee Airmen will speak at Jefferson Lab's Black History Month celebration at...

  2. Feb. 9 Event at Jefferson Lab Features Chemistry Demonstrations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 9 Event at Jefferson Lab Features Chemistry Demonstrations Set to Pop Music NEWPORT NEWS, Va., Feb. 2, 2010 - Jefferson Lab's Feb. 9 Science Series event will feature members...

  3. Lab White Paper Hitachi Unified Compute Platform (UCP)

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Architectures for Private Clouds By Kerry Dolan, Lab Analyst February 2014 This ESG Lab White Paper Reference Architecture for Private Clouds 2 © 2014 by The Enterprise Strategy Group, Inc. All Rights? ....................................................................................................................... 4 Microsoft Private Cloud Fast Track

  4. JLab Posts OSHA Form 300 for 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about environment, safety and health programs at Jefferson Lab, please visit the ESH&Q Division webpage: http:www.jlab.orgehs Click on the following for Jefferson Lab's...

  5. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  6. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17T23:59:59.000Z

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  7. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  8. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Berryman, J.G. [Lawrence Livermore National Lab., CA (United States)

    1994-03-28T23:59:59.000Z

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  9. BERKELEY PAR LABBERKELEY PAR LAB Where we ended up

    E-Print Network [OSTI]

    California at Berkeley, University of

    , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 #12;BERKELEY PAR

  10. Berkeley Lab's Cool Your School Program

    SciTech Connect (OSTI)

    Ivan Berry

    2012-07-30T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  11. UM Taubman College Metals Lab Handbook

    E-Print Network [OSTI]

    Papalambros, Panos

    of welding technologies including MIG, TIG, stick welding as well as high and low temperature brazing and tool introductions are scheduled at the beginning of each semester. Welding tutorials are provided for unsupervised use. #12;5 Welding Tutorials and Tool Introductions A major goal of the Metals Lab is to empower

  12. Aruna Ravinagarajan System Energy Efficiency Lab

    E-Print Network [OSTI]

    Wang, Deli

    scheduler needs toThe task scheduler needs to manage energy consumptionmanage energy consumption energy harvesting Operating with severe energy constraints Too much data to continually transmit Energy Efficiency Lab 12 Execution Time Constraint Given a time limit, what is the highest level of data

  13. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  14. Ames Lab 101: Single Crystal Growth

    ScienceCinema (OSTI)

    Schlagel, Deborah

    2014-06-04T23:59:59.000Z

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  15. SSSSSSSS LLLLSemiconductor System LabSemiconductor System LabSemiconductor System LabSemiconductor System Lab Jaeseo Lee, Gigabit Optical Interface IC Design 1

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    range Wide Bandwidth Low Noise amplifier is required!! 60~80dB 1) providing dc level restoration 2Semiconductor System Lab Design Goal · Gain range : 60~80dB (1k ~ 10k) · Wide bandwidth · Low Noise · CMOS · Motivation · Transimpedance Amplifier (TIA) ­ Why TIA? ­ Noise Source ­ TIA Noise & Design Solution

  16. Heart Physiology Lab Part 1: Pulse Rate

    E-Print Network [OSTI]

    Loughry, Jim

    Heart Physiology Lab Part 1: Pulse Rate Measure your pulse in each of the following conditions (in in the class. You may use Table 1 in the Heart Physiology Worksheet for this, if you wish. Once you have all of the class averages for each measurement. You may use Graph 1 in the Heart Physiology Worksheet for this

  17. GMT: Texas Map Lab 9 Part 2

    E-Print Network [OSTI]

    Smith-Konter, Bridget

    ), and the grid lines and title (-B), just like you practiced with the pscoast command in previous labs. ·Enter window, type: startxwin.bat. Use the white "X" window that appears to type in the remaining commands;3 Create a new GMT command file · Use the text editor nedit to create a file named make

  18. Berkeley Lab's Cool Your School Program

    ScienceCinema (OSTI)

    Ivan Berry

    2013-06-24T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  19. Lab Five & Six Building & Editing Geodatabase

    E-Print Network [OSTI]

    Hung, I-Kuai

    coverages, shapefiles, CAD drawings, INFO tables, and DBF tables. File geodatabase works across platforms boundary shapefile by digitizing. Now with the topological data model, coverage, you can easily build or using Calculate Geometry in a shapefile in Lab 4. In geodatabases, area is given automatically. However

  20. Steam Sterilization Cycles for Lab Applications

    E-Print Network [OSTI]

    Farritor, Shane

    Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 #12;Early Steam Sterilizers Koch Upright Sterilizer · First Pressurized Sterilizer · First OPERATING END (NO PRINTER) PRIMARY OPERATING END WITH PRINTER SAFETY VALVE CHAMBER PRESSURE GAUGE Steam

  1. LEGO Engineer and RoboLab: Teaching Engineering with LabVIEW from

    E-Print Network [OSTI]

    and construction. The Control Lab Interface connects to the computer through a serial port and controls LEGO motors to offer. College seniors went on to build a computer-controlled milling machine with three degrees

  2. National Lab Day: How the National Labs Keep Moving America Forward...

    Energy Savers [EERE]

    their support for the National Lab system. | Photo by Sarah Gerrity, Energy Department. Panel Discussion 2 of 9 Panel Discussion From left: Clark Gellings, a Fellow at the Electric...

  3. Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility

    E-Print Network [OSTI]

    Haviland, David

    Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility Nano technology for basic research and small commercial enterprises Director: Prof. David Haviland #12;Nano Fab Lab, Stockholm Sweden Nano-Lab Philosophy · Nanometer scale patterning and metrology · Broad spectrum of user research

  4. BERKELEY LAB Bringing Science Solutions to the World

    E-Print Network [OSTI]

    BERKELEY LAB Bringing Science Solutions to the World lbl.gov #12;Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists

  5. Geology 460:301 Fall 2007 Mineralogy Lab

    E-Print Network [OSTI]

    Geology 460:301 Fall 2007 Mineralogy Lab Professor Jeremy Delaney Teaching Assistant: Alissa Henza Science by Cornelius Klein (22nd edition) Introduction to Optical Mineralogy by William Nesse Grading Policy: Lab is 33% of your Mineralogy grade. This 33% is made up of: Labs: 70% Quizzes: 5% Final Exam: 25

  6. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema (OSTI)

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2014-09-15T23:59:59.000Z

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  7. DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING

    E-Print Network [OSTI]

    DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST for reasons outside the scope of this document. #12;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY

  8. Forsgsanlg Ris Danmarks Tekniske Hjskole Kemiafdelingen Lab. for Bygningsmaterialer

    E-Print Network [OSTI]

    Forsøgsanlæg Risø Danmarks Tekniske Højskole Kemiafdelingen Lab. for Bygningsmaterialer Risø-M-1863 MEKANISKE EGENSKABER O o i) ir \\}. Danmarks Tekniske Højskole ^\\ Lab. for Bygningsmaterialer af Kåre Hastrup-550-0395-8 #12;FORSØGSANLÆG RISØ DANMARKS TEKNISKE HØJSKOLE KEMIAFDELINGEN LAB. FOR BYGNINGSMATERIALER RISØ

  9. Lab Home A and B Construction Specifications and Alterations

    E-Print Network [OSTI]

    Appendix A ­ Lab Home A and B Construction Specifications and Alterations #12;A.1 Appendix A -Lab Home A and B Construction Specifications and Alterations A.1 Lab Home A Construction Specifications walls that are replaced or constructed shall be taped, finished and painted in the original wall color

  10. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    SciTech Connect (OSTI)

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2013-05-17T23:59:59.000Z

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  11. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  12. Mixture Theories for Rock Properties James G. Berryman

    E-Print Network [OSTI]

    Mixture Theories for Rock Properties James G. Berryman Lawrence Livermore National Laboratory by Batchelor [3], Hale [41], Hashin [42], Torquato [95], and Willis [110] are also recommended. 1.1. Rocks Are Inhomogeneous Materials A rock is a naturally occurring mixture of minerals. Rocks are normally inhomogeneous

  13. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  14. COMPUTER APPLICATIONS IN THE GEOSCIENCES For this lab, you will practice editing image files in Adobe Photoshop and construct a

    E-Print Network [OSTI]

    Smith-Konter, Bridget

    "Save Target As" (PCs) or "Save Image As" (Macs). Save the file to your Lab3 folder on \\\\geobase a different editing technique and save to a different file type (ex., .jpg, .ps, .tiff, .pdf,) . Image 1 it to the appropriate location. · Save your image as a jPEG file. Go to File Save As. Name your file Image_1

  15. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect (OSTI)

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28T23:59:59.000Z

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  16. SHIF'ROCK, NEW MEXICO

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8B100B100WWNASCUBA TECHNIQUES

  17. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  18. NTUCHE Bioprocessing Lab Copper Oxide Nanoarchitectures for

    E-Print Network [OSTI]

    Ehrman, Sheryl H.

    al., Int J Hydrogen Energ 2012a UMDChE Particle Sci & Tech Lab #12;Increase Surface Area Approach 2 chemical Photocurrent is about 30% more Chiang et al., Int J Hydrogen Energ 2012b UMDChE Particle Sci Xenon Arc -0.5 vs. SCE 2.2 Chauhan et al., 2006 CuO 150W Solar simulator 1000 -0.55 vs. Ag/AgCl 0

  19. Optical Calibration For Jefferson Lab HKS Spectrometer

    E-Print Network [OSTI]

    L. Yuan; L. Tang

    2005-11-04T23:59:59.000Z

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  20. Overview of Nuclear Physics at Jefferson Lab

    SciTech Connect (OSTI)

    McKeown, Robert D. [JLAB

    2013-08-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  1. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    R. D. McKeown

    2014-12-03T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  2. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  3. Overview of Nuclear Physics at Jefferson Lab

    E-Print Network [OSTI]

    R. D. McKeown

    2013-03-26T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  4. Overview of Nuclear Physics at Jefferson Lab

    E-Print Network [OSTI]

    McKeown, R D

    2013-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  5. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  6. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  7. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  8. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  9. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13T23:59:59.000Z

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  10. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05T23:59:59.000Z

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  11. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure,

    E-Print Network [OSTI]

    Li, X. Rong

    important ­ Rising temperature causes water to be released from unstable minerals ­ Hot water very reactive refers to the temperature and pressure under which a rock was metamorphosed, considered low grade or high ­ If range exceeded, new mineral structures result ­ If temperature gets high enough, melting will occur

  12. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25T23:59:59.000Z

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  13. Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2008-01-01T23:59:59.000Z

    vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

  14. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    systems  and  rock  fall  source  and  impact  areas,  it  meters  from  a  rock  fall  source  area.   The   success  possible  to  the  rock  fall  source  areas,   spacing  

  15. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    INSTRUMENTATION NEEDS FOR DETERMINING ROCK PROPERTIES..Acknowledgements • ROCK PROPERTIES Participant Listing.OF MODELING IN ROCK PROPERTIES EVALUATION AND APPLICATION. •

  16. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2009-01-01T23:59:59.000Z

    have assumed the same rock properties for the entire packed-earlier, among the rock properties (permeability, porosity,However, these are not rock properties and are constrained

  17. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01T23:59:59.000Z

    Kamaishi mine. Laboratory rock property tests. Power reactor5.2 Near field rock properties and fiactire geometand hydraulic rock properties, and hydraulic conditions

  18. An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    because large contrasts in rock properties exist across thetransitional changes in rock properties argues that lateralthe distribution of rock properties within different units.

  19. On the relationship between stress and elastic strain for porous and fractured rock

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2009-01-01T23:59:59.000Z

    the other associated rock properties. Important examples ofand/or hydraulic rock properties. We show that theand other rock mechanical/hydraulic properties, and these

  20. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01T23:59:59.000Z

    to complie and correlate rock properties and preliminaryProject Table 1. Rock properties and project characteristicsof Information Rock properties - Bad Creek area Exhibit 1.

  1. Lab-wide Cleanup Set for April 27-30 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab's

  2. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  3. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  4. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  5. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  6. CityLab, a biotechnology learning laboratory for high school teachers and students at the Boston University School of Medicine

    SciTech Connect (OSTI)

    Franblau, C.; Phillips, C.; Zook, D. [and others

    1994-12-31T23:59:59.000Z

    CityLab is a fully equipped biotechnology learning laboratory for high school students and teachers funded by the National Institutes of Health and located at the Boston University School of Medicine. The aim of CityLab is to provide access to state-of-the-art laboratory facilities and curriculum in biotechnology otherwise unavailable to most school systems. Teachers bring their classes to CityLab where they are challenged to solve problems by applying the same techniques and concepts of genetics and molecular biology. Each topic is presented in a mystery format. Some popular investigations include The Mystery of the Crooked Cell (sickle cell anemia), The Case of the Crown Jewels (DNA restrictions analysis), and Entangled in the Web (transformation). In addition to regular class visits, CityLab offers two after school enrichment activities, the Biotechnology Club and BioCity. The club provides eighty young people with the opportunity to work more extensively in the laboratory investigating topics such as genetic engineering, gene cloning, and AIDS. BioCity is a mock biotechnology company run by and for students. Since 1992, more than 2,000 high school students and 300 teachers have used CityLab.

  7. OPERATION AND COMMISSIONING OF THE JEFFERSON LAB UV FEL USING AN SRF DRIVER ERL

    SciTech Connect (OSTI)

    R. Legg; S. Benson; G. Biallas; K. Blackburn; J. Boyce; D. Bullard; J. Coleman; C. Dickover; D. Douglas; F. Ellingsworth; P. Evtushenko; F. Hannon; C. Hernandez-Garcia; C. Gould; J. Gubeli; D. Hardy; K. Jordan; M. Klopf; J. Kortze; M. Marchlik; W. Moore; G. Neil; T. Powers; D. Sexton; Michelle D. Shinn; C. Tennant; R. Walker; G. Wilson

    2011-03-01T23:59:59.000Z

    We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.

  8. Rock Classification in Organic Shale Based on Petrophysical and Elastic Rock Properties Calculated from Well Logs

    E-Print Network [OSTI]

    Aranibar Fernandez, Alvaro A

    2015-01-05T23:59:59.000Z

    classification method was then applied to the field examples from the Haynesville shale and Woodford shales for rock classification. The estimates of porosity, TOC, bulk modulus, shear modulus, and volumetric concentrations of minerals were obtained...

  9. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    2009 PolyGram advertisement Coca-cola and MTV contest PepsiNokia, Pepsi, Seagrams, and Coca Cola sponsored rock showsGroup and Brigade Group, Coca-Cola, and the biotechnology

  10. FACTORS IN THE DESIGN OF A ROCK MECHANICS CENTRIFUGE FOR STRONG ROCK

    E-Print Network [OSTI]

    Clark, George B

    1984-01-01T23:59:59.000Z

    1 . Capacit i es of known centrifuges and v proposed SoftSolla I rock mechanics centrifuge r, ---------1~ --- dxB. , (1980), Geotechnical centrifuges for model studies and

  11. Overview of conservation treatments applied to rock glyph archaeological sites

    E-Print Network [OSTI]

    Dandridge, Debra E

    2000-01-01T23:59:59.000Z

    Rock glyphs, ubiquitously referred to as rock art, are often the most highly visible components of archaeological sites. Such artifacts, therefore, are most prone to deterioration and degradation from human caused and natural elements...

  12. Study of Acid Response of Qatar Carbonate Rocks

    E-Print Network [OSTI]

    Wang, Zhaohong

    2012-02-14T23:59:59.000Z

    of understanding of Qatar carbonate especially Middle East carbonates and the abundance of Middle East carbonate reservoirs is the main motivation behind this study. This work is an experimental study to understand the acid response to Qatar rocks in rocks...

  13. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  14. Inversion of seismic attributes for petrophysical parameters and rock facies 

    E-Print Network [OSTI]

    Shahraeeni, Mohammad Sadegh

    2011-01-01T23:59:59.000Z

    Prediction of rock and fluid properties such as porosity, clay content, and water saturation is essential for exploration and development of hydrocarbon reservoirs. Rock and fluid property maps obtained from such predictions ...

  15. Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business Award for 2013 Prestige award Prestige Maintenance staff (left to right) Sandra Coltrain, Operations Managers John...

  16. DOE's Jefferson Lab Receives Approval To Start Construction of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's Jefferson Lab Receives Approval To Start Construction of 310 Million Upgrade NEWPORT NEWS, Va., Sept. 15, 2008 - The U.S. Department of Energy's Thomas Jefferson National...

  17. Jefferson Lab technology, capabilities take center stage in constructi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January...

  18. Governor to Join Jefferson Lab in Celebrating Completion of Accelerato...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor to Join Jefferson Lab in Celebrating Completion of Accelerator Upgrade Construction CEBAF Race Track This aerial photo shows the outline of the racetrack-shaped CEBAF...

  19. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    Other Institutions 13 J1711 HEV & PHEV test procedures In-depth Benchmarking DOE technology evaluation * DOE requests * National Lab requests AVTA (Advanced Vehicle Testing...

  20. The National Labs on Facebook | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gamma rays. | Photo courtesy of Sandia National Laboratory. Like the National Labs on Facebook Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi...

  1. Department of Energy's National Renewable Energy Lab to Dramatically...

    Office of Environmental Management (EM)

    Energy's National Renewable Energy Lab to Dramatically Increase Use of Clean, Renewable Energy October 30, 2007 - 4:21pm Addthis New "Green Building," Biomass and Solar...

  2. Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...

  3. LANL, Sandia National Lab recognize New Mexico small businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

  4. Los Alamos National Laboratory, Sandia Labs, other major employers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM education in New Mexico Los Alamos National Laboratory, Sandia Labs, other major employers commit to STEM education in New Mexico Los Alamos, Sandia and several partners are...

  5. Ames Lab interns making their research mark in industry, academe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and national labs Students participating in the Science Undergraduate Laboratory Internship (SULI), Community College Internship (CCI) and Faculty and Student Teams (FAST)...

  6. VIBRATION CHARACTERISTICS OF AN APS LAB FACILITY IN BUILDING...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIBRATION CHARACTERISTICS OF AN APS LAB FACILITY IN BUILDING 401 by T. J. Royston, Summer Faculty Participant Experimental Facilities Division, Advanced Photon Source, Argonne...

  7. Neutral Beam Electrical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacuum and cryogenic systems. Knowledge of AC power conversion, DC circuits, motors, power technology, industrial control systems and platforms (e.g. PLCs, LabView). Use...

  8. Lab-Corps Program Pitch Competition - April 17, 2015 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab-Corps Program Pitch Competition - April 17, 2015 Share Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel...

  9. Jefferson Lab announces two Fall Science Series events -- featuring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduct "Einstein and Beyond - The Magic Show" on Tuesday, Oct. 25 at the Jefferson Lab CEBAF Center auditorium. The magic show will concentrate on Newtonian mechanics, relativity,...

  10. 20 Amazing Things the National Labs Have Done

    Broader source: Energy.gov [DOE]

    Scroll through the gallery to see some of the top contributions by the National Labs. You might be surprised what you find.

  11. 20 Amazing Things the National Labs Have Done

    Broader source: Energy.gov [DOE]

    Check out the photo gallery to see some of the most notable contributions by the National Labs to science, energy and national security.

  12. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  13. Jefferson Lab's Free-Electron Laser explores promise of carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the collaboration's FEL experiment (image not actual size). Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes By James Schultz January 27, 2003...

  14. DOE Congratulates Under Secretary, National Lab Director and...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Berkeley National Laboratory (Berkeley Lab) and an award-winning cell and cancer biologist, and Alexis Bell is a chemical engineer with joint appointments at Berkeley...

  15. Jefferson Lab Medical Imager Spots Breast Cancer | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eric Rosen, Duke University Medical Center Jefferson Lab Medical Imager Spots Breast Cancer March 3, 2005 Newport News, VA - A study published in the February issue of the...

  16. Jefferson Lab is now using Team Worldwide for International Customs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    items on port-of-call manifests bound for the lab, arranging for shipping and terminal clearance, calculating tariffs, and pricing out and coordinating routing for ground...

  17. Young Physicist from Syracuse University Receives Jefferson Lab...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    designs for two experiments planned to run in the upgraded Continuous Electron Beam Accelerator Facility at Jefferson Lab. The Thesis Prize was established in 1999 by the...

  18. Jefferson Lab Tech Associate Invents Lockout Device for Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech Associate Invents Lockout Device for Equipment with Removable Power Cords April 22, 2002 It was the early 1990s and building Jefferson Lab's Continuous Electron Beam...

  19. JLab Awarded Vice President's Hammer Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awarded Vice President's Hammer Award The Directives Review Team at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has been awarded the Vice President's Hammer...

  20. 2014 Doing Business with Argonne & FermiLab | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business with Argonne & FermiLab 2014 Doing Business with Argonne and Fermi National Laboratories 1 of 17 2014 Doing Business with Argonne and Fermi National Laboratories...

  1. Integrated Lab/Industry Research Project at LBNL

    Broader source: Energy.gov (indexed) [DOE]

    Integrated LabIndustry Research Project at LBNL Jordi Cabana Lawrence Berkeley National Laboratory May 12 th , 2011 ES102 This presentation does not contain any proprietary,...

  2. Berkeley Lab Breaks Ground on the Computational Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of its kind. Joining Secretary Chu as speakers were Berkeley Lab Director Paul Alivisatos, University of California President Mark Yudof, Energy Department's Office of...

  3. Former Intel CEO Craig Barrett to Chair Berkeley Lab Advisory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    innovative ideas turn into world-changing products." Berkeley Lab Director Paul Alivisatos (center) presents outgoing Board Chair Norm Augustine with a photo from the hydrogen...

  4. 'Comic Book Physics' examined at Jefferson Lab's March 25 Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examined at Jefferson Lab's March 25 Science Series event February 26, 2003 The wild, wacky world of 'Comic Book Physics' will be investigated by guest speaker Jim...

  5. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    Partnership Logging Accidents · by · Cornelis de Hoop, LA Forest Products Lab · Albert Lefort Agreement · 1998 & 1999 Accident Reports · 25 injuries reported · 185 loggers signed up · 8 deaths 1999

  6. Jefferson Lab adds three popular presentations to Fall Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    http:universe.gsfc.nasa.govpeople.html Then after a late October engagement in London, internationally known physicist and Jefferson Lab's Interim Deputy for Science Frank...

  7. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services...

  8. Argonne National Laboratory Partners with Advanced Magnet Lab...

    Energy Savers [EERE]

    next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States. ANL will work with Magnet Lab, Emerson Electric...

  9. Jefferson Lab seeks applicants for summer, science teacher enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seeks applicants for summer, science teacher enrichment program February 26, 2003 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help...

  10. News Media invited to interview Jefferson Lab summer science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Media Advisory: News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session July 29, 2005 News Media...

  11. News Media invited to interview Jefferson Lab summer science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session August 1, 2007 News Media representatives are invited to...

  12. Media Advisory - Jefferson Lab Hosts Summer Intern Science Poster...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high school and college interns that participated in Jefferson Lab's summer science enrichment programs will share their summer experiences and projects during a Poster Session....

  13. Jefferson Lab welcomes students, teachers for summer internship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poster Session Jefferson Lab welcomes students, teachers for summer internship, enrichment program July 28, 2004 Newport News, VA. - As schools close for the summer, the...

  14. Jefferson Lab Seeks Applicants for Science Teacher Enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Applicants for Science Teacher Enrichment Program March 14, 2001 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help you refresh...

  15. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

  16. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

  17. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

  18. DOSAR/CalLab Operations Manual

    SciTech Connect (OSTI)

    Bogard, J.S.

    2000-03-01T23:59:59.000Z

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Dosimetry Applications Research (DOSAR) Program Calibration Laboratory (CalLab), referred to formerly as the Radiation Calibration Laboratory. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments.

  19. National Lab Day 2014 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScience (SC)In99Security |Lab

  20. SolarLab | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic MalaysiaSolarLab Jump to:

  1. New app takes Lab's volunteer efforts mobile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible toNew app takes Lab's

  2. Jefferson Lab | Exploring the Nature of Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for Summer asJacob17JeffStaffJefferson Lab

  3. Los Alamos Lab: Environmental Physical Sciences, ADEPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenterLogging inLooking northeastLos Alamos Lab

  4. Jefferson Lab Human Resources: Training and Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources HumanAppraisalHR

  5. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in RareAmber

  6. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in

  7. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles inDrew

  8. Jefferson Lab Leadership Council - Dr. Allison Lung

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles

  9. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser TwinklesAccelerator

  10. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser

  11. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R. Pennington

  12. Jefferson Lab Leadership Council - Hugh E. Montgomery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.

  13. Jefferson Lab Leadership Council - Joe Scarcello

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.Council

  14. Jefferson Lab Leadership Council - Mary Logue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael

  15. Jefferson Lab Leadership Council - Michael Dallas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChief Operating

  16. Jefferson Lab Nuclear Physics Events: Seminars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT

  17. Lab active in support of science activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive in support

  18. Lab celebrates 50 years in space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive

  19. Lab joins in global Earth Day celebrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants Decision SciencesLab has

  20. Lab school supply drive starts July 15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLab school supply

  1. Lab scientists recognized for economic development efforts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLab

  2. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomelandImageAnnualFactLab

  3. Physics of Cancer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science

  4. Plasma astrophysics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdge Transport

  5. Plasma diagnostics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdge

  6. Plasma physics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdgephysics Subscribe

  7. Green Power Labs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabits JumpMachine Place:Labs Inc

  8. Element Labs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVault JumpLabs, Inc. Place:

  9. SmartLabs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel Corporation JumpShines afterSmartSmartLabs Inc

  10. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits of BESBerkeley Lab Particle

  11. Berkeley Lab Ethical Values and Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits of BESBerkeley Lab

  12. Property:Lab Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc JumpAlpha3 JumpLab Test

  13. Vert Labs LLP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya|Vermont:Verona,Versailles,Labs LLP

  14. FIELD MEASUREMENT TECHNIQUES: STATUS AND NEEDS

    E-Print Network [OSTI]

    Cook, N.G.W.

    2010-01-01T23:59:59.000Z

    Furthermore, of all rock properties, thermomechanicalthat the information ·on·rock properties available in thethe inherent variability in properties within a rock mass.

  15. Department of Chemistry Quarterly Lab Inspection Report Lab Supervisor: ____________________ Room: _________________ Date: _________________

    E-Print Network [OSTI]

    Chan, Hue Sun

    and unobstructed _____ Proper use known by users _____ Airflow alarm tested _____ Floors, Aisles and Exits Dry _____ Aisles, doorways, emergency exits Unobstructed _____ Sinks and Drains Clean Water run to all drains _____ Good condition _____ Suitable for hazard present _____ Gloves, Lab Coats and Footwear Available

  16. Copyright 2004 Auto-ID Labs, All Rights Reserved The Auto-ID Labs

    E-Print Network [OSTI]

    Brock, David

    Reserved Several Types of Webs · The Web of Information HTML and the World Wide Web · The Web of Things-ID Labs, All Rights Reserved A Special Word of Thanks to my Colleagues · Stuart J. Allen - Professor Reserved A Special Word of Thanks to my Colleagues (continued) · Nhat-So Lam ­ Family Retail Business

  17. A CONSTITUTIVE MODEL TO PREDICT THE HYDROMECHANICAL BEHAVIOUR OF ROCK

    E-Print Network [OSTI]

    Aubertin, Michel

    in the presence of water to better assess the stability of rock structures under many situations. The accurate conditions. A rock mass behaviour can also be influenced by the water flow and ensuing pore pressure. For example, a previously stable rock structure can become unstable with an increase of water pressure inside

  18. Sigma Xi, The Scientific Research Society Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    Sigma Xi, The Scientific Research Society Rock Varnish Author(s): Ronald I. Dorn Source: American;Rock Varnish Over thousandsofyears,a thincoatingofclay,cementedtorocksbymanganese and iron that appeared "smooth, black, and as ifcoated with plumbago." Indian legends explained that these rocks had been

  19. Technical Note Evaluation of mechanical rock properties using a Schmidt

    E-Print Network [OSTI]

    Ze'ev, Reches

    Technical Note Evaluation of mechanical rock properties using a Schmidt Hammer O. Katza, b, c, *, Z, 91904, Israel b Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem, 95501, Israel c Rock of concrete hardness [1], and was later used to estimate rock strength [2,3]. It con- sists of a spring

  20. A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD ROCK TBMS.

    E-Print Network [OSTI]

    TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate on data collected in the field and is merely a regression between machine parameters, rock properties is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting

  1. Apollo Rock Reveals Moon Had Molten Core | Universe Additional Resources

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Apollo Rock Reveals Moon Had Molten Core | Universe Today Subscribe Podcast Home Additional Apollo Rock Reveals Moon Had Molten Core Written by Nancy Atkinson If you're new here, you may want to subscribe to my RSS feed. Thanks for visiting! Apollo Rock Reveals Moon Had Molten Core | Universe Today

  2. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  3. Chemical and petrological characteristics of the intrusive rocks of the Quitman Mountains, Texas

    E-Print Network [OSTI]

    Seay, Christopher Sidney

    1973-01-01T23:59:59.000Z

    is advantaqeous in that it yields pellets not only chemically homo- geneous but physically stable. One disadvantage is 16 that the loss of volatiles during heating is unavoid- able. To test the analytical precision and that of sample preparation technique... CHEMICAL AND PETROLOGICAL CHARACTERISTICS OF THE INTRUSIVE ROCKS OF THE QUITMAN MOUNTAINS, TEXAS A Thesis by CHRISTOPHER SIDNEY SEAY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement...

  4. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect (OSTI)

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08T23:59:59.000Z

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  5. ROCK PROPERTIES AND THEIR EFFECT ON THERMALLY-INDUCED DISPLACEMENTS AND STRESSES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    of laboratory rock property measurements. ACKNOWLEDGEMENT10517 u>ve-'zz&\\--lo ROCK PROPERTIES AND THEIR EFFECT OHin values i for the rock properties for an 1n-s1tu rock mass

  6. GEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form? Include the source of the material and the rock-forming

    E-Print Network [OSTI]

    Kirby, Carl S.

    ? Include the source of the material and the rock-forming process. · Igneous rocks form from the hiGEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form-temperature (650-1200 °C) melting of other rocks (ign. mmorphic, or sed), following by cooling, possibly

  7. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Characterization of Rock Masses Structural GeologicalCharacterization of Rock Masses . • • • • • • • • 5.2.1 Structural Geological

  8. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    Happy  Isles  and  the  1999  Glacier  Point  rock  falls,  there   was   an   attempt   to   monitor   rock   fall   in   Yosemite   Valley  

  9. Low Pore Connectivity in Natural Rock

    SciTech Connect (OSTI)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15T23:59:59.000Z

    As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  10. Rock Chalk Report, May 7, 2014

    E-Print Network [OSTI]

    2014-05-07T23:59:59.000Z

    Trouble seeing something? view it online or To unsubscribe, click here or send an email to: unsubscribe- 87@pacmail.em.marketinghq.net. May 7, 2014 Rock Chalk Report The Official Newsletter of Kansas Athletics... an email to: unsubscribe-87@pacmail.em.marketinghq.net. © 2014, University of Kansas. The team names, logos and uniform designs are registered trademarks of the teams indicated. No logos, photographs or graphics in this email may be reproduced without...

  11. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  12. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18T23:59:59.000Z

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  13. Squirt flow in fully saturated rocks

    SciTech Connect (OSTI)

    Dvorkin, J.; Mavko, G.; Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics

    1995-01-01T23:59:59.000Z

    The authors estimate velocity/frequency dispersion and attenuation in fully saturated rocks by employing the squirt-flow mechanism of solid-fluid interaction. In this model, pore fluid is squeezed from thin soft cracks into the surrounding large pores. Information about the compliance of these soft cracks at low confining pressures is extracted from high-pressure velocity data. The frequency dependence of squirt-induced pressure in the soft cracks is linked with the porosity and permeability of the soft pore space, and the characteristic squirt-flow length. These unknown parameters are combined into one expression that is assumed to be a fundamental rock property that does not depend on frequency. The appropriate value of this expression for a given rock can be found by matching the authors theoretical predictions with the experimental measurements of attenuation or velocity. The low-frequency velocity limits, as given by their model, are identical to those predicted by Gassmann`s formula. The high-frequency limits may significant exceed those given by the Biot theory: the high-frequency frame bulk modulus is close to that measured at high confining pressure. They have applied their model to D`Euville Limestone, Navajo Sandstone, and Westerly Granite. The model realistically predicts the observed velocity/frequency dispersion, and attenuation.

  14. The Design Ini+a+ve and Policy Labs

    E-Print Network [OSTI]

    Russell, Lynn

    of economic and social policy ­ Led by India and China, countries want to knowThe Design Ini+a+ve and Policy Labs Peter F. Cowhey Dean, School of prototyping ­ Provide new crea+ve spaces · Studios, policy labs, experiments

  15. Transforming the advanced lab: Part I -Learning goals Benjamin Zwickl

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Transforming the advanced lab: Part I - Learning goals Benjamin Zwickl , Noah Finkelstein and H. J-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University, 01.40.Fk, 01.50.Qb INTRODUCTION At the University of Colorado Boulder (CU), we are transforming our

  16. EE443L Lab 2: Modeling a DC Motor Introduction

    E-Print Network [OSTI]

    Wedeward, Kevin

    and add conversion factors. Copy the LabVIEW VI lab2.vi and its associated subVI Altera the four conversion factors. Motor voltage is measured with a voltage divider to ensure DAQ card analog: The DC motor is a common actuator in control systems that converts electrical energy into rotational

  17. Field and Lab Methods & Protocols University of Michigan

    E-Print Network [OSTI]

    Kling, George W.

    SAFETY AND ORDERING PROCEDURES 309 (VIII-4) HAZARDOUS MATERIALS AND WASTE 313 (VIII-5) PRINTERS 315 (VIIIField and Lab Methods & Protocols Kling Lab University of Michigan Updated: December 2012 In use from: May 2012 Protocol version: v2.9 Last update: 8 November 2013 1 #12;LAST UPDATE: 29 MAY 2013 1

  18. Work and Energy Simulation Name_______________________ Lab Worksheet Group member names__________________________________

    E-Print Network [OSTI]

    Winokur, Michael

    Work and Energy Simulation Name_______________________ Lab Worksheet Group member names://phet.colorado.edu, in a browser and click on the Go to the simulations button. Open Work, Energy, and Power on the left. This lab uses three of the simulations on this page, Masses and Springs, Energy Skate Park, and The Ramp. I

  19. PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes

    E-Print Network [OSTI]

    ,500 square-foot Lab Homes for experiments focused on reducing energy use and peak demand on the electric grid. Results and reports from the experiments will be available at labhomes.pnnl.gov. ENERGY EFFICIENCY. To account for human activity, researchers will simulate occupancy in each home. "The PNNL Lab Homes project

  20. Lab Seven 03-09 & 03-11 Geoprocessing

    E-Print Network [OSTI]

    Hung, I-Kuai

    (polygons, polylines, or points) from multiple datasets into an existing feature class or shapefile. 2, stream, covertype, and boundary from previous labs to your new lab_7 folder as shapefiles. So, convert each of the feature classes to shapefile by first: Right-click on boundary / Export / To Shapefile

  1. SS LSemiconductor System Lab Design of Low Power Digital

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    Voltage = 1V Lifetime EMF 1.1V 1.4V 1.3V [Zinc-Air Battery] #12;SS LSemiconductor System Lab 9 Lab 8 Specifications · Power Battery lasts for 1 week at least. (16hr/day use) · Supply

  2. Berkeley Lab Accident Statistics Through December 31, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through December 31, 2008 These slides are updated on a monthly Goal DART Goal 1.17 #12;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3

  3. Berkeley Lab Accident Statistics Through November 30, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through November 30, 2008 These slides are updated on a monthly Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1

  4. Berkeley Lab Accident Statistics Through November 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through November 30, 2009 These slides are updated on a monthly Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1

  5. Berkeley Lab Accident Statistics Through August 31, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through August 31, 2008 These slides are updated on a monthly 1.17 #12;7 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3

  6. Berkeley Lab Accident Statistics Through April 30, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through April 30, 2010 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  7. Berkeley Lab Accident Statistics Through May 31, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through May 31, 2010 These slides are updated on a monthly basis DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2

  8. Berkeley Lab Accident Statistics Through June 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through June 30, 2009 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  9. Berkeley Lab Accident Statistics Through January 31, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through January 31, 2010 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28

  10. Berkeley Lab Accident Statistics Through October 31, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through October 31, 2009 These slides are updated on a monthly;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2

  11. Berkeley Lab Accident Statistics Through September 30, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through September 30, 2008 These slides are updated on a monthly.17 #12;7 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3

  12. Berkeley Lab Accident Statistics Through April 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through April 30, 2009 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2. 93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  13. Berkeley Lab Accident Statistics Through December 31, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through December 31, 2010 These slides are updated on a monthly.17 #12;9 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3

  14. The sensitivity of rock mechanical properties to the method by which the clay volume is determined

    E-Print Network [OSTI]

    Ivey, Henry Alexander

    1986-01-01T23:59:59.000Z

    were studied. At At ~ Rv s o form with Rv by the Voigt average technique'' form n Rv ( V xRv xW form i 1 i i i ~ . (7) or with Rv by the Reuse average technique'' form n 1/Rvf $ V xWi Rvi form . . (8) Shear Wave Travel Time Model Determination...'or the degree of MASTER OF SCIENCE AUGUST 1986 Major Subject: petroleum Engineering THE SENSITIVITY OF ROCK MECHANICAL PROPERTIES TO THE METHOD BY WHICH THE CLAY VOLUME IS DETERMINED A Thesis by HENRY ALEXANDER IVEY Approved as to style and content by...

  15. Data Acquisition in a High Harmonic Generation Lab and at LCLS

    SciTech Connect (OSTI)

    Hirokawa, Takako; /U. Colorado, Boulder /SLAC; ,

    2011-06-22T23:59:59.000Z

    In this paper, we examine data acquisition in a high harmonic generation (HHG) lab and preliminary data analysis with the Cyclohexadiene Collaboration at the Linac Coherent Lightsource (LCLS) at SLAC National Accelerator Laboratory. HHG experiments have a large number of parameters that need to be monitored constantly. In particular, the pressure of the target is critical to HHG yield. However, this pressure can fluctuate wildly and without a tool to monitor it, it is difficult to analyze the correlation between HHG yield and the pressure. I used the Arduino microcontroller board and created a complementary MATLAB graphical user interface (GUI), thereby enhancing the ease with which users can acquire time-stamped parameter data. Using the Arduino, it is much easier to match the pressure to the corresponding HHG yield. Collecting data by using the Arduino and the GUI is flexible, user-friendly, and cost-effective. In the future, we hope to be able to control and monitor parts of the lab with the Arduino alone. While more parameter information is needed in the HHG lab, we needed to reduce the amount of data during the cyclohexadiene collaboration. This was achieved by sorting the data into bins and filtering out unnecessary details. This method was highly effective in that it minimized the amount of data without losing any valuable information. This effective preliminary data analysis technique will continue to be used to decrease the size of the collected data.

  16. Merguerian, Charles; and Ozdemir, Levent, 2003, Rock Mass Properties and Hard Rock TBM Penetration Rate Investigations, Queens Tunnel Complex, NYC Water Tunnel #3, Stage 2: p.

    E-Print Network [OSTI]

    Merguerian, Charles

    Merguerian, Charles; and Ozdemir, Levent, 2003, Rock Mass Properties and Hard Rock TBM Penetration Properties and Hard Rock TBM Penetration Rate Investigations, Queens Tunnel Complex, NYC Water Tunnel #3 quantification that the rock mass exhibited an unusually high degree of toughness and rock directional properties

  17. Adaptive Comfort in Mixed-Mode Buildings: Research Support Facility, National Renewable Energy Lab

    E-Print Network [OSTI]

    Brager, Gail; Pigman, Margaret

    2013-01-01T23:59:59.000Z

    Support Facility, National Renewable Energy Lab Gail Brager,Facility of the National Renewable Energy Lab in Golden, CO.for energy efficiency and renewable energy technologies. The

  18. The Art of the Start: Moving Science from the Lab to the Marketplace

    ScienceCinema (OSTI)

    Larry Bock

    2010-01-08T23:59:59.000Z

    April 25, 2009 Berkeley Lab Nano*High lecture: The Art of the Start: Moving Science from the Lab to the Marketplace

  19. 2011 Nobel Laureate Saul Perlmutter on the Value of National Labs

    ScienceCinema (OSTI)

    Perlmutter, Saul

    2013-05-29T23:59:59.000Z

    2011 Nobel Laureate, Saul Perlmutter, discusses what makes Lawrence Berkeley National Lab unique, and the value of national labs in award-winning research.

  20. You have remarkable ideas. share them at the Falling Walls lab!

    E-Print Network [OSTI]

    Heermann, Dieter W.

    of the falling wallS lab + conference berlin 8/9 nov 2012 aPPlYnoW!www.falling-walls.com/lab THE FALLING WALLS